TI-92 GUIDEBOOK

The TI-92 Geometry was jointly developed by TI and the authors of Cabri Geometry $\mathrm{II}^{\mathrm{TM}}$, who are with the Université Joseph Fourier, Grenoble, France.

The TI-92 Symbolic Manipulation was jointly developed by TI and the authors of the DERIVE ${ }^{\circledR}$ program, who are with Soft Warehouse, Inc., Honolulu, HI.

Macintosh is a registered trademark of Apple Computer, Inc.
Cabri Geometry II is a trademark of Université Joseph Fourier.
TI-GRAPH LINK, Calculator-Based Laboratory, CBL, CBL 2, Calculator-Based Ranger, CBR, Constant Memory, Automatic Power Down, APD, and EOS are trademarks of Texas Instruments Incorporated.

© 1995-1998, 2001 Texas Instruments Incorporated

Texas Instruments makes no warranty, either expressed or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis.

In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this equipment. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

US FCC Information Concerning Radio Frequency Interference

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference with radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, you can try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/television technician for help.

Caution: Any changes or modifications to this equipment not expressly approved by Texas Instruments may void your authority to operate the equipment.

> This guidebook describes how to use the TI-92. The table of contents can help you locate "getting started" information as well as detailed information about the Tl-92's features.

Chapter 1:
 Getting Started

Chapter 2:
Operating the T -92

Chapter 3:
Basic Function Graphing
How to Use this Guidebook. viii
Getting the TI-92 Ready to Use 2
Performing Computations 4
Graphing a Function 7
Constructing Geometric Objects 9
Turning the TI-92 On and Off. 14
Setting the Display Contrast 15
The Keyboard 16
Home Screen 19
Entering Numbers 21
Entering Expressions and Instructions. 22
Formats of Displayed Results 25
Editing an Expression in the Entry Line 28
TI-92 Menus. 30
Selecting an Application 33
Setting Modes 35
Using the Catalog to Select a Command. 37
Storing and Recalling Variable Values. 38
Re-using a Previous Entry or the Last Answer. 40
Auto-Pasting an Entry or Answer from the History Area 42
Status Line Indicators in the Display. 43
Preview of Basic Function Graphing. 46
Overview of Steps in Graphing Functions 47
Setting the Graph Mode 48
Defining Functions for Graphing 49
Selecting Functions to Graph 51
Setting the Display Style for a Function 52
Defining the Viewing Window 53
Changing the Graph Format 54
Graphing the Selected Functions 55
Displaying Coordinates with the Free-Moving Cursor. 56
Tracing a Function 57
Using Zooms to Explore a Graph 59
Using Math Tools to Analyze Functions 62
Chapter 4:
Tables
Preview of Tables. 68
Overview of Steps in Generating a Table. 69
Setting Up the Table Parameters 70
Displaying an Automatic Table 72
Building a Manual (Ask) Table 75

Table of Contents (Continued)

Chapter 5: Using Split Screens

Chapter 6:
Symbolic
Manipulation

Preview of Split Screens 78
Setting and Exiting the Split Screen Mode 79
Selecting the Active Application 81
Preview of Symbolic Manipulation 84
Using Undefined or Defined Variables 85
Using Exact, Approximate, and Auto Modes 87
Automatic Simplification 90
Delayed Simplification for Certain Built-In Functions 92
Substituting Values and Setting Constraints 93
Overview of the Algebra Menu 96
Common Algebraic Operations 98
Overview of the Calc Menu 101
Common Calculus Operations 102
User-Defined Functions and Symbolic Manipulation 103
If You Get an Out-of-Memory Error. 105
Special Constants Used in Symbolic Manipulation 106
Preview of Geometry 108
Learning the Basics. 109
Managing File Operations 116
Setting Application Preferences 117
Selecting and Moving Objects 120
Deleting Objects from a Construction 121
Creating Points 122
Creating Lines, Segments, Rays, and Vectors 124
Creating Circles and Arcs 127
Creating Triangles 129
Creating Polygons 130
Constructing Perpendicular and Parallel Lines 132
Constructing Perpendicular and Angle Bisectors 134
Creating Midpoints 135
Transferring Measurements 136
Creating a Locus 138
Redefining Point Definitions 139
Translating Objects 140
Rotating and Dilating Objects 141
Creating Reflections and Inverse Objects 146
Measuring Objects 149
Determining Equations and Coordinates. 151
Performing Calculations 152
Collecting Data 153
Checking Properties of Objects 154
Putting Objects in Motion 156
Controlling How Objects Are Displayed 158
Adding Descriptive Information to Objects. 161
Creating Macros 164
Geometry Toolbar Menu Items 167
Pointing Indicators and Terms Used in Geometry 169
Helpful Shortcuts 170
Chapter 8: Data/Matrix Editor
Chapter 9: Statistics and Data Plots
Preview of the Data/Matrix Editor 172
Overview of List, Data, and Matrix Variables 173
Starting a Data/Matrix Editor Session 175
Entering and Viewing Cell Values 177
Inserting and Deleting a Row, Column, or Cell 180
Defining a Column Header with an Expression 182
Using Shift and CumSum Functions in a Column Header 184
Sorting Columns 185
Saving a Copy of a List, Data, or Matrix Variable 186
Preview of Statistics and Data Plots 188
Overview of Steps in Statistical Analysis 192
Performing a Statistical Calculation 193
Statistical Calculation Types 195
Statistical Variables 197
Defining a Statistical Plot 198
Statistical Plot Types 200
Using the Y= Editor with Stat Plots 202
Graphing and Tracing a Defined Stat Plot 203
Using Frequencies and Categories 204
If You Have a CBL 2/CBL or CBR 206
Chapter 10:
Additional Home Screen Topics
Chapter 11:ParametricGraphing
Saving the Home Screen Entries as a Text Editor Script 210
Cutting, Copying, and Pasting Information 211
Creating and Evaluating User-Defined Functions 213
Using Folders to Store Independent Sets of Variables 216
If an Entry or Answer Is "Too Big" 219
Preview of Parametric Graphing. 222
Overview of Steps in Graphing Parametric Equations 223
Differences in Parametric and Function Graphing 224
Chapter 12: Polar Graphing
Chapter 13:
Sequence Graphing
Preview of Polar Graphing 228
Overview of Steps in Graphing Polar Equations 229
Differences in Polar and Function Graphing. 230
Preview of Sequence Graphing 234
Overview of Steps in Graphing Sequences 235
Differences in Sequence and Function Graphing 236
Setting Axes for Time, Web, or Custom Plots 240
Using Web Plots 241
Using Custom Plots 244
Using a Sequence to Generate a Table 245
Comparison of TI-92 and TI-82 Sequence Functions 246

Table of Contents (Continued)

Chapter 14: 3D Graphing
Preview of 3D Graphing 248
Overview of Steps in Graphing 3D Equations 249
Differences in 3D and Function Graphing 250
Moving the Cursor in 3D 253
Rotating and/or Elevating the Viewing Angle 255
Changing the Axes and Style Formats 257
Preview of Additional Graphing Topics 260
Collecting Data Points from a Graph 261
Graphing a Function Defined on the Home Screen 262
Graphing a Piecewise Defined Function 264
Graphing a Family of Curves 266
Using the Two-Graph Mode 267
Drawing a Function or Inverse on a Graph 270
Drawing a Line, Circle, or Text Label on a Graph 271
Saving and Opening a Picture of a Graph 275
Animating a Series of Graph Pictures 277
Saving and Opening a Graph Database 278
Chapter 15:Additional GraphingTopics
Chapter 16:
Text EditorPreview of Text Operations280
Starting a Text Editor Session. 281
Entering and Editing Text. 283
Entering Special Characters 286
Entering and Executing a Command Script 288
Creating a Lab Report 290
Chapter 17: Programming
Preview of Programming 294
Running an Existing Program 296
Starting a Program Editor Session. 298
Overview of Entering a Program 300
Overview of Entering a Function 303
Calling One Program from Another 305
Using Variables in a Program 306
String Operations 308
Conditional Tests 310
Using If, Lbl, and Goto to Control Program Flow 311
Using Loops to Repeat a Group of Commands 313
Configuring the TI-92 316
Getting Input from the User and Displaying Output 317
Creating a Table or Graph 319
Drawing on the Graph Screen 321
Accessing Another TI-92, a CBL 2/CBL, or a CBR. 323
Debugging Programs and Handling Errors 324
Example: Using Alternative Approaches 325

Chapter 18:
 Memory and Variable Management

Chapter 19: Applications

Appendix A:

TI-92 Functions and Instructions

Preview of Memory and Variable Management 328
Checking and Resetting Memory ... 330
Displaying the VAR-LINK Screen... 331
Manipulating Variables and Folders with VAR-LINK......................... 333
Pasting a Variable Name to an Application 335
Transmitting Variables between Two TI-92s 336
Transmitting Variables under Program Control................................ 339
App. 1: Analyzing the Pole-Corner Problem 342
App. 2: Deriving the Quadratic Formula .. 344
App. 3: Exploring a Matrix... 346
App. 4: Exploring $\cos (x)=\sin (x)$.. 347
App. 5: Finding Minimum Surface Area of a Parallelepiped 348
App. 6: Running a Tutorial Script Using the Text Editor.................. 350
App. 7: Decomposing a Rational Function 352
App. 8: Studying Statistics: Filtering Data by Categories 354
App. 9: CBL 2/CBL Program for the TI-92 ... 357
App. 10: Studying the Flight of a Hit Baseball................................... 358
App. 11: Visualizing Complex Zeros of a Cubic Polynomial 360
App. 12: Exploring Euclidean Geometry... 362
App. 13: Creating a Trisection Macro in Geometry 364
App. 14: Solving a Standard Annuity Problem 367
App. 15: Computing the Time-Value-of-Money 368
App. 16: Finding Rational, Real, and Complex Factors 369
App. 17: A Simple Function for Finding Eigenvalues....................... 370
App. 18: Simulation of Sampling without Replacement................... 371
Quick-Find Locator... 374
Alphabetical Listing of Operations .. 377

TI-92 Error Messages ... 472
TI-92 Modes ... 479
TI-92 Character Codes .. 483
TI-92 Key Map .. 484
Complex Numbers .. 488
Accuracy Information... 490
System Variables and Reserved Names .. 491
EOS $^{\text {TM }}$ (Equation Operating System) Hierarchy................................ 492
Battery Information .. 496
In Case of Difficulty.. 498
Support and Service Information... 499
Warranty Information.. 500
General Index ... 503
Geometry Index.. 516

The last thing most people want to do is read a book of instructions before using a new product. With the TI-92, you can perform a variety of calculations without opening the guidebook. However, by reading at least parts of the book and skimming through the rest, you can learn about capabilities that let you use the TI-92 more effectively.

How the Guidebook Is Organized

The TI-92 has a wide variety of features and applications (Home screen, Y= Editor, Graph screen, Geometry, etc.) that are explained in this guidebook. Generally, the guidebook is divided into three major parts.

- Chapters $1-9$ cover topics that are often used by people who are just getting started with the TI-92.
- Chapters 10 - 19 cover additional topics that may not be used right away (depending on your situation).
- The appendices provide useful reference information, as well as service and warranty information.

Particularly when you first get started, you may not need to use all of the TI-92's capabilities. Therefore, you only need to read the chapters that apply to you. It's a little like the dictionary. If you're looking for xylophone, skip A through W .

If you want to: Go to:

Get an overview of the TI-92 and its capabilities

Learn about a particular application or topic

Chapter 1 - Contains step-by-step examples to get you started performing calculations, graphing functions, constructing geometric objects, etc.

Chapter 2 - Gives general information about operating the TI-92. Although this chapter primarily covers the Home screen, much of the information applies to any application.

The applicable chapter - For example, to learn how to graph a function, go to Chapter 3: Basic Function Graphing.

Most chapters start with a step-by-step "preview" example that illustrates one or more of the topics covered in that chapter.

Although you don't need to read every chapter, skim through the entire guidebook and stop at anything that interests you. You may find a feature that could be very useful, but you might not know it exists if you don't look around.

How Do I Look Up Information?

Notes about Appendix A

Because the book is big, it's important that you know how to look things up quickly. Use the:

- Table of contents
- Index
- Appendix A (for detailed information about a particular TI-92 function or instruction)

Long after you learn to use the TI-92, Appendix A can continue to be a valuable reference.

- You can access most of the TI-92's functions and instructions by selecting them from menus. Use Appendix A for details about the arguments and syntax used for each function and instruction.
- You can also use the Help information that is displayed at the bottom of the CATALOG menu, as described in Chapter 2.
- At the beginning of Appendix A, the available functions and instructions are grouped into categories. This can help you locate a function or instruction if you don't know its name.
- Also refer to Chapter 17, which categorizes program commands.

Getting Started

Getting the TI-92 Ready to Use 2
Performing Computations 4
Graphing a Function 7
Constructing Geometric Objects 9

This chapter helps you to get started using the TI-92 quickly. This chapter takes you through several examples to introduce you to some of the principle operating and graphing functions of the TI-92.

After setting up your TI-92 and completing these examples, please read Chapter 2: Operating the TI-92. You then will be prepared to advance to the detailed information provided in the remaining chapters in this guidebook.

Installing the AA Batteries

Important: When replacing batteries in the future, ensure that the T -92 is turned off by pressing [2nd [off].

The TI-92 comes with four AA batteries. This section describes how to install these batteries, turn the unit on for the first time, set the display contrast, and view the Home screen.

To install the four AA alkaline batteries:

1. Holding the TI-92 unit upright, slide the latch on the top of the unit to the right unlocked position; slide the rear cover down about one-eighth inch and remove it from the main unit.

2. Place the TI-92 face down on a soft cloth to prevent scratching the display face.
3. Install the four AA batteries. Be sure to position the batteries according to the diagram inside the unit. The positive (+) terminal of each battery should point toward the top of the unit.

4. Replace the rear cover and slide the latch on the top of the unit to the left locked position to lock the cover back in place.

Turning the Unit On and Adjusting the Display Contrast

To turn the unit on and adjust the display after installing the batteries:

1. Press ON to turn the TI-92 on.

The Home screen is displayed; however, the display contrast may be too dark or too dim to see anything. (When you want to turn the TI-92 off, press 2nd [OFF].)
2. To adjust the display to your satisfaction, hold down (diamond symbol inside a green border) and momentarily press \square (minus key) to lighten the display. Hold down \square and momentarily press \square (plus key) to darken the display.

About the Home Screen

When you first turn on your TI-92, a blank Home screen is displayed. The Home screen lets you execute instructions, evaluate expressions, and view results.

The following example contains previously entered data and describes the main parts of the Home screen. Entry/answer pairs in the history area are displayed in "pretty print."

Performing Computations

This section provides several examples for you to perform that demonstrate some of the computational features of the Tl－92．The history area in each screen was cleared by pressing F1 and selecting 8：Clear Home，before performing each example，to illustrate only the results of the example＇s keystrokes．
Steps \quad Keystrokes \quad Display

Showing Computations

1．Compute $\sin (\pi / 4)$ and display the result in symbolic and numeric format．

To clear the history area of previous calculations，press F1 and select 8：Clear Home．

Finding the Factorial of Numbers

1．Compute the factorial of several numbers to see how the TI－92 handles very large integers．

To get the factorial operator（！），press 2nd［MATH］，select 7：Probability，and then select 1：！．

Expanding Complex Numbers

1．Compute $(3+5 i)^{3}$ to see how the TI－ 92 handles computations involving complex numbers．

T3⿴5 5 ［nd $[i]$	
D⿴囗 3 ENTER	
	${ }^{(3)}(3+5 \cdot i)^{3} \quad-198+10 \cdot i$

Finding Prime Factors

1．Compute the factors of the rational number 2634492.

You can enter＂factor＂on the entry line by typing FACTOR on the keyboard，or by pressing［F2 and selecting 2 ：factor（．

2．（Optional）Enter other numbers on your own．

FACTOR $2634492 \square$ ENTER

Steps	Keystrokes	Display

Expanding Expressions

Reducing Expressions

1．Reduce the expression $\left(x^{2}-2 x-5\right) /(x-1)$ to its simplest form．

You can enter＂propFrac＂on the entry line by typing PROPFRAC on the keyboard，or by pressing（F2 and selecting 7：propFrac（．

1．Expand the expression $(x-5)^{3}$ ．
You can enter＂expand＂on the entry line by typing EXPAND on the keyboard，or by pressing E2 and selecting 3 ：expand．

2．（Optional）Enter other expressions on your own．

ENTER

Factoring Polynomials

1．Factor the polynomial $\left(x^{2}-5\right)$ with respect to x ．

You can enter＂factor＂on the entry line by typing FACTOR on the keyboard or by pressing ㅌ2 and selecting 2 ：factor（．

Solving Equations

1．Solve the equation $x^{2}-2 x-6=2$ with respect to x ．

You can enter＂solve（＂on the entry line by selecting＂solve（＂from the Catalog menu，by typing SOLVE（on the keyboard，or by pressing ㅌ2 and selecting 1：solve（．

The status line area shows the required syntax for the marked item in the Catalog menu．

2nd［Catalog］S （press \bigcirc until the mark points to solve（）ENTER覌2 2 2 2 － 6 $\square 2 \square \times \square$ ENTER

Performing Computations (Continued)

Steps
 Solving Equations with a Domain

 Constraint

 Constraint}Keystrokes
Display

1. Solve the equation $x^{2}-2 x-6=2$ with respect to x where x is greater than zero.

Pressing [2nd K produces the "with" (I) operator (domain constraint).

Finding the Derivative of Functions

1. Find the derivative of $(x-y)^{3} /(x+y)^{2}$ with respect to x .

This example illustrates using the calculus differentiation function and how the function is displayed in "pretty print" in the history area.

Finding the Integral of Functions

1. Find the integral of $x * \sin (x)$ with respect to x.

This example illustrates using the calculus integration function.

■2
(X $\square_{\text {2nd }} \mathrm{KX}$
2nd [>] 0
ENTER
.

2nd [CATALOG] S (press \bigcirc until the mark points to solve() ENTER

Graphing a Function

The example in this section demonstrates some of the graphing capabilities of the TI-92.
It illustrates how to graph a function using the $Y=$ Editor. You will learn how to enter a function, produce a graph of the function, trace a curve, find a minimum point, and transfer the minimum coordinates to the Home screen.

Explore the graphing capabilities of the TI-92 by graphing the function $\mathrm{y}=\left(\left|\mathrm{x}^{2}-3\right|-10\right) / 2$.

Steps	Keystrokes	Display
1. Display the $\mathrm{Y}=$ Editor.	- $\left.{ }^{\prime} \mathrm{Y}=\right]$	

2. Enter the function $\left(a b s\left(x^{2}-3\right)-10\right) / 2$.3DG10■ - 2 ENTER

3. Display the graph of the function.

F2 6
Select 6 :ZoomStd by pressing 6 or by moving the cursor to 6:ZoomStd and pressing ENTER.

4. Turn on Trace.

F3
The tracing cursor, and the x and y coordinates are displayed.

Steps	Keystrokes	Display
5. Open the MATH menu and select 3:Minimum.	F5 $\bigcirc \bigcirc$	

6. Set the lower bound.

Press \bigcirc (right cursor) to move the tracing cursor until the lower bound for x is just to the left of the minimum node before pressing ENTER the second time.

ENTER

○...
ENTER
7. Set the upper bound.
$\bigcirc \ldots$

Press \bigcirc (right cursor) to move the tracing cursor until the upper bound for x is just to the right of the minimum node.

8. Find the minimum point on the graph ENTER between the lower and upper bounds.
minimum poin minimum coordinates

9. Transfer the result to the Home

- H screen, and then display the Home screen.

$$
\square[\mathrm{HOME}]
$$

- [1.7320508124208	$-4.999999915962]$	
FITIN	FINC 1, \%	

Constructing Geometric Objects

Getting Started in Geometry

Note: Each of the following example modules require that you complete the previous module.

This section provides a multi-part example about constructing geometric objects using the Geometry application of the TI-92. You will learn how to construct a triangle and measure its area, construct perpendicular bisectors to two of the sides, and construct a circle centered at the intersection of the two bisectors that will circumscribe the triangle.

To start a Geometry session, you first have to give it a name.

1. Press APPS 83 to display the New dialog box.
2. Press \bigodot G 1 as the name for the new construction, and press ENTER.
3. Press ENTER to display the Geometry drawing window.

Constructing Geometric Objects (Continued)

Creating a Triangle

Measuring the Area of the Triangle

Note: Default measurements are in centimeters. See "Setting Application Preferences" in Chapter 7 to change to other unit measurements.

To create a triangle:

1. Press F3 and select 3:Triangle.
2. Move the cursor (*) to the desired location, and press ENTER to define the first point.
3. Move the cursor to another location, and press ENTER to define the second point.

4. Move the cursor to the third location, and press ENTER again to complete the triangle.

To measure the area of the triangle that you constructed in the previous example:

1. Press F6 and select 2:Area.
2. Move the cursor, if necessary, until "THIS TRIANGLE" is displayed.

3. Press ENTER to display the result.

Constructing the Perpendicular Bisectors

To construct the perpendicular bisector to two sides of the triangle:

1. Press F4 and select 4:Perpendicular Bisector.
2. Move the cursor close to the triangle until a message is displayed that indicates a side of the triangle.
3. Press ENTER to construct the first bisector.

4. Move the cursor to one of the other two sides until the message is displayed (same as step 2), and press EENTER to construct the second bisector.

To find the intersection point of the two bisectors:

1. Press F2 and select 3:Intersection Point.
2. Select the first line, and then press ENTER.
3. Select the second line, and then press ENTER to create the intersection point.

Constructing Geometric Objects (Continued)

Creating a Circle

Hint: See "Measuring the Area of the Triangle" on the previous page.

To create a circle whose centerpoint is at the intersection of the two bisectors and whose radius is attached to one of the triangle's vertex points:

1. Press F3 and select 1:Circle.
2. Move the cursor to the intersection point of the two perpendicular bisectors, and press ENTER to define the centerpoint of the circle.
3. Move the cursor away from the centerpoint to expand the circle until the cursor is near one of the vertices of the triangle and "THIS RADIUS POINT" appears.
4. Press ENTER to construct the circle.
5. Measure the area of the circle.

Effects of Modifying the Triangle

Note: The circle stays attached to the triangle, and the areas of the triangle and circle change.

This example illustrates the interactive features of the TI-92. You will grab one vertex of the triangle to modify the triangle's shape. The size of the circle, as well as the areas of the triangle and circle, will change accordingly.

To observe the interactive features of the TI-92:

1. Press F1 and select 1:Pointer. Move the cursor to one of the intersecting points of the circle and triangle until "THIS POINT" appears, and then press ENTER.
2. Press and hold 0 (dragging hand) with your left thumb while pressing the cursor with your right thumb to drag the selected point to its new location.

Operating the TI-92

Turning the TI-92 On and Off 14
Setting the Display Contrast 15
The Keyboard 16
Home Screen 19
Entering Numbers 21
Entering Expressions and Instructions 22
Formats of Displayed Results 25
Editing an Expression in the Entry Line 28
TI-92 Menus 30
Selecting an Application 33
Setting Modes 35
Using the Catalog to Select a Command 37
Storing and Recalling Variable Values. 38
Reusing a Previous Entry or the Last Answer 40
Auto-Pasting an Entry or Answer from the History Area 42
Status Line Indicators in the Display. 43

This chapter gives a general overview of the TI-92 and describes its basic operations. By becoming familiar with the information in this chapter, you can use the TI-92 to solve problems more effectively.

The Home screen is the most commonly used application on the TI-92. You can use the Home screen to perform a wide variety of mathematical operations.

You can turn the TI-92 on and off manually by using the 0 N and 2nd [0FF] (or [0FF]) keys. To prolong battery life, the APD ${ }^{\text {TM }}$ (Automatic Power Down) feature lets the TI-92 turn itself off automatically.

Turning the TI-92 On

Turning the TI-92 Off

Note:[0fF] is the second function of the 00 key.

APD (Automatic Power Down)

Batteries

Press ON.

- If you turned the unit off by pressing 2nd [0FF], the TI-92 shows the Home screen as it was when you last used it.
- If you turned the unit off by pressing \square [OFF] or if the unit turned itself off through APD, the TI- 92 will be exactly as you left it.

You can use either of the following keys to turn off the TI-92.

Press:	Description
2nd [off] (press 2nd and then press [0FF])	Settings and memory contents are retained by the Constant Memory ${ }^{\text {TM }}$ feature. However: - You cannot use 2nd [oFF] if an error message is displayed. - When you turn the TI-92 on again, it always displays the Home screen (regardless of the last application you used).
- [OFF] (press \square and then press [0FF])	Similar to 2nd [ofF] except: - You can use [0FF] if an error message is displayed. - When you turn the TI-92 on again, it will be exactly as you left it.

After several minutes without any activity, the TI-92 turns itself off automatically. This feature is called APD.

When you press $0 \mathbb{N}$, the TI- 92 will be exactly as you left it.

- The display, cursor, and any error conditions are exactly as you left them.
- All settings and memory contents are retained.

APD does not occur if a calculation or program is in progress, unless the program is paused.

The TI-92 uses four AA alkaline batteries and a back-up lithium battery. To replace the batteries without losing any information stored in memory, follow the directions in Appendix C.

Setting the Display Contrast

Adjusting the Display Contrast

Using the Snap-on Cover as a Stand

Note: Slide the tabs at the top-sides of the TI-92 into the slots in the cover.

The brightness and contrast of the display depend on room lighting, battery freshness, viewing angle, and the adjustment of the display contrast. The contrast setting is retained in memory when the TI-92 is turned off.

You can adjust the display contrast to suit your viewing angle and lighting conditions.

To:	Press and hold both:
Increase (darken)	\square and \square
the contrast	
Decrease (lighten) the contrast	\square and \square

If you press and hold $\square \square$ or \square too long, the display may go completely black or blank. To make finer adjustments, hold \square and then $\operatorname{tap} \square$ or \square.

When using the TI-92 on a desk or table top, you can use the snap-on cover to prop up the unit at one of three angles. This may make it easier to view the display under various lighting conditions.

As the batteries get low, the display begins to dim (especially during calculations) and you must increase the contrast. If you have to increase the contrast frequently, replace the four AA batteries.

The status line along the bottom of the display also gives battery information.

Indicator in status line	Description
EHTT	Batteries are low.
EHTT	Replace batteries as soon as possible.

Keyboard Areas The keyboard is divided into several areas of related keys.

Function Keys
Access the toolbar menus displayed across the top of the screen.

With the TI-92's easy-to-hold shape and keyboard layout, you can quickly access any area of the keyboard even when you are holding the unit with two hands.

Application

 Shortcut Keys Used with the \square key to let you select commonly used applications.

Cursor Pad

To move the cursor, press the applicable edge of the cursor pad. This guidebook uses key symbols such as \odot and \odot to indicate which side of the cursor pad to press.

For example, press \bigcirc to move the cursor to the right.

Note: The diagonal directions (\bigcirc, etc.) are used only for geometry and graphing applications.

Important Keys You Should Know About

2nd is a modifier key, which is described below.

Modifier Keys

The area around the cursor pad contains several keys that are important for using the TI-92 effectively.

Key	Description
APPS	Displays a menu that lists all the applications available on the TI-92 and lets you select the one you want. Refer to page 33.
ESC	Cancels any menu or dialog box.
ENTER	Evaluates an expression, executes an instruction, selects a menu item, etc.
	Because this is commonly used in a variety of operations, the TT-92 has three ENTER keys placed at convenient locations.
MODE	Displays a list of the TI-92's current mode settings, which determine how numbers and graphs are interpreted, calculated, and displayed. You can change the settings as needed. Refer to "Setting Modes" on page 35.
CLEAR	Clears (erases) the entry line. Also used to delete an entry/answer pair in the history area.

Most keys can perform two or more functions, depending on whether you first press a modifier key.

Modifier	Description
2nd	Accesses the second function of the next key you (Second) press. On the keyboard, second functions are printed in the same color as the 2nd key.
	The TI-92 has two 2nd keys conveniently placed at opposite corners of the keyboard.
	Activates "shortcut" keys that select applications and certain menu items directly from the keyboard. On the keyboard, application shortcuts are printed in the same color as the
(Diamond key. Refer to page 34.	

The Keyboard (Continued)

2nd Functions

Note: On the keyboard, second functions are printed in the same color as the 2nd key.

On the TI-92's keyboard, a key's second function is printed above the key. For example:
SIN^{-1}
SIN $\begin{aligned} & \text { Second function } \\ & \text { Primary function }\end{aligned}$
To access a second function, press the 2nd key and then press the key for that second function.

In this guidebook:

- Primary functions are shown in a box, such as SIN.
- Second functions are shown in brackets, such as 2nd [SIN-1].

When you press 2nd, 2ND is shown in the status line at the bottom of the display. This indicates that the TI-92 will use the second function, if any, of the next key you press. If you press 2nd by accident, press 2nd again (or press ESC) to cancel its effect.

Normally, the QWERTY keyboard types lowercase letters. To type uppercase letters, use Shift and Caps Lock just as on a typewriter.

To:	Do this:
Type a single uppercase letter	Press \uparrow and then the letter key.
	- To type multiple uppercase letters,
	hold \uparrow or use Caps Lock.
	• When Caps Lock is on, \uparrow has no effect.
Toggle Caps Lock on or off	Press 2nd [CAPS].

If You Need to Enter Special Characters

You can also use the QWERTY keyboard to enter a variety of special characters. For more information, refer to "Entering Special Characters" in Chapter 16.

Displaying the Home Screen

Parts of the Home Screen

When you first turn on your TI-92, the Home screen is displayed. The Home screen lets you execute instructions, evaluate expressions, and view results.

When you turn on the TI-92 after it has been turned off with [2nd [OFF], the display always shows the Home screen. (If the TI-92 turned itself off through APD, the display shows the previous screen, which may or may not have been the Home screen.)

To display the Home screen at any time:

- Press [HOME].
- or -
- Press 2nd [QuIT].
- or -
- Press APPS ENTER or APPS 1.

The following example gives a brief description of the main parts of the Home screen.

History Area
The history area shows up to eight previous entry/answer pairs (depending on the complexity and height of the displayed expressions). When the display is filled, information scrolls off the top of the screen. You can use the history area to:

- Review previous entries and answers. You can use the cursor to view entries and answers that have scrolled off the screen.
- Recall or auto-paste a previous entry or answer onto the entry line so that you can re-use or edit it. Refer to pages 41 and 42.

Home Screen (Continued)

Scrolling through
 the History Area

Note: For an example of viewing a long answer, refer to page 24.

History Information

 on the Status Line
Modifying the History Area

Normally, the cursor is in the entry line. However, you can move the cursor into the history area.

To:	Do this:
View entries or answers that have scrolled off the screen	1. From the entry line, press \bigcirc to highlight the last answer. 2. Continue using \bigcirc to move the cursor from answer to entry, up through the history area.
View an entry or answer that is too long for one line (\downarrow is at end of line)	Move the cursor to the entry or answer. Use \odot and \odot to scroll left and right (or 2nd \odot and $2 n d)$ to go to the end or the beginning), respectively.
Return the cursor to the entry line	Press ESC, or press \bigcirc until the cursor is back on the entry line.

Use the history indicator on the status line for information about the entry/answer pairs. For example:

By default, the last 30 entry/answer pairs are saved. If the history area is full when you make a new entry (indicated by $30 / 30$), the new entry/answer pair is saved and the oldest pair is deleted. The history indicator does not change.
To: Do this:

Change the number of pairs that can be saved

Clear the history area and delete all saved pairs

Delete a particular entry/answer pair

Do this:

Press F1 and select 9:Format, or press \bullet F. Then press \bigcirc, use \bigcirc or \bigcirc to highlight the new number, and press ENTER twice.

Press F1 and select 8:Clear Home, or enter CIrHome on the entry line.

Move the cursor to either the entry or answer. Press \square or CLEAR.

Entering Numbers

The TI-92's keypad lets you enter positive and negative numbers for your calculations. You can also enter numbers in scientific notation.

Entering a Negative Number

Important: Use \square for subtraction and use $\llbracket-1$ for negation.

1. Press the negation key (-). (Do not use the subtraction key \square.)
2. Type the number.

To see how the TI-92 evaluates a negation in relation to other functions, refer to the Equation Operating System (EOS) hierarchy in Appendix B. For example, it is important to know that functions such as x^{2} are evaluated before negation.

Use \square and \square to include parentheses if you have any doubt about how a negation will be evaluated.

If you use \square instead of $(-)$ (or vice versa), you may get an error message or you may get unexpected results. For example:

- 9 区 $(-)=-63$
- but-
$9 \boxtimes \square$ displays an error message.
- $6 \square 2=4$
- but-
$6-2=-12$ since it is interpreted as $6(-2)$, implied multiplication.
- $-(-1+4=2$
- but -
$\square 2 \boxplus 4$ subtracts 2 from the previous answer and then adds 4 .

1. Type the part of the number that precedes the exponent. This value can be an expression.
2. Press 2nd [EE]. e appears in the display.
3. Type the exponent as an integer with up to 3 digits. You can use a negative exponent.

Entering a number in scientific notation does not cause the answers to be displayed in scientific or engineering notation.

The display format is determined by the mode settings (pages 25 through 27) and the magnitude of the
 number.

Entering Expressions and Instructions

You perform a calculation by evaluating an expression. You initiate an action by executing the appropriate instruction. Expressions are calculated and results are displayed according to the mode settings described on page 25.

Definitions

Note: Appendix A describes all of the TI-92's built-in functions and instructions.

Note: This guidebook uses the word command as a generic reference to both functions and instructions.

Expression Consists of numbers, variables, operators, functions, and their arguments that evaluate to a single answer. For example: $\pi r^{2}+3$.

- Enter an expression in the same order that it normally is written.
- In most places where you are required to enter a value, you can enter an expression.

Operator Performs an operation such as $+,-, *, \wedge$.

- Operators require an argument before and after the operator. For example: $4+5$ and $5^{\wedge} 2$.

Function Returns a value.

- Functions require one or more arguments (enclosed in parentheses) after the function. For example: $\sqrt{ }(5)$ and $\boldsymbol{\operatorname { m i n }}(5,8)$.

Instruction Initiates an action.

- Instructions cannot be used in expressions.
- Some instructions do not require an argument. For example: CIrHome.
- Some require one or more arguments. For example: Circle 0,0,5.

For instructions, do not put the arguments in parentheses.

The TI-92 recognizes implied multiplication, provided it does not conflict with a reserved notation.

	If you enter:	The TI-92 interprets it as:
Valid	2π	$2 * \pi$
	$4 \sin (46)$	$4 * \sin (46)$
	$5(1+2)$ or $(1+2) 5$	$5 *(1+2)$ or $(1+2) * 5$
	$[1,2] \mathrm{a}$	[a 2 a$]$
Invalid	$2(\mathrm{a})$	$2 * \mathrm{a}$
	xy	Single variable named xy
	$\mathrm{a}(2)$	Function call
	$\mathrm{a}[1,2]$	Matrix index to element $\mathrm{a}[1,2]$

Parentheses

Entering an Expression

Example

Expressions are evaluated according to the Equation Operating System (EOS) hierarchy described in Appendix B. To change the order of evaluation or just to ensure that an expression is evaluated in the order you require, use parentheses.

Calculations inside a pair of parentheses are completed first. For example, in $4(1+2)$, EOS first evaluates $(1+2)$ and then multiplies the answer by 4 .

Type the expression, and then press ENTER to evaluate it. To enter a function or instruction name on the entry line, you can:

- Press its key, if available. For example, press SIN.
- or -
- Select it from a menu, if available. For example, select 2:abs from the Number submenu of the MATH menu.
- or -
- Type the name letter-by-letter from the keyboard. You can use any mixture of uppercase or lowercase letters. For example, type $\boldsymbol{\operatorname { s i n }}$ (or Sin (.

Calculate $3.76 \div(-7.9+\sqrt{5})+2 \log 45$.

$5 \square \square$

Entering Multiple Expressions on a Line

To enter more than one expression or instruction at a time, separate them with a colon by pressing 2nd [:].

Entering Expressions and Instructions (Continued)

If an Entry or
Answer Is Too Long for One Line

Note: When you scroll to the right, \varangle is displayed at the beginning of the line.

Continuing a Calculation

In the history area, if both the entry and its answer cannot be displayed on one line, the answer is displayed on the next line.

If an entry or answer is too long to fit on one line, - is displayed at the end of the line.

To view the entire entry or answer:

1. Press \bigcirc to move the cursor from the entry line up into the history area. This highlights the last answer.
2. As necessary, use \bigcirc and \bigcirc to highlight the entry or answer you want to view. For example, \bigcirc moves from answer to entry, up through the history area.
3. Use \bigcirc and \odot or 2nd \bigcirc and 2 nd \odot to scroll right and left.

4. To return to the entry line, press ESC.

When you press ENTER to evaluate an expression, the TI-92 leaves the expression on the entry line and highlights it. You can continue to use the last answer or enter a new expression.

If you press:	The Tl-92:
†, \square, 区, \dagger,	Replaces the entry line with the variable ans(1),
, , or STO	which lets you use the last answer as the beginning of another expression
Any other key	Erases the entry line and begins a new entry.

Calculate $3.76 \div(-7.9+\sqrt{5})$. Then add $2 \log 45$ to the result.

When a calculation is in progress, the BUSY indicator appears on the right end of the status line. To stop the calculation, press 0 N .

There may be a delay before the "break" message is displayed.

Press ESC to return to the current
 application.

Formats of Displayed Results

Pretty Print Mode

Exact/Approx Mode

Note: By retaining fractional and symbolic forms, EXACT reduces rounding errors that could be introduced by intermediate results in chained calculations.

A result may be calculated and displayed in any of several formats. This section describes the TI-92 modes and their settings that affect the display formats. To check or change your current mode settings, refer to page 35 .

By default, Pretty Print = ON. Exponents, roots, fractions, etc., are displayed in the same form in which they are traditionally written. You can use MODE to turn pretty print off and on.

ON	Pretty Print
$\pi^{2}, \frac{\pi}{2}, \sqrt{\frac{x-3}{2}}$	$\pi^{\wedge} 2, \pi / 2, \sqrt{ }((x-3) / 2)$

The entry line does not show an expression in pretty print. If pretty print is turned on, the history area will show both the entry and its result in pretty print after you press ENTER.

By default, Exact/Approx = AUTO. You can use MODE to select from three settings.

Because AUTO is a combination of the other two settings, you should be
 familiar with all three settings.

EXACT - Any result that is not a whole number is displayed in a fractional or symbolic form ($1 / 2, \pi, \sqrt{2}$, etc.).

Formats of Displayed Results (Continued)

Exact/Approx Mode

 (Continued)Note: Results are rounded to the precision of the TI-92 and displayed according to current mode settings.

Tip: To retain an EXACT form, use fractions instead of decimals. For example, use $3 / 2$ instead of 1.5 .

Tip: To evaluate an entry in APPROXIMATE form, regardless of the current setting, press ENTER.

APPROXIMATE - All numeric results, where possible, are displayed in floating-point (decimal) form.

Because undefined variables cannot be evaluated, they are treated algebraically. For example, if the variable r is undefined, $\pi r^{2}=3.14159 \cdot r^{2}$.

AUTO - Uses the EXACT form where possible, but uses the APPROXIMATE form when your entry contains a decimal point. Also, certain functions may display APPROXIMATE results even if your entry does not contain a decimal point.

The following chart compares the three settings.

Entry	Exact Result	Approximate Result	Auto Result
$8 / 4$	2	2.	2
$8 / 6$	$4 / 3$	1.33333	$4 / 3$
$8.5 * 3$	$51 / 2$	25.5	$25.5-$A decimal in the entry forces a floating-point result in AUTO.
$\sqrt{(2) / 2}$	$\frac{\sqrt{2}}{2}$.707107	$\frac{\sqrt{2}}{2}$
$\pi * 2$	$2 \cdot \pi$	6.28319	$2 \cdot \pi$
$\pi * 2$.	$2 \cdot \pi$	6.28319	6.28319

Display Digits Mode

Note: Regardless of the Display Digits setting, the full value is used for internal floating-point calculations to ensure maximum accuracy.

Note: A result is automatically shown in scientific notation if its magnitude cannot be displayed in the selected number of digits.

Exponential Format Mode

Note: In the history area, a number in an entry is displayed in SCIENTIFIC if its absolute value is less than . 001.

By default, Display Digits = FLOAT 6, which means that results are rounded to a maximum of six digits. You can use MODE to select different settings. The settings apply to all exponential formats.

Internally, the TI-92 calculates and retains all decimal results with up to 14 significant digits (although a maximum of 12 are displayed).

Setting	Example		Description
$\begin{aligned} & \overline{\text { FIX }} \\ & (0-12) \end{aligned}$	123.	(FIX 0)	Results are rounded to the selected number of decimal places.
	123.5	(FIX 1)	
	123.46	(FIX 2)	
	123.457	(FIX 3)	
FLOAT	123.456789012		Number of decimal places varies, depending on the result.
$\begin{aligned} & \text { FLOAT } \\ & (1-12) \end{aligned}$	1.E2	(FLOAT 1)	Results are rounded to the total number of selected digits.
	1.2E 2	(FLOAT 2)	
	123.	(FLOAT 3)	
	123.5	(FLOAT 4)	
	123.46	(FLOAT 5)	
	123.457	(FLOAT 6)	

By default, Exponential Format $=$ NORMAL. You can use MODE to select from three settings.

Setting	Example	Description
NORMAL	12345.6	If a result cannot be displayed in the number of digits specified by the Display Digits mode, the TI-92 switches from NORMAL to SCIENTIFIC for that result only.
SCIENTIFIC	$1.23456 \mathrm{E} 4$	1.23456×10^{4} - Exponent (power of 10). - Always 1 digit to the left of the decimal point.
ENGINEERING	$\text { 12.3456Е } 3$	12.3456×10^{3} Exponent is a multiple of 3 . \qquad May have 1,2 , or 3 digits to the left of the decimal point.

Removing the Highlight from the Previous Entry

Note: If you accidentally press \bigcirc instead of \odot or \bigcirc, the cursor moves up into the history area. Press ESC or press \bigodot until the cursor returns to the entry line.

Deleting a Character

Clearing the Entry

 LineKnowing how to edit an entry can be a real time-saver. If you make an error while typing an expression, it's often easier to correct the mistake than to retype the entire expression.

After you press ENTER to evaluate an expression, the TI-92 leaves that expression on the entry line and highlights it. To edit the expression, you must first remove the highlight; otherwise, you may clear the expression accidentally by typing over it.

To remove the highlight, move the cursor toward the side of the expression you want to edit.

After removing the highlight, move the cursor to the applicable position within the expression.

To move the cursor:	Press:	
Left or right within an expression.	\bigcirc or \odot	Hold the pad to repeat the movement.
To the beginning of the expression.	2nd \odot	2nd \odot
To the end of the expression.		

To delete:	Press:	
The character to the left of the cursor. The character to the right of the cursor.	$\boxed{\square}$	Hold \square to delete multiple characters.
All characters to the right of the cursor.	CLEAR	If there are no characters to the right of the cursor, CLEAR erases the entire entry line.

To clear the entry line, press:

- CLEAR if the cursor is at the beginning or end of the entry line. - or -
- CLEAR CLEAR if the cursor is not at the beginning or end of the entry line. The first press deletes all characters to the right of the cursor, and the second clears the entry line.

Inserting or Overtyping a Character

Tip: Look at the cursor to see if you're in insert or overtype mode.

Replacing or Deleting Multiple Characters

Tip: When you highlight characters to replace, remember that some function keys automatically add an open parenthesis. For example, pressing COS types cos(.

The TI-92 has both an insert and an overtype mode. By default, the TI-92 is in the insert mode. To toggle between the insert and overtype modes, press 2nd [INS].

If the TI-92 is in:	The next character you type:
Insert mode	Will be inserted at the cursor.
LThin cursor between characters	Will replace the highlighted character.
Cuertupe mode character	

First, highlight the applicable characters. Then, replace or delete all the highlighted characters.

To:	Do this:
Highlight multiple characters	1. Move the cursor to either side of the characters you want to highlight.
	$\sin \left[\frac{\pi}{4}\right]$ $\frac{\sqrt{2}}{2}$ $\sin (\pi / 4)$
	To replace $\boldsymbol{\operatorname { s i n }}$ with cos, place the cursor beside sin.
	2. Hold \uparrow and press \odot or \odot to highlight characters left or right of the cursor.
	- Hold \dagger and press $\odot \bigcirc \bigcirc$.
Replace the highlighted characters	Type the new characters.
	$\square \equiv \operatorname{in}\left[\frac{\pi}{4}\right] \quad \frac{\sqrt{2}}{2}$
- or -	- Type COS.
Delete the	Press \square.
highlighted characters	

To leave the keyboard uncluttered, the TI-92 uses menus to access many operations. This section gives an overview of how to select an item from any menu. Specific menus are described in the appropriate chapters of this guidebook.

Displaying a Menu

Selecting an Item from a Menu

Press: To display:
F1, [F2, A toolbar menu - Drops down from the toolbar at the etc. top of most application screens. Lets you select operations useful for that application.

APPS \quad APPLICATIONS menu - Lets you select from the list of TI-92 applications. Refer to page 33.

2nd [CHAR] CHAR menu - Lets you select from categories of special characters (Greek, math, etc.).

2nd [MATH] MATH menu - Lets you select from categories of math operations.

2nd [CATALOG] CATALOG menu - Lets you select from a complete, alphabetic list of the TI-92's built-in functions and instructions.

To select an item from the displayed menu, either:

- Press the number or letter shown to the left of that item.
- or -
- Use the cursor pad \bigcirc and \bigcirc to highlight the item, and then press EENTER. (Note that pressing \bigcirc from the first item does not move the highlight to the last item, nor vice versa.)
- indicates that a menu will drop down from the toolbar when you press F2.

To select factor, press 2 or \bigodot ENTER. This closes the menu and inserts the function at the cursor location.
factor

Selecting items marked with - or ... displays a submenu or dialog box, respectively.

Items Ending with (Submenus)

If you select a menu item ending with \downarrow, a submenu is displayed. You then select an item from the submenu.

For items that have a submenu, you can use the cursor pad as described below.

- To display the submenu for the highlighted item, press \bigcirc. (This is the same as selecting that item.)
- To cancel the submenu without making a selection, press \odot. (This is the same as pressing ESC.)

Items Containing ". . ." If you select a menu item containing ". . ." (ellipsis marks), a dialog (Dialog Boxes) box is displayed for you to enter additional information.

Keyboard Shortcuts

Canceling a Menu

Example: Selecting a Menu Item

You can select certain menu items directly from the keyboard, without first having to display a menu. If an item has a keyboard shortcut, it is indicated on the menu.

To move from one toolbar menu to another without making a selection, either:

- Press the key (F1, [F2), etc.) for the other toolbar menu.
- or -
- Use the cursor pad to move to the next (press \odot) or previous (press \odot) toolbar menu. Pressing \bigcirc from the last menu moves to the first menu, and vice versa.

When using \bigcirc, be sure that an item with a submenu is not highlighted. If so, \odot displays that item's submenu instead of moving to the next toolbar menu.

To cancel the current menu without making a selection, press ESC. Depending on whether any submenus are displayed, you may need to press ESC several times to cancel all displayed menus.

Round the value of π to three decimal places. Starting from a clear entry line on the Home screen:

1. Press 2nd [MATH] to display the MATH menu.
2. Press 1 to display the Number submenu. (Or press ENTER since the first item is automatically highlighted.)
3. Press 3 to select round. (Or press

$\bigcirc \bigcirc$ and ENTER.)
4. Press 2nd $[\pi] \square 3 \square$ and then ENTER to evaluate the expression.

Selecting an Application

The TI-92 has different applications that let you solve and explore a variety of problems. You can select an application from a menu, or you can access commonly used applications directly from the keyboard.

From the APPLICATIONS Menu

Note: To cancel the menu without making a selection, press ESC.

1. Press APPS to display a menu that lists the applications.
2. Select an application. Either:

- Use the cursor pad \bigcirc or \bigcirc to highlight the application and then press ENTER.
- or -
- Press the number for that
 application.
\(\left.\left.$$
\begin{array}{ll}\hline \text { Application: } & \text { Lets you: } \\
\hline \text { Home } & \begin{array}{l}\text { Enter expressions and instructions, and } \\
\text { perform calculations. }\end{array} \\
\text { Y= Editor } & \begin{array}{l}\text { Define, edit, and select functions or } \\
\text { equations for graphing (Chapter 3 and } \\
\text { Chapters 11 - 15). }\end{array} \\
\text { Window Editor } & \begin{array}{l}\text { Set window dimensions for viewing a graph } \\
\text { (Chapter 3). }\end{array} \\
\text { Graph } & \begin{array}{l}\text { Display graphs (Chapter 3). } \\
\text { Table }\end{array} \\
\text { Display a table of variable values that } \\
\text { correspond to an entered function } \\
\text { (Chapter 4). }\end{array}
$$\right\} \begin{array}{l}Enter and edit lists, data, and matrices. You

can perform statistical calculations and

graph statistical plots (Chapters 8 and 9).\end{array}\right\}\)| Enter and edit programs and functions |
| :--- |
| (Chapter 17). |

Selecting an Application (Continued)

From the Keyboard
You can access six commonly used applications from the QWERTY keyboard.

1. Press the diamond (\triangle) key.
2. Press the QWERTY key for the application.

Note: On your keyboard, the application names above Q, W, etc., are printed in the same color as the key.

Applications are listed above the QWERTY keys.

For example, press \quad and then Q to display the Home screen. This guidebook uses the notation \rightarrow [HOME], similar to the notation used for second functions.

Checking Mode Settings

Indicates you can scroll down to see additional modes.

Changing Mode Settings

Tip: To cancel a menu and return to the MODE dialog box without making a selection, press ESC].

Modes control how numbers and graphs are displayed and interpreted. Mode settings are retained by the Constant Memory ${ }^{\text {TM }}$ feature when the TI-92 is turned off. All numbers, including elements of matrices and lists, are displayed according to the current mode settings.

Press MODE to display the MODE dialog box, which lists the modes and their current settings.

Note: Modes that are not currently valid are dimmed. For example, on the second page, Split 2 App is not valid when Split Screen = FULL. When you scroll through the list, the cursor skips dimmed settings.

From the MODE dialog box:

1. Highlight the mode setting you want to change. Use \odot or \odot (with F1 and F2) to scroll through the list.
2. Press \bigcirc or \odot to display a menu that lists the valid settings. The current setting is highlighted.
3. Select the applicable setting. Either:

- Use \bigcirc or \bigcirc to highlight the setting and press ENTER.
- or -
- Press the number or letter for that setting.

4. Change other mode settings, if necessary.
5. When you finish all your changes, press ENTER to save the changes and exit the dialog box.

Important: If you press ESC instead of ENTER to exit the MODE dialog box, any mode changes you made will be canceled.

Setting Modes (Continued)

Overview of the Modes

Note: For detailed information about a particular mode, look in the applicable section of this guidebook.

Mode	Description
Graph	Type of graphs to plot: FUNCTION, PARAMETRIC, POLAR, SEQUENCE, or 3D.
Current Folder	Folder used to store and recall variables. Unless you have created additional folders, only the MAIN folder is available. Refer to "Using Folders to Store Independent Sets of Variables" in Chapter 10.
Display Digits	Maximum number of digits (FLOAT) or fixed number of decimal places (FIX) displayed in a floating-point result. Regardless of the setting, the total number of displayed digits in a floating-point result cannot exceed 12. Refer to page 27.
Angle	Units in which angle values are interpreted and displayed: RADIAN or DEGREE.
Exponential Format	Notation used to display results: NORMAL, SCIENTIFIC, or ENGINEERING. Refer to page 27.
Complex Format	Format used to display complex results, if any: REAL (complex results are not displayed unless you use a complex entry), RECTANGULAR, or POLAR.
Vector Format	Format used to display 2 - and 3 -element vectors: RECTANGULAR, CYLINDRICAL, or SPHERICAL.
Pretty Print	Turns the pretty print display feature OFF or ON. Refer to page 25.
Split Screen	Splits the screen into two parts and specifies how the parts are arranged: FULL (no split screen), TOP-BOTTOM, or LEFT-RIGHT. Refer to Chapter 5.
Split 1 App	Application in the top or left side of a split screen. If you are not using a split screen, this is the current application.
Split 2 App	Application in the bottom or right side of a split screen. This is active only for a split screen.
Number of Graphs	For a split screen, lets you set up both sides of the screen to display independent sets of graphs.
Graph 2	If Number of Graphs $=2$, selects the type of graph in the Split 2 part of the screen. Refer to Chapter 15.
Split Screen Ratio	Proportional sizes of the two parts of a split screen: 1:1, 1:2, or 2:1.
Exact/Approx	Calculates expressions and displays results in numeric form or in rational/symbolic form: AUTO, EXACT, or APPROXIMATE. Refer to page 25.

Using the Catalog to Select a Command

Selecting from the CATALOG

Note: The first time you display the CATALOG, it starts at the top of the list. The next time you display the CATALOG, it starts at the same place you left it.

Tip: From the top of the list, press \bigcirc to move to the bottom. From the bottom, press \odot to move to the top.

Help Information about Parameters

Note: For details about the parameters, refer to that command's description in Appendix A.

The CATALOG is an alphabetic list of all commands (functions and instructions) on the TI-92. Although the commands are available on various menus, the CATALOG lets you access any command from one convenient list. It also gives help information that describes a command's parameters.

When you select a command, its name is inserted in the entry line at the cursor location. Therefore, you should position the cursor as necessary before selecting the command.

1. Press 2nd [catalog].

- Commands are listed in alphabetical order. Commands that do not start with a letter $(+, \%, \sqrt{ }, \Sigma$, etc.) are at the end of the list.
- To exit the CATALOG without selecting a command, press ESC.

2. Move the indicator to the command, and press ENTER.

To move the indicator:	Press or type:
One command at a time	\bigodot or \odot
One page at a time	2nd \odot or 2nd \bigcirc
To the first command that begins with a specified letter	The letter. For example, type Z to go to the Zoom commands.

For the command indicated by \downarrow, the status line shows the required and optional parameters, if any, and their type.

From the example above, the syntax for factor is:
factor(expression)

- or -
factor(expression,variable) optional

Storing and Recalling Variable Values

When you store a value, you store it as a named variable. You can then use the name instead of the value in expressions. When the TI-92 encounters the name in an expression, it substitutes the variable's stored value.

Rules for Variable Names

A variable name:

- Can use 1 to 8 characters consisting of letters and digits. This includes Greek letters (but not π), accented letters, and international letters. Do not include spaces.
- The first character cannot be a digit.
- Can use uppercase or lowercase letters. The names AB22, Ab22, aB22, and ab22 all refer to the same variable.
- Cannot be the same as a name that is preassigned by the TI-92. Preassigned names include:
- Built-in functions (such as abs) and instructions (such as LineVert). Refer to Appendix A.
- System variables (such as xmin and xmax, which are used to store graph-related values). Refer to Appendix B for a list.

Examples

Data Types

Variable	Description
myvar	OK.
a	OK.
Log	Not OK, name is preassigned to the log function.
Log1	OK.
3rdTotal	Not OK, starts with a digit.
circumfer	Not OK, more than 8 characters.

You can save any TI-92 data type as a variable. For a list of data types, refer to getType() in Appendix A. Some examples are:

Data Types	Examples
Expressions	$2.54,1.25 \mathrm{E} 6,2 \pi, \mathrm{xmin} / 10,2+3 i,(\mathrm{x}-2)^{2}, \sqrt{2} / 2$
Lists	$\left\{\begin{array}{ll}24 & 6 \\ 8\end{array}\right\},\left\{\begin{array}{lll}1 & 1 & 2\end{array}\right\}$
Matrices	$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 4 & 6\end{array}\right]$
Character strings	"Hello", "The answer is:", "xmin/10"
Pictures	myfunc(arg), ellipse(x,y,r1,r2)
Functions	

Storing a Value in a Variable

Displaying a
Variable

Note: Refer to Chapter 6 for information about symbolic manipulation.

Using a Variable in an Expression

Tip: To view a list of existing variable names, use 2nd [VAR-LINK] as described in Chapter 18.

1. Enter the value you want to store, which can be an expression.
2. Press STOص. The store symbol (\rightarrow) is displayed.
3. Type the variable name.

4. Press ENTER.

To store to a variable temporarily, you can use the "with" operator. Refer to "Substituting Values and Setting Constraints" in Chapter 6.

1. Type the variable name.

2. Press ENTER.

If the variable is undefined, the variable name is shown in the result.
In this example, the variable a is undefined. Therefore, it is used as a symbolic variable.

1. Type the variable name into the expression.
2. Press ENTER to evaluate the expression.

If you want the result to replace the variable's previous value, you must store the result.

In some cases, you may want to use a variable's actual value in an expression instead of the variable name.

1. Press 2nd [RCL] to display a dialog box.
2. Type the variable name.
3. Press ENTER twice.

In this example, the value stored in num1 will be inserted at the cursor position in the entry line.

Reusing a Previous Entry or the Last Answer

Reusing the Expression on the Entry Line

Tip: Reexecuting an entry "as is" is useful for iterative calculations that involve variables.

Tip: Editing an entry lets you make minor changes without retyping the entire entry.

Note: When the entry contains a decimal point, the result is automatically displayed in floating-point.

You can reuse a previous entry by reexecuting the entry "as is" or by editing the entry and then reexecuting it. You can also reuse the last calculated answer by inserting it into a new expression.

When you press ENTER to evaluate an expression, the TI-92 leaves that expression on the entry line and highlights it. You can type over the entry, or you can reuse it as necessary.

For example, using a variable, find the square of $1,2,3$, etc.

1. Set the initial variable value.

0 STO• NUM ENTER
2. Enter the variable expression.

NUM $\mathrm{H}^{1} 1$ STOD NUM
2nd [:] NUM 12 ENTER
3. Reenter to increment the variable and calculate the square.

ENTER
ENTER

Using the equation $A=\pi r^{2}$, use trial and error to find the radius of a circle that covers 200 square centimeters.

1. Use 8 as your first guess.

8 STOD R 2nd [:]

2nd $[\pi] R$ ब 2 ENTER
2. Display the answer in its approximate floating-point form.

- ENTER

3. Edit and reexecute with 7.95 .

7.95 ENTER

4. Continue until the answer is as accurate as you want.

Recalling a Previous Entry

Note: You can also use the entry function to recall any previous entry. Refer to entry() in Appendix A.

Recalling the Last Answer

Note: Refer to ans() in Appendix A.

You can recall any previous entry that is stored in the history area, even if the entry has scrolled off the top of the screen. The recalled entry replaces whatever is currently shown on the entry line. You can then reexecute or edit the recalled entry.
\(\left.$$
\begin{array}{lll}\hline \text { To recall: } & \text { Press: } & \text { Effect: } \\
\hline \begin{array}{l}\text { The last entry } \\
\text { (if you've changed } \\
\text { the entry line) }\end{array} & \text { 2nd [ENTRY] } & \text { once }\end{array}
$$ \begin{array}{l}If the last entry is still shown on

the entry line, this recalls the

entry prior to that.\end{array}\right\}\)| Previous entries |
| :--- | | 2nd [ENTRY] |
| :--- | :--- |
| repeatedly |\quad| Each press recalls the entry prior |
| :--- |
| to the one shown on the entry |
| line. |

For example:

Each time you evaluate an expression, the TI-92 stores the answer to the variable ans(1). To insert this variable in the entry line, press 2nd [ANS].

For example, calculate the area of a garden plot that is 1.7 meters by 4.2 meters. Then calculate the yield per square meter if the plot produces a total of 147 tomatoes.

1. Find the area.
$1.7 \boxtimes 4.2$ ENTER
2. Find the yield.
$147 \div$ 2nd [ANS] ENTER

Just as ans(1) always contains the last answer, ans(2), ans(3), etc., also contain previous answers. For example, ans(2) contains the next-to-last answer.

Auto-Pasting an Entry or Answer from the History Area

You can select any entry or answer from the history area and "auto-paste" a duplicate of it on the entry line. This lets you insert a previous entry or answer into a new expression without having to retype the previous information.

Why Use Auto-Paste

Note: You can also paste information by using the FF1 toolbar menu. Refer to "Cutting, Copying, and Pasting Information" in Chapter 10.

Auto-Pasting an Entry or Answer

Tip: To cancel auto-paste and return to the entry line, press ESC.

Tip: To view an entry or answer too long for one line (indicated by at the end of the line), use \odot and \odot or 2nd \bigcirc and 2 nd \odot.

The effect of using auto-paste is similar to 2nd [ENTRY] and 2nd [ANS] as described in the previous section, but there are differences.

For entries:

For answers:

Pasting lets you:	[2nd [ENTRY] lets you:
Insert any previous entry into the entry line.	Replace the contents of the entry line with any previous entry.
	[nd [ANS] lets you:
Pasting lets you:	Insert the variable ans(1), which contains the last answer only. Each time you value of any previous answer a calculation, ans(1) is into the entry line. updated to the latest answer.

1. On the entry line, place the cursor where you want to insert the entry or answer.
2. Press \bigcirc to move the cursor up into the history area. This highlights the last answer.
3. Use \bigcirc and \bigcirc to highlight the entry or answer to auto-paste.

- \bigcirc moves from answer to entry up through the history area.
- You can use \bigcirc to highlight items that have scrolled off the screen.

4. Press ENTER.

The highlighted item is inserted in the entry line.

This pastes the entire entry or answer. If you need only a part of the entry or answer, edit the entry line to delete the unwanted parts.

Status Line Indicators in the Display

The status line is displayed at the bottom of all application screens. It shows information about the current state of the TI-92, including several important mode settings.

Status Line Indicators

Indicator	Meaning
Current Folder	Shows the name of the current folder. Refer to "Using Folders to Store Independent Sets of Variables" in Chapter 10. MAIN is the default folder that is set up automatically when you use the TI-92.
Modifier Key	Displayed when you press \uparrow, \bullet, 2nd, or ©. The TI-92 will type an uppercase character for the next letter key you press. The TI-92 will access the diamond feature of the next key you press.
2ND	The TI-92 will use the second function of the next key you press.
ว	When used in combination with the cursor pad, the TI-92 will use any "dragging" features that are available in graphing and geometry.
Angle Mode	Shows the units in which angle values are interpreted and displayed. To change the Angle mode, use the MODE key.
RAD	Radians
DEG	Degrees
Exact/ Approx Mode	Shows how answers are calculated and displayed. Refer to page 25. To change the Exact/Approx mode, use the MODE key.
AUTO	Auto
EXACT	Exact
APPROX	Approximate

Status Line Indicators in the Display (Continued)

Status Line
 Indicators
 (Continued)

Indicator	Meaning
Graph Number	If the screen is split to show two independent graphs, this indicates which graph is active (GR\#1 or GR\#2).
Graph Mode	Indicates the type of graphs that can be plotted. (To change the Graph mode, use the MODE key.)
FUNC	$y(x)$ functions
PAR	$x(t)$ and $y(t)$ parametric equations
POL	$r(\theta)$ polar equations
SEQ	$u(n)$ sequences
3D	$z(x, y) 3 D$ equations
History Pairs	Displayed only on the Home screen to show information about the number of entry/answer pairs in the history area. Refer to page 20.
Battery Indicator	Displayed only when the batteries are getting low. If BATT is shown with a black background, change the batteries as soon as possible.
Busy Indicator	Displayed only when the TI-92 is performing a calculation or plotting a graph.
BUSY	A calculation or graph is in progress.
PAUSE	You have paused a graph or program.

Basic Function Graphing

Preview of Basic Function Graphing. 46
Overview of Steps in Graphing Functions 47
Setting the Graph Mode 48
Defining Functions for Graphing 49
Selecting Functions to Graph 51
Setting the Display Style for a Function 52
Defining the Viewing Window 53
Changing the Graph Format 54
Graphing the Selected Functions 55
Displaying Coordinates with the Free-Moving Cursor 56
Tracing a Function 57
Using Zooms to Explore a Graph 59
Using Math Tools to Analyze Functions 62

This chapter describes the steps used to display and explore a graph. Before using this chapter, you should be familiar with Chapter 2: Operating the TI-92.

Graph screen shows a graphic representation.

Although this chapter describes how to graph $y(x)$ functions, the basic steps apply to all graphing modes. Later chapters give specific information about the other graphing modes.

Graph a circle of radius 5, centered on the origin of the coordinate system. View the circle using the standard viewing window (ZoomStd). Then use ZoomSqr to adjust the viewing window.

Steps	Keystrokes	Display
1. Display the MODE dialog box. For Graph mode, select FUNCTION.	$\begin{aligned} & \text { MODE } \\ & \odot 1 \\ & \text { © } 1 \\ & \hline \text { ENTER } \end{aligned}$	
2. Display the Home screen. Then store the radius, 5 , in variable r.	- [Home] 5 STOD R ENTER	$5 \rightarrow r$
3. Display and clear the $\mathrm{Y}=$ Editor. Then define $y 1(x)=\sqrt{r^{2}-x^{2}}$, the top half of a circle.	- $[\mathrm{Y}=]$ F1 8 ENTER ENTER	
In function graphing, you must define separate functions for the top and bottom halves of a circle. 4. Define $y 2(x)=-\sqrt{r^{2}-x^{2}}$, the function for the bottom half of the circle. The bottom half is the negative of the top half, so you can define $y 2(x)=-y 1(x)$.	2nd $[-] R$ 亿 $2 \square X$ 囚2 DENTER ENTER - Y 1 TXD ENTER	
5. Select the ZoomStd viewing window, which automatically graphs the functions. In the standard viewing window, both the x and y axes range from -10 to 10.	F2 6	
However, this range is spread over a longer distance along the x axis than the y axis. Therefore, the circle appears as an ellipse.	Notice slight gap between top and bottom halves.	
6. Select ZoomSqr. ZoomSqr increases the range along the x axis so that circles and squares are shown	F2 5	

Note: There is a gap between the top and bottom halves of the circle because each half is a separate function. The mathematical endpoints of each half are $(-5,0)$ and $(5,0)$. Depending on the viewing window, however, the plotted endpoints for each half may be slightly different from their mathematical endpoints.

Overview of Steps in Graphing Functions

To graph one or more $y(x)$ functions, use the general steps shown below. For a detailed description of each step, refer to the following pages. You may not need to do all the steps each time you graph a function.

Graphing Functions

Tip: To turn off any stat data plots (Chapter 9), press [F5 5 or use [F4 to deselect them.

Tip: This is optional. For multiple functions, this helps visually distinguish one from another.

Tip: F2 Zoom also changes the viewing window.

From the Graph screen, you can:

- Display the coordinates of any pixel by using the free-moving cursor, or of a plotted point by tracing a function.
- Use the F2 Zoom toolbar menu to zoom in or out on a portion of the graph.
- Use the F5 Math toolbar menu to find a zero, minimum, maximum, etc.

Setting the Graph Mode

Graph Mode

Note: For graphs that do not use complex numbers, set Complex Format $=$ REAL . Otherwise, it may affect graphs that use powers, such as $x^{1 / 3}$.

Note: Other Graph mode settings are described in later chapters.

Angle Mode

Checking the Status Line

Before graphing $y(x)$ functions, you must select FUNCTION graphing. You may also need to set the Angle mode, which affects how the TI-92 graphs trigonometric functions.

1. Press MODE to display the MODE dialog box, which shows the current mode settings.
2. Set the Graph mode to FUNCTION. Refer to "Setting Modes" in Chapter 2.

While this chapter specifically describes $y(x)$ function graphs, the TI-92 lets you select from five Graph mode settings.

Graph Mode Setting	Description
FUNCTION	$\mathrm{y}(\mathrm{x})$ functions
PARAMETRIC	$\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ parametric equations
POLAR	$\mathrm{r}(\theta)$ polar equations
SEQUENCE	$\mathrm{u}(\mathrm{n})$ sequences
3D	$\mathrm{z}(\mathrm{x}, \mathrm{y})$ 3D equations

When using trigonometric functions, set the Angle mode for the units (RADIAN or DEGREE) in which you want to enter and display angle values.

To see the current Graph mode and Angle mode, check the status line at the bottom of the screen.

Defining Functions for Graphing

Defining a New Function

Note: The function list shows abbreviated function names such as y1, but the entry line shows the full name y1(x).

Tip: For an undefined function, you do not need to press ENTER or F3. When you begin typing, the cursor moves to the entry line.

Tip: If you accidentally move the cursor to the entry line, press EES to move it back to the function list.

Editing a Function

Tip: To cancel any editing changes, press ESC instead of ENTER.

In FUNCTION graphing mode, you can graph functions named $y 1(x)$ through $y 99(x)$. To define and edit these functions, use the $Y=$ Editor. (The $Y=$ Editor lists function names for the current graphing mode. For example, in POLAR graphing mode, function names are $\mathrm{r} 1(\theta), \mathrm{r} 2(\theta)$, etc.)

1. Press $\bullet[Y=]$ or APPS 2 to display the $Y=$ Editor.

2. Press \bigcirc and \bigcirc to move the cursor to any undefined function. (Use 2nd \odot and 2nd \bigcirc to scroll one page at a time.)
3. Press ENTER or E3 to move the cursor to the entry line.
4. Type the expression to define the function.

- The independent variable in function graphing is x.
- The expression can refer to other variables, including matrices, lists, and other functions.

5. When you complete the expression, press ENTER.

The function list now shows the new function, which is automatically selected for graphing.

From the Y= Editor:

1. Press \bigcirc and \bigcirc to highlight the function.
2. Press ENTER or E3 to move the cursor to the entry line.
3. Do any of the following.

- Use \bigcirc and \odot to move the cursor within the expression and edit it. Refer to "Editing an Expression in the Entry Line" in Chapter 2. - or -
- Press CLEAR once or twice to clear the old expression, and then type the new one.

4. Press ENTER.

The function list now shows the edited function, which is automatically selected for graphing.

Clearing a Function

Note: F1 8 does not erase any stat plots (Chapter 9).

From the Home Screen or a Program

Tip: User-defined functions can have almost any name. However, if you want them to appear in the $Y=$ Editor, use function names y1(x), $y 2(x)$, etc.

From the Y= Editor:

To erase:	Do this:
A function from the function list	Highlight the function and press \square or CLEAR.
A function from the entry line	Press CLEAR once or twice (depending on the cursor's location) and then press ENTER.
All functions	Press F1 and then select 8:Clear Functions. When prompted for confirmation, press ENTER.

You don't have to clear a function to prevent it from being graphed. As described on page 51, you can select the functions you want to graph.

You can also define and evaluate a function from the Home screen or a program.

- Use the Define and Graph commands. Refer to:
- "Graphing a Function Defined on the Home Screen" and "Graphing a Piecewise Defined Function" in Chapter 15.
- "Overview of Entering a Function" in Chapter 17.
- Store an expression directly to a function variable. Refer to:
- "Storing and Recalling Variable Values" in Chapter 2.
- "Creating and Evaluating User-Defined Functions" in Chapter 10.

Selecting Functions to Graph

Regardless of how many functions are defined in the $\mathrm{Y}=$ Editor, you can select the ones you want to graph.

$$
\begin{array}{ll}
\begin{array}{l}
\text { Selecting or } \\
\text { Deselecting }
\end{array} & \text { Press }-[Y=] \text { or } \text { APPS } 2 \text { to display the } \mathrm{Y}=\text { Editor. } \\
\text { Functions } & \begin{array}{l}
\text { A " } \checkmark \text { " indicates which functions will be graphed the next time you } \\
\text { display the Graph screen. }
\end{array}
\end{array}
$$

Tip: You don't have to select a function when you enter or edit it; it is selected automatically.

Tip: To turn off any stat plots, press F5 5 or use F4 to deselect them.

To select or deselect: Do this:

A specified function 1. Move the cursor to highlight the function.
2. Press F4.

This procedure selects a deselected function or deselects a selected function.

All functions 1. Press F5 to display the All toolbar menu.
2. Select the applicable item.

From the Home

Screen or a
Program

Setting the Display Style for a Function

For each defined function, you can set a style that specifies how that function will be graphed. This is useful when graphing multiple functions. For example, set one as a solid line, another as a dotted line, etc.

Displaying or Changing a Function's Style

Tip: To set Line as the style for all functions, press 55 and select 4:Reset Styles.

If You Use Above or Below Shading

From the Y= Editor:

1. Move the cursor to highlight the applicable function.
2. Press F6.

- Although the Line item is initially highlighted, the function's current style is indicated by a \checkmark mark.
- To exit the menu without making a change, press ESC.

3. To make a change, select the applicable style.

Style	Description
Line	Connects plotted points with a line. This is the default.
Dot	Displays a dot at each plotted point.
Square	Displays a solid box at each plotted point.
Thick	Connects plotted points with a thick line.
Animate	A round cursor moves along the leading edge of the graph but does not leave a path.
Path	A round cursor moves along the leading edge of the graph and does leave a path.
Above	Shades the area above the graph.
Below	Shades the area below the graph.

The TI-92 has four shading patterns, used on a rotating basis. If you set one function as shaded, it uses the first pattern. The next shaded function uses the second pattern, etc. The fifth shaded function reuses the first pattern.

When shaded areas intersect, their patterns overlap.

You can also set a function's style from the Home screen or a program. Refer to the Style command in Appendix A.

Defining the Viewing Window

The viewing window represents the portion of the coordinate plane displayed on the Graph screen. By setting Window variables, you can define the viewing window's boundaries and other attributes. Function graphs, parametric graphs, etc., have their own independent set of Window variables.

Displaying Window Variables in the Window Editor

Tip: To turn off tick marks, set $x s c l=0$ and/or $y s c l=0$.

Tip: Small values of xres improve the graph's resolution but may reduce the graphing speed.

Changing the Values

Note: If you type an expression, it is evaluated when you move the cursor to a different Window variable or leave the Window Editor.

From the Home

Screen or a

Program

Press \rightarrow [WINDOW] or APPS 3 to display the Window Editor.

Window Variables (shown in Window Editor)

Corresponding Viewing Window (shown on Graph screen)

Variable Description

xmin, xmax, Boundaries of the viewing window. ymin, ymax
xscl, yscl Distance between tick marks on the x and y axes.
xres Sets pixel resolution (1 through 10) for function graphs.
The default is 2 .

- At 1 , functions are evaluated and graphed at each pixel along the x axis.
- At 10, functions are evaluated and graphed at every 10th pixel along the x axis.

From the Window Editor:

1. Move the cursor to highlight the value you want to change.
2. Do any of the following:

- Type a value or an expression. The old value is erased when you begin typing.
- or -
- Press CLEAR to clear the old value; then type the new one.
- or -
- Press \bigcirc or \bigcirc to remove the highlighting; then edit the value.

Values are stored as you type them; you do not need to press ENTER. ENTER simply moves the cursor to the next Window variable.

You can also store values directly to the Window variables from the Home screen or a program. Refer to "Storing and Recalling Variable Values" in Chapter 2.

Changing the Graph Format

Displaying Graph Format Settings

Tip: You also can press -F from the $Y=$ Editor, Window Editor, or Graph screen.

Tip: To turn off tick marks, define the viewing window so that $x s c l$ and/or $y s c l=0$.

Changing Settings

Tip: To cancel a menu or exit the dialog box without saving any changes, use ESC instead of ENTER.

You can set the graph format to show or hide reference elements such as the axes, a grid, and the cursor's coordinates. Function graphs, parametric graphs, etc., have their own independent set of graph formats.

From the Y= Editor, Window Editor, or Graph screen, press $F 1$ and select 9:Format.

- The GRAPH FORMATS dialog box shows the current settings.
- To exit without making a change, press ESC.

Format	Description
Coordinates	Shows cursor coordinates in rectangular (RECT) or polar (POLAR) form, or hides (OFF) the coordinates.
Graph Order	Graphs functions one at a time (SEQ) or all at the same time (SIMUL).
Grid	Shows (ON) or hides (OFF) grid points that correspond to the tick marks on the axes.
Axes	Shows (ON) or hides (OFF) the x and y axes.
Leading Cursor	Shows (ON) or hides (OFF) a reference cursor that tracks the functions as they are graphed.
Labels	Shows (ON) or hides (OFF) labels for the x and y axes.

From the GRAPH FORMATS dialog box:

1. Move the cursor to highlight the format setting.
2. Press \bigcirc to display a menu of valid settings for that format.
3. Select a setting. Either:

- Move the cursor to highlight the setting, and then press ENTER.
- or -
- Press the number for that setting.

4. After changing all applicable format settings, press ENTER to save your changes and close the GRAPH FORMATS dialog box.

Graphing the Selected Functions

Displaying the Graph Screen

Note: If you select an F2 Zoom operation from the $Y=$ Editor or Window Editor, the TI-92 automatically displays the Graph screen.

Interrupting Graphing

When you are ready to graph the selected functions, display the Graph screen. This screen uses the display style and viewing window that you previously defined.

Press \rightarrow [GRAPH] or APPS 4. The TI-92 automatically graphs the selected functions.

BUSY indicator shows while graphing is in progress.
While graphing is in progress:

- To pause graphing temporarily, press ENTER. (The PAUSE indicator replaces BUSY.) To resume, press ENTER again.
- To cancel graphing, press 0 N . To start graphing again from the beginning, press F4 (ReGraph).

Depending on various settings, a function may be graphed such that it is too small, too large, or offset too far to one side of the screen. To correct this:

- Redefine the viewing window with different boundaries (page 53).
- Use a Zoom operation (page 59).

When you display the Graph screen, the Smart Graph feature displays the previous window contents immediately, provided nothing has changed that requires regraphing.

Smart Graph updates the window and regraphs only if you have:

- Changed a mode setting that affects graphing, a function's graphing attribute, a Window variable, or a graph format.
- Selected or deselected a function or stat plot. (If you only select a new function, Smart Graph adds that function to the Graph screen.)
- Changed the definition of a selected function or the value of a variable in a selected function.
- Cleared a drawn object (Chapter 15).
- Changed a stat plot definition (Chapter 9).

Displaying Coordinates with the Free-Moving Cursor

Free-Moving Cursor

Tip: If your screen does not show coordinates, set the graph format $(\bullet$ F) so that Coordinates $=$ RECT or POLAR.

Tip: To hide the cursor and its coordinates temporarily, press CLEAR, ESC, or ENTER. The next time you move the cursor, it moves from its last position.

To display the coordinates of any location on the Graph screen, use the free-moving cursor. You can move the cursor to any pixel on the screen; the cursor is not confined to a graphed function.

When you first display the Graph screen, no cursor is visible. To display the cursor, press the cursor pad. The cursor moves from the center of the screen, and its coordinates are displayed.

To move the free-moving cursor: Press:

To an adjoining pixel
The cursor pad for any direction.

In increments of 10 pixels $2 n d$ and then the cursor pad.

When you move the cursor to a pixel that appears to be "on" the function, it may be near the function but not on it.

To increase the accuracy:

- Use the Trace tool described on the next page to display coordinates that are on the function.
- Use a Zoom operation to zoom in on a portion of the graph.

Beginning a Trace

Note: If any stat plots are graphed (Chapter 9), the trace cursor appears on the lowest-numbered stat plot.

Moving along a Function

Note: If you enter an x value, it must be between x min and xmax.

Tip: If your screen does not show coordinates, set the graph format (\bullet F) so that Coordinates $=$ RECT or POLAR.

Tip: Use QuickCenter, described on the next page, to trace a function that goes above or below the window.

To display the exact coordinates of any plotted point on a graphed function, use the F3 Trace tool. Unlike the freemoving cursor, the trace cursor moves only along a function's plotted points.

From the Graph screen, press F3.
The trace cursor appears on the function, at the middle x value on the screen. The cursor's coordinates are displayed at the bottom of the screen.

If multiple functions are graphed, the trace cursor appears on the lowest-numbered function selected in the $\mathrm{Y}=$ Editor. The function number is shown in the upper right part of the screen.

To move the trace cursor:
 Do this:

To the previous or next plotted point
Approximately 5 plotted points Press \odot or \bigcirc.
(it may be more or less than 5 , depending on the xres Window variable)

To a specified x value on the function
Type the x value and press ENTER.

The trace cursor moves only from plotted point to plotted point along the function, not from pixel to pixel.

Each displayed y value is calculated from the x value; that is, $\mathrm{y}=\mathrm{y} n(\mathrm{x})$. If the function is undefined at an x value, the y value is blank.

You can continue to trace a function that goes above or below the viewing window. You cannot see the cursor as it moves in that "off the screen" area, but the displayed coordinate values show its correct coordinates.

Moving from

Function to Function

Automatic Panning

Note: Automatic panning does not work if stat plots are displayed or if a function uses a shaded display style.

Using QuickCenter

Tip: You can use QuickCenter at any time during a trace, even when the cursor is still on the screen.

Press \bigcirc or \bigcirc to move to the previous or next selected function at the same x value. The new function number is shown on the screen.

The "previous or next" function is based on the order of the selected functions in the $\mathrm{Y}=$ Editor, not the appearance of the functions as graphed on the screen.

If you trace a function off the left or right edge of the screen, the viewing window automatically pans to the left or right. There is a slight pause while the new portion of the graph is drawn.

After an automatic pan, the cursor continues tracing.

If you trace a function off the top or bottom of the viewing window, you can press ENTER to center the viewing window on the cursor location.

After QuickCenter, the cursor stops tracing. If you want to continue tracing, press F3.

To cancel a trace at any time, press ESC.
A trace is also canceled when you display another application screen such as the Y= Editor. When you return to the Graph screen and press F3 to begin tracing:

- If Smart Graph regraphed the screen, the cursor appears at the middle x value.
- If Smart Graph does not regraph the screen, the cursor appears at its previous location (before you displayed the other application).

Using Zooms to Explore a Graph

Overview of the Zoom Menu

Note: If you select a Zoom tool from the $Y=$ Editor or Window Editor, the TI-92 automatically displays the Graph screen.

The F2 Zoom toolbar menu has several tools that let you adjust the viewing window. You can also save a viewing window for later use.

Press F2 from the Y= Editor, Window Editor, or Graph screen.

	Procedures for using ZoomBox, ZoomIn, ZoomOut, ZoomStd, Memory, and SetFactors are given later in this
section.	

ZoomTrig Sets Window variables to preset values that are often appropriate for graphing trig functions. Centers the origin and sets:

$$
\begin{array}{lll}
\Delta \mathrm{x}=\pi / 24 & (.130899 \ldots \text { radians } & \mathrm{ymin}=-4 \\
\text { or } 7.5 \text { degrees }) & \mathrm{ymax}=4 \\
\mathrm{xscl}=\pi / 2 & (1.570796 \ldots \text { radians } & \mathrm{yscl}=0.5
\end{array}
$$ or 90 degrees)

Zoomint Lets you select a new center point, and then sets Δx and $\Delta \mathrm{y}$ to 1 and sets xscl and yscl to 10 .
ZoomData Adjusts Window variables so that all selected stat plots are in view. Refer to Chapter 9.
ZoomFit Adjusts the viewing window to display the full range of dependent variable values for the selected functions. In function graphing, this maintains the current xmin and xmax and adjusts ymin and ymax.
Memory Lets you store and recall Window variable settings so that you can recreate a custom viewing window.

SetFactors Lets you set Zoom factors for Zoomln and ZoomOut.

Using Zooms to Explore a Graph (Continued)

Zooming In with a Zoom Box

Tip: To move the cursor in larger increments, use 2nd \bigcirc, 2nd \bigcirc, etc.

Tip: You can cancel ZoomBox by pressing ESC before you press ENTER.

Zooming In and Out on a Point

1. From the F2 Zoom menu, select 1:ZoomBox.

The screen prompts for 1st Corner?
2. Move the cursor to any corner of the box you want to define, and then press ENTER.

The cursor changes to a small square, and the screen prompts for 2nd Corner?
3. Move the cursor to the opposite corner of the zoom box.

As you move the cursor, the box stretches.
4. When you have outlined the area you want to zoom in on, press ENTER.

The Graph screen shows the zoomed area.

1. From the F2 Zoom menu, select 2:ZoomIn or 3:ZoomOut. A cursor appears, and the screen prompts for New Center?

2. Move the cursor to the point where you want to zoom in or out, and then press ENTER.
The TI-92 adjusts the Window variables by the Zoom factors defined in SetFactors.

- For a ZoomIn, the x variables are divided by x Fact, and the y variables are divided by yFact.
new $x \min =\frac{x \min }{x \text { Fact }}$, etc.
- For a ZoomOut, the x variables are multiplied by x Fact, and the y variables are multiplied by yFact.
new $x \min =x \min * x$ Fact, etc.

Changing Zoom Factors

Tip: To exit without saving any changes, press ESC.

Note: You can store only one set of Window variable values at a time. Storing a new set overwrites the old set.

Restoring the Standard Viewing Window

The Zoom factors define the magnification and reduction used by ZoomIn and ZoomOut.

1. From the F2 Zoom menu, select C:SetFactors to display the ZOOM FACTORS dialog box.

Zoom factors must be ≥ 1, but they do not have to be integers. The default setting is 4 .
2. Use \bigodot and \bigcirc to highlight the value you want to change. Then:

- Type the new value. The old value is cleared automatically when you begin typing.
- or -
- Press \odot or \bigcirc to remove the highlighting, and then edit the old value.

3. Press ENTER (after typing in an input box, you must press ENTER twice) to save any changes and exit the dialog box.

After using various Zoom tools, you may want to return to a previous viewing window or save the current one.

1. From the F2 Zoom menu, select

B:Memory to display its
 submenu.
2. Select the applicable item.

Select:	To:
1:ZoomPrev	Return to the viewing window displayed before the previous zoom.
2:ZoomSto	Save the current viewing window. (The current Window variable values are stored to the system variables zxmin, zxmax, etc.)
$3:$ ZoomRcl	Recall the viewing window last stored with ZoomSto.

You can restore the Window variables to their default values at any time.

From the F2 Zoom menu, select 6:ZoomStd.

Using Math Tools to Analyze Functions

On the Graph screen, the ${ }^{[55}$ Math toolbar menu has several tools that help you analyze graphed functions.

Overview of the Math Menu

Note: For Math results, cursor coordinates are stored in system variables $x c$ and $y c$ ($r c$ and θc if you use polar coordinates). Derivatives, integrals, distances, etc., are stored in the system variable sysMath.

Press F5 from the Graph screen.

Math Tool	Description
Value	Evaluates a selected $\mathrm{y}(\mathrm{x})$ function at a specified x value.
Zero, Minimum, Maximum	Finds a zero (x-intercept), minimum, or maximum point within an interval.
Intersection	Finds the intersection of two functions.
Derivatives	Finds the derivative (slope) at a point.
$\int f(\mathrm{x}) \mathrm{dx}$	Finds the approximate numerical integral over an interval.
Inflection	Finds the inflection point of a curve, where its second derivative changes sign (where the curve changes concavity).
Distance	Draws and measures a line between two points on the same function or on two different functions.
Tangent	Draws a tangent line at a point and displays its equation.
Arc	Finds the arc length between two points along a curve.
Shade	Depends on the number of functions graphed. - If only one function is graphed, this shades the
function's area above or below the x axis.	

Finding $y(x)$ at a

 Specified PointTip: You can also display function coordinates by tracing the function ([F3), typing an x value, and pressing ENTER.

Finding a Zero, Minimum, or
Maximum within an Interval

Tip: Typing x values is a quick way to set bounds.

Finding the Intersection of Two Functions within an Interval

1. From the Graph screen, press $F 5$ and select $1:$ Value.
2. Type the x value, which must be a real value between x min and xmax. The value can be an expression.
3. Press ENTER.

The cursor moves to that x value on the first function selected in the Y= Editor, and its coordinates are displayed.

4. Press \bigcirc or \bigcirc to move the cursor between functions at the entered x value. The corresponding y value is displayed.

Note: If you press \odot or \odot, the free-moving cursor appears. You may not be able to move it back to the entered x value.

1. From the Graph screen, press F5 and select 2:Zero, 3:Minimum, or 4:Maximum.
2. As necessary, use \bigcirc and \bigcirc to select the applicable function.
3. Set the lower bound for x. Either use \odot and \bigcirc to move the cursor to the lower bound or type its x value.
4. Press ENTER. A at the top of the screen marks the lower bound.
5. Set the upper bound, and press ENTER.

The cursor moves to the solution, and its coordinates are displayed.

1. From the Graph screen, press F5 and select 5:Intersection.
2. Select the first function, using \bigcirc or \bigcirc as necessary, and press EENTER. The cursor moves to the next graphed function.
3. Select the second function, and press ENTER.
4. Set the lower bound for x. Either use \odot and \odot to move the cursor to the lower bound or type its x value.
5. Press ENTER. A at the top of the screen marks the lower bound.
6. Set the upper bound, and press ENTER.

The cursor moves to the intersection, and its coordinates are displayed.

Using Math Tools to Analyze Functions (Continued)

Finding the

 Derivative (Slope) at a PointFinding the Numerical Integral over an Interval

Tip: Typing x values is a quick way to set the limits.

Tip: To erase the shaded area, press F4 (ReGraph).

1. From the Graph screen, press F5 and select 6:Derivatives. Then select 1:dy/dx from the submenu.
2. As necessary, use \bigodot and \bigcirc to select the applicable function.
3. Set the derivative point. Either move the cursor to the point or type its x value.
4. Press ENTER.

The derivative at that point is
 displayed.

1. From the Graph screen, press F5 and select $7:[f(x) d x$.
2. As necessary, use \bigcirc and \bigcirc to select the applicable function.
3. Set the lower limit for x. Either use \odot and \odot to move the cursor to the lower limit or type its x value.
4. Press ENTER. A at the top of the screen marks the lower limit.
5. Set the upper limit, and press ENTER.

The interval is shaded, and its approximate numerical integral is displayed.

1. From the Graph screen, press $F 5$ and select $8:$ Inflection.
2. As necessary, use \bigcirc and \bigcirc to select the applicable function.
3. Set the lower bound for x. Either use \odot and \odot to move the cursor to the lower bound or type its x value.
4. Press ENTER. A at the top of the screen marks the lower bound.
5. Set the upper bound, and press ENTER.

The cursor moves to the inflection point (if any) within the interval, and its coordinates are displayed.
Infletion
ye: 2.32664

Finding an Inflection
Point within an Interval

Finding the Distance between Two Points

1. From the Graph screen, press F5 and select 9:Distance.
2. As necessary, use \bigodot and \bigcirc to select the function for the first point.
3. Set the first point. Either use \odot or \bigcirc to move the cursor to the point or type its x value.
4. Press ENTER. A + marks the point.
5. If the second point is on a different function, use \bigcirc and \bigcirc to select the function.
6. Set the second point. (If you use the cursor to set the point, a line is drawn as you move the cursor.)
7. Press ENTER.

The distance between the two points is displayed, along with the connecting line.

1. From the Graph screen, press F5 and select A:Tangent.
2. As necessary, use \bigcirc and \bigcirc to select the applicable function.
3. Set the tangent point. Either move the cursor to the point or type its x value.
4. Press ENTER.

The tangent line is drawn,
 and its equation is displayed.

1. From the Graph screen, press F5 and select B:Arc.
2. As necessary, use \bigcirc and \bigcirc to select the applicable function.
3. Set the first point of the arc. Either use \odot or \odot to move the cursor or type the x value.
4. Press ENTER. A + marks the first point.
5. Set the second point, and press ENTER.

A + marks the second point, and the arc length is displayed.

Using Math Tools to Analyze Functions (Continued)

Shading the Area between a Function and the X Axis

Note: If you do not press \odot or \odot, or type an x value when setting the lower and upper bound, xmin and xmax will be used as the lower and upper bound, respectively.

Tip: To erase the shaded area, press F4 (ReGraph).

Shading the Area between Two Functions within an Interval

Note: If you do not press \odot or \odot, or type an x value when setting the lower and upper bound, xmin and xmax will be used as the lower and upper bound, respectively.

Tip: To erase the shaded area, press F4 (ReGraph).

You must have only one function graphed. If you graph two or more functions, the Shade tool shades the area between two functions.

1. From the Graph screen, press F5 and select C:Shade. The screen prompts for Above X axis?
2. Select one of the following. To shade the function's area:

- Above the x axis, press ENTER.
- Below the x axis, press N .

3. Set the lower bound for x. Either use \odot and \odot to move the cursor to the lower bound or type its x value.
4. Press ENTER. A at the top of the screen marks the lower bound.
5. Set the upper bound, and press ENTER.

The bounded area is shaded.

You must have at least two functions graphed. If you graph only one function, the Shade tool shades the area between the function and the x axis.

1. From the Graph screen, press F5 and select C:Shade. The screen prompts for Above?
2. As necessary, use \bigcirc or \bigcirc to select a function. (Shading will be above this function.)
3. Press ENTER. The cursor moves to the next graphed function, and the screen prompts for Below?
4. As necessary, use \bigcirc or \bigcirc to select another function. (Shading will be below this function.)
5. Press ENTER.
6. Set the lower bound for x. Either use \odot and \odot to move the cursor to the lower bound or type its x value.
7. Press ENTER. A at the top of the screen marks the lower bound.
8. Set the upper bound, and press ENTER.

The bounded area is shaded.

Tables

Preview of Tables 68
Overview of Steps in Generating a Table 69
Setting Up the Table Parameters 70
Displaying an Automatic Table 72
Building a Manual (Ask) Table 75

Previously, in Chapter 3: Basic Function Graphing, you learned how to define and graph a function.

By using a table, you can display a defined function in a tabular form.
$\mathrm{Y}=$ Editor shows an algebraic representation.

Note: Tables are not available in 3D Graph mode.

Graph screen shows a graphic representation.

The table lists a series of values for the independent variable and shows the corresponding value of the dependent variable.

Evaluate the function $y=x^{3}-2 x$ at each integer between -10 and 10 . How many sign changes are there, and where do they occur?

Steps	Keystrokes	Display

1. Display the MODE dialog box. For the Graph mode, select FUNCTION.
2. Display and clear the $Y=$ Editor.

Then define $y 1(x)=x^{3}-2 x$.
3. Set the table parameters to:
tbIStart $=-10$
$\Delta \mathrm{tbl}=1$
Graph $<->$ Table $=$ OFF
Independent = AUTO
4. Display the Table screen.
5. Scroll through the table. Notice that $y 1$ changes sign at $x=-1,1$, and 2 .
To scroll one page at a time, use [nd \odot and 2nd ($)$.
6. Zoom in on the sign change between $x=-2$ and $x=-1$ by changing the table parameters to:
tblStart $=-2$
$\Delta \mathrm{tbl}=.1$
\bigcirc and \bigcirc as necessary

$\bigcirc(1) 1$ ENTER

Overview of Steps in Generating a Table

To generate a table of values for one or more functions, use the general steps shown below. For specific information about setting table parameters and displaying the table, refer to the following pages.

Generating a Table

Note: Tables are not available in 3D Graph mode.

Tip: For information on defining and selecting functions with the $Y=$ Editor, refer to Chapter 3.

Tip: You can specify:

- An automatic table
- Based on initial values.
- That matches a graph.
- A manual (ask) table.

From the Table screen, you can:

- Scroll through the table to see values on other pages.
- Highlight a cell to see its full value.
- Change the table's setup parameters. By changing the starting or incremental value used for the independent variable, you can zoom in or out on the table to see different levels of detail.
- Change the cell width.
- Edit selected functions.
- Build or edit a manual table to show only specified values of the independent variable.

Setting Up the Table Parameters

Displaying the
table setup Dialog Box

Note: The table initially starts at tblStart, but you can use \bigcirc to scroll to prior values.

To set up the initial parameters for a table, use the TABLE SETUP dialog box. After the table is displayed, you can also use this dialog box to change the parameters.

To display the TABLE SETUP dialog box, press \quad [TblSet] . From the Table screen, you can also press [F2.

Setup Parameter	Description
tblStart	If Independent = AUTO and Graph $<->$ Table $=$ OFF, this specifies the starting value for the independent variable.
$\Delta \mathrm{tbl}$	If Independent $=$ AUTO and Graph $<->$ Table $=$ OFF, this specifies the incremental value for the independent variable. Δ tbl can be positive or negative, but not zero.
Graph $<->$ Table	If Independent = AUTO:
	OFF - The table is based on the values you enter for tblStart and Δ tbl.
	ON — The table is based on the same independent variable values that are used to graph the functions on the Graph screen. These values depend on the Window variables set in the Window Editor (Chapter 3) and the split screen size (Chapter 5).
Independent	AUTO -The TI-92 automatically generates a series of values for the independent variable based on tblStart, Δ tbl, and Graph $<->$ Table.
	ASK — Lets you build a table manually by entering specific values for the independent variable.

Which Setup Parameters to Use

Changing the Setup Parameters

Tip: To cancel a menu or exit the dialog box without saving any changes, press ESC instead of ENTER.

To generate:	tbIStart	Δ tbl	Graph $<->$ Table	Independent
An automatic table				
- Based on initial values	value	value	OFF	AUTO
- That matches	-	-	ON	AUTO
Graph screen				
A manual table	-	-	-	ASK

"-" means that any value entered for this parameter is ignored for the indicated type of table.

In SEQUENCE graphing mode (Chapter 13), use integers for tblStart and Δ tbl.

From the TABLE SETUP dialog box:

1. Use \bigcirc and \bigcirc to highlight the value or setting to change.
2. Specify the new value or setting.

To change:	Do this:
tblStart	Type the new value. The existing value is
or	erased when you start to type.
$\Delta \mathrm{tbl}$	- or -

Graph <-> Table or Independent Press \odot or \bigcirc to remove the highlighting. Then edit the existing value.

Press \odot or \odot to display a menu of valid settings. Then either:

- Move the cursor to highlight the setting and press ENTER.
- or -
- Press the number for that setting.

3. After changing all applicable values or settings, press ENTER to save your changes and close the dialog box.

You can set up a table's parameters from the Home screen or a program. You can:

- Store values directly to the system variables tblStart and $\Delta \mathrm{tbl}$. Refer to "Storing and Recalling Variable Values" in Chapter 2.
- Set Graph <-> Table and Independent by using the setTable function. Refer to Appendix A.

Displaying an Automatic Table

Before You Begin

Displaying the Table Screen

Tip: You can scroll back from the starting value by pressing \bigcirc or 2nd \bigcirc.

If Independent = AUTO on the TABLE SETUP dialog box, a table is generated automatically when you display the Table screen. If Graph $<->$ Table $=$ ON, the table matches the trace values from the Graph screen. If Graph $<->$ Table $=$ OFF, the table is based on the values you entered for tbIStart and Δ tbl.

Define and select the applicable functions on the $\mathrm{Y}=$ Editor $\left({ }^{\bullet}[\mathrm{Y}=]\right)$. This example uses $\mathrm{y} 1(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x} / 3$.

Then enter the initial table parameters ($\bullet[\mathrm{TblSet}]$).

To display the Table screen, press \rightarrow [TABLE] or APPS 5.
The cursor initially highlights the cell that contains the starting value of the independent variable. You can move the cursor to any cell that contains a value.

First column shows values of the independent variable.

Other columns show corresponding values of the functions selected in the $\mathrm{Y}=$ Editor.

To move the cursor: Press:
One cell at a time $\bigcirc, \bigcirc, \bigcirc$, or \odot
One page at a time \quad 2nd and then $\odot, \bigcirc, \bigcirc$, or \odot

The header row and the first column are fixed so that they cannot scroll off the screen.

- When you scroll down or up, the variable and function names are always visible across the top of the screen.
- When you scroll right or left, the values of the independent variable are always visible along the left side of the screen.

Changing the Cell Width

Note: By default, the cell width is 6 .

Cell width determines the maximum number of digits and symbols (decimal point, minus sign, and "E" for scientific notation) that can be displayed in a cell. All cells in the table have the same width.

To change the cell width from the Table screen:

1. Press F or F1 9.
2. Press \bigcirc or \odot to display a menu
 of valid widths $(3-12)$.
3. Move the cursor to highlight a number and press ENTER. (For single-digit numbers, you can type the number and press ENTER.)
4. Press ENTER to close the dialog box and update the table.

Whenever possible, a number is shown according to the currently selected display modes (Display Digits, Exponential Format, etc.). The number may be rounded as necessary. However:

- If a number's magnitude is too large for the current cell width, the number is rounded and shown in scientific notation.
- If the cell width is too narrow even for scientific notation, "..." is shown.

By default, Display Digits = FLOAT 6. With this mode setting, a number is shown with up to six digits, even if the cell is wide enough to show more. Other settings similarly affect a displayed number.

	If cell width is:			
Full Precision	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{9}$	$\mathbf{1 2}$
1.2345678901	1.2	1.2346	1.23457	1.23457
-123456.78	\ldots	-1.2 E 5	-123457.	-123457.
.000005	\ldots	$5 . \mathrm{E}-6$.000005	.000005
1.2345678 E 19	\ldots	1.2 E 19	1.2346 E 19	1.23457 E 19
$-1.23456789012 \mathrm{E}-200$	\ldots	\ldots	$-1.2 \mathrm{E}-200$	$-1.2346 \mathrm{E}-200$

Note: Depending on display mode settings, some values are not shown in full precision even when the cell is wide enough.

If You Are Using

 Complex NumbersA cell shows as much as possible of a complex number (according to the current display modes) and then shows "..." at the end of the displayed portion.

When you highlight a cell containing a complex number, the entry line shows the real and imaginary parts with a maximum of four digits each (FLOAT 4).

Displaying an Automatic Table (Continued)

Editing a Selected Function

Tip: You can use this feature to view a function without leaving the table.

Tip: To cancel any changes and return the cursor to the table, press ESC instead of ENTER.

If You Want to Change the Setup Parameters

From a table, you can change a selected function without having to use the $\mathrm{Y}=$ Editor.

1. Move the cursor to any cell in the column for that function. The table's header row shows the function names (y 1 , etc.).
2. Press F54 to move the cursor to the entry line, where the function is displayed and highlighted.
3. Make any changes, as necessary.

- Type the new function. The old function is erased when you begin typing.
- or -
- Press CLEAR to clear the old function. Then type the new one. - or -
- Press \odot or \bigcirc to remove the highlighting. Then edit the function.

4. Press ENTER to save the edited function and update the table. The edited function is also saved in the $\mathrm{Y}=$ Editor.

After generating an automatic table, you can change its setup parameters as necessary.

Press F2 or [TbSet] to display the TABLE SETUP dialog box. Then make your changes as described on pages 70 and 71.

Building a Manual (Ask) Table

Displaying the Table Screen

Entering or Editing an Independent Variable Value

Tip: To enter a new value in a cell, you do not need to press (F3. Simply begin typing.

Note: In this example, you can move the cursor to column 2, but you can enter values in column 1 only.

If Independent = ASK on the TABLE SETUP dialog box, the TI-92 lets you build a table manually by entering specific values for the independent variable.

To display the Table screen, press \rightarrow [TABLE] or APPS 5.
If you set Independent $=$ ASK (with \square [TblSet]) before displaying a table for the first time, a blank table is displayed. The cursor highlights the first cell in the independent variable column.

If you first display an automatic table and then change it to Independent = ASK, the table continues to show the same values. However, you can no longer see additional values by scrolling up or down off the screen.

You can enter a value in column 1 (independent variable) only.

1. Move the cursor to highlight the cell you want to enter or edit.

- If you start with a blank table, you can enter a value in consecutive cells only (row 1, row 2, etc.). You cannot skip cells (row1, row3).
- If a cell in column 1 contains a value, you can edit that value.

2. Press [F3 to move the cursor to the entry line.
3. Type a new value or expression, or edit the existing value.
4. Press ENTER to move the value to the table and update the corresponding function values.

The cursor returns to the entered cell. You can use \bigcirc to move to the next row.

Building a Manual (Ask) Table (Continued)

Entering a List in
the Independent Variable Column

Note: If the independent variable column contains existing values, they are shown as a list (which you can edit).

Adding, Deleting, or Clearing

Cell Width and Display Formats

From the Home
 Screen or a
 Program

1. Move the cursor to highlight any cell in the independent variable column.
2. Press F4 to move the cursor to the entry line.
3. Type a series of values, enclosed in braces \{ \} and separated by commas. For example:
$x=\{1,1.5,1.75,2\}$
You can also enter a list variable or an expression that evaluates to a list.
4. Press ENTER to move the values into the independent variable column. The table is updated to show the corresponding function values.

To:	Do this:
Insert a new row above a specified row	Highlight a cell in the specified row and press F6. The new row is undefined (undef) until you enter a value for the independent variable.
Delete a row	Highlight a cell in the row and press F5. If you highlight a cell in the independent variable column, you can also press \square.
Clear the entire table (but not the selected Y= functions)	Press F1 8. When prompted for confirmation, press ENTER.

Several factors affect how numbers are displayed in a table. Refer to "Changing the Cell Width" and "How Numbers Are Displayed in a Cell" on page 73 .

System variable tblInput contains a list of all independent variable values entered in the table, even those not currently displayed. tblInput is also used for an automatic table, but it contains only the independent variable values that are currently displayed.

Before displaying a table, you can store a list of values directly to the tblinput system variable.

Split Screens

Preview of Split Screens .. 78

Setting and Exiting the Split Screen Mode .. 79
Selecting the Active Application.. 81

On the TI-92, you can split the screen to show two applications at the same time.

For example, it may be helpful to show both the Y= Editor and the Graph screen so that you can see the list of functions and how they are graphed.

Preview of Split Screens

Split the screen to show the $\mathrm{Y}=$ Editor and the Graph screen. Then explore the behavior of a polynomial as its coefficients change.

Steps	Keystrokes	Display
1. Display the MODE dialog box. For Graph, select FUNCTION. For Split Screen, select LEFT-RIGHT. For Split 1 App, select $Y=$ Editor. For Split 2 App, select Graph.	MODE © 1 F2 $\bigcirc 3$ $\bigcirc 2$ $\bigcirc 4$ ENTER	
2. Clear the $\mathrm{Y}=$ Editor and turn off any stat data plots. Then define $y 1(x)=.1 x^{3}-2 x+6 .$ A thick border around the $Y=$ Editor indicates it is active. When active, its entry line goes all the way across the display.	F1 8 ENTER F5 5 ENTER $.1 x 囚 3 \square 2 x$ +6 ENTER	
3. Select the ZoomStd viewing window, which switches to the Graph screen and graphs the function. The thick border is now around the Graph screen.	F2 6	

4. Switch to the Y= Editor. Then edit $\mathrm{y} 1(\mathrm{x})$ to change $.1 \mathrm{x}^{3}$ to $.5 \mathrm{x}^{3}$.
[2nd [\boxplus] is the second function of APPS.
The thick border is around the $Y=$ Editor.
5. Switch to the Graph screen, which regraphs the edited function.

The thick border is around the Graph screen.
6. Switch to the $Y=$ Editor. Then open the Window Editor in its place.

2nd [\quad] $]$

Setting and Exiting the Split Screen Mode

To set up a split screen, use the MODE dialog box to specify the applicable mode settings. After you set up the split screen, it remains in effect until you change it.

Setting the Split Screen Mode

Setting the Initial Applications

Note: In two-graph mode, described in Chapter 15, the same application can be in both parts of a split screen.

1. Press MODE to display the MODE dialog box.
2. Because the modes related to split screens are listed on the second page of the MODE dialog box, either:

- Use \bigcirc to scroll down.
- or -
- Press F2 to display Page 2.

3. Set the Split Screen mode to either of the following settings. For the procedure used to change a mode setting, refer to Chapter 2.

Split Screen Settings

TOP-BOTTOM
LEFT-RIGHT

Before pressing ENTER to close the MODE dialog box, you can use the Split 1 App and Split 2 App modes to select the applications you want to use.

Mode	Specifies the application in the:
Split 1 App	Top or left part of the split screen.
Split 2 App	Bottom or right part of the split screen.

If you set Split 1 App and Split 2 App to the same application, the TI-92 exits the split screen mode and displays the application full screen.

You can open different applications after the split screen is displayed, as described on page 81.

Setting and Exiting the Split Screen Mode (Continued)

Other Modes that Affect a Split Screen

Mode	Description
Number of Graphs	Lets you set up and display two independent sets of graphs.
Note: Leave this set to 1 unless you have read the applicable section in Chapter 15.	This is an advanced graphing feature as described in "Using the Two-Graph Mode" in Chapter 15.
Split Screen Ratio	Sets the proportional sizes (1:1, 1:2, 2:1) of Split 1 App and Split 2 App.

Split Screens and Pixel Coordinates

Tip: For a list of drawing commands, refer to "Drawing on the Graph Screen" in Chapter 17.

Note: Due to the border that indicates the active application, split screens have a smaller displayable area than a full screen.

Exiting the Split Screen Mode

The TI-92 has commands that use pixel coordinates to draw lines, circles, etc., on the Graph screen. The following chart shows how the Split Screen and Split Screen Ratio mode settings affect the number of pixels available on the Graph screen.

		Split 1 App		Split 2 App	
Split	Ratio	\mathbf{x}	\mathbf{y}	\mathbf{x}	\mathbf{y}
FULL	N/A	$0-238$	$0-102$	N/A	N/A
TOP-BOTTOM	$1: 1$	$0-234$	$0-46$	$0-234$	$0-46$
	$1: 2$	$0-234$	$0-26$	$0-234$	$0-68$
	$2: 1$	$0-234$	$0-68$	$0-234$	$0-26$
LEFT-RIGHT	$1: 1$	$0-116$	$0-98$	$0-116$	$0-98$
	$1: 2$	$0-76$	$0-98$	$0-156$	$0-98$
	$2: 1$	$0-156$	$0-98$	$0-76$	$0-98$

Method 1: Press MODE to display the MODE dialog box. Then set Split Screen = FULL. When you press ENTER to close the dialog box, the full-sized screen shows the application specified in Split 1 App.

Method 2: Press [2nd [QUIT] twice to display a full-sized Home screen.

Turning the TI-92 off does not exit the split screen mode.
If the TI-92 is turned off: When you turn the Tl-92 on again:

When you press 2nd [0FF] The split screen is still in effect, but the Home screen is always displayed in place of the application that was active when you pressed $2 n d$ [0 FF].

The split screen is just as you left it.
Down (APD) feature or when you press \rightarrow [OFF].

Selecting the Active Application

The Active Application

Switching between Applications

Opening a Different Application

Note: Also refer to "Using [2nd [QUIT] to Display the Home Screen" on page 82.

Note: In two-graph mode, described in Chapter 15, the same application can be in both parts of a split screen.

With a split screen, only one of the two applications can be active at a time. You can easily switch between existing applications, or you can open a different application.

- The active application is indicated by a thick border.
- The toolbar and status line, which are always the full width of the display, are associated with the active application.
- For applications that have an entry line (such as the Home screen and $\mathrm{Y}=$ Editor), the entry line is the full width of the display only when that application is active.

Press 2nd [\boxplus] (second function of APPS]) to switch from one application to the other.

Method 1: 1. Use 2nd [ω] to switch to the application you want to replace.
2. Use APPS or \rightarrow (such as APPS 1 or \rightarrow [HOME]) to select the new application.

If you select an application that is already displayed, the TI-92 switches to that application.
Method 2: 1. Press MODE and then F2.
2. Change Split 1 App and/or Split 2 App.

If you set Split 1 App and Split 2 App to the same application, the TI-92 exits the split screen mode and displays the application full screen.

Selecting the Active Application (Continued)

Using [2nd [QuIT] to Display the Home Screen

Tip: Pressing 2nd [QuIT] twice always exits the split screen mode.

When Using a Top-Bottom Split

Note: Both Top-Bottom and Left-Right splits use the same methods to select an application.

If the Home screen: Pressing 2nd [QUIT]:
Is not already displayed Opens the Home screen in place of the active application.

Is displayed, but is not the active application

Is the active application
Switches to the Home screen and makes it the active application.

Exits the split screen mode and displays
a full-sized Home screen.

When you select a TOP-BOTTOM split, remember that the entry line and the toolbar are always associated with the active application. For example:

Entry line is for the active $\mathrm{Y}=$ Editor, not the Graph screen.

Symbolic Manipulation

Preview of Symbolic Manipulation 84
Using Undefined or Defined Variables 85
Using Exact, Approximate, and Auto Modes 87
Automatic Simplification 90
Delayed Simplification for Certain Built-In Functions 92
Substituting Values and Setting Constraints 93
Overview of the Algebra Menu 96
Common Algebraic Operations 98
Overview of the Calc Menu 101
Common Calculus Operations 102
User-Defined Functions and Symbolic Manipulation 103
If You Get an Out-of-Memory Error. 105
Special Constants Used in Symbolic Manipulation 106

This chapter is an overview of the fundamentals of using symbolic manipulation to perform algebraic or calculus operations.

You can easily perform symbolic calculations from the Home screen.

Preview of Symbolic Manipulation

Solve the system of equations $2 x-3 y=4$ and $-x+7 y=-12$. Solve the first equation so that x is expressed in terms of y. Substitute the expression for x into the second equation, and solve for the value of y. Then substitute the y value back into the first equation to solve for the value of x.

Steps	Keystrokes	Display
1. Display the Home screen and clear the entry line. Solve the equation $2 x-3 y=4$ for x. F2 1 selects solve(from the Algebra menu. You can also type solve(directly from the keyboard.	- [номе] CLEAR CLEAR (F2) 1 $\square \times$ XDENTER	

2. Begin to solve the equation
$-x+7 y=-12$ for y, but do not press ENTER yet.
3. Use the "with" operator (2nd K) to substitute the expression for x that was calculated from the first equation. This gives the value of y.

The "with" operator is displayed as | on the screen.
Use the auto-paste feature to highlight the last answer in the history area and paste it to the entry line.
4. Highlight the equation for x in the history area.
5. Auto-paste the highlighted expression to the entry line. Then substitute the value of y that was calculated from the second equation.
$\bigcirc \bigcirc \bigcirc$

The solution is:
$x=-8 / 11$ and $y=-20 / 11$

Using Undefined or Defined Variables

When performing algebraic or calculus operations, it is important that you understand the effect of using undefined and defined variables. Otherwise, you may get a number for a result instead of the algebraic expression that you anticipated.

How Undefined and Defined Variables Are Treated

Tip: When defining a variable, it's a good practice to use more than one character in the name. Leave one-character names undefined for symbolic calculations.

Determining If a Variable Is Undefined

Note: Use 2nd [VAR-LINK] to view a list of defined variables, as described in Chapter 18.

When you enter an expression that contains a variable, the TI-92 treats the variable in one of two ways.

- If the variable is undefined, it is treated as an algebraic symbol.
- If the variable is defined (even if defined as 0), its value
 replaces the variable.

To see why this is important, suppose you want to find the first derivative of x^{3} with respect to x.

- If x is undefined, the result is in the form you probably expected.
- If x is defined, the result may be in a form you did not expect.

Using Undefined or Defined Variables (Continued)

Deleting a Defined Variable

Note: For information about folders, refer to Chapter 10.

Temporarily Overriding a Variable

Note: For more information about the | operator, refer to page 93.

You can "undefine" a defined variable by deleting it.
To delete: Do this:

One or more Use the DelVar function.
specified variables

All one-letter variables ($a-z$) in the current folder

- CelUar	x	Cone
- DelUar	X, U, test, radius	Clone

You can also delete variables by using the VAR-LINK screen ([2nd [VAR-LINK]) as described in Chapter 18.

From the Home screen, press F6 Clear a-z. You will be prompted to press ENTER to confirm the deletion.

By using 2nd K to type the "with" operator (I), you can:

- Temporarily override

- Temporarily define a

Using Exact, Approximate, and Auto Modes

The Exact/Approx mode settings, which are described briefly in Chapter 2, directly affect the precision and accuracy with which the TI-92 calculates a result. This section describes these mode settings as they relate to symbolic manipulation.

EXACT
Setting

When Exact/Approx = EXACT, the TI-92 uses exact rational arithmetic with up to 614 digits in the numerator and 614 digits in the denominator. The EXACT setting:

- Transforms irrational numbers to standard forms as much as possible without approximating them. For example, $\sqrt{12}$ transforms to $2 \sqrt{3}$ and $\ln (1000)$ transforms to $3 \ln (10)$.
- Converts floating-point numbers to rational numbers. For example, 0.25 transforms to $1 / 4$.

The functions solve, cSolve, zeros, cZeros, factor, \int, fMin, and fMax use only exact symbolic algorithms. These functions do not compute approximate solutions in the EXACT setting.

- Some equations, such as $2^{-x}=x$, have solutions that cannot all be finitely represented in terms of the functions and operators on the TI-92.
- With this kind of equation, EXACT will not compute approximate solutions. For example, $2^{-x}=x$ has an approximate solution $x \approx 0.641186$, but it is not displayed in the EXACT setting.

Advantages	Disadvantages
Results are exact.	As you use more complicated rational numbers and irrational constants, calculations can:
	• Use more memory, which may
	exhaust the memory before a solution is completed. to compre more computing time.

Using Exact, Approximate, and Auto Modes (Continued)

APPROXIMATE

Setting

When Exact/Approx = APPROXIMATE, the TI-92 converts rational numbers and irrational constants to floating-point. However, there are exceptions:

- Certain built-in functions that expect one of their arguments to be an integer will convert that number to an integer if possible. For example: $\boldsymbol{d}(\mathrm{y}(\mathrm{x}), \mathrm{x}, 2.0)$ transforms to $\boldsymbol{d}(\mathrm{y}(\mathrm{x}), \mathrm{x}, 2)$.
- Whole-number floating-point exponents are converted to integers. For example: $x^{2.0}$ transforms to x^{2} even in the APPROXIMATE setting.

Functions such as solve and \int (integrate) can use both exact symbolic and approximate numeric techniques. These functions skip all or some of their exact symbolic techniques in the APPROXIMATE setting.

Advantages	Disadvantages
If exact results are not	Results with undefined variables or needed, this might save fimetions often exhibit incomplete time and/or use less memory than the EXACT
cancellation. For example, a coefficient that should be 0 might be displayed as a setting.	small magnitude such as 1.23457E-11.
Approximate results are	Symbolic operations such as limits and sometimes more compact and
integration are less likely to give comprehensible than exact results.	setting.
If you do not plan to use symbolic computations, approximate results are similar to familiar, traditional numeric	Approximate results are sometimes less compact and comprehensible than exact results. For example, you may prefer to calculators.

AUTO Setting

When Exact/Approx = AUTO, the TI-92 uses exact rational arithmetic wherever all of the operands are rational numbers. Otherwise, floating-point arithmetic is used after converting any rational operands to floating-point. In other words, floating-point is "infectious." For example:
$1 / 2-1 / 3$ transforms to $1 / 6$
but
$0.5-1 / 3$ transforms to .166666666667
This floating-point infection does not leap over barriers such as undefined variables or between elements of lists or matrices. For example:

```
\((1 / 2-1 / 3) x+(0.5-1 / 3) y\) transforms to \(x / 6+.166666666667 y\)
and
\(\{1 / 2-1 / 3,0.5-1 / 3\}\) transforms to \(\{1 / 6, .166666666667\}\)
```

In the AUTO setting, functions such as solve determine as many solutions as possible exactly, and then use approximate numerical methods if necessary to determine additional solutions. Similarly, \int (integrate) uses approximate numerical methods if appropriate where exact symbolic methods fail.

Advantages	Disadvantages
You see exact results	If you are interested only in exact results, when practical, and approximate numeric
some time may be wasted seeking results when exact	If you are interested only in approximate
results are impractical.	results, some time may be wasted
You can often control	seeking exact results. Moreover, you the format of a result by might exhaust the memory seeking those choosing to enter some coefficients as either rational or floating-point
exact results.	
numbers.	

When you type an expression on the entry line and press ENTER，the TI－92 automatically simplifies the expression according to its default simplification rules．

Default Simplification Rules

Note：For information about folders，refer to Chapter 10.

Note：Refer to＂Delayed Simplification for Certain Built－In Functions＂on page 92.

All of the following rules are applied automatically．You do not see intermediate results．
－If a variable has a defined value，that value replaces the variable．
If the variable is defined in terms of another variable，the variable is replaced with its＂lowest level＂value（called infinite lookup）．

－5－トロハ			5
			35
F＊num			
F－Wilk	Fint Aldid	FINT Ers\％	
			\exists
■ $5 \rightarrow 3$			5
			35
F\％num			
Mrick	Finb MUTD	FUNE 3r30	

Default simplification does not modify variables that use pathnames to indicate a folder．For example，x＋class $1 x$ does not simplify to $2 x$ ．
－For functions：
－The arguments are simplified．（Some built－in functions delay simplification of some of their arguments．）
－If the function is a built－in or user－defined function，the function definition is applied to the simplified arguments． Then the functional form is replaced with this result．
－Numeric
subexpressions are combined．
－Products and sums are sorted into order．

Products and sums involving undefined variables are sorted according to the first letter of the variable name．
－Undefined variables r through z are assumed to be true variables，and are placed in alphabetical order at the beginning of a sum．
－Undefined variables a through q are assumed to represent constants，and are placed in alphabetical order at the end of a sum（but before numbers）．
－Similar factors and similar terms are collected．

How Long Is the Simplification Process?

Depending on the complexity of an entry, result, or intermediate expression, it can take a long time to expand an expression and cancel common divisors as necessary for simplification.

To interrupt a simplification process that is taking too long, press OND. You can then try simplifying only a portion of the expression. (Auto-paste the entire expression on the entry line, and then delete the unwanted parts.)

Delayed Simplification for Certain Built-In Functions

Functions that Use Delayed Simplification

Note: Not all functions that use a var argument use delayed simplification.

Note: You may or may not want to define a numeric value for var, depending on the situation.

Note: The example to the right finds the derivative of x^{3} at $x=5$. If x^{3} was initially simplified to 75, you would find the derivative of 75 , which is not what you want.

Usually, variables are automatically simplified to their lowest possible level before they are passed to a function. For certain functions, however, complete simplification is delayed until after the function is performed.

Functions that use delayed simplification have a required var argument that performs the function with respect to a variable. These functions have at least two arguments with the general form:
function(expression, var [, ...])
For example: solve $\left(x^{\wedge} 2-x-2=0, x\right)$

$$
\begin{aligned}
& \boldsymbol{d}\left(x^{\wedge} 2-x-2, x\right) \\
& \int\left(x^{\wedge} 2-x-2, x\right) \\
& \operatorname{limit}\left(x^{2}-x-2, x, 5\right)
\end{aligned}
$$

For a function that uses delayed simplification:

1. The var variable is simplified to the lowest level at which it remains a variable (even if it could be further simplified to a nonvariable value).
2. The function is performed using the variable.
3. If var can be further simplified, that value is then substituted into the result.

For example:

Substituting Values and Setting Constraints

The "with" operator (|) lets you temporarily substitute values into an expression or specify domain constraints.

Typing the "With" Operator

Substituting for a Variable

Substituting Complex Values

Note: For an overview of complex numbers, refer to Appendix B.

Tip: To get the complex i, press [2nd [i]. Do not simply type I on the keyboard.

To type the "with" operator (I), type 2nd K on the QWERTY keyboard.

For every occurrence of a specified variable, you can substitute a numeric value or an expression.

First derivative of x^{3} at $x=5$

To substitute for multiple variables at the same time, use the Boolean and operator.

For every occurrence of a simple expression, you can substitute a variable, numeric value, or another expression.

By replacing a commonly used (or long) term, you can display results in a more compact form.

You can substitute complex values just as you would for other values.

- $\operatorname{a} \cdot \cos (x)+(\cos (x))^{2} \mid \cos (x)=c$ and $a=2$

All undefined variables are treated as real numbers in symbolic calculations. To perform complex symbolic analysis, you must define a complex variable. For example:
$x+y i \rightarrow z$
Then you can use z as a complex variable.

Substituting Values and Setting Constraints (Continued)

Be Aware of the Limitations of Substitutions

Tip: Use the solve function to help determine the singlevariable substitution.

- Substitution occurs only where there is an exact match for the substitution.

- Infinite recursions can occur when you define a substitution variable in terms of itself.

When you enter a substitution that causes an infinite recursion:

- An error message is displayed.

- When you press ESC, an error is shown in the history area.

- Internally, an expression is sorted according to the automatic simplification rules. Therefore, products and sums may not match the order in which you entered them.
- As a general rule, you should substitute for a single variable.

- Substituting for more general expressions (either $m \cdot c^{2}=e$ or $c^{2} \cdot m=e$) may
 not work as you anticipate.

Specifying Domain Constraints

Tip: Enter $\ln (\mathrm{x} * \mathrm{y})$ instead of $\ln (x y)$; otherwise, $x y$ is interpreted as a single variable named $x y$.

Tip: For \geq or \leq, type $>=$ or <= from the keyboard. You can also use [2nd [MATH] 8 or 2nd [CHAR] 2 to select them from a menu.

Using Substitutions vs. Defining a Variable

Caution: After x is defined, it can affect all calculations that involve x (until you delete x).

Many identities and transformations are valid for only a particular domain. For example:
$\ln (x * y)=\ln (x)+\ln (y) \quad$ only if x and/or y is not negative
$\sin ^{-1}(\sin (\theta))=\theta \quad$ only if $\theta \geq-\pi / 2$ and $\theta \leq \pi / 2$ radians

Use the "with" operator to specify the domain constraint.
Because $\ln \left(x^{*} y\right)=\ln (x)+\ln (y)$ is not always valid, the logarithms are not combined.

With a constraint, the identity is valid and the expression is simplified.

Because $\sin ^{-1}(\sin (\theta))=\theta$ is not always valid, the expression is not simplified.

2nd [SIN-1]

With a constraint, the expression can be simplified.

In many cases, you can achieve the same effect as a substitution by defining the variable.

- $(x+2)^{2} \mid x=1$		9
- $1 \rightarrow \mathrm{x}$		1
- $(x+2)^{2}$		9
$(x+2) \times 2$		
F-filk	FUNC 3 \% ${ }^{\text {a }}$	

However, substitution is preferable for most cases because the variable is defined only for the current calculation and does not accidentally affect later calculations.

Substituting $x=1$ does not affect the next calculation.	- Delvar ${ }^{\text {¢ }}$	[one
	- $(x+2)^{2} \mid x=$	9
	$\underline{x^{2}+2 \cdot x+1}$	$x+1$
	$x^{2}-1$	$\frac{x+1}{x-1}$
	$\left(x^{\wedge} 2+2 x+1\right)$	
	Finilin	

Storing $1 \rightarrow x$ affects the subsequent calculations.

Overview of the Algebra Menu

The Algebra Menu

Note: For a complete description of each function and its syntax, refer to Appendix A.

You can use the F2 Algebra toolbar menu to select the most commonly used algebraic functions.

From the Home screen, press F2 to display:

This menu is also available from the MATH menu. Press 2nd [MATH] and then select 9:Algebra.

Menu Item	Description
solve	Solves an expression for a specified variable. This returns real solutions only, regardless of the Complex Format mode setting. (For complex solutions, select A:Complex from the Algebra menu.)
factor	Factors an expression with respect to all its variables or with respect to only a specified variable.
expand	Expands an expression with respect to all its variables or with respect to only a specified variable.
zeros	Determines the values of a specified variable that make an expression equal to zero.
approx	Evaluates an expression using floating-point arithmetic, where possible. This is equivalent to using MODE to set Exact/Approx = APPROXIMATE (or using ENTER to evaluate an expression).
comDenom	Calculates a common denominator for all terms in an expression and transforms the expression into a reduced ratio of a numerator and denominator.
propFrac	Returns an expression as a proper fraction expression.
nSolve	Calculates a single solution for an equation as a floating-point number (as opposed to solve, which may display several solutions in a rational or symbolic form).

Note: The left and right functions are also used to return a specified number of elements or characters from the left or right side of a list or character string.

Menu Item	Description
Trig	Displays the submenu:
	1:t Expend
	tExpand Expands trig expressions with angle sums and multiple angles.
	tCollect Collects the products of integer powers of trig functions into angle sums and multiple angles. tCollect is the opposite of tExpand.
Complex	Displays the submenu:
	These are the same as solve, factor, and zeros; but they also compute complex results.
Extract	Displays the submenu:
	getNum Applies comDenom and then returns the resulting numerator.
	getDenom Applies comDenom and then returns the resulting denominator.
	left Returns the left-hand side of an equation or inequality.
	right $\begin{aligned} & \text { Returns the right-hand side of an equation } \\ & \text { or inequality. }\end{aligned}$

This section gives examples for some of the functions available from the F2 Algebra toolbar menu. For complete information about any function, refer to Appendix A. Some algebraic operations do not require a special function.

Adding or Dividing Polynomials

Factoring and Expanding Polynomials

Finding Prime

 Factors of a Number
Finding Partial Expansions

You can add or divide polynomials directly, without using a special function.

Use the factor (F2 2) and expand (F2 3) functions.
factor(expression [,var])
_ for factoring with respect to a variable
expand(expression [,var])
L for partial expansion with respect to a variable

Factor $x^{5}-1$. Then expand the result.

Notice that factor and expand perform opposite operations.

The factor (F2 2) function lets you do more than simply factor an algebraic polynomial.

You can find prime factors of a rational number (either an integer or a ratio of integers).

Fifik Find flla
FINE 2rSi

With the expand (F2 3) function's optional var value, you can do a partial expansion that collects similar powers of a variable.
Do a full expansion of $\left(x^{2}-x\right)\left(y^{2}-y\right)$ with respect to all variables.

Then do a partial expansion with respect
 to x .

Solving an Equation

Note: An operation such as $\square 2 \times$ subtracts $2 x$ from both sides.

Use the solve (F2 1) function to solve an equation for a specified variable.

```
solve(equation, var)
```

Solve $x+y-4=2 x-5 y$ for x.

Notice that solve displays

- solve $(x+y-4=2 \cdot x-5 \cdot y, x) \quad x=2 \cdot(3 \cdot y-2)$
solue $(x+y-4=2 x-5 y, x)$
 only the final result.

To see intermediate results, you can manually solve the equation step-by-step.

$\square 2 \mathrm{X}$	
$\square \mathrm{Y}$	$\begin{array}{rr} 4-x+y-4=-5 \cdot y)-y & -x+y-4=-5 \cdot y \\ -(x-4=-6 \cdot 9 \end{array}$
± 4	$\begin{array}{ll} (-x-4=-6 \cdot y)+4 & -x=-6 \cdot y+4 \\ (-x=-6 \cdot y+4) \cdot-1 & x=2 \cdot(3 \cdot y-2) \end{array}$
(1	

Notice that the result in this example is automatically transformed to $x=2(3 y-2)$. You can use expand to obtain $x=6 y-4$.

Solving a System of Linear Equations

Note: The simult and rref matrix functions are not on the F2 Algebra menu. Use 2nd [MATH] 4 or 2nd [CATALOG].

Consider a set of two equations
with two unknowns:

$$
\begin{aligned}
& 2 x-3 y=4 \\
& -x+7 y=-12
\end{aligned}
$$

To solve this system of equations, use any of the following methods.

Method	Example
Use the solve function with substitution (1).	Refer to the preview at the beginning of this chapter, which solved for $x=-8 / 11$ and $y=-20 / 11$.
Use the simult function with a matrix.	Enter the coefficients as a matrix and the results as a constant column matrix.
Use the rref function with a matrix.	Enter the coefficients as an augmented matrix.

Common Algebraic Operations (Continued)

Finding the Zeros of an Expression

Tip: For \geq or \leq, type $>=$ or <= from the keyboard. You can also use [2nd [MATH] 8 or 2nd [CHAR] 2 to select them from a menu.

Finding Proper
Fractions and
Common Denominators

Note: You can use comDenom with an expression, list, or matrix.

Use the zeros (F2 4) function.
zeros(expression, var)
Use the expression $x * \sin (x)+\cos (x)$.

Find the zeros with respect to x in the interval $0 \leq x$ and $x \leq 3$.

Use the propFrac (F2 7) and comDenom (F2 6) functions.

$\operatorname{propFrac}($ rational expression $[, v a r])$	
	for proper fractions with respect
comDenom(expression $[, v a r])$	to a variable

L for common denominators that collect similar powers of this variable

In this example:

- $\frac{31 x+60}{8}$ is the remainder of $x^{4}-2 x^{2}+x$ divided by $2 x^{2}+x+4$.
- $\frac{x^{2}}{2}-\frac{x}{4}-15 / 8$ is the quotient.

Overview of the Calc Menu

You can use the F3 Calc toolbar menu to select commonly used calculus functions.

The Calc Menu

Note: For a complete description of each function and its syntax, refer to Appendix A.

Note: The d symbol for differentiate is a special symbol. It is not the same as typing D on the keyboard.

From the Home screen, press F3 to display:

This menu is also available from the MATH menu. Press 2nd [MATH] and then select A:Calculus.

Menu Item	Description
d differentiate	Differentiates an expression with respect to a specified variable.
integrate	Integrates an expression with respect to a specified variable.
limit sum	Calculates the limit of an expression with respect to a specified variable.
ח product	Evaluates an expression at discrete variable values within a range and then calculates the sum.
fMin	Evaluates an expression at discrete variable values within a range and then calculates the product.
fMax	Finds candidate values of a specified variable that minimize an expression.
arcLen	Finds candidate values of a specified variable that maximize an expression.
taylor	Returns the arc length of an expression with respect to a specified variable. Calculates a Taylor polynomial approximation to an expression with respect to a specified variable.
nDeriv	Calculates the numerical derivative of an expression with respect to a specified variable.
nInt	Calculates an integral as a floating-point number using quadrature (an approximation using weighted sums of integrand values).

Integrating and Differentiating

Note: You can integrate an expression only; you can differentiate an expression, list, or matrix.

This section gives examples for some of the functions available from the [F3 Calc toolbar menu. For complete information about any calculus function, refer to Appendix A.

Use the \int integrate (F3 2) and \boldsymbol{d} differentiate (F3 1) functions.

```
\(\int(\) expression, var \([, l o w][, u p])\)
```



``` constant of integration
d (expression, var [,order])
```

Integrate $x^{2} * \sin (x)$ with respect to x.

Differentiate the answer with respect to x.

- $\int\left(x^{2} \cdot \sin (x)\right) d x$
$-\left(x^{2} \cdot \cos (x)+2 \cdot \cos (x)+2 \cdot x \cdot \operatorname{in}(x)\right.$
- $\frac{d}{d x}\left(-\left(x^{2} \cdot \cos (x)+2 \cdot \cos (x)+2 \cdot x \cdot \sin (x)\right)\right.$

Fint AldTD
FUWE ETS0
To get d, use F3 1. Do not simply type D on the keyboard.

Use the limit (F3 3) function.

> limit(expression, var, point [,direction])
\square negative $=$ from left positive $=$ from right omitted or $0=$ both

Find the limit of $\sin (3 x) / x$ as x approaches 0 .

Use the taylor (F3 9) function.
taylor(expression, var, order [,point])
_ if omitted, expansion point is 0
Find a 6th order Taylor polynomial for $\sin (x)$ with respect to x.

Store the answer as a user-defined function named $\mathrm{y} 1(\mathrm{x})$.

Then graph $\sin (x)$ and the Taylor polynomial.

User-Defined Functions and Symbolic Manipulation

For Information

 about Creating a User-Defined Function
Undefined Functions

Tip: To select d from the Calc toolbar menu, press [53 1.

Single-Statement Functions

Tip: To select limit from the Calc toolbar menu, press [F3) 3.

Tip: To select f from the Calc toolbar menu, press F3 2. To select taylor, press F3 9.

You can use a user-defined function as an argument for the TI-92's built-in algebra and calculus functions.

Refer to:

- "Creating and Evaluating User-Defined Functions" in Chapter 10.
- "Graphing a Function Defined on the Home Screen" and "Graphing a Piecewise Defined Function" in Chapter 15.
- "Overview of Entering a Function" in Chapter 17.

You can use functions such as $f(x), g(t), r(\theta)$, etc., that have not been assigned a definition. These "undefined" functions yield symbolic results. For example:

Use DeIVar to ensure that $f(x)$ and $g(x)$ are not defined.

Then find the derivative of $f(x) * g(x)$ with respect
 to x .

You can use user-defined functions consisting of a single expression. For example:

- Use STOص to create a user-defined secant function, where:
$\sec (x x)=\frac{1}{\cos (x x)}$
Then find the limit of $\sec (x)$ as x approaches $\pi / 4$.

- Use Define to create a user-defined function $h(x x)$, where:
 for $h(x)$ with respect to x.

User-Defined Functions and Symbolic Manipulation (Cont.)

Multi-Statement vs.
 Single-Statement Functions

Tip: To select nint from the Calc toolbar menu, press F3 B.

Tip: To select \int from the Calc toolbar menu, press [F3 2.

Multi-statement user-defined functions should be used as an argument for numeric functions (such as nDeriv and nInt) only.

In some cases, you may be able to create an equivalent singlestatement function. For example, consider a piecewise function with two pieces.

When:	Use expression:
$x<0$	$-x$
$x \geq 0$	$5 \cos (x)$

- Create a multi-statement user-defined function with the form:

Then numerically integrate $\mathrm{y} 1(\mathrm{x})$ with respect to x.

- Create an equivalent single-statement user-defined function.

Use the TI-92's built-in when function.

Then integrate $\mathrm{y} 1(\mathrm{x})$ with respect to x.

If You Get an Out-of-Memory Error

The TI-92 stores intermediate results in memory and then deletes them when the calculation is complete. Depending on the complexity of the calculation, the TI-92 may run out of memory before a result can be calculated.

Freeing Up Memory

Simplifying
Problems

- Delete unneeded variables, particularly large-sized ones.
- Use [2nd [VAR-LINK] as described in Chapter 18 to view and delete variables.
- On the Home screen:
- Clear the history area (F1 8) or delete unneeded history pairs.
- You can also use F1 9 to reduce the number of history pairs that will be saved.
- Use MODE to set Exact/Approx = APPROXIMATE. (For results that have a large number of digits, this uses less memory than AUTO or EXACT. For results that have only a few digits, this uses more memory.)
- Split the problem into parts.
- Split solve $(\mathrm{a} * \mathrm{~b}=0, v a r)$ into solve $(\mathrm{a}=0, v a r)$ and solve($\mathrm{b}=0, v a r$). Solve each part and combine the results.
- If several undefined variables occur only in a certain combination, replace that combination with a single variable.
- If m and c occur only as $m * c^{2}$, substitute e for $m * c^{2}$.
- In the expression $\frac{(a+b)^{2}+\sqrt{(a+b)^{2}}}{1-(a+b)^{2}}$, substitute c for $(a+b)$ and use $\frac{c^{2}+\sqrt{c^{2}}}{1-c^{2}}$. In the solution, replace c with $(a+b)$.
- For expressions combined over a common denominator, replace sums in denominators with unique new undefined variables.
- In the expression $\frac{x}{\sqrt{a^{2}+b^{2}}+c}+\frac{y}{\sqrt{a^{2}+b^{2}}+c}$, substitute d for $\sqrt{a^{2}+b^{2}}+c$ and use $\frac{x}{d}+\frac{y}{d}$. In the solution, replace d with $\sqrt{a^{2}+b^{2}}+c$.
- Substitute known numeric values for undefined variables at an earlier stage, particularly if they are simple integers or fractions.
- Reformulate a problem to avoid fractional powers.
- Omit relatively small terms to find an approximation.

Special Constants Used in Symbolic Manipulation

The result of a calculation may include one of the special constants described in this section. In some cases, you may also need to enter a constant as part of your entry.
true, false
@n1 ... @n255

Tip: For @, press 2nd R.
∞, \boldsymbol{e}

Tip: For ∞, press 2nd [∞] (same as 2nd J).

Tip: Fore, press 2nd [e^{x}]. This is not the same as typing E on the keyboard.

undef

These indicate the result of an identity or a Boolean expression.

This notation indicates an "arbitrary integer" that represents any integer.
When an arbitrary integer occurs multiple times in the same session, each occurrence is numbered consecutively. After it reaches 255 , arbitrary integer consecutive numbering restarts at @n0. There is no way to reset this number other than resetting the TI-92.
∞ represents infinity, and e represents the constant 2.71828... (base of the natural logarithms).

These constants are often used in entries as well as results.

This indicates that the result is undefined.

Geometry

Preview of Geometry 108
Learning the Basics. 109
Managing File Operations 116
Setting Application Preferences 117
Selecting and Moving Objects 120
Deleting Objects from a Construction. 121
Creating Points 122
Creating Lines, Segments, Rays, and Vectors. 124
Creating Circles and Arcs 127
Creating Triangles 129
Creating Polygons 130
Constructing Perpendicular and Parallel Lines 132
Constructing Perpendicular and Angle Bisectors 134
Creating Midpoints 135
Transferring Measurements 136
Creating a Locus. 138
Redefining Point Definitions 139
Translating Objects. 140
Rotating and Dilating Objects 141
Creating Reflections and Inverse Objects 146
Measuring Objects 149
Determining Equations and Coordinates. 151
Performing Calculations 152
Collecting Data 153
Checking Properties of Objects 154
Putting Objects in Motion 156
Controlling How Objects Are Displayed 158
Adding Descriptive Information to Objects. 161
Creating Macros 164
Geometry Toolbar Menu Items 167
Pointing Indicators and Terms Used in Geometry 169
Helpful Shortcuts 170

This chapter describes the Geometry application of the TI-92. It provides descriptions, procedures, illustrations, and examples for using the TI-92 to perform analytic, transformational, and Euclidean geometric functions.

Create a circle and construct a perpendicular line that is tangent to the circle.
Steps

1. Open a geometry session.

In this example, G2 is the name of the construction. You can use up to eight characters to name constructions.
2. Construct a circle.

Pressing ENTER the first time defines the center point. Pressing EENTER the second time draws the circle.
3. Construct a segment from the center of the circle and attach it to the circumference.
4. Construct a line perpendicular to the segment at the intersection point of the segment and the circle.
Observe each displayed message before pressing ENTER.
The resultant perpendicular line is tangent to the circle.
5. Observe what happens when the endpoint of the segment is dragged around the circle.

F3 1
ENTER
(hold
momentarily to
expand
the circle)
ENTER

F2 5
\bigcirc (until you see
"THIS POINT") ENTER \odot (until you see "0N this Circle") ENTER

F4 1
ENTER
ENTER

Press and hold图, then press the cursor pad.

This section describes the basic operations that you need to know, such as selecting items from the various menus, navigating with the cursor pad, and starting a construction.

Starting Geometry

Important: TI-92 Geometry
requires 25 Kbytes
minimum of free memory

Note: The variable name can be up to eight characters.

To start a new geometry session:

1. Press 0 ON to turn on the TI-92.
2. Press APPS and select 8 :Geometry.
3. Select 3:New to select a new session.
4. Type a variable name in the NEW dialog box and press ENTER twice. The Geometry application window opens as shown below.

You construct objects in the active drawing window, which is 240 pixels horizontally and 105 pixels vertically. This is about 3.2 by 1.4 inches (8.1 by 3.6 centimeters).

The toolbar is comprised of eight separate menus (see pages 167 and 168), which are selected when you press $F 1$ through (F8. Each menu in the toolbar (except (F8) contains an icon that graphically illustrates a geometry tool or command. The active menu is framed as shown by the first menu item in the above figure. Press:

F1 to perform freehand transformations.
F2 to construct points or linear objects.
[F3 to construct curves and polygons.
F4 to build Euclidean constructions and create macros.
F5 to build transformational geometry constructions.
F6 to perform measurements and calculations.
F7 to annotate constructions or animate objects.
F8 to perform file operations and edit functions.
You select tools or commands in a menu by pressing the number that corresponds to the menu item, or by using the cursor pad to move up and down through the menu and pressing ENTER to select the highlighted menu item.

For most menu items, once a menu item is selected, it remains in effect until another menu item is selected. The exceptions default to the Pointer tool; they are the Define Macro tool in the F4 Construct toolbar menu and all F88 File toolbar menu items.

Moving the Cursor

Placing Points

Creating a Simple Triangle

Pressing the cursor pad allows you to move the current active cursor in one of eight directions: up, down, left, right, and the four corresponding diagonals. The cursor moves one pixel for each keypress. When used in combination with the drag key (图), the cursor moves one pixel for each keypress and five pixels in repeat mode (cursor pad is held down).
All objects are constructed using one or more points. You create or select points when a tool is active. The order of operation is:

1. Select a construction tool.
2. Create or select the required points that define the object.

A point is created when the Point tool is selected and ENTER is pressed. You can create points anywhere in the plane when the construction pencil (\mathbb{Q}) is active. For example, to construct the two points in the plane below:

1. Press F2 and select 1:Point.
2. Move the (©) cursor to the desired location, and press ENTER to create the first point.
3. To create the second point, press the right side of the cursor pad (○) until the
```
                                [1/2*
```

```
                                [1/2*
``` cursor is at the desired location, and then press ENTER.

All other objects require multiple points to complete their construction. For example, to construct a triangle you create three points as shown below:
1. Press F3 and select 3 :Triangle.
2. Move the (©) cursor to the desired location, and press ENTER to define the first point.
3. Move the cursor to another location, and press ENTER to define the second
 point.
4. Move the cursor to the third location, and press ENTER again to complete the triangle.

\section*{Selecting Objects}

Hint: Press \(\dagger\) when pressing ENTER to select multiple objects.

Note: The Pointer must begin in an unoccupied location in the plane.

You can select objects by pointing to the object and pressing EENTER or by drawing a marquee (dotted) rectangle around the objects. You deselect selected objects by moving the cursor to an unoccupied location in the plane and pressing ENTER.

\section*{Selecting one object.}
1. Move the cursor using the Pointer tool until the object's name appears, and press ENTER.

The selected object appears as a marquee outline.

Select an object.

\section*{Method \#1: Selecting multiple objects.}
1. Move the cursor using the Pointer tool until the object's name appears, and then hold 1 and press ENTER.
2. Repeat step 1 for other objects that you want to select. (The circle and triangle in this example.)

Select the objects.

All selected objects appear as a marquee outline.

\section*{Method \#2: Selecting multiple objects.}
1. Press and hold © and press the cursor pad to draw a marquee rectangle around the objects that you want to select.
2. Release (The circle, triangle, and their points are selected in this example.)

All selected objects appear as a marquee outline.

Draw a marquee rectangle around the objects.

\section*{Deleting Objects}

\section*{Labeling Points and Objects}

Note: A point appears with a label "a" beside it.

Note: Another point, a segment connecting the two points, and a label "b" appear.

Note: The completed triangle appears as well as the label " \(c\) " beside the last point created.

\section*{Dependent and Independent Objects}

Delete objects by selecting them using the procedures described on the previous page, and then pressing \(\square\) (backspace key) or F8 and select 7:Delete (delete option in the File toolbar menu).

You can label points and objects in the following two ways:
- As you create them (see below).
- With the Label tool in the Display menu (see page 161).

Labeling objects as they are created is intended for quick access and is limited to five alphanumeric characters. Label editing is not available; however, after constructing the object, you can edit a label with the Label tool.
1. Press F3 and select 3 :Triangle.
2. Move the (\(\mathbb{*}\)) cursor to the desired location, press ENTER to create the first point, and then press A (for lowercase letters) or \(\dagger\) A (for uppercase letters).
3. Move the cursor and press ENTER to create the second point, and then press B.
4. Move the cursor and press ENTER to create the third point, and then press C .
\[
\begin{aligned}
& \text { Define and label the first } \\
& \text { point. }
\end{aligned}
\]

Define and label the second point.

Define and label the third point.

All objects are created using one or more points. The manner in which you create an object determines whether or not it is dependent or independent of the object. This distinction becomes important with respect to dragging objects.

A point constructed by itself is called a basic point. You can identify basic points by selecting the Pointer tool and pressing © once. All basic points will flash and can be dragged.

An independent object is an object created using only basic points. Independent objects can be moved (dragged) but cannot be modified directly. By moving the basic points used for their construction, you can modify them indirectly.

A dependent object is an object constructed using an independent object (or another dependent object). Dependent objects cannot be moved (dragged) or modified directly. You can move or modify them indirectly by moving the basic points or independent objects responsible for their existence.

\section*{Dragging Objects}

Hint: Press 2nd © to lock the cursor in drag mode.

You can move constructed objects that you define with the Pointer tool anywhere in the plane. For example, to reposition a constructed object:
1. Construct a triangle as previously described on page 110.
2. Press F1 and select 1 :Pointer.

3. Position the (\(\boldsymbol{+}\)) cursor until it changes to the (\(\mathbf{k}\)) cursor.

The message "THIS TRIANGLE" appears.

4. Press and hold 图 to use the dragging hand, and then press and hold \(\odot\) to move the triangle to the right.

\section*{Positioning a Construction}

\author{
Multi-Step Constructions
}

You can scroll the drawing window to anywhere within the virtual working area (see page 159) by pressing 2nd and the cursor pad at the same time. The default position of the active drawing window is at the center of the virtual working area.
1. Construct several geometric objects as shown.
2. Press F1 and select 1 :Pointer.
3. Press and hold 2nd, and then press the cursor pad to scroll all objects in the active drawing window.

You perform multi-step constructions by repeating the construction of individual points described in this section. Lines require one point and a direction, line segments require two points, triangles and arcs require three points, and polygons require \(n\) points where \(n\) is greater than two.

As an example, to illustrate the basic steps in this section, the procedure below will construct and measure a circle circumscribed around a triangle.
1. Press F8 and select \(3:\) New.
2. Type in a name for the variable to start a new construction, and press ENTER twice.

Start a new construction.

\section*{Multi-Step}

Constructions
(Continued)
3. Construct and label a triangle. (Perform steps 1 through 4 in "Labeling Points and Objects" described on page 112.)
4. Construct perpendicular bisectors for two sides of the triangle by pressing F4 and selecting 4:Perpendicular Bisector.
5. Select side \(A B\) and press ENTER.
6. Select side BC and press ENTER.
7. Modify the appearance of the perpendicular bisectors from solid to dotted lines by pressing F7 and selecting 9:Dotted.
8. Select a line and press ENTER .

Modify the lines.
Complete the perpendicular bisectors.

9. Repeat step 8 for the other perpendicular bisector.

10. Press F3 and select 1:Circle.
11. Define the center point of the circle by moving the cursor near the intersection of the perpendicular bisectors until the message "POINT AT THIS INTERSECTION" appears and

12. Complete construction of the circle by pressing the cursor pad (○) to expand the circle.

Press the cursor pad \((\bigcirc\) and \(\bigcirc)\) until the cursor is near one vertex of the triangle and the message, "THIS RADIUS POINT" appears, and then press ENTER to complete the circle.

13. Measure the circumference of the circle by pressing F6 and selecting 1:Distance \& Length.
14. Position the cursor near the circle until the message "CIRCUMFERENCE OF THIS CIRCLE" appears, and then press ENTER.

Measure the circumference.

Pressing F8 and selecting D:Undo, or pressing \(\downarrow \mathrm{Z}\), will undo the last fully constructed object or operation.

\section*{Managing File Operations}

The F88 File toolbar menu contains file-management commands that allow you to open, close, and save geometry constructions.

\section*{Opening a Construction or Macro}

Note: Pressing \(\bigcirc\) and selecting 2:Macro after selecting the Open command lets you open and use a previously saved macro.

The Open command opens a dialog box for opening an existing geometry figure or macro.
1. Press F8 and select 1:Open.
- or -
press \(\quad 0\).
2. Select the type of variable that you want to open, Figure or Macro.
3. Press the cursor pad to highlight the variable name that you want to open, and press ENTER twice.

To preserve memory, the TI-92 uses an "edit-in-place" method while you are constructing objects. This means the variable that you named when you first opened the geometry session is constantly updated during your constructions.

The Save Copy As command opens a dialog box that allows you to save the current construction to a variable name that you specify.
1. Press F8 and select 2:Save Copy As.
- or -

Press \(\quad \mathrm{S}\).

2. Enter a name for your construction in the Variable box, and then press ENTER twice.

The New command opens a new, blank Geometry drawing window for creating a construction or macro.
1. Press F8 and select 3 :New.
- or -

Press \(\quad N\).
2. Press \(\bigodot\) and enter a name, up to eight characters, for your new construction; and then press ENTER twice.

A blank construction area appears.

\(+\)

\section*{Setting Application Preferences}

The F8 File toolbar menu contains the Format command that opens a dialog box to specify application preferences, such as angles in degrees or radians, and the display precision of calculations.

\section*{Geometry Format Dialog Box Options}

\section*{Defining Application Preferences}

The Format command opens the Geometry Format dialog box that allows you to specify application preferences. The default formats are shown below.

The contents of the Geometry Format dialog box are included in your saved construction files. Consequently, when you open a saved construction, the application returns to the same configuration that was used when you developed the construction.
1. Press F8 and select 9:Format.
- or -

Press \(\quad F\).
2. Press \(\bigodot\) until the cursor is on the same line as the item that you want to change, and then press \(\bigcirc\) to display all options.
3. Select the desired option. (Press the appropriate digit, or highlight the option and press ENTER.)
4. Press ENTER to save your changes and close the dialog box.

\section*{Setting Application Preferences (Continued)}
\begin{tabular}{|c|c|}
\hline Format Options and Descriptions & The table below describes each option in the Geometry Format dialog box. (Default settings are in boldface.) \\
\hline Option & Description \\
\hline \begin{tabular}{l}
Coordinate Axes \\
1:OFF \\
2:RECTANGULAR \\
3:POLAR \\
4:DEFAULT
\end{tabular} & \begin{tabular}{l}
Displays the rectangular or polar axes. \\
The default distance for the tick marks is approximately 5 mm each. You can change this scale by selecting any tick mark on the horizontal axis and dragging it to a location that approximates the desired scale. All the tick marks in the horizontal and vertical axes will change accordingly. \\
You can change the scale for only the y axis by dragging any tick mark on the vertical axis. The scale of constructed objects is not affected when you change the coordinate scale. \\
You can rotate the axes 360 degrees to redefine the major axes by dragging the x axis in a circular direction. You can also rotate the y axis independently to create an oblique coordinate system. Constructed objects do not change.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Grid } \\
& \text { 1:OFF } \\
& \text { 2:ON }
\end{aligned}
\] & Displays a grid that is composed of a dot at each coordinate. The example below shows the rectangular coordinate axes with grid marks turned ON. The grid does not represent a polar coordinate system. \\
\hline \# of Locus Points
5
10
15
20
\(\vdots\)
99 & \begin{tabular}{l}
Determines how many objects will be constructed along the designated path when you construct a locus. \\
The complete option list is: \(5,10,15,20,25,30,35,40,45,50,60\), 70, 80, 90, 99. \\
You can modify this value dynamically in your construction by selecting the locus and pressing \(\dagger\) to increase the number of locus points or \(\square\) to decrease the number of locus points.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Option & Description \\
\hline \begin{tabular}{l}
Link Locus Points 1:OFF \\
2:ON
\end{tabular} & When this option is ON, the points of a locus are linked by way of linear interpolation. When this option is OFF, only the points are displayed. \\
\hline \begin{tabular}{l}
Envelope of Lines 1:OFF \\
2:ON
\end{tabular} & When this option is ON , only the envelope of the line is displayed when you construct the locus of a line. When this option is OFF, each line of the locus is displayed. \\
\hline \begin{tabular}{l}
Display Precision \\
1:FIX 1 \\
2:FIX 2 \\
C:FIX 12
\end{tabular} & \begin{tabular}{l}
Determines the display precision for calculations and measurements in your constructions. \\
You can modify this value dynamically in a construction by selecting the number and pressing \(\square\) or \(\square\) to increase or decrease the displayed precision of that number.
\end{tabular} \\
\hline Length \& Area 1:PIXELS 2:MM 3:CM 4:M & Determines the default units for measurements in your constructions. All values are converted to the selected unit. \\
\hline \begin{tabular}{l}
Angle \\
1:DEGREE \\
2:RADIAN
\end{tabular} & \begin{tabular}{l}
Determines the angle units that are displayed and the geometry calculator mode. All angles are converted to the selected unit. \\
This Angle preference is independent from the Angle preference in the Mode dialog box, which applies to other applications.
\end{tabular} \\
\hline Line Equations
\[
\begin{aligned}
& 1: y=a x+b \\
& 2: a x+b y+c=0
\end{aligned}
\] & Determines the format for displayed line equations. \\
\hline Circle Equations
\[
\begin{aligned}
& 1:(x-a)^{2}+(y-b)^{2}=r^{2} \\
& 2: x^{2}+y^{2}+a x+b y+c=0
\end{aligned}
\] & Determines the format for displayed circle equations. \\
\hline
\end{tabular}

\section*{Selecting and Moving Objects}

\section*{Selecting and Moving Objects Using the Pointer Tool}

Tip: Press \(\dagger\) while selecting an object to select multiple objects.

Note: Sometimes multiple objects cannot be moved concurrently. Dependent objects cannot be moved directly. If a selected object cannot be moved directly, the cursor reverts to the cross hair (+) cursor instead of the dragging hand (图) cursor.

The F1 Pointer toolbar menu contains the tools associated with geometry pointer features. These features allow you to select objects and to perform freehand transformations.

The Pointer tool allows you to select, move, or modify objects. Pressing the cursor pad lets you move the Pointer in one of eight directions. The primary functions of the Pointer are selection, dragging, and scrolling.

You can return to the Pointer at any time by pressing ESC.
To see how the Pointer tool works:
1. Construct a triangle as previously described.
2. Press F1 and select 1 :Pointer.
3. Selecting: Select an object by pointing to it and pressing ENTER when the cursor message appears for that object.

Deselect an object by pointing to an unoccupied location and pressing ENTER.

Point to the object.

Select the object.

4. Moving: Move an object by dragging it to a new location. (Only the last object is actually displayed.)
To show all the points that can be moved, position the cursor to an unoccupied location and press once. The points that you can drag will flash.

\section*{Deleting Objects from a Construction}

The F8 File toolbar menu contains commands that let you delete selected objects or all objects from a construction.

\section*{Delete Defined Objects}

Hint: Use Undo (\(\triangle\) Z) to recover an inadvertent deletion.

The Delete command allows you to delete selected objects.
1. Select the object that you want to Select the object. delete. (To select additional objects, press \(\dagger\) while selecting each item.)

Note: In this example, only the triangle and not the points of the vertices are selected.
2. Press F8 and select 7:Delete to delete Delete the selected object. the selected objects.
- or -

Press \(\square\).

The Clear All command deletes every item in the construction and clears the screen.
1. Press F8 and select 8:Clear All.

A dialog box is displayed for you to confirm this command.

2. Press ENTER to clear the entire construction area, or press ESC to cancel.

\section*{Creating Points in Free Space and on Objects}

Note: You can attach a label to the point by entering text (five-character maximum) from the keyboard immediately after creating a point.

The F2] Points and Lines toolbar menu contains tools for creating and constructing points in geometry. The three point tools allow you to create points anywhere in the plane, on objects, or at the intersection of two objects.

The Point tool creates points that can be placed anywhere in the plane, on existing objects, or at the intersection of any two objects.
- If the point created is on an object, it will remain on the object throughout any changes made to the point or to the object.
- If the point is at the intersection of two objects, the point will remain at the intersection when changes are made to the object or objects.
- If the objects are changed such that they no longer intersect, the intersection point disappears. The intersection point reappears when the objects again intersect.

To create points:
1. Press F2 and select 1:Point.
2. Creating points in free space: Create points in free space.

Move the cursor to any location in the plane where you want a point, and then press ENTER to create the point.
3. Creating points on objects:

Move the cursor to the location on an object where you want a point. When the cursor message appears, press ENTER to create the point.
4. Creating points with labels:

Create a point as defined in step 2 or 3 , and then press an appropriate character key to create a label for the point.

Create points on objects.

Create points with labels.

\section*{Creating a Point on an Object}

The Point on Object tool creates points on any existing object. The point is placed at the location of the cursor. It remains permanently attached to the object-you can drag the point to move it, but it will always remain on the object.
1. Create any object, such as the triangle shown in this example.
2. Press F2 and select 2:Point on Object.
3. Move the cursor toward the object until a cursor message appears for the object.
4. Press ENTER to create the point.

Point to the object.

Create the point.

\section*{Creating an Intersection Point}

The Intersection Point tool creates a point at the intersection (or intersections) of any two defined objects. If the objects are changed so that they no longer intersect, the intersection point disappears. The intersection point reappears when the objects again intersect.
1. Create any two intersecting objects, such as the circle and line shown in this example. (If necessary, see pages 124 and 127.)

2. Press F2 and select 3:Intersection Point.
3. Select the first object of two intersecting objects, and then press ENTER.
4. Select the second object, and then press ENTER to create the intersection point or points.

Select the first object.

Select the second object.

Points are created at each intersection.

The F22 Points and Lines toolbar menu contains tools for creating and constructing linear objects such as lines, segments, rays, and vectors. The Construction menu (F4) contains a tool for creating resultant vectors.

\section*{Creating a Line}

Tip: To limit the slope to 15-degree increments, press \(\pm\) while pressing the cursor pad.
Tip: To label a line, type up to five characters immediately after creating the line or use the Label tool.

\section*{Creating a Segment}

Tip: To limit the slope to 15-degree increments, press \(\dagger\) while pressing the cursor pad.

The Line tool creates a line that extends infinitely in both directions through a point at a specified slope. You can control the slope of the line in free space or create the line to go through another point.
1. Press F2 and select 4:Line.
2. Move the (\(\mathbb{Q}\)) cursor to the desired Create a point. location, and press ENTER to create the initial point of the line.
3. Move the cursor away from the point Create the line. to create the line.

The line is drawn in the same direction as the keypress. When the line appears, you control the slope of the line by continuing to press the cursor pad.
4. Press ENTER to complete the construction.

The Segment tool creates a line segment between two endpoints.
1. Press F2 and select 5 :Segment.
2. Move the (®) cursor to the desired Create the initial point. location, and press ENTER to create the initial endpoint of the segment.
3. Move the pointer to the location for Create the final point. the final endpoint of the segment.
4. Press ENTER.

\section*{Creating a Ray}

Tip: To limit the slope to 15-degree increments, press \(\dagger\) while pressing the cursor pad.

\section*{Creating a Vector}

Tip: To limit the slope to 15-degree increments, press \(\dagger\) while pressing the cursor pad.

The Ray tool creates a ray defined by an initial endpoint and extending infinitely in a specified direction. You can control the slope of the ray in free space or create the ray to go through another point.
1. Press F2 and select 6:Ray.
2. Move the (®) cursor to the desired Create a point. location, and press ENTER to create the endpoint of the ray.
3. Position the ray in the desired Create the ray. orientation using the cursor pad.
4. Press ENTER.

The Vector tool creates a vector between two points. A vector is a segment defined by magnitude and direction with a tail (initial endpoint) and head (final endpoint).
1. Press F2 and select \(7:\) Vector.
2. Move the (®) cursor to the desired Create the tail. location, and press ENTER to create the tail of the vector.
3. Move the pointer to the location for Create the head. the head.
4. Press ENTER.

\section*{Creating Lines, Segments, Rays, and Vectors (Continued)}

\section*{Creating a Resultant Vector}

Note: The selected vectors do not have to share a common endpoint (tail) and may also be previously defined vector sums.

The Vector Sum tool in the Construction menu creates a resultant vector that is the sum of two selected vectors.
1. Create two vectors as shown in this example.
2. Press F4 and select 7:Vector Sum.
3. Move the pointer and select the first vector.
4. Move the pointer and select the second vector.
5. Select the initial point for the resultant vector, and then press ENTER.

Select the first vector.

Select the second vector.

Select a tail point for the vector sum.

\section*{Creating a Circle Using the Circle Tool}

Tip: To label a circle, type up to five characters immediately after creating the circle or use the Label tool.

\section*{Creating a Circle Using the Compass Tool}

Note: The center point can actually be anywhere in the plane.

Note: The first two points determine the radius; the third point becomes the center point of the circle.

The F3] Curves and Polygons toolbar menu contains the tools for creating and constructing circles and arcs. The Construction menu (F4) also contains a tool for creating circles.

The Circle tool in the Curves and Polygons menu creates a circle defined by a center point and the circle's circumference. The circumference of the circle also can be attached to a point.

You can resize the circle by dragging its circumference. You can move the circle by dragging the center point.
1. Press F3 and select 1:Circle.
2. Move the (\(\mathbb{Q}\)) cursor to the desired location and press ENTER to create the center point of the circle. Moving the cursor expands the circle.
3. Continue to move the cursor away from the center point to specify the radius, and then press ENTER to create the circle.

Create the center point.

Specify the radius and create the circle.

The Compass tool in the Construction menu creates a circle with a radius equal to the length of an existing segment or the distance between two points.

You can change the radius of the circle by dragging the endpoints of the segment that defines the radius. You can move the circle by dragging its center point.
1. Create a segment or two points to define the radius of the circle. \(\qquad\)
2. Press F4 and select 8:Compass.
3. Move the pointer to the segment, and

Select a segment. press ENTER.

4. Move the pointer to one of the endpoints of the segment, and press ENTER to create the circle.
5. (Optional) Follow the same basic steps to create a compass circle using points. Select three points to perform the construction.

Select a center point.

Create the circle.

\section*{Creating Circles and Arcs (Continued)}

\section*{Creating an Arc}

Resizing an Arc

Moving an Arc

The Arc tool creates an arc defined by two endpoints and a curvature point that specifies the curvature of the arc.
1. Press F3 and select 2 :Arc.
2. Move the (©) cursor to the desired location, and press ENTER to create the initial endpoint of the arc.
3. Move the pointer away from the Move the pointer. initial endpoint.

Create the initial point.
-
4. Press ENTER, and then move the cursor to create the curvature point.
5. Move the pointer from the curvature point, and then press ENTER to create the final endpoint.

Create the final point.

You can resize an arc or change its curvature by dragging any of the three defined points.
1. Move the cursor to one of the points

Drag a point to resize the arc. that define the arc.
2. Press and hold 图 while pressing the cursor pad to resize the arc.

You can move the arc by grabbing the arc away from the points that define it and dragging it to a new location.
1. Move the cursor to any location on the arc that is away from the points.
2. Press and hold while pressing the cursor pad to move the arc.

Select the arc before dragging to move the arc.

\section*{Creating a Triangle}

Note: You can limit the slope of its sides to 15-degree increments by pressing \(\boldsymbol{1}\) while constructing the triangle.

Note: An outline of the third side is displayed as you move the cursor.

The F3 Curves and Polygons toolbar menu contains tools for creating and constructing triangles.

The Triangle tool creates a triangle defined by three points (vertices).
- Modifying: You can modify a triangle by dragging one of its vertices.
- Moving: You can move a triangle as an object by grabbing it away from the vertices and moving it to a new location.
- Moving a point: You can move a point placed on a triangle along the entire perimeter of the triangle.
1. Press F3 and select 3 :Triangle.
2. Move the (©) cursor to the desired Create the first vertex. location, and press ENTER to create the initial vertex.
3. Move the pointer from the initial vertex, and then press ENTER to create the second vertex.

Create the second vertex.

Move the pointer to the location for the final vertex.

Locate the final vertex.

5. Press ENTER to create the final vertex to complete the triangle.

Create the triangle.

The F3 Curves and Polygons toolbar menu contains tools for creating and constructing polygons in geometry.

\section*{Creating a Polygon}

Tip: You can limit the slope of the sides of a polygon to 15-degree increments by pressing \(\dagger\) while constructing the polygon.

Placing and Moving a Point on a Polygon

The Polygon tool constructs an \(n\)-sided polygon of any shape defined by \(n\) points (vertices) where \(n\) is a number greater than two.
1. Press F3 and select 4:Polygon.
2. Move the (®) cursor to the desired location.
3. Press ENTER to create the initial vertex, and then press the cursor pad to create the first side.

Create the initial vertex and the first side.

4. Press ENTER, and then move the pointer to create each of the other vertices.
5. To terminate construction of a polygon:

Create additional vertices.

- Move the pointer to the initial vertex until "THIS POINT" is displayed, and then press ENTER. - or -
- Press ENTER a second time on the last point of a polygon.

Select the original point.

Polygon is complete.

You can move a point placed on a polygon along the entire perimeter of the polygon.
1. Press F2 and select 1 :Point.
2. Move the (\(\mathbb{\otimes}\)) cursor to the perimeter of the polygon, and press ENTER.

Create a point.
3. Press and hold 图 while pressing the cursor pad to move the point along the perimeter of the polygon.

Grab and move the point.

\title{
Creating a Regular Polygon
}

Note: After creating a regular polygon, you can move a point placed on it along the entire perimeter of the polygon. (See previous page.)

Note: The polygon can have a minimum of 3 and maximum of 17 sides. If you move beyond 17 sides or 180 degrees from the initial vertex and the center point, the convex polygon becomes a star polygon, and a fraction is displayed at the center point.

Note: The minimum value is \(5 / 2\) and the maximum value is \(17 / 3\). The numerator is the number of sides. The denominator is the number of times the star is crossed.

The Regular Polygon tool constructs a regular convex or star polygon defined by a center point and \(n\) sides.

To begin creating either type polygon, perform steps 1 through 3, and then go to the appropriate step 4 depending on the type of polygon that you want to create.
1. Press F3 and select 5:Regular Polygon.
2. Move the (©) cursor to the desired location.
3. Press ENTER to create the center Create the center point. point, press the cursor pad to expand the radius, and then press ENTER.

The number of sides is displayed at the center point. \((\) Default \(=6\).)

Specify the radius.

To create a regular convex polygon:
4. Move the pointer clockwise from its current position to decrease (-) the number of sides or counterclockwise from its current position to increase \((+)\) the number of sides.
5. Press ENTER to complete the convex polygon.

Determine \# of sides.

Completed polygon.

To create a regular star polygon:
6. Move the cursor counterclockwise from its current position until a fraction is displayed at the center point. Continue to move the cursor until the desired number of sides is reached.
7. Press ENTER to complete the star polygon.

Rotate counterclockwise.

Completed polygon.

\section*{Constructing Perpendicular and Parallel Lines}

\section*{Constructing a Perpendicular Line}

Note: The order of steps 3 and 4 can be reversed.

Note: You can move the perpendicular line by dragging the point through which the line passes or by changing the orientation of the object to which it is perpendicular.

The F4 Construction toolbar menu contains tools for constructing objects in relation to other objects, such as perpendicular and parallel lines.

The Perpendicular Line tool creates a line passing through a point and perpendicular to a selected linear object (line, segment, ray, vector, side of a polygon, or axis).
1. Create any object having linear properties such as the triangle shown in this example.
2. Press F4 and select 1:Perpendicular
 Line.
3. Move the cursor to a side or object through which you want the perpendicular line to pass, and then press ENTER.

Select a linear object.

4. Move the cursor to the point through which you want the perpendicular line to pass, and then press ENTER.
5. Drag one of the vertices of the triangle to change its orientation.

Select a point.

A dependent perpendicular line is drawn.

Change the orientation.

\section*{Constructing a Parallel Line}

Note: The order of steps 3 and 4 can be reversed.

Note: You can move the parallel line by dragging the point through which the line passes or by changing the orientation of the object to which it is parallel.

The Parallel Line tool creates a line that passes through a point and is parallel to a selected linear object (line, segment, ray, vector, side of a polygon, or axis).
1. Create any object having linear properties such as the triangle shown in this example.
2. Press F4 and select 2:Parallel Line.

3. Move the pointer to the line, segment, ray, vector, or side of a polygon that will be parallel to the constructed line, and then press ENTER.
4. Move the pointer to a point through which the parallel line will pass, and then press ENTER.
5. Drag one of the vertices of the triangle to change its orientation.

Select a linear object.

Select a point.

A dependent parallel line is drawn.

Change the orientation.

\section*{Constructing Perpendicular and Angle Bisectors}

\section*{Constructing a Perpendicular Bisector}

Note: For two points, select and press ENTER for each point.

\section*{Constructing an Angle Bisector}

Tip: You can change the angle bisector by dragging any of the three points that define the angle.

The F4 Construction toolbar menu contains tools for constructing objects in relation to other objects, such as perpendicular and angle bisectors.

The Perpendicular Bisector tool creates a line that is perpendicular to a segment, a vector, a side of a polygon, or between two points, and passes through the midpoint of the object.

You can move the perpendicular bisector by moving one of the endpoints that define the bisected line segment. A perpendicular bisector cannot be translated directly unless it is constructed between two basic points.
1. Create any object or objects such as those shown below.
2. Press F4 and select 4:Perpendicular Bisector.
3. Move the pointer to one of the following, and press ENTER.

The Angle Bisector tool creates a line that bisects an angle identified by three selected or created points. The second point defines the vertex of the angle through which the line passes.
1. Create a labeled triangle such as the one shown in this example.
2. Press F4 and select 5:Angle Bisector.

3. Select three points to define the angle that you want to be bisect. (The second point that you select is the vertex of the angle.)
The angle bisector is created when you select the third vertex.

Select points \(A, B\), and \(C\).

The F4 Construction toolbar menu contains a tool for constructing the midpoint of a segment.

\section*{Creating a Midpoint}

Note: For two points, select and press ENTER for each point.

The Midpoint tool creates a point at the midpoint of a segment, a vector, the side of a polygon, or between two points.
1. Create any object or objects such as those shown below.
2. Press F4 and select 3:Midpoint.
3. Move the pointer to one of the following, and press ENTER.

\section*{Transferring Measurements}

\section*{About Transferring Measurements}

Note: If you select a point, a dotted line appears. Position the dotted line as you want it, and then press ENTER to set the position.

The F4 Construction toolbar menu contains a tool for transferring measurements between objects.

The Measurement Transfer tool creates:
- A point on a ray or vector from the initial point of a line, segment, polygon, or axis.
- A point at a proportional distance from another point.
- A point on a circle that is at an equivalent arc length from another point on the circle.

The point created by the measurement transfer is dynamically updated. The magnitude of the measurement that is transferred defaults to the specified unit of length.

Note: See "Measuring Distance and Length of an Object" on page 149 and "Creating and Editing Numerical Values" on page 162 to create the numerical values shown in the examples in this section.

Perform the following steps to transfer the measurement of a segment to a ray.
1. Construct and measure a segment, and construct a ray as shown in this example.

2. Press F4 and select 9:Measurement Transfer.
3. Point to any measurement or numerical value, and press ENTER to select the value.

Select a numerical value.

4. Select a ray, vector, polygon, point, or axis; and press ENTER to transfer the measurement to the object.

A point is created that is an equivalent distance from the endpoint of the ray.

Select a ray.

Transfer the measurement.

\section*{Creating a Measurement Transfer Point on a Circle}

Note: The direction of the distance or arc length is counterclockwise for positive values and clockwise for negative values. The direction is determined by the sign of the selected numerical value.

Perform the following steps to create a point on a circle at a proportional arc length away from a selected point.
1. Create a circle with a point on it, and then create a numerical value as shown in this example.

2. Press F4 and select 9:Measurement Transfer.
3. Move the cursor and press ENTER to select the numerical value.

4. Move the cursor and press ENTER to select the circle

5. Move the cursor to the existing point on the circle.

6. Press ENTER to create a point on the circle that is a proportional arc length away from the initial point.

\section*{Creating a Locus}

Note: The number of points calculated in the construction of the locus is defined in the Geometry Format dialog box.

Note: The locus is dynamically recalculated when you modify the objects that define the locus.

The F44 Construction toolbar menu contains the Locus tool, which generates a set of points while a point moves along a path.

The Locus tool creates a set of objects defined by the movement of a point along a path. A path is any defined object on which a point can be placed.
1. Construct two circles as shown.

The center point and circumference of the small circle must be attached to the circumference of the large circle.

Construct and attach two circles.

Thispoint indicates that the circles are attached.

2. Press F4 and select A:Locus.
3. Select the small circle as the object for which to construct the locus.
4. Select the center point of the small circle as the point that lies on a path.

When you select a point on a path (object), the locus is constructed in its entirety and is considered a defined object.

Select the object.

Select a point on the path.

The locus is constructed.

\section*{Redefining Point Definitions}

\section*{Redefining the Definition of a Point}

Note: The new definition cannot be a circular reference. A circular reference occurs when a point that defines an object is redefined to be on that object. For example, defining the center point of a circle to be a point on the circle is not allowed.

The F4 Construction toolbar menu contains the Redefine tool, which redefines the definition of points.

The Redefine Point tool modifies the current definition of a point.
To redefine a point in the following construction:
1. Create a segment and circle as shown in this example.
2. Press F4 and select B:Redefine Point.
3. Move the pointer to a point, and then press ENTER.

A pop-up menu opens to let you select a point redefinition option.
- Point - Redefines the point as a basic point at the same location.
- Point on Object - Redefines the

Select the endpoint of the segment.
 point to be on an object.
- Intersection Point - Redefines the point to be at the intersection of two objects.
- Transfer to another point - Transfers the point to another existing point.
4. Select 2:Point on Object.
5. Move the pointer to an object compatible with the selected option, and press ENTER.

The point is redefined.

Select a point on the circle.

The segment is attached to the circle.

The F5 Transformations toolbar menu contains a tool that is used to translate (copy and move) geometry objects.

\section*{Translating an Object}

\section*{Modifying a Translation}

Note: Because it is a dependent object, you cannot change the translated image directly.

The Translation tool creates the image of an object translated by a specified, previously defined vector.
1. Create a vector and triangle as shown in this example.
2. Press F5 and select 1:Translation.
3. Select the object to translate.
4. Select the vector that defines the translation direction and distance.

The image of the "pre-image" is translated to the selected location. The pre-image remains in its original location.

Select the object to translate.

Select the translation vector.

The image is translated.

You can modify a translated image by dragging the vector head to a new location.
- Grab and drag the vector head.
-or-
- Grab and drag the vector tail to change the magnitude of the translation.

The translated image changes according to the changes made to the vector.

Reposition the vector head.

\section*{Rotating and Dilating Objects}

\section*{Rotating Objects by Freehand}

Hint: Press and hold 2 while pressing the cursor pad.

Note: Move the cursor to an unoccupied location and press ENTER to deselect the rotation point.

The F1 Pointer toolbar menu contains tools to rotate and dilate objects by freehand manipulation. The F5
Transformations toolbar menu contains tools for rotating and dilating objects using specific values to create translated images.

The Rotate tool in the Pointer menu rotates an object about its geometric center or a defined point.

To rotate an object about its geometric center:
1. Create a triangle as shown in this example.
2. Press F1 and select 2:Rotate.
3. Point to the object (not a point) and drag in the direction that you want to rotate the object.

Drag the object around its geometric center

Complete the rotation.

To rotate an object about a defined point:
1. Create a triangle and a point as shown in this example.
2. Press F1 and select 2:Rotate.
3. Select the rotation point. The point will blink on and off.
4. Point to the object and drag in the direction that you want to rotate the object.

Select the rotation point and grab the object to rotate.

Drag the object around the point.

Complete the rotation.

\section*{Rotating and Dilating Objects (Continued)}

\section*{Rotating Objects by a Specified Angular Value}

Note: The angular value may be any measurement or numerical value regardless of unit assignment. Rotation assumes that the value is in degrees or radians, and is consistent with the Angle setting in the Geometry Format dialog box. Positive values = CCW rotation. Negative values = CW rotation.

The Rotation tool in the F5 Transformations toolbar menu translates and rotates an object by a specified angular value with respect to a point.

Note: See "Measuring Distance and Length of an Object" on page 149 and "Creating and Editing Numerical Values" on page 162 to create the numerical values shown in the examples below.
1. Create a triangle, a point, and a numerical value as shown in this example.
2. Press F5 and select 2:Rotation.
3. Select the object to rotate.
4. Select the point of rotation.

Select the rotation point.

5. Select the angular value of rotation. The rotated image is created. The original object is still displayed at its original location.

Select the angular value.

The rotated image is created.

You can modify a rotated image by changing the number that defines the angle of rotation, moving the rotation point, or modifying the original object.
1. Select the number, press \(F 7\) and select 6:Numerical Edit.
2. Change the number to a different value and press ENTER.

The rotated image moves according to the numerical value that defines

The rotated image is modified.
 the rotation.

\section*{Dilating Objects by Freehand}

Tip: Press and hold while pressing the cursor pad.

Note: Dragging an object through the dilation point causes a negative dilation. The cursor must travel through the dilation point.

The Dilate tool in the Pointer menu expands or contracts an object about its geometric center or a defined point.

To dilate an object about its geometric center:
1. Create a triangle as shown in this example.
2. Press F1 and select 3:Dilate.

3. Point to the object (not a point) and drag to dilate the object about its geometric center.
4. Drag the object away from its center to expand or toward its center to contract.

Drag the object.

Complete the dilation.

To dilate an object about a defined point:
1. Create a triangle and a point as shown in this example.

Select a dilation point.

2. Press F1 and select 3:Dilate.
3. Select the dilation point. The point will blink on and off.
4. Point to the object and drag to dilate the object with respect to the dilation point.
5. Drag the object away from its center Complete the dilation. to expand or toward its center to contract.

Drag the object.

\section*{Rotating and Dilating Objects (Continued)}

\section*{Dilating Objects by a Specified Factor}

Note: Negative numerical values result in a negative dilation.

Note: The factor can be any measurement or numerical value regardless of unit assignment. Dilation assumes that the selected value is without a defined unit.

Modifying a Dilation

Note: Because it is a dependent object, you cannot change the dilated image directly.

The Dilation tool in the Transformations menu translates and dilates an object by a specified factor with respect to a specified point.

Note: See "Creating and Editing Numerical Values" on page 162 to create the numerical values shown in the examples below.
1. Create a triangle, a point, and a numerical value as shown in this example.
2. Press F5 and select 3:Dilation.
3. Select the object to dilate.
4. Select the point of dilation.
5. Select the factor of dilation.

The dilated image is created. The original object is still displayed at its original location.

Select the object to dilate.

Select the dilation point.

Select the dilation factor.

The dilated image is created.

You can modify a dilated image by changing the number that defines the factor of dilation, moving the dilation point, or modifying the original object.
1. Grab and drag a vertex of the original object.

The dilated image moves according to the changes made to the original object.

The dilated image is modified.

\section*{Rotating and Dilating Objects by Freehand}

Tip: Drag the object away from its center to expand, or toward its center to contract. Drag the object in a circular motion to rotate.

Tip: Drag the object away from its defined point to expand and rotate or toward its center to contract and rotate.

The Rotate \& Dilate tool in the Pointer menu rotates and dilates a selected object about its geometric center or a defined point.

To rotate and dilate an object about its geometric center:
1. Create a triangle as shown in this example.
2. Press F1 and select 4 :Rotate \& Dilate.

3. Point to the object, and drag to rotate and dilate the object.

Drag the object in a circular or linear path.

Complete the rotation and dilation.

To rotate and dilate an object about a defined point:
1. Create a triangle and a point as shown in this example.
2. Press F1 and select 4:Rotate \& Dilate.
3. Select the point of rotation and dilation. The point will blink on and off.
4. Point to the object, and drag to rotate and dilate the object with respect to the point.

Drag object in a circular or linear path,

Complete the rotation and dilation.

\section*{Creating Reflections and Inverse Objects}

\section*{Creating a Reflection}

\section*{Modifying a Reflection}

Note: Because the reflected image is a dependent object, you cannot change it directly.

The F5 Transformations toolbar menu contains the tools associated with transformational geometry for creating reflections and inverse objects.

The Reflection tool creates a mirror image of an object reflected across a line, segment, ray, vector, axis, or side of a polygon.
1. Create a polygon and a line as shown in this example.
2. Press F5 and select 4:Reflection.
3. Select the object to reflect.
4. Select the line, segment, ray, vector, axis, or side of a polygon to reflect the object across.

You can modify a reflected image by changing the original object or by modifying the line of reflection.
1. Select, reposition, and rotate the line.

The reflected image moves according to the changes made to the line.

Select the linear object.

The reflected object is created.

The reflected image is modified.

\section*{Creating a Symmetrical Image}

Modifying a Symmetrical Image

Note: Because a symmetrical image is a dependent object, you cannot change it directly.

The Symmetry tool creates the image of an object that is rotated 180 degrees around a point.
1. Create a polygon and a point as shown in this example.
2. Press F5 and select 5:Symmetry.
3. Select the object to rotate 180 degrees.

Select the object to rotate.
4. Select the point of symmetry.

Select a point.

The symmetrical image is created.

You can modify a symmetrical image by changing the original object or by moving the point of symmetry.
1. Grab and drag a vertex of the original object. (Upper right vertex of the original object shown in step 1.)
The symmetrical image is modified according to the changes made to the original object.

The symmetrical image is modified.

\section*{Creating Reflections and Inverse Objects (Continued)}

\section*{Creating an Inverse Point}

\section*{Modifying an Inverse Point}

Note: Because an inverse point is a dependent point, you cannot change it directly.

The Inverse tool constructs an inverse point with respect to a circle and a point, according to the equation \(\mathrm{OM} \cdot \mathrm{OM}^{\prime}=\mathrm{r}^{2}\)
where:
\(M\) and \(M\) ' are points that lie on a ray with endpoint \(O\).
\(O=\) center of circle.
\(\mathrm{M}=\) selected point.
\(\mathrm{M}^{\prime}=\) inverse point.
\(r=\) radius of selected circle.
As the selected point approaches the center point, the inverse point approaches a point at infinity. If M is defined to be on a line, the locus of M' constructs a circle that passes through the center of the original circle.

If the original point lies in the interior of the circle, the inverse point is constructed in the exterior, and vice versa. The inverse point lies on a ray with the center point as the endpoint.
1. Create a circle and a point as shown in this example.
2. Press F5 and select 6:Inverse.

3. Select the point as the original point.

Select a point.

4. Select the circle.

Select a circle.

An inverse point is created.

You can modify an inverse point by dragging the point or by modifying the circle that defines it.
1. Grab and drag the original point.

The inverse point inside the circle moves according to the changed position of the original point.

The inverse point is modified.

\(\varepsilon\)

\section*{Measuring Objects}

The F66 Measurement toolbar menu contains the tools associated with measurement features in geometry. These features allow you to perform different measurements and calculations on your constructions.

\section*{About Measuring Objects}

Measuring Distance and Length of an Object

For all measurements described in this section:
- You can add a descriptive comment to a measurement by entering text immediately after creating the measurement, or by using the Comment tool in the F7 Display toolbar menu.
- You can change the location of a measurement result by dragging it to a different location.

The Distance \& Length tool measures length, arc length, perimeter, circumference, radius, or the distance between two points.
1. Create a segment as shown in this example.

2. Press F6 and select 1 :Distance \& Length.
3. To measure:

Select an object.
- Length, perimeter, or circumference - Select a segment, arc, polygon, or circle.
- Distance - Select two points. The result is displayed.
- Radius - Select the center point, and then the circumference of the
 circle.

The Area tool measures the area of a selected polygon or circle.
1. Create a polygon or circle.
2. Press F6 and select 2:Area.

3. Select the polygon or circle whose area you want to measure, and then press ENTER.

Select an object.

The result is displayed.

\section*{Measuring Objects (Continued)}

Measuring an Angle

Hint: If an angle mark is displayed on the angle, select the angle mark to measure the angle.

The Angle tool measures an angle defined by three selected points or an angle mark. The second point selected is the vertex of the angle. The result is displayed in degrees or radians consistent with the Angle option in the Geometry Format dialog box.
1. Create two segments that have a common point, or any polygon.
2. Press F6 and select 3:Angle.

3. Select three points to specify the angle. The second point that you select is the vertex.

Select three points.

The result is displayed.

The Slope tool measures the slope of a selected segment, ray, vector, or line.
1. Create any linear object.
2. Press F6 and select 4:Slope.
3. Select the segment, ray, vector, or line whose slope you want to measure.

Select an object.

The result is displayed.

\section*{Determining Equations and Coordinates}

The F6 Measurement toolbar menu contains the Equation \& Coordinates tool that generates and displays equations and coordinates of lines, circles, and points.

\section*{About the Equation \& Coordinates Tool}

\section*{Checking the Equation and Coordinates of a Point or Line}

The Equation \& Coordinates tool displays the equation of a line, circle, or coordinates of a point with respect to a default coordinate system. The equation or coordinates are updated when the object is modified or moved.
1. (Optional) To display the x and y axes, press F8 and select 9:Format; and then select 2:RECTANGULAR from the Coordinate Axes option.
2. Press [66 and select 5:Equation \& Coordinates.
3. Select the point or line whose coordinates or equation you want to find.

Select an object.

The result is displayed.

The Equation \& Coordinates tool displays the equation of a circle with respect to a default coordinate system. The equation or coordinates are updated when the object is modified or moved.
1. (Optional) To display the x and y axes, press F8 and select 9:Format; and then select 2:RECTANGULAR from the Coordinate Axes option.
2. Press F6 and select 5 :Equation \& Coordinates.
3. Select the circle whose equation you want to find.
4. Select the center point of the circle to find the coordinates of the point.

Select an object.

The result is displayed.

Select a point to display its coordinates.

\section*{Performing Calculations}

\section*{Performing Calculations on Constructed Objects}

Note: The result of a calculation must be a single floating-point number to be displayed.

Note: The characters assigned to each value are copied from the drawing window and indicate that the value is a variable. The characters are an internal variable representation and do not affect other systemlevel variables with the same name. You can have up to 10 variables per calculation.

Note: You can recall a calculation by selecting the result and pressing 2nd ENTER.

The F66 Measurement toolbar menu contains the Calculate tool that performs measurement calculations on your constructions.

The Calculate tool opens a calculation entry line near the bottom of the screen. The entry line is the interface for entering mathematical expressions involving geometric objects. This tool lets you do the following:
- Perform calculations on constructed objects.
- Access various features of the TI-92 calculator.

Follow the steps below to perform calculations using measurements, numerical values, calculation results, and numerical inputs from the keyboard.
1. Construct a polygon, and then measure the distance between each point (see page 149).

Construct and measure an object.

2. To calculate the perimeter, press F6 and select 6:Calculate.
3. Press \(\bigcirc\) to select the first measurement, and then press ENTER.
4. Press \(\boxplus\).
5. Press \(\bigcirc\) as necessary to select the second, third, and fourth measurements, and then press ENTER each time. (Press \(\square\) before each variable.)
6. With the cursor in the entry line, press ENTER.

The sum is calculated and displayed after R:

Assign variables.

\(a+b+c+d\)

Perform the calculation.

7. To see interactive calculations, grab a vertex of the polygon and drag it to another location.

Observe the dynamic changes in the result (\(R\) :) as the object is changed.

Observe interactive calculations.

\section*{Collecting Data about an Object into a Table}

Tip: Press \(\square \mathrm{H}\) to place the collected data as a vector in the history area of the Home screen for later review.

The F66 Measurement toolbar menu contains the Collect Data tool that lets you define and store data from your constructions into lists for later review in the Data/Matrix Editor.

The Collect Data tool collects selected measurements, calculations, and numerical values into the variable sysData. You can collect up to 10 data measurements simultaneously.
1. Construct an object, and then measure its dimensions.

For example, measure the sides of a triangle and calculate its perimeter.

Construct and measure

2. Press \({ }^{F 66}\) and select 7:Collect Data, and then select 2:Define Entry.
3. Select each measurement and calculated value to define the data to collect.

The data will appear in the Data/Matrix Editor in the order in which the data was selected.

Define the data to collect.

4. Press 56 and select 7:Collect Data, and then select 1:Store Data.
- or -

Press \(\quad\) D.
5. Press APPS and select 6:Data/Matrix Editor, and then open the variable sysData to display the lists of collected data.

Display the lists.

(Note: Labels are also copied to the table, if available.)

Note: You can automatically collect defined data entries if the Store Data icon appears in the toolbar while you are animating your construction. (See "Putting Objects in Motion" on page 156).

\section*{Checking Properties of Objects}

\section*{Editing Check Property Text}

\section*{Determining If Points Are Collinear}

Tip: Position the text box to the desired location before pressing [ENTER to display the result.

Note: The displayed property changes when the third point (center point) is no longer collinear with the endpoints of the segment.

The F6 Measurement toolbar menu contains the Check
Property tool, which allows you to verify specific properties related to a construction.

For all properties described in this section, you can edit the Check Property text using the Comment tool (see page 162) to customize the result.

The Collinear tool verifies whether or not three selected points lie on the same line.
1. Construct a circle and a segment such that the segment passes through the center point and its endpoints are attached to the circle.

2. Press F6 and select 8:Check Property, and then select 1:Collinear.
3. Point to each endpoint of the segment and the center point of the circle, pressing ENTER each time.
4. Press ENTER to display the property.

Select three points.

5. Drag one of the endpoints of the segment a few pixels up and a few pixels down.

Determining If Lines Are Parallel

The Parallel tool verifies whether or not two lines, segments, rays, vectors, axes, or sides of a polygon are parallel.
1. Construct two segments as shown.
2. Press 56 and select \(8:\) Check Property, and then select 2:Parallel.

Tip: Position the text box to the desired location before pressing [ENTER to display the result.

Note: The displayed property changes when the two segments are no longer parallel.
3. Point to the first segment and press ENTER. Then point to the second segment and press ENTER.
4. Press ENTER to display the property of the two segments.

Select the objects.

5. Drag the endpoint of one of the segments a few pixels up or down.

The Perpendicular tool verifies whether or not two lines, segments, rays, vectors, axes, or sides of a polygon are perpendicular.
1. Construct two segments as shown.

2. Press F6 and select 8 :Check Property, and then select 3:Perpendicular.
3. Point to each segment, pressing ENTER each time.

Select the objects.

4. Press ENTER to display the property.

5. Drag the endpoint of one of the segments so that they are no longer perpendicular.

\section*{Putting Objects in Motion}

\section*{Animating Independent Objects}

Note: The farther away the spring is pulled, the faster the object is animated. You can also increase or decrease the animation while the object is in motion by pressing \(\square\) or \(\square\), respectively.

The F7 Display toolbar menu contains the tools that let you animate and trace objects.

The Animation tool automatically moves an independent object along a specified path.
- If the Pointer tool is visible in the toolbar and the object does not lie on a defined path, the animated direction is 180 degrees from the spring. Otherwise, the object is animated along its defined path.
- If the Rotate, Dilate, or Rotate \& Dilate tool is visible in the Pointer toolbox and the object can be transformed, the animation will be relative to the visible Pointer tool. For example, if the Rotate tool is visible, the object is rotated automatically.
- Pressing ENTER pauses the animation; pressing ENTER again resumes the animation. Pressing ESC or ON cancels the animation.

To animate an object:
1. Construct two circles as shown in this example.
2. Press F7 and select 3 :Animation.
3. Select the point of the object to animate.
4. Drag the animation spring in the opposite direction of the intended animation, and then release . -or-
Press and release twice quickly.
The small circle moves around the

Select the point.

Drag the animation spring.
 circumference of the large circle.

\section*{Tracing the Path of an Object}

Note: The Trace On / Off tool works as a toggle function on an object.

The Trace On/Off tool traces the path of an object as it is moved.
- You can trace objects manually by dragging them, or automatically by using the Animate tool.
- You can select multiple objects for tracing, or deselect all trace objects by pressing \(1+\) ENTER with the cursor in an unoccupied location in the plane.
- You can clear the results of a trace by pressing CLEAR.

To trace the path of a moving object:
1. Create a circle as shown in this example.
2. Press F7 and select 2:Trace On / Off.

3. Select the objects to trace.

Selected objects are displayed in a marquee outline.
4. To disable the trace on an object, press \(F 7\) and select 2:Trace On / Off. Then select the object displayed in marquee outline.

Select any object or objects.

Move the object to show the trace.

\section*{Controlling How Objects Are Displayed}

\section*{Hiding and Showing Objects}

Note: When the Hide / Show tool is active, pressing \(\square\) and ENTER at the same time in free space makes all hidden objects visible.

The F7 Display toolbar menu contains tools for controlling the display features of objects. The F8 File toolbar menu contains several tools that determine how objects are viewed.

The Hide/Show tool in the Display toolbar menu hides selected visible objects and shows selected hidden objects. Hidden objects do not alter their geometric role in the construction.
1. Construct several objects such as those shown in this example.
2. Press F7 and select 1:Hide / Show.
3. Point to each object that you want to hide, and press ENTER.

Select the objects.

Selected objects are hidden.

Hidden objects are displayed.

The Thick tool in the Display toolbar menu changes the outline thickness of an object between Normal (one pixel) and Thick (three pixels) outlines.
1. Construct several objects such as those shown in this example.
2. Press F7 and select 8:Thick.

Tip: Change the thickness of a point to set it apart from other points.

Note: This option works as a toggle. Reselecting the object changes the outline back to normal.

\section*{Changing the Line Pattern of Objects}

Note: This option works as a toggle. Reselecting the object changes the outline pattern back to normal.

\section*{Showing the Entire Drawing Page}
3. Point to the object to be outlined in thick outline.

Select the object.

4. Press ENTER to change the outline as shown, and then press ENTER again to change it back to normal.

The Dotted tool in the Display toolbar menu changes the outline pattern of objects between solid and dotted outlines.
1. Press \(\mathrm{F7}\) and select 9:Dotted.
2. Point to a solid outlined object that is to be displayed in dotted outline.

Select the object.

3. Press ENTER to change the outline as shown, and then press ENTER again to change it back to normal.

The Show Page command in the File toolbar menu allows you to view an entire construction, which can be larger than the drawing window. It displays the full-page picture of the construction in miniature.
1. Construct a circle that is larger than the drawing window.
2. Press F8 and select A:Show Page.

Normal view.

3. Drag the small window to move the drawing view to a new location.
4. Press ENTER to accept the change or ESC to cancel and return to the normal drawing window.

Show Page view.

\section*{Controlling How Objects Are Displayed (Continued)}

\section*{Viewing Data and Objects at the Same Time}

Note: When you select Data View, the construction is in the left screen, and the Data Matrix Editor is in the right screen. The Data/Matrix Editor stores collected data in the variable sysData. If you have not collected data, sysData may be empty and no data will be displayed.

The Data View command in the F8 File toolbar menu displays a split screen for viewing a geometry construction and collected data in the Data/Matrix Editor at the same time.
1. Construct and measure an object.

Construct and measure.

2. Press F6, select 7:Collect Data, and then 2:Define Entry.
3. Select each data item that you want to define.
4. Press F6, select 7:Collect Data, and then select 1:Store Data.
5. Press F8 and select B:Data View.
6. Press 2nd APPS to display the Data/Matrix Editor and the stored data and to switch between the two applications.

Display the object and its data.

\section*{Clearing Data View}

The Clear Data View command in the File toolbar menu brings you back to full-screen mode.
1. Press F8 and select C:Clear Data View.

Full-screen mode.

\section*{Adding Descriptive Information to Objects}

The F7 Display toolbar menu contains the tools that let you annotate your constructions.

\section*{Creating a Label Using the Label Tool}

Note: You also can attach a label to a point immediately after it is created by entering text from the keyboard.

Note: You can reposition the label by selecting it and then dragging it to the desired location.

The Label tool attaches a label to a point, line, or circle. When you select an object with the Label tool, an edit box appears in which you can enter the label text or numbers.
- The label is a textual object that you can move anywhere within a specified distance from the object. The relative position of the label is maintained.
- To edit an existing label, place the cursor on the label and press ENTER. A text cursor appears that allows you to edit the text in the label.
- The text cursor is controlled by pressing \(\square\) and the cursor pad simultaneously.
- All label text is horizontally oriented.

To label an object:
1. Construct any object such as the triangle shown in this example.
2. Press F7 and select 4:Label.

3. Select a point, line, or circle.

Select a point, line, or circle.

4. Type the label text on the keyboard, and then press ESC.

Enter a label.

Reposition and complete the labels.

\section*{Adding Descriptive Information to Objects (Continued)}

\section*{Creating a Descriptive Comment}

Note: The text cursor is controlled by pressing \(\square\) and the cursor pad simultaneously.

Hint: Use the Comment tool to add a descriptive label/comment to a measurement.

The Comment tool creates a text box in unoccupied space or next to a measurement. It is similar to the Label tool except that a comment text box does not attach itself to an object.
1. Press F7 and select 5:Comment.
2. Press ENTER to create a comment box anywhere in the plane. Drag the comment box by the lower right corner to specify the size of the comment.

Drag an appropriately sized box.

3. Type the comment text on the Enter a comment. keyboard, and then press ESC.

You can reposition the comment by dragging it to the desired location.

\(\qquad\)

The Numerical Edit tool creates an edit box for editing numerical values, including interactive numbers or measurements. Interactive numbers must be created with this tool; and they can be interactively modified and used to define rotations, dilations, or measurement transfer values.
1. Press F7 and select 6:Numerical Edit.
2. Press ENTER to place an edit box Position the edit box. anywhere in the drawing for creating an interactive number.
3. Type a numerical value, and then press ESC.

Enter a numerical value.

\subsection*{45.060}
4. (Optional) Add a unit description to

Assign a unit of measurement. a number by pressing \(\bullet U\) and selecting from: Number, Length, Area, Volume, Angle.

\section*{Moving and Modifying a Number}

Note: The \(l\) cursor is placed at the right of the leastsignificant digit.

Tip: Point to a label, comment, or numerical edit value and press ENTER twice to open the appropriate tool automatically.

\section*{Creating a Marked Angle}

You can move a number by selecting it and dragging it anywhere in the plane with the Pointer tool. You can modify a number when the edit box is active.
1. Select the number that you want to change.
2. Press \(\square\) to delete the necessary digits, and then re-type the corrected number.
3. Press \(\circlearrowleft \bigcirc\) or \(\circlearrowleft \bigcirc\) to increase or decrease the digit to the left of the cursor, respectively.
45. 1 [60
4. Press ESC when finished.

The Mark Angle tool labels an angle specified by three points with an angle mark.
1. Create a triangle as shown in this example.
2. Press F7 and select 7:Mark Angle.

Select three points.

4. Press F66 and select 3:Angle, and then select the marked angle.

Measure a marked angle.
5. To measure the exterior angle, drag the angle mark through the vertex of the angle.

Select a number to modify.
\[
45 .
\]

Edit the number with delete and replace.
\[
45.125
\]

Edit the number with \(\bullet \bigcirc\).
3. Specify the angle by selecting three points. The second point that you select becomes the vertex.

Measure the exterior angle.

The F4] Construction toolbar menu contains the tools for constructing macros.

\section*{Introduction to Creating Macros}

\section*{Rules for Creating Macros}

The Macro Construction menu item contains the tools for constructing macros in the Geometry application. A macro is a sequence of interdependent constructions. Macros are useful for creating new tools that construct unique objects or perform repetitive tasks.
A macro constructs "final" objects based on "initial" objects. Intermediate objects are not constructed. This feature allows for easy construction of complex figures and is the primary method for constructing fractals. You can save macros for later use. Macros are saved automatically with any construction in which they are used. The number of objects created by a macro is limited only by available system memory.
\(\left.\begin{array}{ll}\hline \text { Rule } & \text { Explanation } \\ \hline \begin{array}{ll}\text { - Initial objects must allow } \\ \text { for the construction of } \\ \text { all final objects. }\end{array} & \begin{array}{l}\text { Final objects are determined by the } \\ \text { initial objects. A macro must respect } \\ \text { the logical structure of the figure as it } \\ \text { was constructed. }\end{array} \\ \hline \text { - An object cannot exist } \\ \text { without the points that } \\ \text { define it. }\end{array} \begin{array}{l}\text { For example, a triangle cannot exist } \\ \text { without its vertices. Therefore, when } \\ \text { you select an object as an initial } \\ \text { object, the macro is able to refer to } \\ \text { the points that define the object. }\end{array}\right]\)

\section*{Overview: Creating and Executing a Macro}

The flowchart below shows an overview of the basic steps required to create macros.

The Execute Macro command displays a pop-up menu that lists all defined macros. If the initial conditions of the selected macro are satisfied, the macro executes and generates the final object or objects.

To create and execute a macro:
1. Construct the initial and final objects.

For example, construct a triangle (initial object) and its perpendicular bisectors, and then construct a circle (final object) through all vertices of the triangle.
2. Press F4 and select 6:Macro Construction.
3. Select 2:Initial Objects, and then select the triangle as the initial object.

Construct the objects.

Select the initial object.

\section*{Example: Creating and Executing a Macro (Continued)}

Note: Defined macros appear in a pop-up menu. Highlight the desired macro, and press ENTER to select it.
4. Press F4 and select 6:Macro Construction.
5. Select 3:Final Objects, and then select the circle as the final object.
6. (Optional) You can change the appearance of your construction by using the Hide/Show, Thick, and Dotted tools in the F7 Display toolbar menu.
7. Press F4 and select 6:Macro Construction.
8. Select 4:Define Macro, and then type a name for the macro.

Select the final object.

Name the macro.

The Name you enter will help you identify the macro later. The Object name you enter will appear in cursor messages when appropriate. Both names can be up to 25 characters.

Note: After the Name Macro dialog has been completed, the Save Macro dialog will appear. You must provide a valid name to save your macro as a separate file. If you do not want to save the macro to a separate file, the macro will be saved with your construction. In this case, you will not be able to open the macro from the F8 File toolbar menu.
9. Construct the initial object (any triangle).
10. Press F4 and select 6:Macro

Construction, and then select 1:Execute Macro.
11. Select the macro that you previously defined, and then select the triangle to execute the macro.

This macro determines the center and radius of the circle and constructs a circle thorough all vertices of the triangle.

Construct an object.

Select the object.

Execute the macro.

This section shows the geometry toolbar and the subsequent Tool/Command menu items that are opened when you press one of the function keys F1 through F8.

The F1 Pointer toolbar menu contains tools for selecting and performing freehand transformations.
\begin{tabular}{|l|}
\hline F1 \\
\hline 1:Pointer \\
2:Rotate \\
3:Dilate \& Dilate \\
4:Rotate \& Dite \\
\hline
\end{tabular}
see page 120
see page 141
see page 143
see page 145
The F2 Points and Lines toolbar menu contains tools for constructing points or linear objects.
\begin{tabular}{|l|l|}
\hline F2 & \\
\hline 1: Point & \\
2: Point on Object & see page 122 \\
3: Intersection Point & see page 123 \\
4: Line & seage 123 \\
5: Segment & see page 124 \\
6: Ray & see page 124 \\
\(7:\) Vector & see page 125 \\
\hline
\end{tabular}

The F3] Curves and Polygons toolbar menu contains tools for constructing circles, arcs, triangles, and polygons.
\begin{tabular}{|l|l}
\hline F3 & \\
\hline 1:Circle & see page 127 \\
2:Arc & see page 128 \\
3:Triangle & see page 129 \\
4: Polygon & see page 130 \\
5: Regular Polygon & see page 131 \\
\hline
\end{tabular}

The F4 Construction toolbar menu contains Euclidean geometry construction tools as well as a Macro Construction tool for creating new tools.

\author{
Transformations Menu
}

Measurement Menu

Display Menu

File Menu

Note: Cut, copy, and paste are not available in the Geometry application.

The F5 Transformations toolbar menu contains tools for transformational geometry.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ F5 } & \\
\hline 1: Translation & see page 140 \\
2: Rotation & see page 142 \\
3: Dilation & see page 144 \\
4: Reflection & see page 146 \\
5: Symmetry & see page 147 \\
6:Inverse & see page 148 \\
\hline
\end{tabular}

The F6 Measurement toolbar menu contains tools for performing measurements and calculations.
\begin{tabular}{|l|l}
\hline F6 & \\
\hline 1:Distance \& Length & see page 149 \\
2:Area & see page 149 \\
3: Angle & see page 150 \\
4:Slope & see page 150 \\
5: Equation \& & see page 151 \\
Coordinates & \\
6:Calculate & see page 152 \\
7:Collect Data & see page 153 \\
B:Check Property & see page 154 \\
\hline
\end{tabular}

The F7 Display toolbar menu contains tools for annotating constructions or animating objects.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ F7 } & \\
\hline 1: Hide / Show & \\
2:Trace On / Off & see page 158 \\
3: Animation & see page 157 \\
4: Label & see page 156 \\
5: Comment & see page 161 \\
6: Numerical Edit & see page 162 \\
7: Mark Angle & see page 162 \\
8:Thick & see page 163 \\
9: Dotted & see page 158 \\
\hline
\end{tabular}

The F8 File toolbar menu contains file operations and editing functions.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multirow[b]{2}{*}{see page 116} \\
\hline 1:0pen. & \(\square 0\) & \\
\hline 2:Save as. & \(\square\) - & see page 116 \\
\hline 3:New. & \(\square \mathrm{N}\) & see page 116 \\
\hline 4:Cut & & see Note \\
\hline 5:Copy & & see Note \\
\hline 6: Paste & & see Note \\
\hline 7:Delete & \(\square\) & see page 121 \\
\hline 8:Clear All & & see page 121 \\
\hline 9:Format. & \(\bullet \mathrm{F}\) & see page 117 \\
\hline A: Show Page & & see page 159 \\
\hline B:Data View & & see page 160 \\
\hline C:Clear Data View & & see page 160 \\
\hline D:Undo & \(\bullet\) - & see page 115 \\
\hline
\end{tabular}

\section*{Pointing Indicators and Terms Used in Geometry}

This section describes the various pointing indicators that are used in the procedures, and a glossary of terms

\section*{Pointers That Guide You}

Several types of pointers exist to help guide you through your constructions. The pointers are shown and described below.
\begin{tabular}{|c|c|}
\hline Cursor Display/Name & Active when... \\
\hline k arrow & The pointer is on an object. \\
\hline + cross hair & A Pointer indicator is selected or the cursor is in motion. \\
\hline © construction pencil & A construction tool is active. \\
\hline (0) selection pencil & A construction tool is active and a point can be placed on an object. \\
\hline ล dragging hand & A selected object can be moved. \\
\hline (\({ }^{\text {m }}\)) open hand & 2nd and the cursor pad \((\bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc\), \(\bigcirc, \bigcirc, \bigcirc)\) are pressed at the same time to scroll the display anywhere within the plane. \\
\hline I. I-beam & Text or numbers can be entered or edited in a label or comment box. \\
\hline \(\pm\) crossed lines & The comment box is active. \\
\hline d paint brush & Thick or dotted lines are selected. \\
\hline
\end{tabular}

\section*{Glossary of Geometry Definitions}

The following terms are used in this chapter to describe specific TI-92 Geometry operations.
\begin{tabular}{ll}
\hline ENTER & \begin{tabular}{l}
Press any of the three ENTER keys on the TI-92 to \\
execute a command or to confirm an action.
\end{tabular} \\
drag & \begin{tabular}{l}
Drag means to point to the object that you want to \\
move, press and hold 图 (drag key) to select the \\
object, and then move the screen pointer to a new \\
location. Release 图 to stop dragging.
\end{tabular} \\
marquee & \begin{tabular}{l}
A marquee outline shows the outline of an object \\
using animated dots instead of a solid line.
\end{tabular} \\
outline & \begin{tabular}{l}
The page is a virtual working area of the plane. The \\
pane is 7.5 by 10.0 inches (19.05 by 25.4 centimeters).
\end{tabular} \\
point & \begin{tabular}{l}
When used as an instruction, point means to place \\
the screen pointer on the object you want to select.
\end{tabular} \\
select & \begin{tabular}{l}
When used as an instruction, select means pointing \\
to an object and pressing ENTER.
\end{tabular} \\
\hline
\end{tabular}

Use the suggestions in the following table to quickly access or perform specific geometry functions.
\begin{tabular}{|c|c|}
\hline Press 0 . & - To turn off the TI-92 without exiting Geometry. \\
\hline Press \(\quad \mathrm{Z}\). & - To undo the last completed operation. \\
\hline Press ESC. & - To return to the Pointer tool from anywhere. \\
\hline Select an object and press \(\square\) or \(\square\). & \begin{tabular}{l}
- To increase or decrease the displayed precision of selected numerical values. \\
- To increase or decrease the number of objects in a selected locus. \\
- To increase or decrease the animation speed.
\end{tabular} \\
\hline Press & \begin{tabular}{l}
- To limit the slope of lines, rays, segments, vectors, triangles, or polygons to increments of 15 degrees when creating these objects. \\
- To select multiple objects.
\end{tabular} \\
\hline Press 0 & - To display all basic points (those points which you can drag) as flashing points. The cursor must be in unoccupied space. \\
\hline Press \(\square\) twice. & - To begin animation of an object. The Animation tool must be selected and the cursor pointing to the object. \\
\hline Press ENTER once. & - To deselect selected objects. The pointer must be in unoccupied space. \\
\hline Press ENTER twice. & \begin{tabular}{l}
- On the final point of a polygon, to complete construction of the polygon. \\
- On a label, comment, or numerical value to invoke the appropriate editor.
\end{tabular} \\
\hline Press 1 and ENTER. & - To deselect all hidden or traced objects. The appropriate tool must be selected and the cursor must be in unoccupied space. \\
\hline Press and the cursor key & - To edit or change numerical values, comments, or labels. \\
\hline Begin typing immediately after: & \begin{tabular}{l}
- Creating a point, line, or circle to add a label to an object. The label is limited to five characters and can only be edited with the Label tool. \\
- Creating a measurement to add a comment to the measurement.
\end{tabular} \\
\hline
\end{tabular}

\section*{Data/Matrix Editor}

Preview of the Data/Matrix Editor. 172
Overview of List, Data, and Matrix Variables. 173
Starting a Data/Matrix Editor Session 175
Entering and Viewing Cell Values 177
Inserting and Deleting a Row, Column, or Cell 180
Defining a Column Header with an Expression 182
Using Shift and CumSum Functions in a Column Header 184
Sorting Columns 185
Saving a Copy of a List, Data, or Matrix Variable 186

The Data/Matrix Editor serves two main purposes.
- This chapter describes how to use the Data/Matrix Editor to create and maintain a list, matrix, or data variable.

- Chapter 9 describes how to use the Data/Matrix Editor to perform statistical calculations and graph statistical plots.

Use the Data/Matrix Editor to create a one-column list variable. Then add a second column of information. Notice that the list variable (which can have only one column) is automatically converted into a data variable (which can have multiple columns).

Tip: If you don't need to save the current variable, use it as a scratchpad. The next time you need a variable for temporary data, clear the current variable and re-use it. This lets you enter temporary data without creating a new variable each time, which uses up memory.

\section*{Overview of List, Data, and Matrix Variables}

\section*{List Variable}

Note: If you enter more than one column of elements in a list variable, it is converted automatically into a data variable.

Tip: After creating a list in the Data/Matrix Editor, you can use the list in any application (such as the Home screen).

\section*{Data Variable}

Note: For stat calculations, columns must have the same length.

To use the Data/Matrix Editor effectively, you must understand list, data, and matrix variables.

A list is a series of items (numbers, expressions, or character strings) that may or may not be related. Each item is called an element. In the Data/Matrix Editor, a list variable:
- Is shown as a single column of elements, each in a separate cell.
- Must be continuous; blank or empty cells are not allowed within the list.

- Can have up to 999 elements.

On the Home screen (or anywhere else you can use a list), you can enter a list as a series of elements enclosed in braces \{ \} and separated by commas.

Although you must use commas to separate elements on the entry line, spaces separate the elements in the history area.

To refer to a specified element in a list, use the format shown to the right.

A data variable is essentially a collection of lists that may or may not be related. In the Data/Matrix Editor, a data variable:
- Can have up to 99 columns.
- Can have up to 999 elements in each column. Depending on the kind of data, all columns may not have
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{bìtit} & & & & & \\
\hline & E1 & 0.2 & ES & 04 & 0.5 \\
\hline 1 & fred & Storie & 95 & 86 & 94 \\
\hline 2 & Sally & ross & 75 & 79 & 8.3 \\
\hline 3 & 1.ane & Smith & 97 & 96 & 97 \\
\hline 4 & nick & c.astle & 83 & 88 & 91 \\
\hline 5 & bet.t.ly & breant. & 90 & 9.3 & 10 \\
\hline 6 & terers & miller & 86 & 91 & 86 \\
\hline 7 & mike & reid & 69 & 75 & 78 \\
\hline
\end{tabular} to be the same length.
- Must have continuous columns; blank or empty cells are not allowed within a column.

\section*{Overview of List, Data, and Matrix Variables (Continued)}

\section*{Data Variable \\ (Continued)}

\section*{Matrix Variable}

Tip: After creating a matrix in the Data/Matrix Editor, you can use the matrix in any application (such as the Home screen).

Note: Use brackets to refer to a specific element in a matrix. For example, enter mat1[2,1] to access the 1st element in the 2nd row.

From the Home screen or a program, you can use the NewData command to create a data variable that consists of existing lists.

Although you cannot directly display a data variable on the Home screen, you can display a specified column or element.

For example:

A matrix is a rectangular array of elements. When you create a matrix in the Data/Matrix Editor, you must specify the number of rows and columns (although you can add or delete rows and columns later). In the Data/Matrix Editor, a matrix variable:
- Looks similar to a data variable, but all columns must have the same length.
- Is initially created with 0 in each cell. You can then enter the applicable value in place of 0 .

From the Home screen or a program, you can use STOD to store a matrix with either of the equivalent methods shown to the right.
row 1 - row 2

Although you enter the matrix as shown above, it is pretty printed in the history area in traditional matrix form.

\section*{Starting a Data/Matrix Editor Session}

\section*{Creating a New Data, Matrix, or List Variable}

Note: If you do not type a variable name, the TI-92 will display the Home screen.

Each time you start the Data/Matrix Editor, you can create a new variable, resume using the current variable (the variable that was displayed the last time you used the Data/Matrix Editor), or open an existing variable.
1. Press APPS and then select 6:Data/Matrix Editor.
2. Select 3:New.

3. Specify the applicable information for the new variable.

\begin{tabular}{|c|c|c|}
\hline Item & Lets you: & \\
\hline Type & Select the type of variable to create. Press \(\bigcirc\) to display a & \\
\hline
\end{tabular} menu of available types.

Folder \(\quad\) Select the folder in which the new variable will be stored. Press \(\bigcirc\) to display a menu of existing folders. For information about folders, refer to Chapter 10.

Variable
Type a new variable name.
If you specify a variable that already exists, an error message will be displayed when you press ENTER. When you press ESC or ENTER to acknowledge the error, the NEW dialog box is redisplayed.

Row dimension If Type = Matrix, and Col dimension type the number of rows and columns in the matrix.

4. Press ENTER (after typing in an input box such as Variable, press ENTER twice) to create and display an empty variable in the Data/Matrix Editor.

\section*{Starting a Data/Matrix Editor Session (Continued)}

\author{
Using the Current Variable
}

\author{
Creating a New \\ Variable from the \\ Data/Matrix Editor
}

\section*{Opening Another Variable}

Note: Variable shows the first existing variable in alphabetic order. If there are no existing variables, nothing is displayed.

Note about Deleting a Variable

You can leave the Data/Matrix Editor and go to another application at any time. To return to the variable that was displayed when you left the Data/Matrix Editor, press APPS 6 and select 1:Current.

From the Data/Matrix Editor:
1. Press F1 and select 3:New. (You can press \(\square \mathrm{N}\) instead of using the F1 toolbar menu.)
2. Specify the type, folder, and variable name. For a matrix, also specify the number of
 rows and columns.

You can open another variable at any time.
1. From the Data/Matrix Editor, press F1 and select 1:Open. (You can press - O instead of using the \(F 1\) toolbar menu.) - or -

From any application, press APPS 6 and select 2:Open.
2. Select the type, folder, and variable to open.
3. Press ENTER.

Because all Data/Matrix Editor variables are saved automatically, you can accumulate quite a few variables, which take up memory.

To delete a variable, use the VAR-LINK screen (2nd [VAR-LINK]). For information about VAR-LINK, refer to Chapter 18.

\section*{Entering and Viewing Cell Values}

If you create a new variable, the Data/Matrix Editor is initially blank (for a list or data variable) or filled with zeros (for a matrix). If you open an existing variable, the values in that variable are displayed. You can then enter additional values or edit the existing ones.

\section*{The Data/Matrix Editor Screen}

Tip: Use the title cell at the very top of each column to identify the information in that column.

\section*{Entering or Editing a Value in a Cell}

Tip: To enter a new value, you can start typing without pressing ENTER or F3 first. However, you must use ENTER or F3 to edit an existing value.

Note: To enter a value from the entry line, you can also use \(\bigcirc\) or \(\bigcirc\).

A blank Data/Matrix Editor screen is shown below. When the screen is displayed initially, the cursor highlights the cell at row 1 , column1.

When values are entered, the entry line shows the full value of the highlighted cell.

You can enter any type of expression in a cell (number, variable, function, string, etc.).
1. Move the cursor to highlight the cell you want to enter or edit.
2. Press ENTER or F3 to move the cursor to the entry line.
3. Type a new value or edit the existing one.
4. Press ENTER to enter the value into the highlighted cell.

When you press ENTER, the cursor automatically moves to highlight the next cell so that you can continue entering or editing values. However, the variable type affects the direction that the cursor moves.
\begin{tabular}{ll}
\hline Variable Type & After ENTER, the cursor moves: \\
\hline List or data & Down to the cell in the next row. \\
Matrix & \begin{tabular}{l}
Right to the cell in the next column. From the last \\
cell in a row, the cursor automatically moves to \\
the first cell in the next row. This lets you enter \\
values for row1, row2, etc.
\end{tabular}
\end{tabular}

\section*{Entering and Viewing Cell Values (Continued)}

\author{
Scrolling through the Editor
}

\section*{How Rows and Columns Are Filled Automatically}

Note: If you enter more than one column of elements in a list variable, it is converted automatically into a data variable.

Note: Although you specify the size of a matrix when you create it, you can easily add additional rows and/or columns.

\section*{To move the cursor: Press:}

One cell at a time \(\bigcirc, \bigcirc, \bigcirc\), or \(\odot\)
One page at a time \(\quad\) 2nd and then \(\odot, \bigcirc, \bigcirc\), or \(\odot\)

When you scroll down/up, the header row remains at the top of the screen so that the column numbers are always visible. When you scroll right/left, the row numbers remain on the left side of the screen so that they are always visible.

When you enter a value in a cell, the cursor moves to the next cell. However, you can move the cursor to any cell and enter a value. If you leave gaps between cells, the TI- 92 handles the gaps automatically.
- In a list variable, a cell in the gap is undefined until you enter a value for the cell.

- In a data variable, gaps in a column are handled the same as a list. However, if you leave a gap between columns, that column is blank.

- In a matrix variable, when you enter a value in a cell outside the current boundaries, additional rows and/or columns are added automatically to the matrix to include the new cell. Other cells in the new rows and/or columns are filled with zeros.

\section*{Changing the Cell Width}

Tip: Remember, to see a number in full precision, you can always highlight the cell and look at the entry line.

\section*{Clearing a Column or all Columns}

Note: For a list or data variable, a clear column is empty. For a matrix, a clear column contains zeros.

The cell width affects how many characters are displayed in any cell. To change the cell width in the Data/Matrix Editor:
1. Press F or F1 9 to display the FORMATS dialog box.
\begin{tabular}{ll}
Fabinis & \begin{tabular}{l}
Cell width is the maximum \\
number of characters that can \\
be displayed in a cell.
\end{tabular} \\
All cells have the same cell \\
width.
\end{tabular}
2. With the current Cell Width setting highlighted, press \(\bigcirc\) or \(\odot\) to display a menu of digits (3 through 12).
3. Move the cursor to highlight a number and press ENTER. (For single-digit numbers, you can type the number and press ENTER.)
4. Press ENTER to close the dialog box.

This procedure erases the contents of a column. It does not delete the column.
\begin{tabular}{ll}
\hline To clear: & Do this: \\
\hline A column & \begin{tabular}{l}
1. Move the cursor to any cell in the column. \\
\\
\\
2. Press F6 and select 5:Clear Column. (This item \\
is not available for a matrix.)
\end{tabular} \\
All columns & \begin{tabular}{l}
Press F1 and select 8:Clear Editor. When prompted \\
for confirmation, press ENTER (or ESC to cancel).
\end{tabular} \\
&
\end{tabular}

\title{
Inserting and Deleting a Row, Column, or Cell
}

Note About Column Titles and Headers

\section*{Inserting a Row or Column}

Note: For a list variable, inserting a row is the same as inserting a cell.

Note: For a list variable, you cannot insert a column because a list has only one column.

The general procedures for inserting and deleting a cell, row, or column are simple and straightforward. You can have up to 99 columns with up to 999 elements in each column.

You cannot delete the rows or cells that contain column titles or headers. Also, you cannot insert a row or cell before a column title or header.

The new row or column is inserted before the row or column that contains the highlighted cell. In the Data/Matrix Editor:
1. Move the cursor to any cell in the applicable row or column.
2. Press F6 and select 1:Insert.
3. Select either 2:row or 3:column.

When you insert a row:
- In a list or data variable, the row is undefined.
- In a matrix variable, the row is filled with zeros.

When you insert a column:
- In a data variable, the column is blank.
- In a matrix variable, the column is filled
 with zeros.

You can then enter values in the undefined or blank cells.

\section*{Inserting a Cell}

Note: For a matrix variable, you cannot insert a cell because the matrix must retain a rectangular shape.

The new cell is inserted before the highlighted cell in the same column. (You cannot insert a cell into a locked column, which is defined by a function in the column header. Refer to page 182.) In the Data/Matrix Editor:
1. Move the cursor to the applicable cell.
2. Press F6 and select 1:Insert.
3. Select 1 :cell.

The inserted cell is undefined. You can then enter a value in the cell.

In the Data/Matrix Editor:
1. Move the cursor to any cell in the row or column you want to delete.
2. Press F6 and select 2:Delete.
3. Select either 2:row or 3:column.

If you delete a row, any rows below the deleted row are shifted up. If you delete a column, any columns to the right of the deleted column are shifted left.

In the Data/Matrix Editor:
1. Move the cursor to the cell you want to delete. (You cannot delete a cell in a locked column, which is defined by a function in the column header. Refer to page 182.)
2. Press F6 and select 2:Delete.
3. Select 1 :cell.

Any cells below the deleted cell are shifted up.

You do not need to use the F6 Util toolbar menu to:
- Add a new row or cell at the bottom of a column.
—or -
- Add a new column to the right of the last column.

Simply move the cursor to the applicable cell and enter a value.

\section*{Defining a Column Header with an Expression}

\section*{Entering a Header Definition}

Tip: To view an existing definition, press [F4 or move the cursor to the header cell and look at the entry line.

Tip: To cancel any changes, press ESC before pressing ENTER.

Note: The seq function is described in Appendix A.

Note: If you refer to an empty column, you will get an error message (unless Auto-calculate \(=\) OFF as described on page 183).

Note: For a data variable, header definitions are saved when you leave the Data/ Matrix Editor. For a list variable, the definitions are not saved (only their resulting cell values).

For a list variable or a column in a data variable, you can enter a function in the column header that automatically generates a list of elements. In a data variable, you can also define one column in terms of another.

In the Data/Matrix Editor:
1. Move the cursor to any cell in the column and press (F4).
- or -

Move the cursor to the header cell (c1, c2, etc.) and press ENTER.
Note: ENTER is not required if you want to type a new definition or replace the existing one. However, if you want to edit the existing definition, you must press ENTER.
2. Type the new expression, which replaces any existing definition.

If you used F4] or EENTER in Step 1, the cursor moved to the entry line and highlighted the existing definition, if any. You can also:
- Press CLEAR to clear the highlighted expression. Then type the new expression.
- or -
- Press \(\odot\) or \(\bigcirc\) to remove the highlighting. Then edit the old expression.
\begin{tabular}{ll}
\hline You can use an expression that: & For example: \\
\hline Generates a series of numbers. & \(\mathrm{c} 1=\operatorname{seq}\left(x^{\wedge} 2, x, 1,5\right)\) \\
& \(c 1=\{1,2,3,4,5\}\) \\
Refers to another column. & \(c 2=2 * c 1\) \\
& \(c 4=c 1 * c 2-\sin (c 3)\)
\end{tabular}
3. Press ENTER, \(\bigcirc\), or \(\bigcirc\) to save the definition and update the columns.

You cannot directly change a locked cell (\(\mathbf{b}\)) since it is defined by the column header.

1. Move the cursor to any cell in the column and press F4].
- or -

Move the cursor to the header cell (c1, c2, etc.) and press ENTER.
2. Press CLEAR to clear the highlighted expression.
3. Press ENTER, \(\bigcirc\), or \(\bigcirc\).

\section*{Using an Existing List as a Column}

Note: If you have a CBL 2/CBL or CBR, use these techniques for your collected lists.

Tip: Use 2nd [VAR-LINK] to see existing list variables.

\section*{To Fill a Matrix with a List}

The Auto-calculate Feature

Tip: You may want to set Auto-calculate \(=\) OFF to:
- Make multiple changes without recalculating each time.
- Enter a definition such as c1=c2+c3 before you enter columns 2 and 3.
- Override any errors in a definition until you can debug the error.

Suppose you have one or more existing lists, and you want to use those existing lists as columns in a data variable.
\begin{tabular}{|c|c|}
\hline From the: & Do this: \\
\hline Data/Matrix Editor & In the applicable column, use F4 to define the column header. Refer to the existing list variable. For example:
\[
\mathrm{c} 1=\text { list } 1
\] \\
\hline Home screen or a program & \begin{tabular}{l}
Use the NewData command as described in Appendix A. For example: \\
NewData datavar, list1 [, list2] [, list3] ...
\end{tabular} \\
\hline
\end{tabular}

You cannot use the Data/Matrix Editor to fill a matrix with a list. However, you can use the list>mat command from the Home screen or a program. For information, refer to Appendix A.

For list and data variables, the Data/Matrix Editor has an Auto-calculate feature. By default, Auto-calculate = ON. Therefore, if you make a change that affects a header definition (or any column referenced in a header definition), all header definitions are recalculated automatically. For example:
- If you change a header definition, the new definition is applied automatically.
- If column 2's header is defined as \(\mathrm{c} 2=2 * \mathrm{c} 1\), any change you make in column 1 is automatically reflected in column 2 .

To turn Auto-calculate off and on from the Data/Matrix Editor:
1. Press - or 9 .
2. Change Auto-Calculate to OFF or ON.
3. Press ENTER to close the
 dialog box.

If Auto-calculate \(=\) OFF and you make changes as described above, the header definitions are not recalculated until you set Auto-calculate \(=\) ON.

\section*{Using Shift and CumSum Functions in a Column Header}

\section*{Using the Shift Function}

When defining a column header, you can use the shift and cumSum functions as described below. These descriptions differ slightly from Appendix A. This section describes how to use the functions in the Data/Matrix Editor. Appendix A gives a more general description for the Home screen or a program.

The shift function copies a base column and shifts it up or down by a specified number of elements. Use F4 to define a column header with the syntax:
```

shift (column [,integer])
__Number of elements to shift (positive shifts up;
negative shifts down). Default is -1.
Column used as the base for the shift.

```

For example, for a two-element shift up and down:

The cumSum function returns a cumulative sum of the elements in a base column. Use F4 to define a column header with the syntax:
cumSum (column)
L Column used as the base for the cumulative sum
For example:

\section*{Sorting Columns}

\section*{Sorting a Single Column}

Sorting All Columns Based on a "Key" Column

Note: For a list variable, this is the same as sorting a single column.

Note: This menu item is not available if any column is locked.

In the Data/Matrix Editor:
1. Move the cursor to any cell in the column.

LFi

2. Press F6 and select 3:Sort Column.

Numbers are sorted in ascending order.

Character strings are sorted in alphabetical order.
After entering information in a data, list, or matrix variable, you can easily sort a specified column in numeric or alphabetical order. You can also sort all columns as a whole, based on a "key" column.

Consider a database structure in which each column along the same row contains related information (such as a student's first name, last name, and test scores). In such a case, sorting only a single column would destroy the relationship between the columns.

In the Data/Matrix Editor:
1. Move the cursor to any cell in the "key" column.

In this example, move the cursor to the second column (c2) to sort by last name.
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline G1 & 62 & \(\underline{C}\) & 0.4 & 5.5 \\
\hline fred & 3torue & 95 & 86 & 94 \\
\hline Eslly & ross & 75 & 79 & 8.3 \\
\hline . .an¢ & smith & 97 & 96 & 97 \\
\hline nick & cestle & 83 & 88 & 91 \\
\hline bet.t.ly & breant. & 95 & 93 & 1 Bl \\
\hline tererral & miller & 86 & 91 & 86 \\
\hline mike & reid & 69 & 75 & 78 \\
\hline
\end{tabular}
2. Press F6 and select 4:Sort Col, adjust all.
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline C1 & E.2 & \(\underline{0}\) & 0.4 & 0.5 \\
\hline Eetttu & brarit. & 95 & 93 & 1 10] \\
\hline nick & Castle & 83 & 88 & 91 \\
\hline terrob & miller* & 86 & 91 & 86 \\
\hline mike & reid & 69 & 75 & 78 \\
\hline Eally & rose & 75 & 79 & 83 \\
\hline j , ตre & smith & 97 & 96 & 97 \\
\hline fred & stiorle & 95 & 86 & 94 \\
\hline
\end{tabular}

When using this procedure for a data variable:
- All columns must have the same length.
- None of the columns can be locked (defined by a function in the column header). When the cursor is in a locked column, \(\boldsymbol{\square}\) is shown at the beginning of the entry line.

\section*{Saving a Copy of a List, Data, or Matrix Variable}

\section*{Valid Copy Types}

Note: A list is automatically converted to a data variable if you enter more than one column of information.

\section*{Procedure}

Tip: You can press \(\quad\) S instead of using the F1 toolbar menu.

Note: If you type the name of an existing variable, its contents will be replaced.
\begin{tabular}{ll}
\hline You can copy a: & To a: \\
\hline List & List or data \\
Data & Data \\
Data column & List \\
Matrix & Matrix \\
\hline
\end{tabular}

\section*{From the Data/Matrix Editor:}
1. Display the variable that you want to copy.
2. Press F1 and select 2:Save Copy As.
3. In the dialog box:
- Select the Type and Folder for the copy.
- Type a variable name for the copy.
- When available, select the column to copy from.

4. Press ENTER (after typing in an input box such as Variable, you must press ENTER twice).

A data variable can have multiple columns, but a list variable can have only one column. Therefore, when copying from a data variable to a list, you must select the column that you want to copy.

\section*{Statistics and Data Plots}

Preview of Statistics and Data Plots 188
Overview of Steps in Statistical Analysis 192
Performing a Statistical Calculation 193
Statistical Calculation Types 195
Statistical Variables 197
Defining a Statistical Plot 198
Statistical Plot Types 200
Using the Y= Editor with Stat Plots. 202
Graphing and Tracing a Defined Stat Plot 203
Using Frequencies and Categories 204
If You Have a CBL 2/CBL or CBR 206

The Data/Matrix Editor serves two main purposes.
- As described previously in Chapter 8, the Data/Matrix Editor lets you create and maintain a list, matrix, or data variable.
- This chapter describes how to use the Data/Matrix Editor to perform statistical calculations and graph statistical plots.

Based on a sample of seven cities, enter data that relates population to the number of buildings with more than 12 stories. Using Median-Median and linear regression calculations, find and plot equations to fit the data. For each regression equation, predict how many buildings of more than 12 stories you would expect in a city of 300,000 people.

Steps
Display the \(Y=\) Editor. For \(y 1(x)\), the MedMed regression equation, set the display style to Dot.

Note: Depending on the previous contents of your \(Y=\) Editor, you may need to move the cursor to \(y 1\).
PLOTS 1 at the top of the screen means that Plot 1 is selected.
Notice that \(y 1(x)\) and \(y 2(x)\) were selected when the regression equations were stored.
16. Scroll up to highlight Plot 1.

The displayed shorthand definition is the same as on the Plot Setup screen.
17. Use ZoomData to graph Plot 1 and the regression equations \(\mathrm{y} 1(\mathrm{x})\) and \(\mathrm{y} 2(\mathrm{x})\).
ZoomData examines the data for all selected stat plots and adjusts the viewing window to include all points.
18. Return to the current session of the Data/Matrix Editor.
19. Enter a title for column 3. Define column 3's header as the values predicted by the MedMed line.

To enter a title, the cursor must highlight the title cell at the very top of the column.
F4 lets you define a header from anywhere in a column. When the cursor is on a header cell, pressing F4 is not required.
20. Enter a title for column 4. Define column 4's header as the residuals (difference between observed and predicted values) for MedMed.

RESIDENTER
(F4) C 2■C 3 ENTER

\(\bigcirc(1)\)
L I N ENTER
F4 Y 2 TC 1 ENTER
\begin{tabular}{|c|c|c|}
\hline Steps & Keystrokes & Display \\
\hline 22. Enter a title for column 6. Define column 6's header as the residuals for LinReg. & \begin{tabular}{l}
© (\\
RESIDEENTER \\
F4C 2-C5 \\
ENTER
\end{tabular} & \\
\hline 23. Display the Plot Setup screen and deselect Plot 1. & (F2) F4 & \\
\hline \begin{tabular}{l}
24. Highlight Plot 2 and define it as: \\
Plot Type = Scatter \\
Mark = Box \\
\(\mathrm{x}=\mathrm{C} 1\) \\
\(y=C 4\) (MedMed residuals)
\end{tabular} & ```
(F1
\odot
`
C1 ©
C4 ENTER ENTER
``` &  \\
\hline \begin{tabular}{l}
25. Highlight Plot 3 and define it as: \\
Plot Type = Scatter \\
Mark = Plus \\
\(\mathrm{x}=\mathrm{C} 1\) \\
\(y=\) C6 (LinReg residuals)
\end{tabular} & \begin{tabular}{l}
\(\bigcirc\) © \\
\(\bigcirc\) \\
\(\bigcirc 3 \bigcirc\) \\
\(\mathrm{C} 1 \bigcirc\) \\
C 6 ENTER ENTER
\end{tabular} &  \\
\hline \begin{tabular}{l}
26. Display the \(Y=\) Editor and turn all the \(y(x)\) functions off. \\
From [55, select 3:Functions Off, not 1:All Off. \\
Plots 2 and 3 are still selected.
\end{tabular} & \begin{tabular}{l}
- \([\mathrm{Y}=]\) \\
(F5)
\end{tabular} &  \\
\hline \begin{tabular}{l}
27. Use ZoomData to graph the residuals. \\
\(\square\) marks the MedMed residuals; \\
+ marks the LinReg residuals.
\end{tabular} & [ 2 299 &  \\
\hline 28. Display the Home screen. & -[HOME] & \\
\hline \begin{tabular}{l}
29. Use the MedMed ( \(\mathrm{y} 1(\mathrm{x})\) ) and LinReg ( \(\mathrm{y} 2(\mathrm{x})\) ) regression equations to calculate values for \(x=300(300,000\) population). \\
The round function ([2nd [MATH] 13)ensures that results show an integer number of buildings.
\end{tabular} & \begin{tabular}{l}
2nd [MATH] 13 \\
Y 1 T 300 D \\
0 OENTER \\
© \\
\(\odot \odot \odot \odot \odot \odot\) \\
\(\bigcirc \bigcirc \backsim 2\) ENTER
\end{tabular} &  \\
\hline After calculating the first result, edit the entry line to change y1 to \(y 2\). & & \\
\hline
\end{tabular}

\section*{Overview of Steps in Statistical Analysis}

This section gives an overview of the steps used to perform a statistical calculation or graph a statistical plot. For detailed descriptions, refer to the following pages.

\section*{Calculating and Plotting Stat Data}

Note: Refer to Chapter 8 for details on entering data in the Data/Matrix Editor.

Tip: You can also use the \(Y=\) Editor to define and select stat plots and \(y(x)\) functions.

Tip: Use ZoomData to optimize the viewing window for stat plots. F2 Zoom is available on the \(Y=\) Editor, Window Editor, and Graph screen.



\section*{Exploring the Graphed Plots}

From the Graph screen, you can:
- Display the coordinates of any pixel by using the free-moving cursor, or of a plotted point by tracing a plot.
- Use the F2 Zoom toolbar menu to zoom in or out on a portion of the graph.
- Use the F5 Math toolbar menu to analyze any function (but not plots) that may be graphed.

\section*{Performing a Statistical Calculation}

From the Data/Matrix Editor, use the F5 Calc toolbar menu to perform statistical calculations. You can analyze one-variable or two-variable statistics, or perform several types of regression analyses.

\section*{The Calculate Dialog Box}

Note: If an item is not valid for the current settings, it will appear dimmed. You cannot move the cursor to a dimmed item.

Tip: To use an existing list variable for \(x, y\), Freq, or Category, type the list name instead of a column number.

You must have a data variable opened. The Data/Matrix Editor will not perform statistical calculations with a list or matrix variable.

From the Data/Matrix Editor:
1. Press F5 to display the Calculate dialog box.

This example shows all items as active. On your calculator, items are active only if they are valid for the current settings of Calculation

Pathname of the data variable
 Type and Use Freq and Categories?
2. Specify applicable settings for the active items.
\begin{tabular}{ll}
\hline Item & Description \\
\hline Calculation Type & \begin{tabular}{l} 
Select the type of calculation. For descriptions, \\
refer to page 195.
\end{tabular} \\
x & \begin{tabular}{l} 
Type the column number in the Data/Matrix \\
Editor (C1, C2, etc.) used for x values, the \\
independent variable.
\end{tabular} \\
y & \begin{tabular}{l} 
Type the column number used for y values, the \\
dependent variable. This is required for all \\
Calculation Types except OneVar.
\end{tabular} \\
Store RegEQ to & \begin{tabular}{l} 
If Calculation Type is a regression analysis, you \\
can select a function name (y1 \((\mathrm{x})\), y2(x), etc.).
\end{tabular} \\
& \begin{tabular}{l} 
This lets you store the regression equation so \\
that it will be displayed in the Y= Editor.
\end{tabular} \\
Use Freq and & \begin{tabular}{l} 
Select NO or YES. Note that Freq, Category, and \\
Categories? \\
Include Categories are active only when
\end{tabular} \\
Use Freq and Categories? = YES.
\end{tabular}

\section*{Performing a Statistical Calculation (Continued)}

\author{
The Calculate Dialog Box \\ (Continued)
}

Note: For an example of using Freq, Category, and Include Categories, refer to page 204.

Note: Any undefined data points (shown as undef) are ignored in a stat calculation.
\begin{tabular}{ll}
\hline Item & Description \\
\hline Freq & \begin{tabular}{l} 
Type the column number that contains a \\
"weight" value for each data point. If you do \\
not enter a column number, all data points are \\
assumed to have the same weight (1).
\end{tabular} \\
Category & \begin{tabular}{l} 
Type the column number that contains a \\
category value for each data point.
\end{tabular} \\
Include & \begin{tabular}{l} 
If you specify a Category column, you can use \\
this item to limit the calculation to specified \\
category values. For example, if you specify \\
\(\{1,4\}\), the calculation uses only data points with \\
a category value of 1 or 4.
\end{tabular} \\
&
\end{tabular}
3. Press ENTER (after typing in an input box, press ENTER twice).

The results are displayed on the STAT VARS screen. The format depends on the Calculation Type. For example:

4. To close the STAT VARS screen, press ENTER.

The Data/Matrix Editor's F7 Stat toolbar menu redisplays the previous calculation results (until they are cleared from memory).

Previous results are cleared when you:
- Edit the data points or change the Calculation Type.
- Open another data variable or reopen the same data variable (if the calculation referred to a column in a data variable). Results are also cleared if you leave and then reopen the Data/Matrix Editor with a data variable.
- Change the current folder (if the calculation referred to a list variable in the previous folder).

\section*{Statistical Calculation Types}

As described in the previous section, the Calculate dialog box lets you specify the statistical calculation you want to perform. This section gives more information about the calculation types.

\section*{Selecting the Calculation Type}

Note: For Two Var and all regression calculations, the columns that you specify for \(x\) and \(y\) (and optionally, Freq or Category) must have the same length.

From the Calculate dialog box ([F5 ), highlight the current setting for the Calculation Type and press \(\bigcirc\).

You can then select from a menu of available types.

\begin{tabular}{|c|c|}
\hline Calc Type & Description \\
\hline OneVar & One-variable statistics - Calculates the statistical variables described on page 197. \\
\hline TwoVar & Two-variable statistics - Calculates the statistical variables described on page 197. \\
\hline CubicReg & \begin{tabular}{l}
Cubic regression - Fits the data to the third-order polynomial \(y=a x^{3}+b x^{2}+c x+d\). You must have at least four data points. \\
- For four points, the equation is a polynomial fit. \\
- For five or more points, it is a polynomial regression.
\end{tabular} \\
\hline ExpReg & Exponential regression - Fits the data to the model equation \(\mathrm{y}=\mathrm{ab} \times\) (where a is the y -intercept) using a leastsquares fit and transformed values \(x\) and \(\ln (y)\). \\
\hline LinReg & Linear regression - Fits the data to the model \(y=a x+b\) (where \(a\) is the slope, and \(b\) is the \(y\)-intercept) using \(a\) least-squares fit and \(x\) and \(y\). \\
\hline LnReg & Logarithmic regression - Fits the data to the model equation \(y=a+b \ln (x)\) using a least-squares fit and transformed values \(\ln (x)\) and \(y\). \\
\hline
\end{tabular}

\section*{Statistical Calculation Types (Continued)}

\section*{Selecting the}

Calculation Type (Continued)

Calc Type Description
MedMed Median-Median - Fits the data to the model \(y=a x+b\) (where \(a\) is the slope, and \(b\) is the \(y\)-intercept) using the median-median line, which is part of the resistant line technique.

Summary points medx1, medy1, medx2, medy2, medx3, and medy 3 are calculated and stored to variables, but they are not displayed on the STAT VARS screen.

PowerReg Power regression - Fits the data to the model equation \(y=a x^{b}\) using a least-squares fit and transformed values \(\ln (x)\) and \(\ln (y)\).

QuadReg Quadratic regression - Fits the data to the secondorder polynomial \(y=a x^{2}+b x+c\). You must have at least three data points.
- For three points, the equation is a polynomial fit.
- For four or more points, it is a polynomial regression.

QuartReg Quartic regression - Fits the data to the fourth-order polynomial \(y=a x^{4}+b x^{3}+c x^{2}+d x+e\). You must have at least five data points.
- For five points, the equation is a polynomial fit.
- For six or more points, it is a polynomial regression.

Use the applicable command for the calculation that you want to perform. The commands have the same name as the corresponding Calculation Type. Refer to Appendix A for information about each command.

Important: These commands perform a stat calculation but do not automatically display the results. Use the ShowStat command to show the calculation results.

\section*{Statistical Variables}

Statistical calculation results are stored to variables. To access these variables, type the variable name or use the VAR-LINK screen as described in Chapter 18. All statistical variables are cleared when you edit the data or change the calculation type. Other conditions that clear the variables are listed on page 194.

\section*{Calculated Variables}

Tip: From the keyboard, press 2nd G \(\dagger\) S for \(\Sigma\) and 2nd G S for \(\sigma\).

Tip: To type a power (such as 2 in \(\Sigma x^{2}\) ), \(\bar{x}\), or \(\bar{y}\), press 2nd [CHAR] and select it from the Math menu.

Note: 1st quartile is the median of points between minX and medStat, and 3rd quartile is the median of points between medStat and maxX.

Tip: If regeq is \(4 x+7\), then regCoef is \(\{47\}\). To access the "a" coefficient (the 1st element in the list), use an index such as regCoef[1].

Stat variables are stored as system variables. However, regCoef and regeq are treated as a list and a function variable, respectively.
\begin{tabular}{|c|c|c|c|}
\hline & One Var & Two Var & Regressions \\
\hline mean of \(x\) values & \(\overline{\mathrm{x}}\) & \(\overline{\mathrm{x}}\) & \\
\hline sum of \(x\) values & \(\Sigma x\) & \(\Sigma x\) & \\
\hline sum of \(x^{2}\) values & \(\Sigma x^{2}\) & \(\Sigma x^{2}\) & \\
\hline sample std. deviation of \(x\) & Sx & Sx & \\
\hline population std. deviation of \(x \dagger\) & \(\sigma \mathrm{x}\) & \(\sigma X\) & \\
\hline number of data points & nStat & nStat & \\
\hline mean of y values & & \(\overline{\mathrm{y}}\) & \\
\hline sum of y values & & \(\Sigma y\) & \\
\hline sum of \(y^{2}\) values & & \(\Sigma y^{2}\) & \\
\hline sample standard deviation of \(y\) & & Sy & \\
\hline population std. deviation of y \(\dagger\) & & \(\sigma y\) & \\
\hline sum of \(x * y\) values & & Exy & \\
\hline minimum of \(x\) values & \(\min X\) & \(\min X\) & \\
\hline maximum of \(x\) values & \(\max X\) & \(\operatorname{maxX}\) & \\
\hline minimum of y values & & \(\min Y\) & \\
\hline maximum of y values & & \(\operatorname{maxY}\) & \\
\hline 1st quartile & q1 & & \\
\hline median & medStat & & \\
\hline 3rd quartile & q3 & & \\
\hline regression equation & & & regeq \\
\hline regression coefficients (a, b, c, d, e) & & & regCoef \\
\hline correlation coefficient \(\dagger \dagger\) & & & corr \\
\hline coefficient of determination \(\dagger \dagger\) & & & \(\mathrm{R}^{2}\) \\
\hline summary points (MedMed only) \(\dagger\) & & & medx1, medy1, medx2, medy2, medx3, medy3 \\
\hline
\end{tabular}
\(\dagger\) The indicated variables are calculated but are not shown on the STAT VARS screen.
\(\dagger \dagger\) corr is defined for a linear regression only; \(R^{2}\) is defined for all polynomial regressions.

\section*{Defining a Statistical Plot}

\section*{Procedure}

Note: This dialog box is similar to the Calculate dialog box.

Note: If an item is not valid for the current settings, it will appear dimmed. You cannot move the cursor to a dimmed item.

Note: Plots defined with column numbers always use the last data variable in the Data/Matrix Editor, even if that variable was not used to create the definition.

Tip: To use an existing list variable for \(x, y\), Freq, or Category, type the list name instead of the column number.

From the Data/Matrix Editor, you can use the entered data to define several types of statistical plots. You can define up to nine plots at a time.

From the Data/Matrix Editor:
1. Press F2 to display the Plot Setup screen.

Initially, none of the plots are defined.
2. Move the cursor to highlight the plot
 number that you want to define.
3. Press F1 to define the plot.
This example shows all items as active. On your calculator, items are active only if they are valid for the current setting of Plot Type and Use Freq and Categories?
4. Specify applicable settings for the active items.
\begin{tabular}{ll}
\hline Item & Description \\
\hline Plot Type & \begin{tabular}{l} 
Select the type of plot. For descriptions, refer to \\
page 200.
\end{tabular} \\
Mark & \begin{tabular}{l} 
Select the symbol used to plot the data points: \\
Box ( \(\square)\), Cross (x), Plus (+), Square (■), or Dot \((\cdot)\).
\end{tabular} \\
\(x\) & \begin{tabular}{l} 
Type the column number in the Data/Matrix \\
Editor (C1, C2, etc.) used for x values, the \\
independent variable.
\end{tabular} \\
\(y\) & \begin{tabular}{l} 
Type the column number used for y values, the \\
dependent variable. This is active only for
\end{tabular} \\
Hist. Bucket & \begin{tabular}{l} 
Plot Type = Scatter or xyline. \\
Sidth
\end{tabular} \\
Specifies the width of each bar in a histogram. \\
Use Freq and & \begin{tabular}{l} 
Select NO or YES. Note that Freq, Category, and \\
Categories? \\
Include Categories are active only when \\
Use Freq and Categories? = YES. (Freq is active \\
only for Plot Type = Box Plot or Histogram.)
\end{tabular} \\
\hline
\end{tabular}

Note: For an example of using Freq, Category, and Include Categories, refer to page 204.

Note: Any undefined data points (shown as undef) are ignored in a stat plot.

\section*{Selecting or Deselecting a Plot}

\section*{Copying a Plot Definition}

Note: If the original plot was selected \((\checkmark)\), the copy is also selected.
\begin{tabular}{ll}
\hline Item & Description \\
\hline Freq & \begin{tabular}{l} 
Type the column number that contains a "weight" \\
value for each data point. If you do not enter a \\
column number, all data points are assumed to \\
have the same weight (1).
\end{tabular} \\
Category & \begin{tabular}{l} 
Type the column number that contains a category \\
value for each data point.
\end{tabular} \\
Include & \begin{tabular}{l} 
If you specify a Category, you can use this to limit \\
the calculation to specified category values. For \\
example, if you specify \(\{1,4\}\), the plot uses only \\
data points with a category value of 1 or 4.
\end{tabular}
\end{tabular}
5. Press ENTER (after typing in an input box, press ENTER twice).

The Plot Setup screen is redisplayed.

The plot you just defined is automatically selected for graphing.

Notice the shorthand definition for the plot.


From Plot Setup, highlight the plot and press F4 to toggle it on or off. If a stat plot is selected, it remains selected when you:
- Change the graph mode. (Stat plots are not graphed in 3D mode.)
- Execute a Graph command.
- Open a different variable in the Data/Matrix Editor.

\section*{From Plot Setup:}
1. Highlight the plot and press F2.
2. Press \(\bigcirc\) and select the plot number that you want to copy to.
3. Press ENTER.


From Plot Setup, highlight the plot and press [F3. To redefine an existing plot, you do not necessarily need to clear it first; you can make changes to the existing definition. To prevent a plot from graphing, you can deselect it.

\section*{Statistical Plot Types}

When you define a plot as described in the previous section, the Plot Setup screen lets you select the plot type. This section gives more information about the available plot types.

\section*{Scatter}

This is a scatter plot in which data points are plotted and connected in the order in which they appear in \(x\) and \(y\).

You may want to sort all the
 columns (F6 3 or F6 4 in the Data/Matrix Editor) before plotting.

This plots one-variable data with respect to the minimum and maximum data points ( \(\min X\) and \(\max X\) ) in the set.
- A box is defined by its first quartile (Q1), median (Med), and third quartile (Q3).
- Whiskers extend from \(\operatorname{minX}\) to Q1 and from Q3 to maxX.

- When you select multiple box plots, they are plotted one above the other in the same order as their plot numbers.

\section*{Histogram}

This plots one-variable data as a histogram. The x axis is divided into equal widths called buckets or bars. The height of each bar (its y value) indicates how many data points fall within the bar's range.
- When defining the plot, you can specify the Hist. Bucket Width (default is 1 ) to set the width of each bar.
- A data point at the edge of a bar is counted in the bar to the right.
- ZoomData (F2 9 from the Graph screen, \(\mathrm{Y}=\) Editor, or Window Editor) adjusts \(x\) min and \(x\) max to include all data points, but it does not adjust the y axis.
- Use \(\dagger\) [WINDOW] to set \(y \min =0\) and \(y m a x=\) the number of data points expected in the tallest bar.
- When you trace (F3 ) a histogram, the screen shows information about the traced bar.


\section*{Using the \(\mathrm{Y}=\) Editor with Stat Plots}

The previous sections described how to define and select stat plots from the Data/Matrix Editor. You can also define and select stat plots from the \(Y=\) Editor.

\section*{Showing the List of Stat Plots}

Note: Plots defined with column numbers always use the last data variable in the Data/Matrix Editor, even if that variable was not used to create the definition.

Press \(-[\mathrm{Y}=]\) to display the \(\mathrm{Y}=\) Editor. Initially, the nine stat plots are located "off the top" of the screen, above the \(y(x)\) functions. However, the PLOTS indicator provides some information.

For example, PLOTS 23


To see the list of stat plots, use \(\bigcirc\) to scroll above the \(y(x)\) functions.

If a Plot is highlighted, this shows the data variable that will be used for the plots.

If a Plot is defined, it shows the same shorthand notation as the Plot Setup screen.


From the \(\mathrm{Y}=\) Editor, you can perform most of the same operations on a stat plot as you can on any other \(y(x)\) function.
\begin{tabular}{ll}
\hline To: & Do this: \\
\hline \begin{tabular}{l} 
Edit a plot \\
definition
\end{tabular} & \begin{tabular}{l} 
Highlight the plot and press F3]. You will see the \\
same definition screen that is displayed in the \\
Data/Matrix Editor.
\end{tabular} \\
\begin{tabular}{l} 
Select or deselect \\
a plot
\end{tabular} & Highlight the plot and press F4]. \\
\begin{tabular}{l} 
Turn all plots \\
and/or functions \\
off
\end{tabular} & \begin{tabular}{l} 
Press F5 and select the applicable item. You \\
can also use this menu to turn all functions on.
\end{tabular} \\
\end{tabular}

To Graph Plots and \(Y=\) Functions

As necessary, you can select and graph stat plots and \(y(x)\) functions at the same time. The preview example at the beginning of this chapter graphs data points and their regression equations.

\section*{Graphing and Tracing a Defined Stat Plot}

\section*{Defining the Viewing Window}

Tip: F2 Zoom is available on the \(Y=\) Editor, Window Editor, and Graph screen.

\section*{Changing the Graph Format}

Press \(\rightarrow \mathrm{F}\) (or F1 9) from the Y= Editor, Window Editor, or Graph screen.

Then change the settings as necessary.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{GRiAPH FIFAHATS} \\
\hline Coordingtes & RECT \({ }^{\text {a }}\) \\
\hline Gr:aph Drader & SEQ \({ }^{\text {a }}\) \\
\hline Gridic.-... & DFF; \\
\hline Fxes:- & DW? \\
\hline Leading Curs & DFF \({ }^{\text {- }}\) \\
\hline Ļbelミ.-. & DFF; \\
\hline Enter=SAVE & \(\mathrm{C}=\mathrm{C}\) HF \\
\hline
\end{tabular}

From the Graph screen, press F3] to trace a plot. The movement of the trace cursor depends on the Plot Type.
\begin{tabular}{ll}
\hline Plot Type & Description \\
\hline Scatter or xyline & Tracing begins at the first data point. \\
Box plot & \begin{tabular}{l} 
Tracing begins at the median. Press \(\odot\) to trace to \\
\\
Q1 and minX. Press \(\odot\) to trace to Q3 and maxX.
\end{tabular} \\
& \begin{tabular}{l} 
The cursor moves from the top center of each bar, \\
starting from the leftmost bar.
\end{tabular} \\
\hline
\end{tabular}

When you press \(\bigcirc\) or \(\bigcirc\) to move to another plot or \(\mathrm{y}(\mathrm{x})\) function, tracing moves to the current or beginning point on that plot (not to the nearest pixel).

\section*{Using Frequencies and Categories}

\section*{Example of a Frequency Column}

Tip: A frequency value of 0 effectively removes the data point from analysis.

Note: You can also use frequency values from a list variable instead of a column.

In a data variable, you can use any column in the Data/Matrix Editor to specify a frequency value (or weight) for the data points on each row. A frequency value must be an integer \(\geq 0\) if Calculation Type \(=\) OneVar or MedMed or if Plot Type = Box Plot. For other stat calculations or plots, the frequency value can be any number \(\geq 0\).

For example, suppose you enter a student's test scores, where:
- The mid-semester exam is weighted twice as much as other tests.
- The final exam is weighted three times as much.

In the Data/Matrix Editor, you can enter the test scores and frequency values in two columns.


To use frequency values, specify the frequency column when you perform a stat calculation or define a stat plot. For example:
 frequency values.

In a data variable, you can use any column to specify a category (or subset) value for the data points on each row. A category value can be any number.

Note: You do not need a category value for the whole class. Also, you do not need category values for all 10th graders or all 11th graders since they are combinations of other categories.

Note: You can also use category values from a list variable instead of a column.

Note: To analyze the whole class, leave the Category input box blank. Any category values are ignored.

Suppose you enter the test scores from a class that has 10th and 11th grade students. You want to analyze the scores for the whole class, but you also want to analyze categories such as 10th grade girls, 10th grade boys, 10th grade girls and boys, etc.

First, determine the category values you want to use.
\begin{tabular}{cl}
\hline Category Value & Used to indicate: \\
\hline 1 & 10th grade girl \\
2 & 10th grade boy \\
3 & 11th grade girl \\
4 & 11th grade boy \\
\hline
\end{tabular}

In the Data/Matrix Editor, you can enter the scores and the category values in two columns.


To use category values, specify the category column and the category values to include in the analysis when you perform a stat calculation or define a stat plot.

\begin{tabular}{lc}
\hline To analyze: & Include Categories: \\
\hline 10th grade girls & \(\{1\}\) \\
10th grade boys & \(\{2\}\) \\
10th grade girls and boys & \(\{1,2\}\) \\
11th grade girls & \(\{3\}\) \\
11th grade boys & \(\{4\}\) \\
11th grade girls and boys & \(\{3,4\}\) \\
all girls (10th and 11th) & \(\{1,3\}\) \\
all boys (10th and 11th) & \(\{2,4\}\) \\
\hline
\end{tabular}

\section*{If You Have a CBL 2/CBL or CBR}

The Calculator-Based Laboratory \({ }^{\text {TM }}\) System (CBL \(2^{\text {TM }}\), CBL \(^{\text {TM }}\) ) and Calculator-Based Ranger \({ }^{\text {TM }}\) System (CBR \({ }^{\text {TM }}\) ) are optional accessories, available separately, that let you collect data from a variety of real-world experiments.

How CBL 2/CBL Data Is Stored

Note: For specifics about using the CBL 2/CBL and retrieving data to the TI-92, refer to the guidebook that comes with the CBL 2/CBL unit.

\section*{Referring to the CBL 2/CBL Lists}

When you collect data with the CBL 2/CBL, that data is initially stored in the CBL 2/CBL unit itself. You must then retrieve the data (transfer it to the TI-92) by using the Get command, which is described in Appendix A.

Although each set of retrieved data can be stored in several variable types (list, real, matrix, pic), using list variables makes it easier to perform stat calculations.

When you transfer the collected information to the TI-92, you can specify the list variable names that you want to use. For example, you can use the CBL 2/CBL to collect temperature data over a period of time. When you transfer the data, suppose you store:
- Temperature data in a list variable called temp.
- Time data in a list variable called time.

After you store the CBL 2/CBL information on the TI-92, there are two ways to use the CBL 2/CBL list variables.

When you perform a stat calculation or define a plot, you can refer explicitly to the CBL 2/CBL list variables. For example:


\section*{Creating a Data} Variable with the CBL 2/CBL Lists

Tip: To define or clear a column header, use F4]. For more information, refer to Chapter 8.

You can create a new data variable that consists of the necessary CBL 2/CBL list variables.
- From the Home screen or a program, use the NewData command.

NewData dataVar, list1 [,list2 ] [,list3] ...
_ CBL list variable names. In the new data variable, list1 will be copied to column 1, list 2 to column 2, etc.
Name of the new data variable that you want to create.

For example:
NewData temp1, time, temp
creates a data variable called temp1 in which time is in column 1 and temp is in column 2.
- From the Data/Matrix Editor, create a new, empty data variable with the applicable name. For each CBL 2/CBL list that you want to include, define a column header as that list name.


At this point, the columns are linked to the CBL 2/CBL lists. If the lists are changed, the columns will be updated automatically. However, if the lists are deleted, the data will be lost.

To make the data variable independent of the CBL 2/CBL lists, clear the column header for each column. The information remains in the column, but the column is no longer linked to the CBL list.

\section*{Additional Home Screen Topics}

Saving the Home Screen Entries as a Text Editor Script ..... 210
Cutting, Copying, and Pasting Information ..... 211
Creating and Evaluating User-Defined Functions ..... 213
Using Folders to Store Independent Sets of Variables ..... 216
If an Entry or Answer Is "Too Big" ..... 219

To help you get started using the TI-92 as quickly as possible, Chapter 2 described the basic operations of the Home screen.

This chapter describes additional operations that can help you use the Home screen more effectively.


Because this chapter consists of various stand-alone topics, it does not start with a "preview" example.

\section*{Saving the Home Screen Entries as a Text Editor Script}

\section*{Saving the Entries in the History Area}

Note: Only the entries are saved, not the answers.

Note: For information about folders, refer to page 216.

To save all the entries in the history area, you can save the Home screen to a text variable. When you want to reexecute those entries, use the Text Editor to open the variable as a command script.

From the Home screen:
1. Press F1 and select 2:Save Copy As. (You can press \(\downarrow\) S instead of using F1.)

2. Specify a folder and text variable that you want to use to store the entries.

\begin{tabular}{ll}
\hline Item & Description \\
\hline Type & Automatically set as Text and cannot be changed. \\
Folder & \begin{tabular}{l} 
Shows the folder in which the text variable will be \\
stored. To use a different folder, press \(\bigcirc\) to display a \\
menu of existing folders. Then select a folder.
\end{tabular} \\
Variable & Type a valid, unused variable name.
\end{tabular}
3. Press ENTER (after typing in an input box such as Variable, press ENTER twice).

Because the entries are stored in a script format, you cannot restore them from the Home screen. (On the Home screen's F1 toolbar menu, 1 :Open is not available.) Instead:
1. Use the Text Editor to open the variable containing the saved Home screen entries.

The saved entries are listed as a series of command lines that you can execute individually, in any order.
2. Starting with the cursor on the first line of the script, press F64 repeatedly to execute the commands line by line.
3. Display the restored Home screen.


\footnotetext{
This split screen shows the Text Editor (with the command line script) and the restored Home screen.
}

\section*{Auto-paste vs. Cut/Copy/Paste}

Tip: You can press \(\bullet\) X, \(\bullet \mathrm{C}\), or \(\square \mathrm{V}\) to cut, copy or paste, respectively, without having to use the F1 toolbar menu.

Note: When you cut or copy information, it replaces the clipboard's previous contents, if any.

Cut, copy, and paste operations let you move or copy information within the same application or between different applications. These operations use the TI-92's clipboard, which is an area in memory that serves as a temporary storage location.

Auto-paste, described in Chapter 2, is a quick way to copy an entry or answer in the history area and paste it to the entry line.
1. Use \(\bigcirc\) and \(\odot\) to highlight the item in the history area.
2. Press ENTER to auto-paste that item to the entry line.

To copy or move information in the entry line, you must use a cut, copy, or paste operation. (You can perform a copy operation in the history area, but not a cut or paste.)

When you cut or copy information, that information is placed in the clipboard. However, cutting deletes the information from its current location (used to move information) and copying leaves the information.
1. Highlight the characters that you want to cut or copy.

In the entry line, move the cursor to either side of the characters. Hold \(\uparrow\) and press \(\odot\) or \(\odot\) to highlight characters to the left or right of the cursor, respectively.
2. Press F1 and select 4:Cut or 5:Copy.


Cutting is not the same as deleting. When you delete information, it is not placed in the clipboard and cannot be retrieved.

\section*{Cutting, Copying, and Pasting Information (Continued)}

\section*{Pasting Information from the Clipboard}

\section*{Example: Copying and Pasting}

Tip: You can also reuse an expression by creating a user-defined function. Refer to page 213.

Tip: By copying and pasting, you can easily transfer information from one application to another.

A paste operation inserts the contents of the clipboard at the current cursor location on the entry line. This does not change the contents of the clipboard.
1. Position the cursor where you want to paste the information.
2. Press F 1 and select 6:Paste (or use the \(\square\) V shortcut).

Suppose you want to reuse an expression without retyping it each time.
1. Copy the applicable information.
a. Use \(\uparrow \bigcirc\) or
\(\pm \bigcirc\) to highlight the expression.

b. Press \(\qquad\) C.
c. For this example, press ENTER to evaluate the entry.
2. Paste the copied information into a new entry.
a. Press F3 1 to select the \(\boldsymbol{d}\) differentiate function.
b. Press \(\square \vee\) to
paste the copied expression.
- solve \(\left(x^{4}-3 \cdot x^{3}-6 \cdot x^{2}+8 \cdot x=0, x\right)\)

c. Complete the new entry, and press ENTER.
\[
\begin{aligned}
& \text { - solve( }\left(x^{4}-3 \cdot x^{3}-6 \cdot x^{2}+8 \cdot x=0, x\right) \\
& x=4 \text { or } x=1 \text { or } x=0 \text { or } x=-2 \\
& \text { - } \frac{d}{d x}\left(x^{4}-3 \cdot x^{3}-6 \cdot x^{2}+8 \cdot x\right) \\
& 4 \cdot x^{3}-9 \cdot x^{2}-12 \cdot x+8
\end{aligned}
\]

3. Paste the copied information into a different application.
a. Press \(\bullet[Y=]\) to display the \(\mathrm{Y}=\) Editor.
b. Press ENTER to define \(y 1(x)\).
c. Press \(\bullet \vee\) to paste.
d. Press ENTER to save the new definition.


\section*{Creating and Evaluating User-Defined Functions}

User-defined functions can be a great time-saver when you need to repeat the same expression (but with different values) multiple times. User-defined functions can also extend your TI-92's capabilities beyond the built-in functions.

\section*{Format of a Function}

Note: Function names follow the same rules as variable names. Refer to "Storing and Recalling Variable Values" in Chapter 2.

Tip: Use two or more character argument names (xx,yy,xtemp,...) to define function or program arguments to prevent circular definitions when calling the function or program.

The following examples show user-defined functions with one argument and two arguments. You can use as many arguments as necessary. In these examples, the definition consists of a single expression (or statement).


When defining functions and programs, use unique names for arguments that will not be used in the arguments for a subsequent function or program call.
In the argument list, be sure to use the same arguments that are used in the definition. For example, cube \((\mathrm{n})=\mathrm{x}^{3}\) gives unexpected results when you evaluate the function.

Arguments ( \(x\) and \(y\) in these examples) are placeholders that represent whatever values you pass to the function. They do not represent the variables \(x\) and \(y\) unless you specifically pass \(x\) and \(y\) as the arguments when you evaluate the function.

Use one of the following methods.
\begin{tabular}{|c|c|}
\hline Method & Description \\
\hline STOD & Store an expression to a function name (including the argument list). \\
\hline &  \\
\hline \multirow[t]{2}{*}{Define command} & Define a function name (including the argument list) as an expression. \\
\hline &  \\
\hline Program Editor & Refer to Chapter 17 for information on creating a user-defined function. \\
\hline
\end{tabular}

\section*{Creating and Evaluating User-Defined Functions (Continued)}

\section*{Creating a MultiStatement Function}

Note: For information about similarities and differences between functions and programs, refer to Chapter 17.

You can also create a user-defined function whose definition consists of multiple statements. The definition can include many of the control and decision-making structures (If, Elself, Return, etc.) used in programming.

For example, suppose you want to create a function that sums a series of reciprocals based on an entered integer ( n ):
\[
\frac{1}{n}+\frac{1}{n-1}+\ldots+\frac{1}{1}
\]

When creating the definition of a multi-statement function, it may be helpful to visualize it first in a block form.


Func and EndFunc must begin and end the function.

For information about the individual statements, refer to Appendix A.

When entering a multi-statement function on the Home screen, you must enter the entire function on a single line. Use the Define command just as you would for a single-statement function.

Use argument names that will never be used when calling the function or program.
- Use a colon to separate each statement.
Define sumrecip(nn)=Func:Local temp,i: ... :EndFunc

Tip: It's easier to create a complicated multi-statement function in the Program Editor than on the Home screen. Refer to Chapter 17.

On the Home screen:
 function on one line Be sure to include colons.

You can use a user-defined function just as you would any other function. Evaluate it by itself or include it in another expression.


\section*{Displaying and Editing a Function Definition}
\begin{tabular}{ll}
\hline To: & Do this: \\
\hline \begin{tabular}{l} 
Display a list of all \\
user-defined functions
\end{tabular} & \begin{tabular}{l} 
Press [2nd [VAR-LINK] to display the VAR-LINK \\
screen. (Refer to Chapter 18.)
\end{tabular} \\
& \begin{tabular}{l} 
You may need to use the F2 View toolbar \\
menu to specify the Function variable type.
\end{tabular} \\
& \begin{tabular}{l} 
From the VAR-LINK screen, highlight the \\
\begin{tabular}{l} 
Display the definition \\
of a user-defined \\
function
\end{tabular} \\
function and press F6 Contents.
\end{tabular} \\
& - or -
\end{tabular}

From the Home screen, press 2nd [RCL]. Type the function name but not the argument list (such as xroot), and press ENTER twice.
- or -

From the Program Editor, open the function. (Refer to Chapter 17.)

Edit the definition
From the Home screen, use [2nd [RCL] to display the definition. Edit the definition as necessary. Then use STO or Define to save the new definition.
- or -

From the Program Editor, open the function, edit it, and save your changes. (Refer to Chapter 17.)

\section*{Using Folders to Store Independent Sets of Variables}

The TI-92 has one built-in folder named MAIN, and all variables are stored in that folder. By creating additional folders, you can store independent sets of user-defined variables (including user-defined functions).

\section*{Folders and Variables}

Note: User-defined variables are stored in the "current folder" unless you specify otherwise. Refer to "Using Variables in Different Folders" on page 218.

Folders give you a convenient way to manage variables by organizing them into related groups. For example, you can create separate folders for different TI-92 applications (Geometry, Text Editor, etc.) or classes.
- You can store a userdefined variable in any existing folder.
- A system variable or a variable with a reserved name, however, can be stored in the MAIN folder only.

The user-defined variables in one folder are independent of the variables in any other folder.

Therefore, folders can store separate sets of variables with the same names but different values.

\section*{Example of variables that can be stored in MAIN only}

Window variables
(xmin, xmax, etc.)
Table setup variables
(TbIStart, \(\Delta\) Tbl, etc.)
\(\mathrm{Y}=\) Editor functions
( \(\mathrm{y} 1(\mathrm{x}), \mathrm{etc}\).)


The system variables in the MAIN folder are always directly accessible, regardless of the current folder.

\author{
Creating a Folder from the Home Screen
}

\section*{Creating a Folder from the VAR-LINK Screen}

Enter the NewFold command.
NewFold folderName
Folder name to create. This new folder is set automatically as the current folder.

The VAR-LINK screen, which is described in Chapter 18, lists the existing variables and folders.
1. Press [2nd [VAR-LINK].
2. Press F1 Manage and select 5:Create Folder.
3. Type a unique folder name, and press ENTER twice.


After you create a new folder from VAR-LINK, that folder is not automatically set as the current folder.

Enter the setFold function.
setFold (folderName)
setFold is a function, which requires you to enclose the folder name in parentheses.

When you execute setFold, it returns the name of the folder that was previously set as the current folder.

To use the MODE dialog box:
1. Press MODE.
2. Highlight the Current Folder setting.
3. Press \(\bigcirc\) to display a menu of existing folders.
4. Select the applicable folder. Either:

- Highlight the folder name and press ENTER.
- or -
- Press the corresponding number or letter for that folder.
5. Press ENTER to save your changes and close the dialog box.

\section*{Using Folders to Store Independent Sets of Variables (Cont.)}

\section*{Using Variables in Different Folders}

Tip: For "।", press 2nd [।] (2nd function of \(\Xi\) ).

Note: This example assumes that you have already created a folder named MATH.

Note: For information about the VAR-LINK screen, refer to Chapter 18.

Deleting a Folder from the Home Screen

Note: You cannot delete the MAIN folder.

Deleting a Folder from the VAR-LINK Screen

You can access a user-defined variable or function that is not in the current folder. Specify the complete pathname instead of only the variable name.

A pathname has the form:
folderName \(\backslash\) variableName
- or -
folderName \(\backslash\) functionName
For example:


To see a list of existing folders and variables, press 2nd [VAR-LINK]. On the VAR-LINK screen, you can highlight a variable and press ENTER to paste that variable name to the Home screen's entry line. If you paste a variable name that is not in the current folder, the pathname (folderNamelvariableName) is pasted.

Before deleting a folder, you must delete all the variables stored in that folder.
- To delete a variable, enter the DeIVar command.

DelVar var1 [, var2] [, var3] ...
- To delete an empty folder, enter the DeIFold command.

DelFold folder1 [,folder2] [,folder3] ...

VAR-LINK lets you delete a folder and its variables at the same time. Refer to Chapter 18.
1. Press 2nd [Var-LINk].
2. Select the item(s) to delete and press \(\operatorname{F11} 1\) or \(\square\). (If you use F4 to select a folder, its variables are selected automatically.)
3. Press ENTER to confirm the deletion.

\section*{If an Entry or Answer Is "Too Big"}

\section*{If an Entry or Answer Is "Too Long"}

Note: This example uses the randMat function to generate a \(25 \times 25\) matrix.

\section*{If There Is not Enough Memory}

Note: This example uses the seq function to generate a sequential list of integers from 1 to 2500 .

In some cases, an entry or answer may be "too long" and/or "too tall" to be displayed completely in the history area. In other cases, the Tl-92 may not be able to display an answer because there is not enough free memory.

Move the cursor into the history area, and highlight the entry or answer. Then use the cursor pad to scroll. For example:
- The following shows an answer that is too long for one line.

- The following shows an answer that is both too long and too tall to be displayed on the screen.


A <<...>> symbol is displayed when the TI-92 does not have enough free memory to display the answer.

For example:


When you see the <<...>> symbol, the answer cannot be displayed even if you highlight it and try to scroll.

In general, you can try to:
- Free up additional memory by deleting unneeded variables. Use 2nd [VAR-LINK] as described in Chapter 18.
- If possible, break the problem into smaller parts that can be calculated and displayed with less memory.

\section*{Parametric Graphing}

Preview of Parametric Graphing. ..... 222
Overview of Steps in Graphing Parametric Equations ..... 223
Differences in Parametric and Function Graphing ..... 224

This chapter describes how to graph parametric equations on the TI-92. Before using this chapter, you should be familiar with Chapter 3: Basic Function Graphing.

Parametric equations consist of both an \(x\) and \(y\) component, each expressed as a function of the same independent variable \(t\).

You can use parametric equations to model projectile motion. The position of a moving projectile has a horizontal ( \(x\) ) and vertical (y) component expressed as a function of time ( \(t\) ). For example:


The graph shows the path of the projectile over time, assuming that only uniform gravity (no drag forces, etc.) is acting on the projectile.

\section*{Preview of Parametric Graphing}

Graph the parametric equations describing the path of a ball kicked at an angle（ \(\theta\) ）of \(60^{\circ}\) with an initial velocity（ \(\mathrm{v}_{0}\) ）of 15 meters \(/ \mathrm{sec}\) ．The gravity constant \(\mathrm{g}=9.8\) meters \(/ \mathrm{sec}^{2}\) ． Ignoring air resistance and other drag forces，what is the maximum height of the ball and when does it hit the ground？
\begin{tabular}{|c|c|c|}
\hline Steps & Keystrokes & Display \\
\hline 1．Display the MODE dialog box． For Graph mode，select PARAMETRIC． & \[
\begin{aligned}
& \text { MODE } \\
& \bigcirc 2 \\
& \hline \text { ENTER } \\
& \hline
\end{aligned}
\] &  \\
\hline \begin{tabular}{l}
2．Display and clear the \(Y=\) Editor． \\
Then define the horizontal component \(\mathrm{xt} 1(\mathrm{t})=\mathrm{v}_{0} \mathrm{t} \cos \theta\) ． \\
Enter values for \(v_{0}\) and \(\theta\) ． \\
Type T 区 COS，not T COS． \\
Enter a \({ }^{\circ}\) symbol by typing either 2nd D or 2nd［MATH］ 2 1．This ensures a number is interpreted as degrees，regardless of the angle mode．
\end{tabular} & \begin{tabular}{l}
－\([\mathrm{Y}=]\) \\
（F1） 8 ENTER \\
ENTER \\
15 T® Cos 60 \\
2nd D \(\square\) ENTER
\end{tabular} & \(x t 1(t)=15 t * \cos \left(60^{\circ}\right)\) \\
\hline \begin{tabular}{l}
3．Define the vertical component
\[
\mathrm{yt} 1(\mathrm{t})=\mathrm{v}_{0} \mathrm{t} \sin \theta-(\mathrm{g} / 2) \mathrm{t}^{2} .
\] \\
Enter values for \(v_{0}, \theta\) ，and \(g\) ．
\end{tabular} & \begin{tabular}{l}
ENTER \\
15 T区 SIN 60 \\
2nd D \(10 \square\) \\
\(9.8 \div 2 \square\) \\
T \(\wedge 2\) ENTER
\end{tabular} &  \\
\hline \begin{tabular}{l}
4．Display the Window Editor．Enter Window variables appropriate for this example． \\
You can press either \(\odot\) or ENTER to enter a value and move to the next variable．
\end{tabular} & \begin{tabular}{l}
－［window］ \\
\(0 \bigcirc 3 \bigcirc\)
\end{tabular} &  \\
\hline 5．Graph the parametric equations to model the path of the ball． & －［GRAPH］ & \\
\hline \begin{tabular}{l}
6．Select Trace．Then move the cursor along the path to find the： \\
－y value at maximum height． \\
－t value where the ball hits the ground．
\end{tabular} & \begin{tabular}{l}
F3 \\
or \(\bigcirc\) as necessary
\end{tabular} &  \\
\hline
\end{tabular}

\section*{Overview of Steps in Graphing Parametric Equations}

To graph parametric equations, use the same general steps used for \(\mathrm{y}(\mathrm{x})\) functions as described in Chapter 3: Basic Function Graphing. Any differences that apply to parametric equations are described on the following pages.

\section*{Graphing Parametric Equations}

Tip: To turn off any stat data plots (Chapter 9), press [F5 5 or use F5 to deselect them.

Tip: This is optional. For multiple equations, this helps visually distinguish one from another.

Tip: F2 Zoom also changes the viewing window.



From the Graph screen, you can:
- Display the coordinates of any pixel by using the free-moving cursor, or of a plotted point by tracing a parametric equation.
- Use the F2 Zoom toolbar menu to zoom in or out on a portion of the graph.
- Use the F5 Math toolbar menu to find derivatives, tangents, etc. Some menu items are not available for parametric graphs.

\section*{Differences in Parametric and Function Graphing}

This chapter assumes that you already know how to graph \(y(x)\) functions as described in Chapter 3: Basic Function Graphing. This section describes the differences that apply to parametric equations.

\section*{Setting the Graph Mode}

Defining Parametric Equations on the \(Y=\) Editor

Note: When using \(t\), be sure implied multiplication is valid for your situation.

Use MODE to set Graph = PARAMETRIC before you define equations or set Window variables. The Y= Editor and the Window Editor let you enter information for the current Graph mode setting only.

To graph a parametric equation, you must define both its \(x\) and \(y\) components. If you define only one component, the equation cannot be graphed. (However, you can use single components to generate an automatic table as described in Chapter 4.)


Be careful when using implied multiplication with t. For example:
\begin{tabular}{lll}
\hline Enter: & Instead of: & Because: \\
\hline \(\mathrm{t} * \cos (60)\) & \(\mathrm{tcos}(60)\) & tcos is interpreted as a user-defined \\
& & function called tcos, not as implied \\
multiplication.
\end{tabular}

The \(\mathrm{Y}=\) Editor maintains an independent function list for each Graph mode setting. For example, suppose:
- In FUNCTION graphing mode, you define a set of \(y(x)\) functions. You change to PARAMETRIC graphing mode and define a set of \(x\) and y components.
- When you return to FUNCTION graphing mode, your \(y(x)\) functions are still defined in the \(\mathrm{Y}=\) Editor. When you return to PARAMETRIC graphing mode, your \(x\) and \(y\) components are still defined.

\section*{Selecting Parametric Equations}

\section*{Selecting the Display Style}

Tip: Use the Animate and Path styles for interesting projectile-motion effects.

\section*{Window Variables}

Note: You can use a negative tstep. If so, tmin must be greater than tmax.

To graph a parametric equation, select either its x or y component or both. When you enter or edit a component, it is selected automatically.

Selecting x and y components separately can be useful for tables as described in Chapter 4. With multiple parametric equations, you can select and compare all the \(x\) components or all the \(y\) components.

You can set the style for either the x or y component. For example, if you set the \(x\) component to Dot, the TI-92 automatically sets the y component to Dot.

The Above and Below styles are not available for parametric equations and are dimmed on the \(Y=\) Editor's \({ }^{[66}\) Style toolbar menu.

The Window Editor maintains an independent set of Window variables for each Graph mode setting (just as the Y= Editor maintains independent function lists). Parametric graphs use the following Window variables.

\section*{Variable Description}
tmin, tmax Smallest and largest t values to evaluate.
tstep Increment for the \(t\) value. Parametric equations are evaluated at:
\begin{tabular}{|c|c|}
\hline \(x(t m i n)\) & \(y\) (tmin) \\
\hline \(x(\) tmin + tstep \()\) & y(tmin+tstep) \\
\hline x(tmin+2(tstep)) & \(y(\) tmin \(+2(\) tstep \()\) ) \\
\hline ... not to exceed ... & ... not to exceed ... \\
\hline \(x(t m a x)\) & \(y\) (tmax) \\
\hline \multicolumn{2}{|l|}{Boundaries of the viewing window.} \\
\hline
\end{tabular}

Standard values (set when you select 6:ZoomStd from the F2 Zoom toolbar menu) are:
\[
\begin{array}{lcll}
\operatorname{tmin}=0 . & & \mathrm{xmin}=-10 . & \mathrm{ymin}=-10 . \\
\mathrm{tmax}=2 \pi & (6.2831853 \ldots \text { radians } & \mathrm{xmax}=10 . & \mathrm{ymax}=10 . \\
\text { or } 360 \text { degrees }) & & \\
\text { tstep }=\pi / 24 \begin{array}{c}
(.1308996 \ldots \text { radians } \\
\text { or } 7.5 \text { degrees })
\end{array} & \mathrm{xscl}=1 . & \mathrm{yscl}=1 .
\end{array}
\]

You may need to change the standard values for the \(t\) variables (tmin, tmax, tstep) to ensure that enough points are plotted.

\section*{Differences in Parametric and Function Graphing (Continued)}

\section*{Exploring a Graph}

Tip: During a trace, you can also evaluate \(x(t)\) and \(y(t)\) by typing the \(t\) value and pressing ENTER.

Tip: You can use QuickCenter at any time during a trace, even if the cursor is still on the screen.

As in function graphing, you can explore a graph by using the following tools.

\section*{Tool For Parametric Graphs:}

Free-Moving Works just as it does for function graphs. Cursor

F2 Zoom Works just as it does for function graphs, with the following exceptions:
- Only x (xmin, xmax, xscl) and y (ymin, ymax, yscl) Window variables are affected.
- The \(t\) Window variables (tmin, tmax, tstep) are not affected unless you select 6:ZoomStd (which sets tmin \(=0, \operatorname{tmax}=2 \pi\), and tstep \(=\pi / 24\) ).
[F3) Trace
Lets you move the cursor along a graph one tstep at a time.
- When you begin a trace, the cursor is on the first selected parametric equation at tmin.
- QuickCenter applies to all directions. If you move the cursor off the screen (top or bottom, left or right), press ENTER to center the viewing window on the cursor location.
- Automatic panning is not available. If you move the cursor off the left or right side of the screen, the TI-92 will not automatically pan the viewing window. However, you can use QuickCenter.

F5 Math Only 1:Value, 6:Derivatives, 9:Distance, A:Tangent, and B:Arc are available for parametric graphs. These tools are based on \(t\) values. For example:
- 1:Value displays \(x\) and \(y\) values for a specified \(t\) value.
- 6:Derivatives finds \(d y / d x, d y / d t\), or \(d x / d t\) at a point defined for a specified \(t\) value.

\section*{Polar Graphing}

Preview of Polar Graphing ..... 228
Overview of Steps in Graphing Polar Equations ..... 229
Differences in Polar and Function Graphing ..... 230

This chapter describes how to graph polar equations on the TI-92. Before using this chapter, you should be familiar with Chapter 3: Basic Function Graphing.

Consider a point ( \(\mathrm{x}, \mathrm{y}\) ) as shown below. In a polar equation, the point's distance ( \(r\) ) from the origin is a function of its angle ( \(\theta\) ) from the positive \(x\) axis. Polar equations are expressed as \(r=f(\theta)\).


To convert between rectangular ( \(\mathrm{x}, \mathrm{y}\) ) and polar coordinates \((r, \theta)\) :
\[
\begin{array}{ll}
x=r \cos \theta & r^{2}=x^{2}+y^{2} \\
y=r \sin \theta & \theta=-\tan ^{-1} \frac{x}{y}+\frac{\operatorname{sign}(y) \cdot \pi}{2}
\end{array}
\]

Note: To find \(\theta\), use the TI-92 function angle( \(x+i y\) ), which automatically performs the calculation shown above.

You can view the coordinates of any point in either polar \((r, \theta)\) or rectangular ( \(\mathrm{x}, \mathrm{y}\) ) form.

\section*{Preview of Polar Graphing}

The graph of the polar equation \(\mathrm{A} \sin \mathrm{B} \theta\) forms the shape of a rose. Graph the rose for \(A=8\) and \(B=2.5\). Then explore the appearance of the rose for other values of \(A\) and \(B\).
\begin{tabular}{|c|c|c|}
\hline Steps & Keystrokes & Display \\
\hline 1. Display the MODE dialog box. For Graph mode, select POLAR. For Angle mode, select RADIAN. & \begin{tabular}{l}
MODE \\
() 3 \\
\(\bigcirc \bigcirc \bigcirc 1\) \\
ENTER
\end{tabular} &  \\
\hline \begin{tabular}{l}
2. Display and clear the \(Y=\) Editor. Then define the polar equation \(r 1(\theta)=A \sin B \theta\). \\
Enter 8 and 2.5 for \(A\) and \(B\), respectively.
\end{tabular} & \begin{tabular}{l}
- \(\quad \mathrm{Y}=]\) \\
F1 8 ENTER \\
ENTER \\
8 SIN 2.5 日 \\
ENTER
\end{tabular} &  \\
\hline
\end{tabular}
3. Select the ZoomStd viewing window, which graphs the equation.
- The graph shows only five rose petals.
- In the standard viewing window, the Window variable \(\theta\) max \(=2 \pi\). The remaining petals have \(\theta\) values greater than \(2 \pi\).
- The rose does not appear symmetrical.
- Both the \(x\) and \(y\) axes range from -10 to 10. However, this range is spread over a longer distance along the \(x\) axis than the \(y\) axis.
4. Display the Window Editor, and change \(\theta\) max to \(4 \pi\).
\(4 \pi\) will be evaluated to a number when you leave the Window Editor.
5. Select ZoomSqr, which regraphs the equation.

ZoomSqr increases the range along the \(x\) axis so that the graph is shown in correct proportion.
```

- [wINDOW]
`
4 [nd] [\pi]

```

F2 5
F2 6

- \([\mathrm{Y}=]\)

FI 8 ENTER
ENTER
8 SIN 2 . 5 日


Min=0
өstep \(=13089969369957\)
xmin=-10.
xmex=19.
\(\times=\mathrm{c} 1=1\)
ymin=-10.
Mmax \(=10\)
\(\underline{y}=c \mid=1\)

6. You can change values for \(A\) and \(B\) as necessary and regraph the equation.

\section*{Overview of Steps in Graphing Polar Equations}

To graph polar equations, use the same general steps used for \(y(x)\) functions as described in Chapter 3: Basic Function Graphing. Any differences that apply to polar equations are described on the following pages.

\section*{Graphing Polar Equations}

Tip: To turn off any stat data plots (Chapter 9), press [F5 5 or use [F4 to deselect them.

Tip: This is optional. For multiple equations, this helps visually distinguish one from another.

Tip: F2 Zoom also changes the viewing window.

Tip: To display \(r\) and \(\theta\), set Coordinates \(=\) POLAR.


\section*{Differences in Polar and Function Graphing}

\section*{Setting the Graph Mode}

\author{
Defining Polar Equations on the \(Y=\) Editor
}

Tip: You can use the Define command from the Home screen (see Appendix A) to define functions and equations for any graphing mode, regardless of the current mode.

This chapter assumes that you already know how to graph \(y(x)\) functions as described in Chapter 3: Basic Function Graphing. This section describes the differences that apply to polar equations.

Use MODE to set Graph = POLAR before you define equations or set Window variables. The Y= Editor and the Window Editor let you enter information for the current Graph mode setting only.

You should also set the Angle mode to the units (RADIAN or DEGREE) you want to use for \(\theta\).


The \(\mathrm{Y}=\) Editor maintains an independent function list for each Graph mode setting. For example, suppose:
- In FUNCTION graphing mode, you define a set of \(y(x)\) functions. You change to POLAR graphing mode and define a set of \(r(\theta)\) equations.
- When you return to FUNCTION graphing mode, your \(y(x)\) functions are still defined in the \(\mathrm{Y}=\) Editor. When you return to POLAR graphing mode, your \(r(\theta)\) equations are still defined.

The Above and Below styles are not available for polar equations and are dimmed on the Y= Editor's F66 Style toolbar menu.

\section*{Window Variables}

Note: You can use a negative \(\theta\) step. If so, \(\theta \mathrm{min}\) must be greater than \(\theta\) max.

The Window Editor maintains an independent set of Window variables for each Graph mode setting (just as the Y= Editor maintains independent function lists). Polar graphs use the following Window variables.

\section*{Variable Description}
\(\theta \min , \theta \max \quad\) Smallest and largest \(\theta\) values to evaluate.
\(\theta\) step Increment for the \(\theta\) value. Polar equations are evaluated at:
\(r(\theta \min )\)
r( \(\theta\) min \(+\theta\) step)
\(r(\theta\) min \(+2(\theta\) step \())\)
... not to exceed ...
r( \(\theta\) max)
\(x m i n, x m a x, \quad\) Boundaries of the viewing window.
ymin, ymax
xscl, yscl Distance between tick marks on the x and y axes.

Standard values (set when you select 6:ZoomStd from the F2 Zoom toolbar menu) are:
\[
\begin{array}{lcll}
\begin{array}{l}
\theta \min =0 . \\
\theta \max =2 \pi \\
\\
\text { (6.2831853 } \ldots \text { radians } \\
\text { or } 360 \text { degrees })
\end{array} & \begin{array}{l}
x \min =-10 . \\
\mathrm{xmax}=10 .
\end{array} & \begin{array}{l}
\mathrm{ymin}=-10 . \\
\mathrm{ymax}=10 . \\
\theta \text { step }=\pi / 24 \\
\begin{array}{c}
(.1308996 \ldots \text { radians } \\
\text { or } 7.5 \text { degrees })
\end{array} \\
\mathrm{xscl}=1 .
\end{array} & \mathrm{yscl}=1 .
\end{array}
\]

You may need to change the standard values for the \(\theta\) variables ( \(\theta\) min, \(\theta\) max, \(\theta\) step) to ensure that enough points are plotted.

\section*{Setting the Graph Format}

To display coordinates as \(r\) and \(\theta\) values, use \(\square \mathrm{F}\) or 9 to set Coordinates \(=\) POLAR. If Coordinates \(=\) RECT, the polar equations will be graphed properly, but coordinates will be displayed as \(x\) and \(y\).

When you trace a polar equation, the \(\theta\) coordinate is shown even if Coordinates \(=\) RECT.

\section*{Differences in Polar and Function Graphing (Continued)}

\section*{Exploring a Graph}

Tip: During a trace, you can also evaluate \(\mathrm{r}(\theta)\) by typing the \(\theta\) value and pressing ENTER).

Tip: You can use QuickCenter at any time during a trace, even if the cursor is still on the screen.

As in function graphing, you can explore a graph by using the following tools. Any displayed coordinates are shown in polar or rectangular form as set in the graph format.

\section*{Tool For Polar Graphs:}

Free-Moving Works just as it does for function graphs. Cursor

F2 Zoom Works just as it does for function graphs.
- Only x (xmin, xmax, xscl) and y (ymin, ymax, yscl) Window variables are affected.
- The \(\theta\) Window variables ( \(\theta\) min, \(\theta\) max, \(\theta\) step) are not affected unless you select 6:ZoomStd (which sets \(\theta \min =0, \theta \max =2 \pi\), and \(\theta\) step \(=\pi / 24\) ).
(F3) Trace
Lets you move the cursor along a graph one \(\theta\) step at a time.
- When you begin a trace, the cursor is on the first selected equation at \(\theta\) min.
- QuickCenter applies to all directions. If you move the cursor off the screen (top or bottom, left or right), press ENTER to center the viewing window on the cursor location.
- Automatic panning is not available. If you move the cursor off the left or right side of the screen, the TI-92 will not automatically pan the viewing window. However, you can use QuickCenter.

F5 Math Only 1:Value, 6:Derivatives, 9:Distance, A:Tangent, and B:Arc are available for polar graphs. These tools are based on \(\theta\) values. For example:
- 1:Value displays an \(r\) value (or \(x\) and \(y\), depending on the graph format) for a specified \(\theta\) value.
- 6:Derivatives finds \(\mathrm{dy} / \mathrm{dx}\) or \(\mathrm{dr} / \mathrm{d} \theta\) at a point defined for a specified \(\theta\) value.

\section*{Sequence Graphing}

Preview of Sequence Graphing ..... 234
Overview of Steps in Graphing Sequences ..... 235
Differences in Sequence and Function Graphing ..... 236
Setting Axes for Time, Web, or Custom Plots ..... 240
Using Web Plots ..... 241
Using Custom Plots ..... 244
Using a Sequence to Generate a Table ..... 245
Comparison of TI-92 and TI-82 Sequence Functions ..... 246

This chapter describes how to graph sequences on the TI-92.
Before using this chapter, you should be familiar with Chapter 3: Basic Function Graphing.

Sequences are evaluated only at consecutive integer values. The two general types of sequences are:
- Nonrecursive - The nth term in the sequence is a function of the independent variable \(n\).

Each term is independent of any other terms. In the following example sequence, you can calculate \(u(5)\) directly, without first calculating \(u(1)\) or any other previous term.
\[
\begin{aligned}
& u(n)=2 * n \text { for } n=1,2,3, \ldots \quad \begin{array}{l}
n \text { is always a series of } \\
\text { consecutive integers, } \\
\text { starting at any positive } \\
\text { integer or zero. }
\end{array} \\
& u(n)=2 * n \text { gives the sequence } 2,4,6,8,10, \ldots
\end{aligned}
\]
- Recursive - The nth term is defined in relation to one or more previous terms, represented by \(u(n-1), u(n-2)\), etc. In addition to previous terms, a recursive sequence may also be defined in relation to \(n\) (such as \(u(n)=u(n-1)+n)\).

In the following example sequence, you cannot calculate \(u(5)\) without first calculating \(u(1), u(2), u(3)\), and \(u(4)\).

> The first term is undefined since it has no previous term. So you must specify an initial value to use for the first term.

Using an initial value of 1 :
\[
u(n)=2 * u(n-1) \text { gives the sequence } 1,2,4,8,16, \ldots
\]

The number of initial values you need to specify depends on how deep the recursion goes. For example, if each term is defined in relation to the previous two terms, you must specify initial values for the first two terms.

\section*{Preview of Sequence Graphing}

A small forest contains 4000 trees．Each year，20\％of the trees will be harvested（with \(80 \%\) remaining）and 1000 new trees will be planted．Using a sequence，calculate the number of trees in the forest at the end of each year．Does it stabilize at a certain number？
\begin{tabular}{ccccc}
\hline Initially & After 1 Year & After 2 Years & After 3 Years & \(\ldots\) \\
\hline 4000 & \(.8 \times 4000\) & \(.8 \times(.8 \times 4000+1000)\) & \(.8 \times(.8 \times(.8 \times 4000+1000)+1000)\) & \(\ldots\) \\
& +1000 & +1000 & +1000 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Steps & Keystrokes & Display \\
\hline 1．Display the MODE dialog box． For Graph mode，select SEQUENCE． & \[
\begin{aligned}
& \text { MODE } \\
& \bigcirc 4 \\
& \text { (ENTER }
\end{aligned}
\] &  \\
\hline \begin{tabular}{l}
2．Display and clear the \(Y=\) Editor． Then define the sequence as \(\mathrm{u} 1(\mathrm{n})=\operatorname{iPart}(.8 * u 1(\mathrm{n}-1)+1000)\) ． \\
Use iPart to take the integer part of the result．No fractional trees are harvested． To access iPart（，you can use［2nd［MATH］， ［2nd［CaTaLog］，or simply type it．
\end{tabular} & \begin{tabular}{l}
－\([\mathrm{Y}=]\) \\
F1 8 ENTER \\
ENTER \\
2nd［MATH］ 14 \\
．8U1 1 NG1 \\
D⿴囗十⿴囗十丁口内 \\
ENTER
\end{tabular} &  \\
\hline 3．Define uil as the initial value that will be used as the first term． & \[
\begin{aligned}
& \text { ENTER } \\
& 4000 \text { ENTER }
\end{aligned}
\] & \\
\hline \begin{tabular}{l}
4．Display the Window Editor．Set the n and plot Window variables． \\
nmin \(=0\) and \(n m a x=50\) evaluate the size of the forest over 50 years．
\end{tabular} & \begin{tabular}{l}
\(\rightarrow\)［window］ \\
\(0 \bigcirc 50 \bigcirc\) \\
\(1 \bigcirc 1 \bigcirc\)
\end{tabular} & \begin{tabular}{l}
 \\
Flotstrt＝1． \\
 \\
 \\
\(\mathrm{OEl=1000}\)
\end{tabular} \\
\hline
\end{tabular}

5．Set the \(x\) and \(y\) Window variables to appropriate values for this example．
```

O}50
10\odot0@
600@1000

```

6．Display the Graph screen．
－［GRAPH］
7．Select Trace．Move the cursor to trace year by year．How many years（nc） does it take the number of trees（yc）to stabilize？
\(\square\)
\(\bigcirc\) and \(\odot\) as necessary


Trace begins at \(n c=0\) ． \(n c\) is the number of years．
\(x c=n c\) since \(n\) is plotted on the \(x\) axis． \(y c=u 1(n)\) ，the number of trees at year \(n\) ．

\section*{Overview of Steps in Graphing Sequences}

To graph sequences，use the same general steps used for \(y(x)\) functions as described in Chapter 3：Basic Function Graphing． Any differences are described on the following pages．

\section*{Graphing Sequences}

Tip：To turn off any stat data plots（Chapter 9）， press［F5 5 or use［F4］to deselect them．

Note：For sequences，the default style is Square．

Tip：F2 Zoom also changes the viewing window．


Rlot

\(\times M 1 n^{\circ}=0.0\)
\(\times \operatorname{xol} 1=10\).
\(\cdots M i r=0\)
コロロl＝1000：



\section*{Exploring the Graph}

Tip：You can also evaluate a sequence while tracing． Simply enter the \(n\) value directly from the keyboard．

From the Graph screen，you can：
－Display the coordinates of any pixel by using the free－moving cursor，or of a plotted point by tracing a sequence．
－Use the F2 Zoom toolbar menu to zoom in or out on a portion of the graph．
－Use the F5 Math toolbar menu to evaluate a sequence．Only 1 ：Value is available for sequences．
－Plot sequences on Time（the default），Web，or Custom axes．

\section*{Differences in Sequence and Function Graphing}

This chapter assumes that you already know how to graph \(\mathrm{y}(\mathrm{x})\) functions as described in Chapter 3: Basic Function Graphing. This section describes the differences that apply to sequences.

\section*{Setting the Graph Mode}

\section*{Defining Sequences on the \(Y=\) Editor}

Note: You must use a list to enter two or more initial values.

Note: Optionally, for sequences only, you can select different axes for the graph. TIME is the default.

Tip: You can use the Define command from the Home screen (see Appendix A) to define functions and equations for any graphing mode, regardless of the current mode.

Use MODE to set Graph = SEQUENCE before you define sequences or set Window variables. The Y= Editor and the Window Editor let you enter information for the current Graph mode setting only.


If a sequence requires more than one initial value, enter them as a list enclosed in braces \(\}\) and separated by commas.
 sequence list.

If a sequence requires an initial value but you do not enter one, you will get an error when graphing.

On the Y= Editor, [77 Axes lets you select the axes that are used to graph the sequences. For more detailed information, refer to page 240.
\begin{tabular}{ll}
\hline Axes & Description \\
\hline TIME & Plots \(n\) on the \(x\) axis and \(u(n)\) on the \(y\) axis. \\
WEB & Plots \(u(n-1)\) on the \(x\) axis and \(u(n)\) on the \(y\) axis. \\
CUSTOM & Lets you select the \(x\) and \(y\) axes. \\
\hline
\end{tabular}

The \(\mathrm{Y}=\) Editor maintains an independent function list for each Graph mode setting. For example, suppose:
- In FUNCTION graphing mode, you define a set of \(y(x)\) functions. You change to SEQUENCE graphing mode and define a set of \(u(n)\) sequences.
- When you return to FUNCTION graphing mode, your \(y(x)\) functions are still defined in the Y= Editor. When you return to SEQUENCE graphing mode, your \(u(n)\) sequences are still defined.

\section*{Selecting Sequences}

Note: With TIME and CUSTOM axes, all defined sequences are evaluated even if they are not plotted.

\section*{Selecting the Display Style}

\section*{Window Variables}

Note: Both nmin and nmax must be positive integers, although nmin can be zero.

Note: nmin, nmax, plotstrt and plotstep must be integers \(\geq 1\). If you do not enter integers, they will be rounded to integers.

With TIME and WEB axes, the TI-92 graphs only the selected sequences. If you entered any sequences that require an initial value, you must enter the corresponding ui value.


With CUSTOM axes, when you specify a sequence in the custom settings, it is graphed regardless of whether it is selected.

Only the Line, Dot, Square, and Thick styles are available for sequence graphs. Dot and Square mark only those discrete integer values (in plotstep increments) at which a sequence is plotted.

The Window Editor maintains an independent set of Window variables for each Graph mode setting (just as the Y= Editor maintains independent function lists). Sequence graphs use the following Window variables.

\section*{Variable Description}
nmin, nmax \(\quad\) Smallest and largest \(n\) values to evaluate. Sequences are evaluated at:
```

$u(n m i n)$
$u(n m i n+1)$
$u(n m i n+2)$
... not to exceed ...
u(nmax)

```
plotstrt The term number that will be the first one plotted (depending on plotstep). For example, to begin plotting with the 2 nd term in the sequence, set plotstrt = 2 . The first term will be evaluated at nmin but not plotted.
plotstep Incremental \(n\) value for graphing only. This does not affect how the sequence is evaluated, only which points are plotted. For example, suppose plotstep \(=2\). The sequence is evaluated at each consecutive integer but is plotted at only every other integer.
xmin, \(x\) max, Boundaries of the viewing window. ymin, ymax
xscl, yscl Distance between tick marks on the x and y axes.

\section*{Differences in Sequence and Function Graphing (Continued)}

\section*{Window Variables} (Continued)

Note: Both of these graphs use the same Window variables, except for plotstrt.

Standard values (set when you select 6:ZoomStd from the F2 Zoom toolbar menu) are:
```

nmin =1. }\quad\textrm{xmin}=-10.\quadymin=-10
nmax =10. }\quad\textrm{xmax}=10.\quadymax=10
plotstrt = 1. xscl = 1. yscl = 1.
plotstep = 1.

```

You may need to change the standard values for the n and plot variables to ensure that sufficient points are plotted.

To see how plotstrt affects a graph, look at the following examples of a recursive sequence.

This graph is plotted beginning with the 1st term.

This graph is plotted beginning with the 9th term.


With TIME axes (from F7 Axes on the Y= Editor), you can set plotstrt = 1 and still graph only a selected part of the sequence. Simply define a viewing window that shows only the area of the coordinate plane you want to view.

You could set:
- \(\mathrm{xmin}=\) first n value to graph
- \(\quad x \max =n \max\) (although you can use other values)
- ymin and ymax = expected
 values for the sequence

The Graph Order format is not available.
- With TIME or CUSTOM axes, multiple sequences are always plotted simultaneously.
- With WEB axes, multiple sequences are always plotted sequentially.

\section*{Exploring a Graph}

Tip: During a trace, you can evaluate a sequence by typing a value for \(n\) and pressing ENTER.

Tip: You can use QuickCenter at any time during a trace, even if the cursor is still on the screen.

As in function graphing, you can explore a graph by using the following tools. Any displayed coordinates are shown in rectangular or polar form as set in the graph format.

\section*{Tool For Sequence Graphs:}

Free-Moving Works just as it does for function graphs. Cursor

F2 Zoom Works just as it does for function graphs.
- Only x (xmin, xmax, xscl) and y (ymin, ymax, yscl) Window variables are affected.
- The n and plot Window variables ( \(\mathrm{nmin}, \mathrm{nmax}\), plotstrt, plotstep) are not affected unless you select 6:ZoomStd (which sets all Window variables to their standard values).

F3) Trace
Depending on whether you use TIME, CUSTOM, or WEB axes, Trace operates very differently.
- With TIME or CUSTOM axes, you move the cursor along the sequence one plotstep at a time. To move approximately ten plotted points at a time, press 2nd \(\odot\) or 2nd \(\odot\).
- When you begin a trace, the cursor is on the first selected sequence at the term number specified by plotstrt, even if it is outside the viewing window.
- QuickCenter applies to all directions. If you move the cursor off the screen (top or bottom, left or right), press ENTER to center the viewing window on the cursor location.
- With WEB axes, the trace cursor follows the web, not the sequence. Refer to page 241.

F5 Math
Only 1 :Value is available for sequence graphs.
- With TIME and WEB axes, the \(u(n)\) value (represented by yc) is displayed for a specified \(n\) value.
- With CUSTOM axes, the values that correspond to \(x\) and \(y\) depend on the axes you choose.

\section*{Setting Axes for Time, Web, or Custom Plots}

For sequences only, you can select different types of axes for the graph. Examples of the different types are given later in this chapter.

Displaying the AXES Dialog Box

From the Y= Editor, press F7.

- Depending on the current Axes setting, some items may be dimmed.
- To exit without making any changes, press ESC.
\begin{tabular}{ll}
\hline Item & Description \\
\hline Axes & \begin{tabular}{l} 
TIME — Plots \(u(n)\) on the \(y\) axis and \(n\) on the \(x\) axis. \\
WEB — Plots \(u(n)\) on the \(y\) axis and \(u(n-1)\) on the \\
\\
x axis. \\
CUSTOM — Lets you select the \(x\) and \(y\) axes.
\end{tabular} \\
Build Web & \begin{tabular}{l} 
Active only when Axes = WEB, this specifies whether a \\
web is drawn manually (TRACE) or automatically \\
(AUTO).
\end{tabular} \\
& \begin{tabular}{l} 
Refer to page 241 for more information.
\end{tabular} \\
Y Axis and & \begin{tabular}{l} 
Active only when Axes = CUSTOM, these let you select \\
the value or sequence to plot on the \(x\) and \(y\) axes.
\end{tabular} \\
& Refer to page 244 for more information.
\end{tabular}

To change any of these settings, use the same procedure that you use to change other types of dialog boxes, such as the MODE dialog box.

\section*{Using Web Plots}

A web plot graphs \(u(n)\) vs. \(u(n-1)\), which lets you study the long-term behavior of a recursive sequence. The examples in this section also show how the initial value can affect a sequence's behavior.

\section*{Valid Functions for Web Plots}

\section*{When You Display the Graph Screen}

\section*{Drawing the Web}

Note: The web starts at plotstrt. The value of \(n\) is incremented by 1 each time the web moves to the sequence (plotstep is ignored).

A sequence must meet the following criteria; otherwise, it will not be graphed properly on WEB axes. The sequence:
- Must be recursive with only one recursion level; \(u(n-1)\) but not \(u(n-2)\).
- Cannot reference \(n\) directly.
- Cannot reference any other defined sequence except itself.

After you select WEB axes and display the Graph screen, the TI-92:
- Draws a \(y=x\) reference line.
- Plots the selected sequence definitions as functions, with \(u(n-1)\) as the independent variable. This effectively converts a recursive sequence into a nonrecursive form for graphing.

For example, consider the sequence \(u 1(n)=\sqrt{5-u 1(n-1)}\). The TI-92 draws the \(\mathrm{y}=\mathrm{x}\) reference line and then plots \(\mathrm{y}=\sqrt{5-\mathrm{x}}\).

After the sequence is plotted, the web may be displayed manually or automatically, depending on how you set Build Web on the AXES dialog box.
\begin{tabular}{ll}
\hline If Build Web \(=\) & The web is: \\
\hline TRACE & \begin{tabular}{l} 
Not drawn until you press FF3. The web is then \\
drawn step-by-step as you move the trace cursor.
\end{tabular} \\
AUTO & \begin{tabular}{l} 
Note: With WEB axes, you cannot trace along the \\
sequence itself as you do in other graphing modes.
\end{tabular} \\
\begin{tabular}{l} 
Drawn automatically. You can then press F3 to \\
trace the web and display its coordinates.
\end{tabular}
\end{tabular}

The web:
1. Starts on the x axis at the initial value ui (when plotstrt \(=1\) ).
2. Moves vertically (either up or down) to the sequence.
3. Moves horizontally to the \(y=x\) reference line.
4. Repeats this vertical and horizontal movement until \(n=n m a x\).

\section*{Using Web Plots (Continued)}

\section*{Example: Convergence}

Tip: During a trace, you can move the cursor to a specified \(n\) value by typing the value and pressing ENTER.

Tip: When the nc value changes, the cursor is on the sequence. The next time you press \(\bigcirc\), nc stays the same but the cursor is now on the \(y=x\) reference line.
1. On the \(\mathrm{Y}=\) Editor \((\square[\mathrm{Y}=])\), define \(\mathrm{u} 1(\mathrm{n})=-.8 \mathrm{u}(\mathrm{n}-1)+3.6\). Set initial value ui1 \(=-4\).
2. Press F7. Set Axes \(=\) TIME.
3. On the Window Editor ( \(\square\) [window] ), set the Window variables.
\(\mathrm{nmin}=1 . \quad \mathrm{xmin}=0 . \quad \mathrm{ymin}=-10\). \(n \max =25\). \(\quad \mathrm{xmax}=25\). \(y \max =10\). plotstrt=1. \(\quad \mathrm{xscl}=1 . \quad \mathrm{yscl}=1\). plotstep=1.
4. Graph the sequence ( - [GRAPH]).

By default, a sequence uses the Square display style.

5. On the Y= Editor, press F7. Set Axes \(=\) WEB and Build Web \(=\) AUTO.
6. On the Window Editor, change the Window variables.
\[
\begin{array}{lll}
\text { nmin=1. } & \text { xmin=-10. } y \min =-10 \\
\text { nmax }=25 . & x \max =10 . & y \max =10 \\
\text { plotstrt=1. } & \text { xscl=1. } \\
\text { plotstep=1. } & & y s c l=1
\end{array}
\]
7. Regraph the sequence.

Web plots are always shown as lines, regardless of the selected display style.

8. Press [F3. As you press \(\bigcirc\), the trace cursor follows the web. The screen displays the cursor coordinates \(\mathrm{nc}, \mathrm{xc}\), and yc (where xc and yc represent \(u(n-1)\) and \(u(n)\), respectively).
As you trace to larger values of nc, you can see xc and yc approach the convergence point.
1. On the \(\mathrm{Y}=\) Editor \((\square[\mathrm{Y}=]\) ), define \(\mathrm{u} 1(\mathrm{n})=3.2 \mathrm{u}(\mathrm{n}-1)-\) \(.8(u 1(n-1))^{2}\). Set initial value ui1 \(=4.45\).
2. Press F7. Set Axes \(=\) TIME.
3. On the Window Editor ( \(\square\) [WINDOW]), set the \(\mathrm{nmin}=0 . \quad \mathrm{xmin}=0 . \quad \mathrm{ymin}=-75\). \(n \max =10 . \quad \mathrm{xmax}=10 . \quad \mathrm{ymax}=10\). plotstrt=1. \(\quad \mathrm{xscl}=1 . \quad \mathrm{yscl}=1\). plotstep=1. Window variables.
 points are plotted.

\section*{Example: Oscillation}

Note: Compare this graph with the divergence example. This is the same sequence with a different initial value.

Note: The web moves to an orbit oscillating between two stable points.

Note: By starting the web plot at a later term, the stable oscillation orbit is shown more clearly.
5. On the \(\mathrm{Y}=\) Editor, press F7. Set Axes \(=\mathrm{WEB}\) and Build \(\mathrm{Web}=\mathrm{AUTO}\).
6. On the Window Editor, change the Window variables.
7. Regraph the sequence.

The web plot shows how quickly the sequence diverges to large negative values.
\(n \min =0 . \quad x \min =-10 . y \min =-10\). \(n \max =10\). \(\quad \mathrm{xmax}=10 . \quad \mathrm{ymax}=10\). plotstrt=1. \(\quad \mathrm{xscl}=1 . \quad \mathrm{yscl}=1\). plotstep=1.


This example shows how the initial value can affect a sequence.
1. On the \(Y=\) Editor \((\nabla[Y=])\), use the same sequence defined in the divergence example: \(u 1(n)=3.2 u 1(n-1)-.8(u 1(n-1))^{2}\). Set initial value ui1 \(=0.5\).
2. Press [77. Set Axes = TIME.
3. On the Window Editor ( \(\rightarrow\) [window] ), set the Window variables.
\begin{tabular}{lll}
\begin{tabular}{ll}
\(\mathrm{nmin}=1\). & \(\mathrm{xmin}=0\).
\end{tabular} & \(\mathrm{ymin}=0\). \\
\(\mathrm{nmax}=100\). & \(\mathrm{xmax}=100\). & \(y \max =5\). \\
plotstrt=1. \\
plotstep=1. & \(\mathrm{xscl}=10\). & yscl=1.
\end{tabular}
4. Graph the sequence ( \(\rightarrow\) GRAPH \(]\) ).

5. On the Y= Editor, press F7. Set Axes \(=\) WEB and Build Web \(=\) AUTO.
6. On the Window Editor, change \(\begin{array}{lll}\mathrm{nmin}=1 . & x \min =-2.68 & y \min =-4.7 \\ \mathrm{nmax}=100 & x \max =6.47 & \text { ymax }=4.7\end{array}\) the Window variables.

7. Regraph the sequence.

8. Press [53. Then use \(\bigcirc\) to trace the web.

As you trace to larger values of nc, notice that xc and yc oscillate between 2.05218 and 3.19782.
9. On the Window Editor, set plotstrt=50. Then regraph the sequence.

\section*{Using Custom Plots}

\section*{Example: PredatorPrey Model}

Note: Assume there are initially 200 rabbits and 50 wolves.

Note: Use F3 to individually trace the number of rabbits u1(n) and wolves u2(n) over time ( \(n\) ).

Note: Use F3 to trace both the number of rabbits ( \(x\) c) and wolves \((y c)\) over the cycle of 400 generations.

CUSTOM axes give you great flexibility in graphing sequences. As shown in the following example, CUSTOM axes are particularly effective for showing relationships between one sequence and another.

Using the predator-prey model in biology, determine the numbers of rabbits and wolves that maintain population equilibrium in a certain region.
\(R=\) Number of rabbits
\(M=\) Growth rate of rabbits if there are no wolves (use .05)
\(\mathrm{K}=\) Rate at which wolves can kill rabbits (use .001)
\(\mathrm{W}=\) Number of wolves
\(\mathrm{G}=\) Growth rate of wolves if there are rabbits (use .0002)
D = Death rate of wolves if there are no rabbits (use .03)
\(R_{n}=R_{n-1}\left(1+M-K W_{n-1}\right)\)
\(W_{n}=W_{n-1}\left(1+G R_{n-1}-D\right)\)
1. On the \(\mathrm{Y}=\) Editor \((\square[\mathrm{Y}=])\), define the sequences and initial values for \(R_{n}\) and \(W_{n}\).
```

$\mathrm{u} 1(\mathrm{n})=\mathrm{u} 1(\mathrm{n}-1) *(1+.05-.001 * u 2(\mathrm{n}-1))$
ui1 $=200$
$\mathrm{u} 2(\mathrm{n})=\mathrm{u} 2(\mathrm{n}-1) *(1+.0002 * \mathrm{u} 1(\mathrm{n}-1)-.03)$
ui2 $=50$

```
2. Press F7. Set Axes \(=\) TIME.
3. On the Window Editor ( \(\rightarrow\) [wiNDOW]), set the Window variables.
\(n \min =0 . \quad x \min =0 . \quad y \min =0\). \(n \max =400\). \(\quad x \max =400\). \(y \max =300\). plotstrt=1. \(\quad x s c l=100 . \quad y s c l=100\). plotstep=1.
4. Graph the sequence ( - [GRAPH]).

5. On the Y= Editor, press F7. Set Axes = CUSTOM, X Axis = u1, and \(Y\) Axis \(=u 2\).
6. On the Window Editor,change the Window variables.
7. Regraph the sequence.
u2(n)
\begin{tabular}{lll}
\(\mathrm{nmin}=0\). & \(\mathrm{xmin}=84\). & \(\mathrm{ymin}=25\). \\
\(\mathrm{nmax}=400\). & \(\mathrm{xmax}=237\). & \(\mathrm{ymax}=75\). \\
plotstrt=1. & \(\mathrm{xscl}=50\). & \(\mathrm{yscl}=10\). \\
plotstep=1. & &
\end{tabular}
plotstep=1.


\section*{Using a Sequence to Generate a Table}

Previous sections described how to graph a sequence. You can also use a sequence to generate a table. Refer to Chapter 4 for detailed information about tables.

\section*{Example: Fibonacci Sequence}

In a Fibonacci sequence, the first two terms are 1 and 1. Each succeeding term is the sum of the two immediately preceding terms.
1. On the Y= Editor ( \(-[Y=]\) ), define the sequence and set the initial values as shown.

2. Set table parameters
( - [Tbliset] ) to: tblStart = 1
\(\Delta \mathrm{tbl}=1\)
Independent = AUTO
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{Tincle setur} \\
\hline \multicolumn{2}{|l|}{t.blSt.art. 1.} \\
\hline \multicolumn{2}{|l|}{stbl: 1.} \\
\hline Graph <-> Table: & \\
\hline Independent: A & \\
\hline (Ent.er=SHDE) & (ESC=CAHCEL \\
\hline
\end{tabular}
3. Set Window variables ( \(\square\) [WINDOW] ) so that nmin has the same value as tblStart.
```

Mmir=1,
Flotstrt=1.
Plotstee=1
xmif=10-
xmel=1

```

```

OMEx=10,
H=ll=1.

```
4. Display the table ( \(\bullet\) [TABLE]).
5. Scroll down the table (९ or 2nd \(\bigcirc\) ) to see more of the sequence.


\section*{Comparison of TI-92 and TI-82 Sequence Functions}

\section*{Comparison Table}
\begin{tabular}{ll}
\hline TI-92 & TI-82 \\
\hline On the Y= Editor: & \\
u1(n) & Un \\
ui1 & UnStart (Window variable on TI-82) \\
u2(n) & Vn \\
ui2 & VnStart (Window variable on TI-82) \\
u3(n) through u99(n) & not available \\
ui3 through ui99 & not available \\
\hline On the Window Editor: & \\
nmin & nStart \\
nmax & nMax \\
plotstrt & nMin \\
plotstep & not available \\
\hline
\end{tabular}

\section*{3D Graphing}

Preview of 3D Graphing ..... 248
Overview of Steps in Graphing 3D Equations ..... 249
Differences in 3D and Function Graphing ..... 250
Moving the Cursor in 3D ..... 253
Rotating and/or Elevating the Viewing Angle ..... 255
Changing the Axes and Style Formats ..... 257

This chapter describes how to graph 3D equations on the TI-92. Before using this chapter, you should be familiar with Chapter 3: Basic Function Graphing.

In a 3D graph of an equation for \(\mathrm{z}(\mathrm{x}, \mathrm{y})\), a point's location is defined as shown below.


\section*{Preview of 3D Graphing}

Graph the 3D equation \(z(x, y)=\left(x^{3} y-y^{3} x\right) / 390\). Then rotate your viewing angle around the \(Z\) axis.


\section*{Overview of Steps in Graphing 3D Equations}

To graph 3D equations, use the same general steps used for \(y(x)\) functions as described in Chapter 3: Basic Function Graphing. Any differences that apply to 3D equations are described on the following pages.

\section*{Graphing 3D \\ Equations}

Tip: To turn off any stat data plots (Chapter 9), press [F5 5 or use F4] to deselect them.

Note: For 3D graphs, the viewing window is called the viewing cube. F2 Zoom also changes the viewing cube.

Tip: To help you see the orientation of 3D graphs, turn on Axes and Labels.

Note: Before displaying the graph, the screen shows the "percent evaluated."

\section*{Exploring the Graph}

Tip: You can also evaluate \(z(x, y)\) while tracing. Type the \(x\) value and press [ENTER; then type the \(y\) value and press ENTER.




mir
\(\mathrm{x}=-10\)
ma
\(=10\).
\(\times \max =10\),
\(\times 9 r i d=14\),

\(=1 \mathrm{~m}=10\),

\(\operatorname{zmir}=-10\)
\(2 \mathrm{zol}=1\).


From the Graph screen, you can:
- Trace the equation.
- Use the F2 Zoom toolbar menu to zoom in or out on a portion of the graph. Some of the menu items are dimmed because they are not available for 3D graphs.
- Use the F5 Math toolbar menu to evaluate the equation at a specified point. Only 1:Value is available for 3D graphs.

\section*{Differences in 3D and Function Graphing}

This chapter assumes that you already know how to graph \(y(x)\) functions as described in Chapter 3: Basic Function Graphing. This section describes the differences that apply to 3D equations.

\section*{Setting the Graph Mode}

Defining 3D
Equations on the Y= Editor

Tip: You can use the Define command from the Home screen (see Appendix A) to define functions and equations for any graphing mode, regardless of the current mode.

Use MODE to set Graph = 3D before you define equations or set Window variables. The Y= Editor and the Window Editor let you enter information for the current Graph mode setting only.


The Y= Editor maintains an independent function list for each Graph mode setting. For example, suppose:
- In FUNCTION graphing mode, you define a set of \(y(x)\) functions. You change to 3D graphing mode and define a set of \(z(x, y)\) equations.
- When you return to FUNCTION graphing mode, your \(y(x)\) functions are still defined in the Y= Editor. When you return to 3D graphing mode, your \(z(x, y)\) equations are still defined.

Because you can graph only one 3D equation at a time, display styles are not available. On the Y= Editor, the F6 Style toolbar menu is dimmed.

For 3D equations, however, you can use -F or F 19 to set the Style format to WIRE FRAME or HIDDEN SURFACE. Refer to "Changing the Axes and Style Formats" on page 257.

\section*{Window Variables}

Note: If you enter a fractional number for xgrid or ygrid, it is rounded to the nearest whole number \(\geq 1\).

Note: You cannot display tick marks on the \(X\) and \(Y\) axes.

Note: Increasing the grid variables decreases the graphing speed.

The Window Editor maintains an independent set of Window variables for each Graph mode setting (just as the \(\mathrm{Y}=\) Editor maintains independent function lists). 3D graphs use the following Window variables.

\section*{Variable Description}
eye \(\theta^{\circ}\), eye \(\phi^{\circ}\) Angles (always in degrees) used to view the graph.
Refer to "Rotating and/or Elevating the Viewing Angle" on page 255.
\(x \min , x m a x, \quad\) Boundaries of the viewing cube.
\(y \min , y m a x\),
zmin, zmax
xgrid, ygrid The distance between \(x\) min and \(x\) max and between ymin and ymax is divided into the specified number of grids. The \(z(x, y)\) equation is evaluated at each grid point where the grid lines (or grid wires) intersect.
The incremental value along \(x\) and \(y\) is calculated as:
\(x\) increment \(=\frac{x \max -x \min }{x \text { grid }} \quad y\) increment \(=\frac{y m a x-y m i n}{y g r i d}\)
The number of grid wires is \(x\) grid +1 and ygrid +1 . For example, when xgrid \(=14\) and ygrid \(=14\), the XY grid consists of \(225(15 \times 15)\) grid points.

zscl Distance between tick marks on the Z axis.

Standard values (set when you select 6:ZoomStd from the F2 Zoom toolbar menu) are:
\[
\begin{array}{llll}
\text { eye } \theta^{\circ}=20 . & \text { xmin }=-10 . & \text { ymin }=-10 . & z \min =-10 . \\
\text { eye } \phi^{\circ}=70 . & x \operatorname{lax}=10 . & \text { ymax }=10 . & z m a x=10 . \\
& \text { xgrid }=14 . & \text { ygrid }=14 . & z s c l=1 .
\end{array}
\]

You may need to increase the standard values for the grid variables (xgrid, ygrid) to ensure that enough points are plotted.

\section*{Differences in 3D and Function Graphing (Continued)}

\section*{Setting the Graph Format}

\section*{Exploring a Graph}

Tip: Refer to "Moving the Cursor in 3D" on page 253.

Tip: During a trace, you can also evaluate \(z(x, y)\). Type the \(x\) value and press ENTER; then type the \(y\) value and press ENTER.

The Axes and Style formats are specific to the 3D graphing mode. Refer to "Changing the Axes and Style Formats" on page 257.

As in function graphing, you can explore a graph by using the following tools. Any displayed coordinates are shown in rectangular or cylindrical form as set in the graph format. (In 3D graphing, cylindrical coordinates are shown when you use \(\square \mathrm{F}\) to set Coordinates \(=\) POLAR.)

\section*{Tool For 3D Graphs:}

Free-Moving The free-moving cursor is not available. Cursor

F2 Zoom Works essentially the same as it does for function graphs, but remember that you are now using three dimensions instead of two.
- Only the following zooms are available:
\begin{tabular}{lll} 
2:Zoomln & \(5:\) ZoomSqr & A:ZoomFit \\
3:ZoomOut & 6:ZoomStd & B:Memory \\
& & C:SetFactors
\end{tabular}
- Only \(x\) ( \(x\) min, \(x m a x\) ), \(y\) ( \(y m i n, ~ y m a x\) ), and \(z\) ( \(z m i n\), zmax, zscl) Window variables are affected.
- The grid (xgrid, ygrid) and eye (eye \(\theta^{\circ}\), eye \(\phi^{\circ}\) ) Window variables are not affected unless you select 6:ZoomStd (which resets these variables to their standard values).
F3 Trace Lets you move the cursor along a grid wire from one grid point to the next on the 3D surface.
- When you begin a trace, the cursor appears at the midpoint of the XY grid.
- QuickCenter is available. At any time during a trace, regardless of the cursor's location, you can press ENTER to center the viewing cube on the cursor.
- Cursor movement is restricted in the \(x\) and \(y\) directions. You cannot move the cursor beyond the viewing cube boundaries set by xmin , xmax , ymin, and ymax.

F5 Math Only 1:Value is available for 3D graphs. This tool displays the \(z\) value for a specified \(x\) and \(y\) value.
After selecting 1 :Value, type the \(x\) value and press ENTER. Then type the y value and press ENTER.

\section*{Moving the Cursor in 3D}

How to Move the Cursor

Note: You can move the cursor only within the \(x\) and \(y\) boundaries set by Window variables xmin, xmax, ymin, and ymax.

Tip: From the \(Y=\) Editor, Window Editor, or Graph screen, use \(\square \mathrm{F}\) to show the axes and their labels.

\section*{Simple Example of Moving the Cursor}

Tip: By displaying and labeling the axes, you can more easily see the pattern in the cursor movement.

Tip: To move grid points closer together, you can increase Window variables xgrid and ygrid.

When you move the cursor along a 3D surface, it may not be obvious why the cursor moves as it does. 3D graphs have two independent variables ( \(x, y\) ) instead of one, and the \(X\) and \(Y\) axes have a different orientation than other graphing modes.

On a 3D surface, the cursor always follows along a grid wire.
\begin{tabular}{cl}
\hline Cursor Key & Moves the cursor to the next grid point in the: \\
\hline\(\bigcirc\) & Positive x direction \\
\(\bigcirc\) & Negative x direction \\
\(\bigcirc\) & Positive y direction \\
\hline
\end{tabular}

Although the rules are straightforward, the actual cursor movement can be confusing unless you know the orientation of the axes.

In 2D graphing, the X and Y axes always have the same orientation relative to the Graph screen.

In 3D graphing, X and Y have a different orientation relative to the Graph screen. Also, you can rotate and/or elevate the viewing angle.



The following graph shows a sloped plane that has the equation \(z 1(x, y)={ }^{-}(x+y) / 2\). Suppose you want to trace around the displayed boundary.

> When you press [F3, the trace cursor appears at the midpoint of the XY grid. Use the cursor pad to move the cursor to any edge.
moves in a
positive x direction,
up to xmax.
moves in a
positive y direction,
up to ymax.


When the trace cursor is on an interior point in the displayed plane, the cursor moves from one grid point to the next along one of the grid wires. You cannot move diagonally across the grid.

Notice that the grid wires may not appear parallel to the axes.

\section*{Moving the Cursor in 3D (Continued)}

\section*{Example of the Cursor on a Hidden Surface}

Tip: To cut away the front of the saddle in this example, set \(x\) max \(=0\) to show only negative \(x\) values.

On more complex shapes, the cursor may appear as if it is not on a grid point. This is an optical illusion caused when the cursor is on a hidden surface.

For example, consider a saddle shape \(z 1(x, y)=\left(x^{2}-y^{2}\right) / 3\). The following graph shows the view looking down the Y axis.


Now look at the same shape at \(10^{\circ}\) from the X axis \(\left(\right.\) eye \(\left.\theta^{\circ}=10\right)\).


You can move the cursor so that it does not appear to be on a grid point.


If you cut away the front side, you can see the cursor is actually on a grid point on the hidden back side.

\section*{Example of an "Off the Curve" Cursor}

Tip: QuickCenter lets you center the viewing cube on the cursor's location. Simply press ENTER.

Although the cursor can move only along a grid wire, you will see many cases where the cursor does not appear to be on the 3D surface at all. This occurs when the Z axis is too short to show \(\mathrm{z}(\mathrm{x}, \mathrm{y})\) for the corresponding \(x\) and \(y\) values.

For example, suppose you trace the paraboloid \(z(x, y)=x^{2}+y^{2}\) graphed with the indicated Window variables. You can easily move the cursor to a position such as:


Although the cursor is actually tracing the paraboloid, it appears off the curve because the trace coordinates:
- \(\quad x c\) and yc are within the viewing cube.
—but -
- zc is outside the viewing cube.

When \(z c\) is outside the \(z\) boundary of the viewing cube, the cursor is physically displayed at zmin or zmax (although the screen shows the correct trace coordinates).

\section*{Rotating and/or Elevating the Viewing Angle}

The Window variables eye \(\theta^{\circ}\) and eye \(\phi^{\circ}\) let you view a 3D graph from any angle. These variables do not affect the graph's orientation along the axes; they affect only the angle used to view the graph.

\section*{How the Viewing Angle Is Measured}

\section*{Effect of Changing eye \(\theta^{\circ}\)}

Note: This example increments eye \(\theta^{\circ}\) by 30 .

The viewing angle has two components:
- eye \(\theta^{\circ}\) - angle in degrees from the positive X axis (rotation).
- eye \(\phi^{\circ}\) - angle in degrees from the positive Z axis (elevation).

You can enter negative angles as necessary. The default values are eye \(\theta^{\circ}=20\) and eye \(\phi^{\circ}=70\).


On the Window Editor, always enter eye \(\theta^{\circ}\) and eye \(\phi^{\circ}\) in degrees, regardless of the current angle mode.

Do not enter a \({ }^{\circ}\) symbol. For example,
 type 20 and 70 , not \(20^{\circ}\) and \(70^{\circ}\).

The view on the Graph screen is always oriented along the viewing angle. From this point of view, you can change eye \(\theta^{\circ}\) to rotate the viewing angle around the Z axis.


\section*{Rotating and/or Elevating the Viewing Angle (Continued)}

\section*{Effect of Changing eye \(\phi^{\circ}\)}

Note: This example starts on the \(X Y\) plane \(\left(\right.\) eye \(\left.\phi^{\circ}=90\right)\) and decrements eye \(\phi^{\circ}\) by 20 to elevate the viewing angle.

From the Home

\section*{Screen or a}

Program

By changing eye \(\phi^{\circ}\), you can elevate your viewing angle above the XY plane.

If \(90<\) eye \(\phi^{\circ}<270\), the viewing angle is below the XY plane.


The values used for eye \(\theta^{\circ}\) and eye \(\phi^{\circ}\) are stored in the system variables eye \(\theta\) and eyeф (without the \({ }^{\circ}\) symbol). You can access or store to these variables as necessary.
To type \(\phi\) (in eye \(\phi\) ), press 2nd G F or press 2nd [CHAR] and use the Greek menu.

\section*{Changing the Axes and Style Formats}

Displaying the GRAPH FORMATS Dialog Box

\section*{Examples of Axes Settings}

Tip: Setting Labels \(=\) ON is helpful when you display either type of 3D axes.

With its default settings, the TI-92 displays hidden surfaces on a 3D graph but does not display the axes. However, you can change the graph format at any time.

From the Y= Editor, Window Editor, or Graph screen:
- Press F1 and select 9:Format.
- or -
- Press F.

- The dialog box shows the current graph format settings.
- To exit without making a change, press ESC.

To change any of these settings, use the same procedure that you use to change other types of dialog boxes, such as the MODE dialog box.

To display the valid Axes settings, highlight the current setting and press \(\bigcirc\).

- AXES - Shows standard XYZ axes.

- BOX - Shows 3-dimensional box axes.

The edges of the box are determined by the Window variables xmin , xmax, etc.


In many cases, the origin \((0,0,0)\) is inside the box, not at a corner.
For example, if \(x \min =y \min =z \min =-10\) and \(x \max =y \max =z \max =10\), the origin is at the center of the box.

\section*{Changing the Axes and Style Formats (Continued)}

\section*{Examples of Style Settings}

Tip: WIRE FRAME is faster to graph and may be more convenient when you're experimenting with different shapes.

Note: These examples show the graphs as displayed on the screen.

Note: These examples use artificial shading (which is not displayed on the screen) to show the front of the box.

To display the valid Style settings, highlight the current setting and press \(\bigcirc\).
- WIRE FRAME - Shows the 3D shape as a transparent wire frame.
- HIDDEN SURFACES - Uses shading to differentiate the two sides of the 3D shape.


The eye angles used to view a graph (eye \(\theta^{\circ}\) and eye \(\phi^{\circ}\) Window variables) can result in optical illusions that cause you to lose perspective on a graph.

Typically, most optical illusions occur when the eye angles are in a negative quadrant of the coordinate system.

Optical illusions may be more noticeable with box axes. For example, it may not be immediately obvious which is the "front" of the box.


To minimize the effect of optical illusions, use the GRAPH FORMATS dialog box to set Style = HIDDEN SURFACE.

\section*{Additional Graphing Topics}

Preview of Additional Graphing Topics ..... 260
Collecting Data Points from a Graph ..... 261
Graphing a Function Defined on the Home Screen ..... 262
Graphing a Piecewise Defined Function ..... 264
Graphing a Family of Curves ..... 266
Using the Two-Graph Mode ..... 267
Drawing a Function or Inverse on a Graph ..... 270
Drawing a Line, Circle, or Text Label on a Graph ..... 271
Saving and Opening a Picture of a Graph ..... 275
Animating a Series of Graph Pictures ..... 277
Saving and Opening a Graph Database ..... 278

This chapter describes additional features that you can use to create graphs on the TI-92. This information generally applies to all Graph mode settings.


This chapter assumes that you already know the fundamental procedures for defining and selecting functions, setting Window variables, and displaying graphs as described in Chapter 3: Basic Function Graphing.

\section*{Preview of Additional Graphing Topics}

From the Home screen, graph the piecewise defined function: \(y=-x\) when \(x<0\) and \(y=5 \cos (x)\) when \(x \geq 0\). Draw a horizontal line across the top of the cosine curve. Then save a picture of the displayed graph.
\begin{tabular}{ll}
\hline Steps & Keystrok \\
\hline 1. Display the MODE dialog box. & MODE \\
For Graph mode, select FUNCTION. & 1 \\
For Angle mode, select RADIAN. & \(\bigcirc\left(\begin{array}{ll}\text { ENTER }\end{array}\right.\)
\end{tabular}
2. Display the Home screen. Use the Graph command and the when function to specify the piecewise defined function.

FF4 2 selects Graph from the Other toolbar menu and automatically adds a space.
3. Execute the Graph command, which automatically displays the Graph screen.
The graph uses the current Window variables, which are assumed to be their standard values ( \(\mathbb{F 2} 6\) ) for this example.
4. Draw a horizontal line across the top of the cosine curve.

After you press F7 5, the TI-92 remains in "line" mode until you select a different operation or press ESC.
5. Save a picture of the graph. Use PIC1 as the variable name for the picture.
Be sure to set Type = Picture. By default, it is set to GDB.
6. Clear the drawn horizontal line.

You can also press [F4 to regraph.
7. Open the saved picture variable to redisplay the graph with the line.

Be sure to set Type \(=\) Picture. By default, it is set to GDB.


ENTER


F7 5
\(\bigcirc\) (until the line is positioned) ENTER


F1 2
© 2
\(\bigcirc\) ๑) PIC1
ENTER ENTER


F6 1

F1 1
© 2
(if not already shown, also set Variable = pic1)


ENTER

\section*{Collecting the Points}

Tip: To display coordinates or math results, trace a function with [F3 or perform an F5 Math operation (such as Minimum or Maximum). You can also use the freemoving cursor.

Tip: Use a split screen to show a graph and the Home screen or Data/Matrix Editor at the same time.

Notes about SysData Variable

From the Graph screen, you can store sets of coordinate values and/or math results for later analysis. You can store the information as a single-row matrix (vector) on the Home screen or as data points in a system data variable that can be opened in the Data/Matrix Editor.
1. Display the graph. (This example shows \(\mathrm{y} 1(\mathrm{x})=5 * \cos (\mathrm{x})\).)
2. Display the coordinates or math results you want to collect.
3. Press \(\square \mathrm{H}\) or \(\square \mathrm{D}\) to save the information to the Home screen or the sysData variable, respectively.
4. Repeat the process as necessary.

- When you press \(\rightarrow \mathrm{D}\) :
- If sysData does not exist, it is created in the MAIN folder.
- If sysData already exists, new data is appended to the end of any existing data. Existing titles or column headers (for the affected columns) are cleared; titles are replaced with the applicable titles for the new data.
- The sysData variable can be cleared, deleted, etc., just as any other data variable. However, it cannot be locked.
- If the Graph screen contains a function or stat plot that references the current contents of sysData, \(\Delta\) D will not operate.

\section*{Graphing a Function Defined on the Home Screen}

In many cases, you may create a function or expression on the Home screen and then decide to graph it. You can copy an expression to the \(Y=\) Editor, or graph it directly from the Home screen without using the \(Y=\) Editor.

\section*{What Is the "Native" Independent Variable?}

\section*{Copying from the Home Screen to the \(Y=\) Editor}

Tip: Use -C or \(\bullet\) V to copy or paste, respectively, instead of F1 5 or F1 6.

Tip: To copy an expression from the Home screen's history area to the entry line, use the auto-paste feature or copy and paste.

Tip: Define is available from the Home screen's [F4 toolbar menu.

Tip: 2nd [RCL] is useful if an expression is stored to a variable or function that does not correspond to the \(Y=\) Editor, such as a1 or f1(x).

On the \(\mathrm{Y}=\) Editor, all functions must be defined in terms of the current graph mode's "native" independent variable.
\begin{tabular}{lc}
\hline Graph Mode & Native Independent Variable \\
\hline Function & x \\
Parametric & t \\
Polar & \(\theta\) \\
Sequence & n \\
3D & \(\mathrm{x}, \mathrm{y}\) \\
\hline
\end{tabular}

If you have an expression on the Home screen, you can use any of the following methods to copy it to the \(\mathrm{Y}=\) Editor.

\section*{Method Description}

Copy and paste1. Highlight the expression on the Home screen. Press \(F 1\) and select 5:Copy.
2. Display the \(\mathrm{Y}=\) Editor, highlight the desired function, and press ENTER.
3. Press F1 and select 6:Paste. Then press ENTER.

STO Store the expression to a \(\mathrm{Y}=\) function name.


Define
command
Define the expression as a user-defined \(\mathrm{Y}=\) function.
\[
\text { Define } y 1(x)=2 x^{\wedge} 3+3 x^{\wedge} 2-4 x+12
\]

2nd [RCL] If the expression is already stored to a variable:
1. Display the \(\mathrm{Y}=\) Editor, highlight the desired function, and press ENTER.
2. Press 2nd [RCL]. Type the variable name that contains the expression, and press ENTER twice.

Important: To recall a function variable such as \(f 1(x)\), type only f1, not the full function name.
3. Press ENTER to save the recalled expression in the \(\mathrm{Y}=\) Editor's function list.

\section*{Graphing Directly from the Home Screen}

Tip: Graph is available from the Home screen's [F4 toolbar menu.

Note: Graph uses the current Window variable settings.

Tip: To create a table from the Home screen, use the Table command. It is similar to Graph. Both share the same expressions.

\section*{Clearing the Graph Screen}

\section*{Extra Benefits of User-Defined Functions}

Note: Use two or more character argument names (xx,yy,xtemp,...) to define function arguments to minimize the chance of a circular definition error when calling the function with common arguments ( \(x, y, z, a, b, c, \ldots\) )

The Graph command lets you graph an expression from the Home screen without using the Y= Editor. Unlike the Y= Editor, Graph lets you specify an expression in terms of any independent variable, regardless of the current graphing mode.
\begin{tabular}{lc|}
\hline \begin{tabular}{l} 
If the expression is in \\
terms of:
\end{tabular} & \begin{tabular}{l} 
Use the Graph command \\
as shown in this example:
\end{tabular} \\
\hline \begin{tabular}{lc} 
The native \\
independent variable & graph \(1.25 x * \cos (x)\) \\
\hline \begin{tabular}{l} 
For function graphing, \\
x is the native variable.
\end{tabular} \\
A non-native \\
independent variable & \begin{tabular}{l} 
graph 1.25a*cos (a), a \\
\begin{tabular}{l} 
Specify the independent \\
variable; otherwise, you \\
may get an error.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Graph does not work with sequence graphs. For parametric, polar, and 3D graphs, use the following variations.

In PARAMETRIC graphing mode: Graph \(x E x p r, y E x p r, t\)
In POLAR graphing mode:
Graph expr, \(\theta\)
In 3D graphing mode:
Graph expr, \(x, y\)
Graph does not copy the expression to the Y= Editor. Instead, it temporarily suspends any functions selected on the Y= Editor. You can trace, zoom, or show Graph expressions on the Table screen, just the same as \(\mathrm{Y}=\) Editor functions.

Each time you execute Graph, the new expression is added to the existing ones. To clear the graphs:
- Execute the CIrGraph command (available from the Home screen's F4 Other toolbar menu).
- or -
- Display the Y= Editor. The next time you display the Graph screen, it will use the functions selected on the \(\mathrm{Y}=\) Editor.

You can define a user-defined function in terms of any independent variable. When you call that function, you should refer to it by using a different variable. For example:


\section*{Graphing a Piecewise Defined Function}

\section*{Using the When Function}

Tip: To enter when, type it or use 2nd [CATALOG].

To graph a piecewise function, you must first define the function by specifying boundaries and expressions for each piece. The when function is extremely useful for two-piece functions. For three or more pieces, it may be easier to create a multi-statement, user-defined function.

To define a two-piece function, use the syntax:
when(condition, trueExpression, falseExpression)
For example, suppose you want to graph a function with two pieces.
\begin{tabular}{ll}
\hline When: & Use expression: \\
\hline\(x<0\) & \(-x\) \\
\(x \geq 0\) & \(5 \cos (x)\) \\
\hline
\end{tabular}

In the \(\mathrm{Y}=\) Editor:
The function is pretty printed in this form.

Enter the function in this form.



For three or more pieces, you can use nested when functions.
\begin{tabular}{ll}
\hline When: & Use expression: \\
\hline\(x<-\pi\) & \(4 \sin (x)\) \\
\(x \geq-\pi\) and \(x<0\) & \(2 x+6\) \\
\(x \geq 0\) & \(6-x^{2}\) \\
\hline
\end{tabular}


In the \(\mathrm{Y}=\) Editor:

where:


Nested functions quickly become complex and difficult to visualize.

\section*{Using a MultiStatement, UserDefined Function}

Note: For information about similarities and differences between functions and programs, refer to Chapter 17.

For three or more pieces, you may want to create a multi-statement, user-defined function.

For example, consider the previous three-piece function.
\begin{tabular}{ll}
\hline When: & Use expression: \\
\hline\(x<-\pi\) & \(4 \sin (x)\) \\
\(x \geq-\pi\) and \(x<0\) & \(2 x+6\) \\
\(x \geq 0\) & \(6-x^{2}\)
\end{tabular}

A multi-statement, user-defined function can have many of the control and decision-making structures (If, Elself, Return, etc.) used in programming. When creating the structure of a function, it may be helpful to visualize it first in a block form.
```

Func
Return 4*sin(x)
ElseIf }x>=-\pi\mathrm{ and }x<0\mathrm{ Then
Return 2x+6
Else
Return 6-x^2
EndIf
EndFunc

```

Func and EndFunc must begin and end the function.

For information about the individual statements, refer to Appendix A.

When entering a multi-statement function on the \(\mathrm{Y}=\) Editor or Home screen, you must enter the entire function on a single line.
- Use a colon (:) to separate each statement.
```

Func:If x<-\pi Then:Return 4*sin(x): ... :EndIf:EndFunc

```

On the \(\mathrm{Y}=\) Editor:
 function.
 function on one line. Be sure to include colons.

\section*{From the Home \\ Screen or a Program}

From the Home screen, you can also use the Define command to create a multi-statement, user-defined function. Refer to page 262 for other information on copying a function from the Home screen to the \(\mathrm{Y}=\) Editor.

From the Program Editor (Chapter 17), you can create a user-defined function. For example, use the Program Editor to create a function named \(\mathrm{f} 1(\mathrm{xx})\). In the \(\mathrm{Y}=\) Editor, set \(\mathrm{y} 1(\mathrm{x})=\mathrm{f} 1(\mathrm{x})\).

\section*{Graphing a Family of Curves}

\section*{Examples Using the} \(Y=\) Editor

Tip: Enclose list elements in braces (2nd [i] and 2nd [1]) and separate them with commas.

Note: The commas are shown in the entry line but not in the function list.

\section*{Example Using the Graph Command}

\section*{Simultaneous Graphs with Lists}

Tip: To set graph formats, press -F from the \(Y=\) Editor, Window Editor, or Graph screen.

When Tracing a Family of Curves

By entering a list in an expression, you can plot a separate function for each value in the list. (You cannot graph a family of curves in SEQUENCE or 3D graphing mode.)

Enter the expression \(\{2,4,6\} \sin (x)\) and graph the functions.


Graphs three functions: \(2 \sin (x), 4 \sin (x), 6 \sin (x)\)

Enter the expression \(\{2,4,6\} \sin (\{1,2,3\} x)\) and graph the functions.



Graphs three functions:
\(2 \sin (x), 4 \sin (2 x), 6 \sin (3 x)\)

Similarly, you can use the Graph command from the Home screen or a program as described on page 263.
\(\operatorname{graph}\{2,4,6\} \sin (x)\)
\(\operatorname{graph}\{2,4,6\} \sin (\{1,2,3\} x)\)

When the graph format is set for Graph Order = SIMUL, the functions are graphed in groups according to the element number in the list.

For these example functions, the

\section*{AFLDTS}

The functions within each group are graphed simultaneously, but the groups are graphed sequentially.

Pressing \(\bigcirc\) or \(\bigcirc\) moves the trace cursor to the next or previous curve in the same family before moving to the next or previous selected function.

\section*{Using the Two-Graph Mode}

In two-graph mode, the TI-92's graph-related features are duplicated, giving you two independent graphing calculators.
The two-graph mode is only available in split screen mode.
For more information about split screens, refer to Chapter 5.

\section*{Setting the Mode}

The Two-Graph Screen

Several mode settings affect the two-graph mode, but only two settings are required. Both are on Page 2 of the MODE dialog box.
1. Press MODE. Then press F2 to display Page 2.
2. Set the following required modes.
- Split Screen = TOP-BOTTOM or LEFT-RIGHT

- Number of Graphs = 2
3. Optionally, you can set the following modes.

Page 1: - Graph = Graph mode for top or left side of the split
Page 2: - Split 1 App = application for top or left side
- Split 2 App = application for bottom or right side
- Graph 2 = Graph mode for bottom or right side
- Split Screen Ratio = relative sizes of the two sides
4. Press ENTER to close the dialog box.

A two-graph screen is similar to a regular split screen.


\section*{Using the Two-Graph Mode (Continued)}

\section*{Independent Graph-} Related Features

Note: The \(Y=\) Editor is completely independent only when the two sides use different graphing modes (as described below).

\section*{The \(\mathrm{Y}=\) Editor in Two-Graph Mode}

Note: If you make a change on the active \(Y=\) Editor (redefine a function, change a style, etc.), that change is not reflected on the inactive side until you switch to it.

Both Graph 1 and Graph 2 have independent:
- Graph modes (FUNCTION, POLAR, etc.). Other modes such as Angle, Display Digits, etc., are shared and affect both graphs.
- Window Editor variables.
- Table setup parameters and Table screens.
- Graph formats \((\square\) F) such as Coordinates, Axes, etc.
- Graph screens.
- Y= Editors. However, both graphs share common function and stat plot definitions.

Independent graph-related applications (Y= Editor, Graph screen, etc.) can be displayed on both sides of the screen at the same time.

Non-graph-related applications (Home screen, Data/Matrix Editor, etc.) are shared and can be displayed on only one side at a time.

Even in two-graph mode, there is actually only one Y= Editor, which maintains a single function list for each Graph mode setting.
However, if both sides use the same graphing mode, each side can select different functions from that single list.
- When both sides use different graphing modes, each side shows a different function list.
- When both sides use the same graphing mode, each side shows the same function list.
- You can use F4 to select different functions and stat plots (indicated by \(\sqrt{ }\) ) for each side.
- If you set a display style (F6) for a function, that style is used by both sides.


Suppose Graph 1 and Graph 2 are set for function graphing. Although both sides show the same function list, you can select ( \(\checkmark\) ) different functions for graphing.

\section*{Review of Using a Split Screen}

Note: You can display non-graph-related applications (such as the Home screen) on only one side at a time.

Remember that the
Two Sides Are Independent

For more complete information about split screens, refer to Chapter 5.
- To switch from one graph side to the other, press 2nd [ \(\boxplus\) ] (second function of APPS).
- To display different applications:
- Switch to the applicable graph side and display the application as you normally would. - or -
- Use MODE to change Split 1 App and/or Split 2 App.
- To exit two-graph mode:
- Use MODE to set Number of Graphs = 1, or exit the split screen by setting Split Screen = FULL. - or -
- Press [2nd [QuIT] twice. This always exits a split screen and returns to a full-sized Home screen.

In two-graph mode, the two sides may appear to be related when, in fact, they are not. For example:


After the two-graph mode is set up, graph-related operations refer to the active graph side. For example:
```

10->xmax

```
affects either Graph 1 or Graph 2, depending on which is active when you execute the command.
To switch the active sides, press 2nd [ \(\boxplus\) ] or use the switch function, switch(1) or switch(2).

\section*{Drawing a Function or Inverse on a Graph}

\section*{Drawing a Function, Parametric, or Polar Equation}

Note: F6 2 displays the Home screen and puts DrawFunc in the entry line.

Tip: To clear the drawn function, press F4 or press F6 and select 1:CIrDraw.

\section*{Drawing the Inverse of a Function}

Note: F6 3 displays the Home screen and puts Drawlnv in the entry line.

Tip: To clear the drawn inverse from the Graph screen, press F4 or press F6 and select 1:CIrDraw.

For comparison purposes, you may want to draw a function over your current graph. Typically, the drawn function is some variation of the graph. You can also draw the inverse of a function. (These operations are not available for 3D graphs.)

Execute DrawFunc, DrawParm, or DrawPol from the Home screen or a program. You cannot draw a function or equation interactively from the Graph screen.

DrawFunc expression
DrawParm expression1, expression2 \([\),tmin \(][, t m a x][\), tstep \(]\)
DrawPol expression \([, \theta m i n][, \theta m a x][, \theta s t e p]\)
For example:
1. Define \(y 1(x)=.1 x^{3}-2 x+6\) on the \(\mathrm{Y}=\) Editor, and graph the function.
2. On the Graph screen, press F6 and select 2:DrawFunc.

3. On the Home screen, specify the function to draw.
4. Press ENTER to draw the function on the Graph screen.

You cannot trace, zoom, or perform a math operation on

-
-
DrawFunc y1(x)-6
 a drawn function.

Execute DrawInv from the Home screen or a program. You cannot draw an inverse function interactively from the Graph screen.

Drawlnv expression
For example, use the graph of \(\mathrm{y} 1(\mathrm{x})=.1 \mathrm{x}^{3}-2 \mathrm{x}+6\) as shown above.
1. On the Graph screen, press F6 and select 3:Drawlnv.
2. On the Home screen, specify the inverse function.
3. Press ENTER.

The inverse is plotted as \((y, x)\) instead of ( \(x, y\) ).

\section*{Drawing a Line, Circle, or Text Label on a Graph}

\section*{Clearing All Drawings}

Tip: You can also enter ClrDraw on the Home screen's entry line.

\section*{Drawing a Point or a Freehand Line}

Tip: When drawing a freehand line, you can move the cursor diagonally.

Note: If you start drawing on a white pixel, the pencil draws a black point or line. If you start on a black pixel, the pencil draws a white point or line (which can act as an eraser).

You can draw one or more objects on the Graph screen, usually for comparisons. For example, draw a horizontal line to show that two parts of a graph have the same \(y\) value. (Some objects are not available for 3D graphs.)

A drawn object is not part of the graph itself. It is drawn "on top of" the graph and remains on the screen until you clear it.

From the Graph screen:
- Press F6 and select

1:CIrDraw.
- or -

- Press F4 to regraph.

You can also do anything that causes the Smart Graph feature to redraw the graph (such as change the Window variables or deselect a function on the \(\mathrm{Y}=\) Editor).

From the Graph screen:
1. Press \(\boxed{F 7}\) and select 1:Pencil.
2. Move the cursor to the applicable location.

\begin{tabular}{ll}
\hline To draw a: & Do this: \\
\hline Point (pixel-sized) & Press ENTER. \\
Freehand line & \begin{tabular}{l} 
Press and hold 图, and move the cursor to \\
draw the line.
\end{tabular}
\end{tabular}

To quit drawing the line, release

After drawing the point or line, you are still in "pencil" mode.
- To continue drawing, move the cursor to another point.
- To quit, press ESC.


\section*{Drawing a Line, Circle, or Text Label on a Graph (Continued)}

\section*{Erasing Individual Parts of a Drawing Object}

Note: These techniques also erase parts of graphed functions.

Drawing a Line Between Two Points

Tip: Use 2nd to move the cursor in larger increments; 2nd \(\bigcirc\), etc.

\section*{Drawing a Circle}

Tip: Use 2nd to move the cursor in larger increments; 2nd \(\bigcirc\), etc.

From the Graph screen:
1. Press F7 and select 2:Eraser. The cursor is shown as a small box.
2. Move the cursor to the applicable location.
\begin{tabular}{ll}
\hline To erase: & Do this: \\
\hline Area under the box & Press ENTER. \\
Along a freehand line & Press and hold ©, and move the cursor. \\
& To quit, release ©.
\end{tabular}

After erasing, you are still in "eraser" mode.
- To continue erasing, move the box cursor to another location.

- To quit, press ESC.

From the Graph screen:
1. Press F7 and select \(3:\) Line.
2. Move the cursor to the 1 st point, and press ENTER.
3. Move to the 2nd point, and press ENTER. (As you move, a line extends from the 1 st point to the cursor.)

After drawing the line, you are still in "line" mode.
- To continue drawing another line, move the cursor to a new 1st point.

- To quit, press ESC.

From the Graph screen:
1. Press F7 and select 4:Circle.
2. Move the cursor to the center of the circle, and press ENTER.
3. Move the cursor to set the radius, and press ENTER.

\section*{Drawing a \\ Horizontal or Vertical Line}

Tip: Use 2nd to move the cursor in larger increments; 2nd \(\bigcirc\), etc.

\section*{Drawing a Tangent Line}

Tip: To set the tangent point, you can also type its \(x\) value and press ENTER.

\section*{Drawing a Line Based on a Point and a Slope}

From the Graph screen:
1. Press F7 and select 5:Horizontal or 6:Vertical. A horizontal or vertical line and a flashing cursor are displayed on the screen.

If the line is initially displayed on an axis, it may be difficult to see. However, you can easily see the flashing cursor.
2. Use the cursor pad to move the line to the appropriate position. Then press ENTER.

After drawing the line, you are still in "line" mode.
- To continue, move the cursor to another location.
- To quit, press ESC.


To draw a tangent line, use the F5 Math toolbar menu instead of F6 or F7. From the Graph screen:
1. Press F5 and select A:Tangent.
2. As necessary, use \(\bigcirc\) and \(\bigcirc\) to select the applicable function.
3. Move the cursor to the tangent point, and press ENTER.

The tangent line is drawn, and its equation is displayed.


To draw a line through a specified point with a specified slope, execute the DrawSIp command from the Home screen or a program. Use the syntax:

DrawSIp \(x, y\), slope
You can also access DrawSIp from the Graph screen.
1. Press 56 and select 6:DrawSIp. This switches to the Home screen and puts DrawSIp in the entry line.
2. Complete the command, and press ENTER.

The TI-92 automatically switches to the Graph screen and draws the line.


\section*{Drawing a Line, Circle, or Text Label on a Graph (Continued)}

\section*{Typing Text Labels}

Tip: The text cursor indicates the upper-left corner of the next character you type.

From the Graph screen:
1. Press F7 and select 7:Text.
2. Move the text cursor to the location where you want to begin typing.
3. Type the text label.

After typing the text, you are still in "text" mode.
- To continue, move the cursor to another location.
- To quit, press ENTER or ESC.


Commands are available for drawing any of the objects described in this section. There are also commands (such as PxIOn, PxILine, etc.) that let you draw objects by specifying exact pixel locations on the screen.

For a list of the available drawing commands, refer to "Drawing on the Graph Screen" in Chapter 17.

\section*{Saving and Opening a Picture of a Graph}

\section*{Saving a Picture of the Whole Graph Screen}

Tip: You can press \(\quad\) S instead of F1 2.

You can save an image of the current Graph screen in a PICTURE (or PIC) variable. Then, at a later time, you can open that variable and display the image. This saves the image only, not the graph settings used to produce it.

A picture includes any plotted functions, axes, tick marks, and drawn objects. The picture does not include lower and upper bound indicators, prompts, or cursor coordinates.

Display the Graph screen as you want to save it. Then:
1. Press F1 and select 2:Save Copy As.

2. Specify the type (Picture), folder, and a unique variable name.
3. Press ENTER. After typing in an input box such as Variable, you must press ENTER twice.


Important: By default, Type = GDB (for graph database). You must set Type = Picture.

\section*{Saving a Portion of the Graph Screen}

Note: You cannot save a portion of a 3D graph.

Tip: Use \(\bigodot\) and \(\bigcirc\) to move the top or bottom, and use \(\bigcirc\) and \(\odot\) to move the sides.

You can define a rectangular box that encloses only the portion of the Graph screen that you want to save.
1. Press F7 and select 8:Save Picture.

A box is shown around the outer edge of the screen.

2. Set the 1st corner of the box by moving its top and left sides. Then press ENTER.
3. Set the 2 nd corner by moving the bottom and right sides. Then press ENTER.
4. Specify the folder and a unique variable name.
5. Press ENTER. After typing in an input box such as Variable, you must press ENTER twice.


Note: When saving a portion of a graph, Type is automatically fixed as Picture.

\section*{Saving and Opening a Picture of a Graph (Continued)}

\author{
Opening a Graph Picture
}

Tip: You can press \(\square 0\) instead of F1 1.

Note: If a variable name is not shown on the dialog box, there are no graph pictures in the folder.

For Pictures Saved from a Portion of the Graph Screen

From a Program or the Home Screen

When you open a graph picture, it is superimposed over the current Graph screen. To display only the picture, use the \(Y=\) Editor to deselect any other functions before opening the graph picture.

From the Graph screen:
1. Press F1 and select 1:Open.
2. Select the type (Picture), folder, and variable that contain the graph picture you want to open.
3. Press ENTER.

Important: By default, Type = GDB (for graph database). Be sure to set Type = Picture .

A graph picture is a drawing object. You cannot trace any curve on a picture.

When you press \(F 1\) and select 1:Open, the picture is superimposed starting at the upper-left corner of the Graph screen. If the picture was saved from a portion of the Graph screen (page 275), it may appear shifted from the underlying graph.
To specify which screen pixel to use as the upper-left corner, you can use the commands listed in "From a Program or the Home Screen" below.

Unwanted Picture variables take up calculator memory. To delete a variable, use the VAR-LINK screen (2nd [VAR-LINK]) as described in Chapter 18.

To save (store) and open (recall) a graph picture, use the StoPic, RcIPic, AndPic, XorPic, and RplcPic commands as described in Appendix A.
To display a series of graph pictures as an animation, use the CyclePic command. For an example, refer to page 277.

\section*{Animating a Series of Graph Pictures}

As described earlier in this chapter, you can save a picture of a graph. By using the CyclePic command, you can flip through a series of graph pictures to create an animation.

\section*{CyclePic Command}

\section*{Example}

Before using CyclePic, you must have a series of graph pictures that have the same base name and are sequentially numbered starting with 1 (such as pic1, pic2, pic3, ... ).

To cycle the pictures, use the syntax:
CyclePic picNameString, \(n[\),wait \(][\),cycles \(][\),direction \(]\)
\[
\begin{array}{r}L_{1}^{1}=\text { forward/circular cycle } \\ -1=\text { forward/backward }\end{array}
\]
\(\begin{gathered}\text { \# of times to repeat cycle }\end{gathered}\)
seconds between pictures to cycle

This example program (named cyc) generates 10 views of a 3D graph, with each view rotated \(10^{\circ}\) further around the Z axis. For information about each command, refer to Appendix A. For information about using the Program Editor, refer to Chapter 17.
\begin{tabular}{|c|c|}
\hline Program Listing & Every Other Graph from Program \\
\hline ```
:cyc()
:Prgm
:local i
:OSet mode and Window variables
:setMode("graph","3d")
:70->eye\phi
:-10->xmin
:10->xmax
:14->xgrid
:-10->ymin
:10->ymax
:14->ygrid
:-10->zmin
:10->zmax
:1->zscl
:ODefine the function
:(x^3*y-y^3*x)/390->z1(x,y)
:OGenerate pics and rotate
:For i,1,10,1
: i*10->eye0
: DispG
: StoPic 非("pic" & string(i))
:EndFor
:ODisplay animation
:CyclePic "pic",10,.5,5,-1
:EndPrgm
``` &  \\
\hline
\end{tabular}

Note: Due to its complexity, this program takes several minutes to run.

After entering this program on the Program Editor, go to the Home screen and enter cyc ().

\section*{Saving and Opening a Graph Database}

\section*{Elements in a Graph Database}

Note: In two-graph mode, the elements for both graphs are saved in a single database.

\section*{Saving the Current Graph Database}

Tip: You can press \(\bullet\) S instead of F1 2.

\section*{Opening a Graph Database}

Tip: You can press \(\oplus\) O instead of \(\mathbb{F} 1\).

A graph database consists of:
- Mode settings (MODE) for Graph, Angle, Complex Format, and Split Screen (only if you are using the two-graph mode).
- All functions in the \(\mathrm{Y}=\) Editor \((\square[\mathrm{Y}=]\)), including display styles and which functions are selected.
- Table parameters \((\square\) [TbSet]), Window variables (\(\bullet\) [window]), and graph formats (\(\bullet \mathrm{F}\) or F 19).

A graph database does not include drawn objects or stat plots.

From the Y= Editor, Window Editor, Table screen, or Graph screen:
1. Press F1 and select 2:Save Copy As.
2. Specify the folder and a unique variable name.
3. Press ENTER. After typing in an

Note: If you start from the Graph screen, be sure to use Type=GDB.
A graph database is the set of all elements that define a particular graph. By saving a graph database as a GDB variable, you can recreate that graph at a later time by opening its stored database variable. input box such as Variable, you must press ENTER twice.

Caution: When you open a graph database, all information in the current database is replaced. You may want to store the current graph database before opening a stored database.

From the Y= Editor, Window Editor, Table screen, or Graph screen:
1. Press F1 and select 1:Open.
2. Select the folder and variable that contain the graph database you want to open.
3. Press ENTER.

Note: If you start from the Graph screen, be sure to use Type=GDB.

Unused GDB variables take up calculator memory. To delete them, use the VAR-LINK screen (2nd [VAR-LINK]) described in Chapter 18.

You can save (store) and open (recall) a graph database by using the StoGDB and RcIGDB commands as described in Appendix A.

\section*{Text Editor}

Preview of Text Operations 280
Starting a Text Editor Session. 281
Entering and Editing Text 283
Entering Special Characters 286
Entering and Executing a Command Script 288
Creating a Lab Report 290

This chapter shows you how to use the Text Editor to enter and edit text. Entering text is simple; just begin typing. To edit text, you can use the same techniques that you use to edit information on the Home screen.

Each time you start a new text session, you must specify the name of a text variable. After you begin a session, any text that you type is stored automatically in the associated text variable. You do not need to save a session manually before leaving the Text Editor.

\section*{Preview of Text Operations}

Start a new Text Editor session. Then practice using the Text Editor by typing whatever text you want. As you type, practice moving the text cursor and correcting any typos you may enter.
\begin{tabular}{|c|c|c|}
\hline Steps & Keystrokes & Display \\
\hline 1. Start a new session on the Text Editor. & APPS 93 & \\
\hline \begin{tabular}{l}
2. Create a text variable called TEST, which will automatically store any text you enter in the new session. \\
Use the MAIN folder, shown as the default on the NEW dialog box. \\
After typing in an input box such as Variable, you must press ENTER twice.
\end{tabular} & \begin{tabular}{l}
\(\bigcirc\) \\
TEST \\
ENTER ENTER
\end{tabular} & \\
\hline \begin{tabular}{l}
3. Type some sample text. \\
Practice editing your text by using: \\
- The cursor pad to move the text cursor. \\
- \(\square\) or \(\square\) to delete the character to the left or right of the cursor, respectively.
\end{tabular} & \begin{tabular}{l}
type \\
anything \\
you \\
want
\end{tabular} & \begin{tabular}{l}
 \\
:Notice how the Text Editor automatical 1 īne. \\
: Press ENTER only at the end of a Parag raph, not at the end of each line. \\
: To corret any tupos, you can use the t. ertries or the home sorem.
\end{tabular} \\
\hline
\end{tabular}
4. Leave the Text Editor and display the Home screen.

Your text session was stored automatically as you typed. Therefore, you do not need to save the session manually before exiting the Text Editor.
5. Return to the current session on the APPS 91

6. Notice that the displayed session is exactly the same as you left it.

\section*{Starting a Text Editor Session}

\section*{Starting a New Session}

Note: Your session is saved automatically as you type. You do not need to save a session manually before leaving the Text Editor, starting a new session, or opening a previous one.

Each time you start the Text Editor, you can start a new text session, resume the current session (the session that was displayed the last time you used the Text Editor), or open a previous session.
1. Press APPS and then select 9:Text Editor.
2. Select 3:New.

The NEW dialog box is displayed.
3. Specify a folder and text variable that you want to use to store the new session.

\begin{tabular}{ll}
\hline Item & Description \\
\hline Type & \begin{tabular}{l}
Automatically set as Text and cannot be changed. \\
Folder
\end{tabular} \\
& \begin{tabular}{l}
Shows the folder in which the text variable will be \\
stored. For information about folders, refer to \\
Chapter 10.
\end{tabular} \\
& \begin{tabular}{l}
To use a different folder, press \(\bigcirc\) to display a menu \\
of existing folders. Then select a folder.
\end{tabular} \\
Variable & \begin{tabular}{l}
Type a variable name. \\
\\
\\
\\
\begin{tabular}{l}
If you specify a variable that already exists, an error \\
message will be displayed when you press ENTER. \\
When you press ESC or ENTER to acknowledge the \\
error, the NEW dialog box is redisplayed.
\end{tabular} \\
\end{tabular}\(\quad\).
\end{tabular}
4. Press ENTER (after typing in an input box such as Variable, you must press ENTER twice) to display an empty Text Editor screen.

You can now use the Text Editor as described in the remaining sections of this chapter.

\section*{Starting a Text Editor Session (Continued)}

\section*{Resuming the Current Session}

\author{
Starting a New \\ Session from the Text Editor
}

\section*{Opening a Previous Session}

Note: By default, Variable shows the first existing text variable in alphabetic order.

You can leave the Text Editor and go to another application at any time. To return to the session that was displayed when you left the Text Editor, press APPS 9 and select 1:Current.

To leave the current Text Editor session and start a new one:
1. Press F1 and select 3:New. (You can press \(-N\) instead of using the F1 toolbar menu.)

2. Specify a folder and text variable for the new session.
3. Press ENTER twice.

You can open a previous Text Editor session at any time.
1. From within the Text Editor, press F1 and select 1:Open. (You can press - O instead of using the \(F 1\) toolbar menu.) - or -

From any application, press APPS 9 and select 2:Open.
2. Select the applicable folder and text variable.
3. Press ENTER.

In some cases, you may want to copy a session so that you can edit the copy while retaining the original.
1. Display the session you want to copy.
2. Press F1 and select 2:Save Copy As. (You can press \(\quad\) S instead of using the F1 toolbar menu.)
3. Specify the folder and text variable for the copied session.
4. Press ENTER twice.

Because all Text Editor sessions are saved automatically, you can accumulate quite a few previous sessions, which take up memory storage space.

To delete a session, use the VAR-LINK screen (2nd [VAR-LINK]) to delete that session's text variable. For information about VAR-LINK, refer to Chapter 18.

\section*{Entering and Editing Text}

\section*{Typing Text}

Note: Use the cursor pad to scroll through a session or position the text cursor for entering or editing text.

Typing Uppercase Letters with Shift (1) or Caps Lock

\section*{Deleting Characters}

Note: If there are no characters to the right of the cursor, CLEAR erases the entire paragraph.

After beginning a Text Editor session, you can enter and edit text. In general, use the same techniques that you have already used to enter and edit information on the Home screen's entry line.

When you create a new Text Editor session, you see an empty screen. When you open a previous session or return to the current session, you see the existing text for that session.

All text paragraphs begin with a space and a colon.

The beginning space is used in command scripts and lab reports.

Type your text just as you would in a word processor.
- You do not need to press ENTER at the end of each line. When you reach the end of a line, the next character you type automatically wraps to the next line.
- Press ENTER only when you want to start a new paragraph.

As you reach the bottom of the screen, previous lines scroll off the top of the screen.
\begin{tabular}{ll}
\hline To: & Press: \\
\hline Type a single uppercase letter & 1 and then the letter \\
Turn Caps Lock on or off & 2nd [CAPS] \\
\hline & \\
\hline To delete: & Press: \\
\hline The character to the left of the cursor & \(\square\) or E1 7 \\
The character to the right of the cursor & \(\square\) \\
All characters to the right of the cursor & CLEAR \\
through the end of the paragraph & \\
All characters in the paragraph (regardless of CLEAR CLEAR \\
the cursor's position in that paragraph) & \\
\hline
\end{tabular}

\section*{Entering and Editing Text (Continued)}

\section*{Replacing or \\ Deleting Highlighted Text}

Tip: To remove highlighting without replacing or deleting, move the cursor.

\section*{Cutting, Copying, and Pasting Text}

Tip: You can press \(\bullet\) X, \(\bullet \mathrm{C}\), and \(\bullet\) to cut, copy, and paste without having to use the F1 toolbar menu.
\begin{tabular}{|c|c|}
\hline To: & Do this: \\
\hline \multirow[t]{3}{*}{Highlight text} & 1. Move the cursor to the beginning or end of the text. \\
\hline & \begin{tabular}{l}
2. Hold \(\uparrow\) and press: \\
- \(\bigcirc\) or \(\bigcirc\) to highlight characters to the left or right of the cursor, respectively. \\
- \(\bigcirc\) or \(\bigcirc\) to highlight all characters up to the cursor position on the next or previous line, respectively.
\end{tabular} \\
\hline & Fi Tho Command Fiew Execute Fintid. . \(\square\) EBy highight.ing a fiece of text, Han \({ }^{8}\) hes and ridelece ar delets sueral 1 hes and paragraphs at a time. \\
\hline Replace highlighted text & Type the new text. \\
\hline Delete highlighted text & Press \(\square\). \\
\hline
\end{tabular}

Cutting and copying both place highlighted text into the TI-92's clipboard. Cutting deletes the text from its current location (used to move text) and copying leaves the text.
1. Highlight the text you want to move or copy.
2. Press F1.
3. Select the applicable menu item.
- To move the text, select 4:Cut. - or -
- To copy the text, select 5:Copy.

4. Move the text cursor to the location where you want to insert the text.
5. Press F1 and then select 6:Paste.

You can use this general procedure to cut, copy, and paste text:
- Within the same text session.
- From one text session to another. After cutting or copying text in one session, open the other session and then paste the text.
- From a text session to a different application. For example, you can paste the text into the Home screen's entry line.

\section*{Finding Text}

Tip: The FIND dialog box retains the last search text you entered. You can type over it or edit it.

\section*{Inserting or \\ Overtyping a Character}

Tip: Look at the shape of the cursor to see if you're in insert or overtype mode.

\section*{Clearing the Text Editor}

From the Text Editor:
1. Place the text cursor at any location preceding the text you want to search for. All searches start at the current cursor location.
2. Press F5.
3. Type the search text.

The search is not case sensitive.

For example: CASE, case, and Case have the same effect.
4. Press ENTER twice.
If the search text is: The cursor:

Found Moves to beginning of the search text.
Not found Does not move.

By default, the TI-92 is in insert mode. To toggle between insert and overtype mode, press 2nd [INS].
\begin{tabular}{ll}
\hline If the TI-92 is in: & The next character you type: \\
\hline InEerf. mode & Will be inserted at the cursor. \\
\begin{tabular}{l}
Thin cursor between \\
characters
\end{tabular} & \\
\begin{tabular}{l}
Will replace the highlighted \\
character
\end{tabular} & \begin{tabular}{l}
character.
\end{tabular} \\
\hline
\end{tabular}

To erase all existing paragraphs and display an empty text screen, press F1 and then select 8:Clear Editor.

\section*{Entering Special Characters}

You can use the CHAR menu to select any special character from a list. You can also type certain commonly used special characters as second functions of the QWERTY keyboard. To see which special characters are available from the keyboard, you can display a map that shows the characters and their corresponding keys.

Using the CHAR
Menu

\section*{Displaying the QWERTY Keyboard Map}
1. Press 2nd [CHAR].
2. Select the applicable category.

A menu lists the characters in that category.
3. Select a character. You may need to scroll through the menu.

Press \(\downarrow \mathrm{K}\) to display the map.
These characters are second functions of the QWERTY keyboard. Some are marked on
 the keyboard, but most are not.

The map shows:
- Special symbols - ?, !, \#, \&, etc.
- Accent marks - é, ü, ô, à, ç, and ~
- Greek letters - accessed by pressing 2nd G (as described later in this section)
The map also shows [2nd [CAPS], which turns Caps Lock on and off.

Press 2nd and then the key for the symbol.

For example:
2nd T displays \#.
These special symbols are not affected by whether Caps Lock is on or off.

Note: To help you find the
applicable keys, this map shows only the special symbols.

\author{
Typing Accent Marks from the Keyboard
}

Tip: For \(\theta\) or \(\pi\), press \(\theta\) or 2nd \([\pi]\).

Pressing an accent mark key does not display an accented letter. The accent mark will be added to the next letter you press.
1. Press 2nd and then the key for the accent mark.

Note: To help you find the applicable keys, this map shows only the accent mark keys.
2. Press the key for the letter you want to accent.
- You can accent lowercase and uppercase letters.
- An accent mark can be added to only those letters that are valid for that mark.
\begin{tabular}{|c|c|c|}
\hline Accent Mark & Valid Letters
(lowercase or uppercase) & Examples \\
\hline & A, E, I, O, U, Y & é, É \\
\hline * & A, E, I, O, U, y (but not Y) & ü, Ü \\
\hline \(\wedge\) & A, E, I, O, U & ô, Ō \\
\hline - & A, E, I, O, U & à, À \\
\hline Ç & C & ç, Ç \\
\hline \(\sim\) & A, O, N & \(\tilde{n}, \tilde{N}\) \\
\hline
\end{tabular}
1. Press 2nd G to access the Greek character set.
2. Press the key for the applicable Greek letter.
- Several keys let you access lowercase and uppercase Greek letters. For example:

2nd G W displays \(\omega\).
2nd G \(\dagger \mathrm{W}\) displays \(\Omega\).
- If you press a key combination that does not access a Greek letter, you get the normal letter for that key.

Note: The TI-92 does not display this map of Greek letters. A map is shown in this guidebook for reference purposes only.

For a list of all special characters, refer to Appendix B.

For a List of All Special Characters

\section*{Entering and Executing a Command Script}

\section*{Inserting a} Command Mark

Note：This does not insert a new line for the command，it simply marks an existing line as a command line．

Tip：You can mark a line as a command either before or after typing the command on that line．

\section*{Deleting a \\ Command Mark}

\section*{Executing a Command}

Tip：To examine the result on the Home screen，press \(\square\)［HOME］or use a split screen．

By using a command script，you can use the Text Editor to type a series of command lines that can be executed at any time on the Home screen．This lets you create interactive example scripts in which you predefine a series of commands and then execute them individually．

In the Text Editor：
1．Place the cursor on the line for the command．
2．Press F2 to display the
Command toolbar menu．
3．Select 1：Command．
＂C＂is displayed at the beginning of the text line（to the left of the colon）．

4．Type a command just as you would on the Home screen．

The line can contain

Tf Command iew Execute Find．．： malu would ir the Text．Editor．
alndou for a complete graph \(\mathrm{C}: \times \times \mathrm{S}=2 \times 2+\times \times-1 \rightarrow \mathrm{f} \times \times \mathrm{x}\) only the command， with no additional text．

You can type multiple commands on the same line if you type a colon to separate the commands．

This deletes only the＂\(C\)＂mark；it does not delete the command text itself．

1．Place the cursor anywhere on the marked line．
2．Press F2 and select 4：Clear command．

To execute a command，you must first mark the line with a＂C＂．If you execute a line that is not marked with＂ C ＂，it will be ignored．

1．Place the cursor anywhere on the command line．
2．Press F4．
The command is copied to the entry line on the Home screen and executed．The Home screen is displayed temporarily during execution，and then the Text Editor is redisplayed．

After execution，the cursor moves to the next line in the script so that you can continue to execute a series of commands．

\section*{Splitting the} Text Editor/ Home Screen

\section*{Creating a Script from Your Home Screen Entries}

\section*{Example}

Note: Some commands take longer to execute. Wait until the Busy indicator disappears before pressing (F4) again.

Note: In this example, the Graph command displays the Graph screen in place of the Home screen.

With a split screen, you can view your command script and see the result of an executed command at the same time.
\begin{tabular}{|c|c|c|}
\hline To: & \multicolumn{2}{|l|}{Press:} \\
\hline Split the screen & F3 and select & \(\mathrm{UR}^{\text {ET }}\) \\
\hline & 1:Script view. & 1:Script. view ziciear split \\
\hline Return to a full screen Text Editor & \begin{tabular}{l}
[F3 and select \\
2:Clear split.
\end{tabular} & \\
\hline
\end{tabular}

You can also use MODE to set up a split screen manually. However, F3] sets up a Text Editor/Home screen split much easier than MODE.
- The active application is indicated by a thick border. (By default, the Text Editor is the active application.)
- To switch between the Text Editor and the Home screen, press 2nd [\(\boxplus\)] (second function of APPS).

From the Home screen, you can save all the entries in the history area to a text variable. The entries are automatically saved in a script format so that you can open the text variable in the Text Editor and execute the entries as commands.

For information, refer to "Saving the Home Screen Entries as a Text Editor Script" in Chapter 10.
1. Type your script. Press F2 and select 1:Command to mark the command lines.
2. Press F3 and select 1:Script view.
3. Move the cursor to the first command line. Then press F4] to execute the command.
4. Continue using F4 to execute each command, but stop just before executing the Graph command.
5. Execute the Graph command.
6. Press F3 and select 2:Clear split to return to a full screen Text Editor.

\section*{Print Objects \\ Inserting a Print Object Mark}

Note: This does not insert a new line for the print object, it simply marks an existing line as a print object.

Tip: You can mark a line as a print object either before or after typing a variable name on that line.

If you have a TI-GRAPH LINK \({ }^{\text {TM }}\), an optional accessory that lets the TI-92 communicate with a personal computer, you can create lab reports. Use the Text Editor to write a report, which can include print objects. Then use the TI-GRAPH LINK to print the report on the printer attached to the computer.

In the Text Editor, you can specify a variable name as a print object. When you print the report by using the TI-GRAPH LINK, the TI-92 substitutes the contents of the variable (an expression, picture, list, etc.) in place of the variable name.

In the Text Editor:
1. Place the cursor on the line for the print object.
2. Press F2 to display the Command toolbar menu.
3. Select 3:PrintObj.

-ripira
1: Bommarnd

4:
" \(P\) " is displayed at the beginning of the text line (to the left of the colon).
4. Type the name of the variable that contains the print object.

The line can contain only the variable name, with no additional text.

When you print a lab report, page breaks occur automatically at the bottom of each printed page. However, you can manually force a page break at any line.
1. Place the cursor on the line that you want to print on the top of the next page. (The line can be blank or you can enter text on it.)
2. Press F2 and select 2:Page break.

A " \({ }^{\text {" }}\) " is displayed at the beginning of the line (to the left of the colon).

This deletes only the "P" or "ד" mark; it does not delete any text that is on the line.
1. Place the cursor anywhere on the marked line.
2. Press F2 and select 4:Clear command.

\section*{Printing the Report}

\section*{Example}

Note: To store the derivative to variable der, enter: \(\boldsymbol{d}(\mathrm{y} 1(\mathrm{x}), \mathrm{x}) \rightarrow \mathrm{der}\)

Note: To store the derivative's critical points to variable sol, enter: solve(der=0,x) \(\rightarrow\) sol
General Steps For Detailed Information
1. Connect the TI-92 to your computer via the TI-GRAPH LINK.
2. Use the TI-92's VAR-LINK screen to send the text variable that contains your lab report.

Assume you have stored:
- A function as \(\mathrm{y} 1(\mathrm{x})\) (specify \(y 1\), not \(y 1(x)\)).
- A graph picture as pic1.
- Applicable information in variables der and sol.

When you print the lab report, the contents of the Refer to the manual that came with your TI-GRAPH LINK.

Refer to Chapter 18 of this guidebook.
 print objects are printed in place of their variable names.

```

My homework assignment was to study the function:
.1* x^3-. 5* x+3
There were three parts to the assignment.

1. Graph the function.
```

```

2. Find its derivative.
.3*x^2-. 5
3. Look for critical points.
x=1.29099 or x=-1.29099
```

In cases where a graph picture cannot fit on the current page, the entire picture is shifted to the top of the next page.

\section*{Programming}

Note: For details and examples of any TI-92 program command mentioned in this chapter, refer to Appendix A.
Preview of Programming 294
Running an Existing Program 296
Starting a Program Editor Session 298
Overview of Entering a Program 300
Overview of Entering a Function 303
Calling One Program from Another 305
Using Variables in a Program 306
String Operations 308
Conditional Tests 310
Using If, Lbl, and Goto to Control Program Flow 311
Using Loops to Repeat a Group of Commands 313
Configuring the TI-92 316
Getting Input from the User and Displaying Output 317
Creating a Table or Graph 319
Drawing on the Graph Screen 321
Accessing Another TI-92, a CBL 2/CBL, or a CBR 323
Debugging Programs and Handling Errors 324
Example: Using Alternative Approaches 325

This chapter describes how to use the TI-92's Program Editor to create your own programs or functions.

The chapter includes:
- Specific instructions on using the Program Editor itself and running an existing program.
- An overview of fundamental programming techniques such as If..Endlf structures and various kinds of loops.
- Reference information that categorizes the available program commands.

\section*{Preview of Programming}

Write a program that prompts the user to enter an integer, sums all integers from 1 to the entered integer, and displays the result.
\begin{tabular}{|c|c|c|}
\hline Steps & Keystrokes & Display \\
\hline 1. Start a new program on the Program Editor. & APPS 73 & \\
\hline 2. Type PROG1 (with no spaces) as the name of the new program variable. & \[
\begin{aligned}
& \ominus \bigcirc \\
& \text { PROG } 1
\end{aligned}
\] & \\
\hline \begin{tabular}{l}
3. Display the "template" for a new program. The program name, Prgm, and EndPrgm are shown automatically. \\
After typing in an input box such as Variable, you must press EENTER twice.
\end{tabular} & ENTER ENTER & \\
\hline
\end{tabular}
4. Type the following program lines.

Request "Enter an integer", \(n\)
Displays a dialog box that prompts "Enter an integer", waits for the user to enter a value, and stores it (as a string) to variable \(n\).
```

expr(n)->n

```

Converts the string to a numeric expression.
```

0->temp

```

Creates a variable named temp and initializes it to 0 .
For i,1,n,1
Starts a For loop based on variable i. First time through the loop, \(i=1\). At end of loop, \(i\) is incremented by 1. Loop continues until \(i>n\).
temp+i \(\rightarrow\) temp
Adds current value of ito temp.

\section*{EndFor}

Marks the end of the For loop.
Disp temp
Displays the final value of temp.
\begin{tabular}{|c|c|c|}
\hline Steps & Keystrokes & Display \\
\hline 5. Go to the Home screen. Enter the program name, followed by a set of parentheses. & \begin{tabular}{l}
\(\rightarrow\) [HOME] \\
PROG1 0 \\
ENTER
\end{tabular} & prog1() \\
\hline \begin{tabular}{l}
You must include () even when there are no arguments for the program. \\
The program displays a dialog box with the prompt specified in the program.
\end{tabular} & & \\
\hline 6. Type 5 in the displayed dialog box. & 5 & \\
\hline \begin{tabular}{l}
7. Continue with the program. The Disp command displays the result on the Program I/O screen. \\
The result is the sum of the integers from 1 through 5. \\
Although the Program I/O screen looks similar to the Home screen, it is for program input and output only. You cannot perform calculations on the Program I/O screen.
\end{tabular} & ENTER ENTER & \\
\hline \begin{tabular}{l}
8. Leave the Program I/O screen and return to the Home screen. \\
You can also press [ESC], [2nd [QuIT], or \(\square\) [HOME] to return to the Home screen.
\end{tabular} & F5 & \\
\hline
\end{tabular}

\section*{Running an Existing Program}

\section*{Running a Program}

Tip: Use 2nd [VAR-LINK] to list existing PRGM variables. Highlight a variable and press ENTER to paste its name to the entry line.

Note: Arguments specify initial values for a program. Refer to page 301.

Note: The TI-92 also checks for run-time errors that are found within the program itself. Refer to page 324.

After a program is created (as described in the remaining sections of this chapter), you can run it from the Home screen. The program's output, if any, is displayed on the Program I/O screen, in a dialog box, or on the Graph screen.

On the Home screen:
1. Type the name of the program.
2. You must always type a set of parentheses after the name.

Some programs require you to pass an argument to the program.

3. Press ENTER.

When you run a program, the TI-92 automatically checks for errors. For example, the following message is displayed if you:
- Do not enter () after the program name.
- Do not enter enough arguments,
 if required.
To cancel program execution if an error occurs, press ESC. You can then correct any problems and run the program again.

When a program is running, the BUSY indicator is displayed in the status line.

Press 0 N to stop program execution. A message is then displayed.
- To display the program in the Program Editor, press ENTER. The cursor appears at the command where the break occurred.

- To cancel program execution, press ESC.

\section*{Where Is the Output Displayed?}

\section*{The Program I/O Screen}

Tip: To clear any previous output, enter the ClrIO command in your program. You can also execute ClriO from the Home screen.

Tip: If Home screen calculations don't work after you run a program, you may be on the Program I/O screen.

\section*{Leaving the Program I/O Screen}

Depending on the commands in the program, the TI-92 automatically displays information on the applicable screen.
- Most output and input commands use the Program I/O screen. (Input commands prompt the user to enter information.)
- Graph-related commands typically use the Graph screen.

After the program stops, the TI-92 shows the last screen that was displayed.

On the Program I/O screen, new output is displayed below any previous output (which may have been displayed earlier in the same program or a different program). After a full page of output, the previous output scrolls off the top of the screen.

When a program stops on the Program I/O screen, you need to recognize that it is not the Home screen (although the two screens are similar). The Program I/O screen is used only to display output or to prompt the user for input. You cannot perform calculations on this screen.

From the Program I/O screen:
- Press F5 to display the Home screen. (F5 toggles between the Home screen and the Program I/O screen.)
- or -
- Press ESC or 2nd [QUIT] to display the Home screen.
- or -
- Display any other application screen (with APPS, \(\square\) [HOME], - [Y=], etc.).

\section*{Starting a Program Editor Session}

\section*{Starting a New \\ Program or Function}

Note: A program (or function) is saved automatically as you type. You do not need to save it manually before leaving the Program Editor, starting a new program, or opening a previous one.

Each time you start the Program Editor, you can resume the current program or function (that was displayed the last time you used the Program Editor), open an existing program or function, or start a new program or function.
1. Press APPS and then select 7:Program Editor.
2. Select 3:New.

3. Specify the applicable information for the new program or function.

\begin{tabular}{ll}
\hline Item & Lets you: \\
\hline Type & \begin{tabular}{l}
Select whether to create a \\
new program or function.
\end{tabular} \\
Folder & \begin{tabular}{l}
Select the folder in which the new program or \\
function will be stored. For information about \\
folders, refer to Chapter 10.
\end{tabular} \\
& \begin{tabular}{l}
Type a variable name for the program or function. \\
If you specify a variable that already exists, an error \\
message will be displayed when you press ENTER. \\
When you press ESC or ENTER to acknowledge the \\
error, the NEW dialog box is redisplayed.
\end{tabular} \\
\hline
\end{tabular}
4. Press ENTER (after typing in an input box such as Variable, you must press ENTER twice) to display an empty "template."

You can now use the Program Editor as described in the remaining sections of this chapter.

\title{
Resuming the Current Program
}

\author{
Starting a New \\ Program from the Program Editor
}

\section*{Opening a Previous Program}

Note: By default, Variable shows the first existing program or function in alphabetical order.

You can leave the Program Editor and go to another application at any time. To return to the program or function that was displayed when you left the Program Editor, press APPS 7 and select 1:Current.

To leave the current program or function and start a new one:
1. Press F1 and select 3:New. (You can press -N instead of using the F1 toolbar menu.)
2. Specify the type, folder, and variable for the new program or function.

3. Press ENTER twice.

You can open a previously created program or function at any time.
1. From within the Program Editor, press F1 and select 1:Open. You can press - O instead of using the F1 toolbar menu.)
- or -

From another application, press APPS 7 and select 2:Open.
2. Select the applicable type, folder, and variable.
3. Press ENTER.

In some cases, you may want to copy a program or function so that you can edit the copy while retaining the original.
1. Display the program or function you want to copy.
2. Press F1 and select 2:Save Copy As. (You can press \(\dagger\) S instead of using the F1 toolbar menu.)
3. Specify the folder and variable for the copy.
4. Press ENTER twice.

Because all Program Editor sessions are saved automatically, you can accumulate quite a few previous programs and functions, which take up memory storage space.

To delete programs and functions, use the VAR-LINK screen ([2nd [VAR-LINK]). For information about VAR-LINK, refer to Chapter 18.

\section*{Overview of Entering a Program}

\section*{Entering and Editing Program Lines}

Note: Use the cursor pad to scroll through the program for entering or editing commands.

Note: Entering a command does not execute that command. It is not executed until you run the program.

Entering MultiCommand Lines

\section*{Entering Comments}

Tip: Use comments to enter information that is useful to someone reading the program code.

A program is a series of commands executed in sequential order (although some commands alter the program flow). In general, anything that can be executed from the Home screen can be included in a program. Program execution continues until it reaches the end of the program or a Stop command.

On a blank template, you can begin entering commands for your new program.

You enter and edit program commands in the Program Editor by using the same techniques used to enter and edit text in the Text Editor. Refer to "Entering and Editing Text" in Chapter 16.

After typing each program line, press ENTER. This inserts a new blank line and lets you continue entering another line. A program line can be longer than one line on the screen; if so, it will wrap to the next screen line automatically.

To enter more than one command on the same line, separate them with a colon by pressing [2nd [:].

A comment symbol (©) lets you enter a remark in a program. When you run the program, all characters to the right of © are ignored.
\begin{tabular}{ll}
& \(: \operatorname{prog1(})\) \\
& \(: \operatorname{Prgm}\) \\
Description of the & \(:\) ©Displays sum of 1 thru \(n\) \\
program. & \(:\) Request "Enter an integer", \(n\) \\
Description of expr. & \(: \operatorname{expr}(\mathrm{n}) \rightarrow \mathrm{n}:\) ©Convert to numeric expression \\
& \(:-----\)
\end{tabular}

To enter the comment symbol:
- Press 2nd X.
- or -
- Press F2 and select 9:©.

\section*{Controlling the Flow of a Program}

Tip: For information, refer to pages 311 and 313.

Using Indentation

\section*{Displaying Calculated Results}

Tip: For a list of available output commands, refer to page 318.

\section*{Getting Values into} a Program

Tip: For a list of available input commands, refer to page 317.

When you run a program, the program lines are executed in sequential order. However, some commands alter the program flow. For example:
- Control structures such as If...Endlf commands use a conditional test to decide which part of a program to execute.
- Loops commands such as For...EndFor repeat a group of commands.

For more complex programs that : If \(x>5\) Then
use If...Endlf and loop structures : Disp "x is > 5"
such as For...EndFor, you can make the programs easier to read and understand by using indentation.
```

:Else

```
: Disp "x is < or = 5"
: EndIf

In a program, calculated results are not displayed unless you use an output command. This is an important difference between performing a calculation on the Home screen and in a program.

These calculations will not display :12*6
a result in a program (although they \(: \cos (\pi / 4)\) will on the Home screen).
:solve(\(x^{\wedge} 2-x-2=0, x\))

Output commands such as Disp will :Disp 12*6
display a result in a program. :Disp \(\cos (\pi / 4)\)
:Disp solve(\(\left.x^{\wedge} 2-x-2=0, x\right)\)
Displaying a calculation result does : \(\cos (\pi / 4) \rightarrow \max\)
not store that result. If you need to :Disp max refer to a result later, store it to a variable.

To input values into a program, you can:
- Require the users to store a value (with STO®) to the necessary variables before running the program. The program can then refer to these variables.
- Enter the values directly into :Disp \(12 * 6\) the program itself. : \(\cos (\pi / 4) \rightarrow \max\)
- Include input commands that :Input "Enter a value", i prompt the users to enter the :Request "Enter an integer",n necessary values when they run the program.
- Require the users to pass one or more values to the program when they run it.

\section*{Overview of Entering a Program (Continued)}

\section*{Example of Passing Values to a Program}

Note: In this example, you cannot use circle as the program name because it conflicts with a command name.

Note: This example assumes that the user enters values that can be displayed by the viewing window set up by ZoomStd and ZoomSqr.

The following program draws a circle on the Graph screen and then draws a horizontal line across the top of the circle. Three values must be passed to the program: x and y coordinates for the circle's center and the radius \(r\).
- When you write the program in the Program Editor:
\begin{tabular}{|c|c|c|}
\hline In the () beside the program & : \(\operatorname{circ}(x x, y y, r r)\) & \\
\hline name, specify the variables & : Prgm & Only circ() is \\
\hline that will be used to store the & : FnOff & initially displaye \\
\hline passed values. & :ZoomStd & on the blank \\
\hline & :ZoomSqr & template; be sure \\
\hline Notice that the program also & :Circle xx,yy,rr & to edit this line. \\
\hline contains commands that set & :LineHorz yy+rr & \\
\hline up the Graph screen. & : EndPrgm & \\
\hline
\end{tabular}

Before drawing the circle, the program turns off any selected \(\mathrm{Y}=\) Editor functions, displays a standard viewing window, and "squares" the window.
- To run the program from the Home screen:

The user must specify the applicable values as arguments within the ().

The arguments, in order, are passed to the program.

\section*{Overview of Entering a Function}

\section*{Why Create a UserDefined Function?}

Note: You can create a function from the Home screen (see Chapter 10), but the Program Editor is more convenient for complex, multi-line functions.

\section*{Differences \\ Between Functions and Programs}

Tip: For information about local variables, refer to pages 306 and 307.

A function created in the Program Editor is very similar to the functions and instructions that you typically use from the Home screen.

Functions (as well as programs) are ideal for repetitive calculations or tasks. You only need to write the function once. Then you can reuse it as many times as necessary. Functions, however, have some advantages over programs.
- You can create functions that expand on the TI-92's built-in functions. You can then use the new functions the same as any other function.
- Functions return values that can be graphed or entered in a table. Programs cannot.
- You can use a function (but not a program) within an expression. For example: \(3 *\) func1(3) is valid, but not 3*prog1(3).
- Because you pass arguments to a function, you can write generic functions that are not tied to specific variable names.

This guidebook sometimes use the word command as a generic reference to instructions and functions. When writing a function, however, you must differentiate between instructions and functions.

A user-defined function:
- Can use the following instructions only. Any others are invalid.
\begin{tabular}{lll}
Cycle & Define & Exit \\
For...EndFor & Goto & If...Endlf (all forms) \\
Lbl & Local & Loop...EndLoop \\
Return & While...EndWhile & \(\rightarrow\) (ST0. key)
\end{tabular}
- Can use all built-in TI-92 functions except:
\begin{tabular}{lll}
setFold & \begin{tabular}{l}
setGraph \\
switch
\end{tabular} & setMode \\
setTable & swa
\end{tabular}
- Can refer to any variable; however, it can store a value to a local variable only.
- The arguments used to pass values to a function are treated as local variables automatically. If you store to any other variables, you must declare them as local from within the function.
- Cannot call a program as a subroutine, but it can call another user-defined function.
- Cannot define a program.
- Cannot define a global function, but it can define a local function.

\section*{Overview of Entering a Function (Continued)}

\section*{Entering a Function}

Note: Use the cursor pad to scroll through the function for entering or editing commands.

\section*{How to Return a Value from a Function}

Note: This example calculates the cube if \(x x \geq 0\); otherwise, it returns a 0.

\section*{Example of a Function}

When you create a new function in the Program Editor, the TI-92 displays a blank "template".

Function name, which you specify when you create a new function.

Enter your commands between Func and EndFunc.

All function lines begin with a colon.

If the function requires input, one or more values must be passed to the function. (A user-defined function can store to local variables only, and it cannot use instructions that prompt the user for input.)

There are two ways to return a value from a function:
- As the last line in the function (before EndFunc), calculate the value to be returned.
- Use Return. This is useful for exiting a function and returning a value at some point other than the end of the function.
```

:cube(xx)
:Func
:xx^3
:EndFunc

```
:cube(xx)
: Func
: If \(x \times<0\)
: Return 0
: xx^3
: EndFunc

The argument \(x x\) is automatically treated as a local variable. However, if the example needed another variable, the function would need to declare it as local by using the Local command (pages 306 and 307).

There is an implied Return at the end of the function. If the last line is not an expression, an error occurs.

The following function returns the \(x\) th root of a value \(y(\sqrt[x]{y})\). Two values must be passed to the function: \(x\) and \(y\).
\begin{tabular}{|c|c|}
\hline Function as called from the Home Screen & Function as defined in the Program Editor \\
\hline \multicolumn{2}{|l|}{\(3 \rightarrow x x ; 125 \rightarrow y \mathrm{y}\)} \\
\hline \(\square\) & \(\downarrow\) \\
\hline \(4 * x \operatorname{root}(3,125)\) & : xroot (xx, yy) \\
\hline \(\square\) & :Func \\
\hline 5 & : EndFunc \\
\hline
\end{tabular}

One program can call another program as a subroutine. The subroutine can be external (a separate program) or internal (included in the main program). Subroutines are useful when a program needs to repeat the same group of commands at several different places.

\section*{Calling a Separate Program}

\section*{Calling an Internal Subroutine}

Tip: Use the Program Editor's F4] Var toolbar menu to enter the Define and Prgm...EndPrgm commands.

To call a separate program, use the same syntax used to run the program from the Home screen.

To define an internal subroutine, use the Define command with Prgm...EndPrgm. Because a subroutine must be defined before it can be called, it is a good practice to define subroutines at the beginning of the main program.

An internal subroutine is called and executed in the same way as a separate program.

At the end of a subroutine, execution returns to the calling program. To exit a subroutine at any other time, use the Return command.

A subroutine cannot access local variables declared in the calling program. Likewise, the calling program cannot access local variables declared in a subroutine.

Lbl commands are local to the programs in which they are located. Therefore, a Goto command in the calling program cannot branch to a label in a subroutine or vice versa.

\section*{Using Variables in a Program}
rograms use variables in the same general way that you use them from the Home screen. However, the "scope" of the variables affects how they are stored and accessed.

\section*{Scope of Variables}

Note: For information about folders, refer to Chapter 10.

Note: If a program has local variables, a graphed function cannot access them. For example:
Local aa
\(5 \rightarrow\) aa
Graph aa* \(\cos (\mathrm{x})\)
may display an error or an unexpected result tif aa is an existing variable in the current folder).
\begin{tabular}{ll}
\hline Scope & Description \\
\hline System & Variables with reserved names that are created \\
(Global) & automatically to store data about the state of the TI-92. \\
Variables & \begin{tabular}{l}
For example, Window variables (xmin, xmax, ymin, \\
ymax, etc.) are globally available from any folder.
\end{tabular}
\end{tabular}
- You can always refer to these variables by using the variable name only, regardless of the current folder.
- A program cannot create system variables, but it can use the values and (in most cases) store new values.

Folder
Variables

Local
Variables

Variables that are stored in a particular folder.
- If you store to a variable name only, it is stored in the current folder. For example:

\section*{\(5 \rightarrow\) start}
- If you refer to a variable name only, that variable must be in the current folder. Otherwise, it cannot be found (even if the variable exists in a different folder).
- To store or refer to a variable in another folder, you must specify a pathname. For example:
\(5 \rightarrow\) class\start
\(\quad\) Variable name
Folder name
After the program stops, any folder variables created by the program still exist and still take up memory.

Temporary variables that exist only while a program is running. When the program stops, local variables are deleted automatically.
- To create a local variable in a program, use the Local command to declare the variable.
- A local variable is treated as unique even if there is an existing folder variable with the same name.
- Local variables are ideal for temporarily storing values that you do not want to save.

\section*{Variable-Related Commands}

Note: The Define, DelVar, and Local commands are available from the Program Editor's F4 Var toolbar menu.

\section*{Example of a Local Variable}

Tip: As often as possible, use local variables for any variable that is used only within a program and does not need to be stored after the program stops.
\begin{tabular}{|c|c|}
\hline Command & Description \\
\hline STO• key & Stores a value to a variable. As on the Home screen, pressing STO® enters a \(\rightarrow\) symbol. \\
\hline CopyVar & Copies the contents of a variable. \\
\hline Define & Defines a program (subroutine) or function variable within a program. \\
\hline DelFold & Deletes a folder. All variables in that folder must be deleted first. \\
\hline DelVar & Deletes a variable. \\
\hline getFold & Returns the name of the current folder. \\
\hline getType & Returns a string that indicates the data type (EXPR, LIST, etc.) of a variable. \\
\hline Local & Declares one or more variables as local variables. \\
\hline Lock & Locks a variable so that it cannot be accidentally changed or deleted without first being unlocked. \\
\hline MoveVar & Moves a variable from one folder to another. \\
\hline NewData & Creates a data variable whose columns consist of a series of specified lists. \\
\hline NewFold & Creates a new folder. \\
\hline NewPic & Creates a picture variable based on a matrix. \\
\hline Rename & Renames a variable. \\
\hline Unlock & Unlocks a locked variable. \\
\hline
\end{tabular}

The following program segment shows a For...EndFor loop (which is discussed later in this chapter). The variable i is the loop counter. In most cases, the variable \(i\) is used only while the program is running.
```

Declares variable i as local. __ :Local i
:For i,0,5,1
: Disp i
:EndFor
:Disp i

```

If you declare variable i as local, it is deleted automatically when the program stops so that it does not use up memory.

\section*{String Operations}

Strings are used to enter and display text characters. You can type a string directly, or you can store a string to a variable.

How Strings Are Used

A string is a sequence of characters enclosed in "quotes". In programming, strings allow the program to display information or prompt the user to perform some action. For example:
```

Disp "The result is",answer
- or -
Input "Enter the angle in degrees",ang1
- or -
"Enter the angle in degrees">strl
Input str1,ang1

```

Some input commands (such as InputStr) automatically store user input as a string and do not require the user to enter quotation marks.

A string cannot be evaluated mathematically, even if it appears to be a numeric expression. For example, the string "61" represents the characters "6" and "1", not the number 61.

Although you cannot use a string such as " 61 " or " \(2 x+4\) " in a calculation, you can convert a string into a numeric expression by using the expr command.

\section*{String Commands}
\begin{tabular}{|c|c|}
\hline Command & Description \\
\hline \# & Converts a string into a variable name. This is called indirection. \\
\hline \& & Appends (concatenates) two strings into one string. \\
\hline char & Returns the character that corresponds to a specified character code. This is the opposite of the ord command. \\
\hline dim & Returns the number of characters in a string. \\
\hline expr & Converts a string into an expression and executes that expression. This is the opposite of the string command. \\
\hline & Important: Some user input commands store the entered value as a string. Before you can perform a mathematical operation on that value, you must convert it to a numeric expression. \\
\hline inString & Searches a string to see if it contains a specified substring. If so, inString returns the character position where the first occurrence of the substring begins. \\
\hline left & Returns a specified number of characters from the left side (beginning) of a string. \\
\hline mid & Returns a specified number of characters from any position within a string. \\
\hline ord & Returns the character code of the first character within a string. This is the opposite of the char command. \\
\hline right & Returns a specified number of characters from the right side (end) of a string. \\
\hline string & Converts a numeric expression into a string. This is the opposite of the expr command. \\
\hline
\end{tabular}

Conditional tests let programs make decisions. For example, depending on whether a test is true or false, a program can decide which of two actions to perform. Conditional tests are used with control structures such as If...EndIf and loops such as While...EndWhile (described later in this chapter).

\section*{Entering a Test Operator}

\section*{Relational Tests}

Tip: From the keyboard, you can type:
\(>=\) for \(\geq\)
<= for \(\leq\)
/= for \(\neq\)
(To get the / character, press \(\div\).)

\section*{Boolean Tests}

The Not Function
- Type the operator directly from the keyboard.
- or -
- Press 2nd [MATH] and select 8:Test. Then select the operator from the menu.
- or -
- Press 2nd [Catalog]. The test operators are listed near the bottom of the CATALOG menu.

Relational operators let you define a conditional test that compares two values. The values can be numbers, expressions, lists, or matrices (but they must match in type and dimension).
\begin{tabular}{lll}
\hline Operator & True if: & Example \\
\hline\(>\) & Greater than & \(\mathrm{a}>8\) \\
\(<\) & Less than & \(\mathrm{a}<0\) \\
\(\geq\) & Greater than or equal to & \(\mathrm{a}+\mathrm{b} \geq 100\) \\
\(\leq\) & Less than or equal to & \(\mathrm{a}+6 \leq \mathrm{b}+1\) \\
\(=\) & Equal & list \(1=\mathrm{list2}\) \\
\(\neq\) & Not equal to & mat \(1 \neq \mathrm{mat2}\) \\
\hline
\end{tabular}

Boolean operators let you combine the results of two separate tests.
\begin{tabular}{lll}
\hline Operator & True if: & Example \\
\hline and & Both tests are true & \(a>0\) and \(a \leq 10\) \\
or & At least one test is true & \(a \leq 0\) or \(b+c>10\) \\
xor & \begin{tabular}{l}
One test is true and the \\
other is false
\end{tabular} & \(a+6<b+1\) xor \(c<d\) \\
\hline
\end{tabular}

The not function changes the result of a test from true to false and vice versa. For example:
\(\operatorname{not}(x>2)\) is true if \(x \leq 2\)
false if \(x>2\)
Note: If you use not from the Home screen, it is shown as ~ in the history area. For example, not \((x>2)\) is shown as \(\sim(x>2)\).

\section*{Using If, LbI, and Goto to Control Program Flow}

\section*{F2 Control Toolbar Menu}

\section*{If Command}

Tip: Use indentation to make your programs easier to read and understand.

\section*{If...Then...Endlf Structures}

Note: Endlf marks the end of the Then block that is executed if the condition is true.

An If...Endlf structure uses a conditional test to decide whether or not to execute one or more commands. Lbl (label) and Goto commands can also be used to branch (or jump) from one place to another in a program.

To enter If...Endlf structures, use the Program Editor's F2 Control toolbar menu.

The If command is available directly from the F2 menu.

To see a submenu that lists other If structures, select 2:If...Then.

When you select a structure such as If...Then...Endlf, a template is inserted at the cursor location.
\[
\begin{aligned}
& \text { : If | Then } \\
& \text { : End If } \\
& \text { The cursor is positioned so } \\
& \text { that you can enter a } \\
& \text { conditional test. }
\end{aligned}
\]

To execute only one command if a conditional test is true, use the general form:
```

Executed only if $x>5 ;$
otherwise, skipped. $\quad$ If $x>5$
otherwise, skipped. : Disp "x is greater than 5"
Always displays the value of x .——: Disp x

```

In this example, you must store a value to x before executing the If command.

To execute multiple commands if a conditional test is true, use the structure:
\begin{tabular}{|c|c|}
\hline & : If \(x>5\) Then \\
\hline Executed only if \(x>5\). & ```
: Disp "x is greater than 5"
: 2*x }->
:EndIf
``` \\
\hline \begin{tabular}{l}
Displays value of: \\
- \(2 x\) if \(x>5\).
\end{tabular} & : Disp x \\
\hline
\end{tabular}

If...Then...Else...
Endlf Structures

If...Then...Elself...
Endlf Structures

\section*{Lbl and Goto} Commands

To execute one group of commands if a conditional test is true and a different group if the condition is false, use this structure:


A more complex form of the If command lets you test a series of conditions. Suppose your program prompts the user for a number that corresponds to one of four options. To test for each option (If Choice=1, If Choice = 2 , etc.), use the If...Then...Elself...Endlf structure.

Refer to Appendix A for more information and an example.

You can also control the flow of your program by using Lbl (label) and Goto commands.

Use the Lbl command to label (assign a name to) a particular location in the program.


You can then use the Goto command at any point in the program to branch to the location that corresponds to the specified label.

\section*{Goto labelName \\ L specifies which LbI command to branch to}

Because a Goto command is unconditional (it always branches to the specified label), it is often used with an If command so that you can specify a conditional test. For example:
\begin{tabular}{|c|c|}
\hline & : If \(x>5\) \\
\hline \multirow[t]{2}{*}{If \(x>5\), branches directly to label GT5.} & Goto GT5 \\
\hline & : Disp x \\
\hline \multirow[t]{2}{*}{For this example, the program must include commands (such} & \\
\hline & : Lbl GT5 \\
\hline as Stop) that prevent Lbl GT5 & . Disp "The number was > 5" \\
\hline from being executed if \(x \leq 5\). & :Disp "The number was > 5" \\
\hline
\end{tabular}

\section*{Using Loops to Repeat a Group of Commands}

\section*{F2 Control Toolbar Menu}

Note: A loop command marks the start of the loop. The corresponding End command marks the end of the loop.

\section*{For...EndFor Loops}

Note: The ending value can be less than the beginning value, but the increment must be negative.

Note: The For command automatically increments the counter variable so that the program can exit the loop after a certain number of repetitions.

To repeat the same group of commands successively, use a loop. Several types of loops are available. Each type gives you a different way to exit the loop, based on a conditional test.

To enter most of the loop-related commands, use the Program Editor's F2 Control toolbar menu.

When you select a loop, the loop command and its corresponding End command are inserted at the cursor location.


> —: For | : EndFor
> - If the loop requires arguments, the cursor is positioned after the command.

You can then begin entering the commands that will be executed in the loop.

A For...EndFor loop uses a counter to control the number of times the loop is repeated. The syntax of the For command is:

For(variable, begin, end [, increment])


When For is executed, the variable value is compared to the end value. If variable does not exceed end, the loop is executed; otherwise, program control jumps to the command following EndFor.


At the end of the loop (EndFor), program control jumps back to the For command, where variable is incremented and compared to end.

\section*{Using Loops to Repeat a Group of Commands (Continued)}

Tip: You can declare the counter variable as local (pages 306 and 307) if it does not need to be saved after the program stops.

\section*{While...EndWhile Loops}

Note: The While command does not automatically change the condition. You must include commands that allow the program to exit the loop.

For example:
\begin{tabular}{ll} 
Displays \(0,1,2,3,4\), and \(5 .-\) & \(:\) For i, \(0,5,1\) \\
& : Disp i \\
: EndFor \\
\begin{tabular}{l} 
Displays 6. When variable \\
increments to 6 , the loop is \\
not executed.
\end{tabular} & :Disp i \\
\hline
\end{tabular}

A While...EndWhile loop repeats a block of commands as long as a specified condition is true. The syntax of the While command is:

\section*{While condition}

When While is executed, the condition is evaluated. If condition is true, the loop is executed; otherwise, program control jumps to the command following EndWhile.


At the end of the loop (EndWhile), program control jumps back to the While command, where condition is re-evaluated.

To execute the loop the first time, the condition must initially be true.
- Any variables referenced in the condition must be set before the While command. (You can build the values into the program or prompt the user to enter the values.)
- The loop must contain commands that change the values in the condition, eventually causing it to be false. Otherwise, the condition is always true and the program cannot exit the loop (called an infinite loop).

For example:
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Initially sets x.} & : \(0 \rightarrow x\) \\
\hline & :While \(x<5\) \\
\hline Displays 0, 1, 2, 3, and 4. & : Disp x \\
\hline Increments x . & : \(\mathrm{x}+1 \rightarrow \mathrm{x}\) \\
\hline & : EndWhile \\
\hline Displays 5. When x increments to 5 , the loop is not executed. & : Disp x \\
\hline
\end{tabular}

\section*{Loop...EndLoop Loops}

Note: The Exit command exits from the current loop.

Repeating a Loop Immediately

A Loop...EndLoop creates an infinite loop, which is repeated endlessly. The Loop command does not have any arguments.


Typically, the loop contains commands that let the program exit from the loop. Commonly used commands are: If, Exit, Goto, and LbI (label). For example:


In this example, the If command can be anywhere in the loop.
\begin{tabular}{ll}
\hline When the If command is: & The loop is: \\
\hline At the beginning of the loop & Executed only if the condition is true. \\
At the end of the loop & \begin{tabular}{l} 
Executed at least once and repeated \\
only if the condition is true.
\end{tabular} \\
\hline
\end{tabular}

The If command could also use a Goto command to transfer program control to a specified Lbl (label) command.

The Cycle command immediately transfers program control to the next iteration of a loop (before the current iteration is complete). This command works with For...EndFor, While...EndWhile, and Loop...EndLoop.

Although the Lbl (label) and Goto commands are not strictly loop commands, they can be used to create an infinite loop. For example:


As with Loop...EndLoop, the loop should contain commands that let the program exit from the loop.

\section*{Configuration Commands}

\section*{Entering the SetMode Command}

Note: F6 does not let you set the Current Folder mode. To set this mode, use the setFold command.

Programs can contain commands that change the TI-92's configuration. Because mode changes are particularly useful, the Program Editor's F6 Mode toolbar menu makes it easy to enter the correct syntax for the setMode command.
\begin{tabular}{ll}
\hline Command & Description \\
\hline getFold & Returns the name of the current folder. \\
getMode & Returns the current setting for a specified mode. \\
setFold & Sets the current folder. \\
setGraph & \begin{tabular}{l} 
Sets a specified graph format (Coordinates, Graph \\
Order, etc.).
\end{tabular} \\
setMode & \begin{tabular}{l} 
Sets any mode except Current Folder.
\end{tabular} \\
setTable & \begin{tabular}{l} 
Sets a specified table setup parameter (tbIStart, \(\Delta\) tbl, \\
etc.)
\end{tabular} \\
switch & \begin{tabular}{l} 
Sets the active window in a split screen, or returns \\
the number of the active window.
\end{tabular} \\
\hline
\end{tabular}

In the Program Editor:
1. Position the cursor where you want to insert the setMode command.
2. Press F6 to display a list of modes.
3. Select a mode to display a menu of its valid settings.
4. Select a setting.

The correct syntax is inserted into your :setMode("Graph","FUNCTION") program

\section*{Getting Input from the User and Displaying Output}

F3 I/O Toolbar Menu

\section*{Input Commands}

Tip: String input cannot be used in a calculation. To convert a string to a numeric expression, use the expr command.

Although values can be built into a program (or stored to variables in advance), a program can prompt the user to enter information while the program is running. Likewise, a program can display information such as the result of a calculation.

To enter most of the commonly used input/output commands, use the Program Editor's F3 I/O toolbar menu.


To see a submenu that lists additional commands, select 1:Dialog.

\begin{tabular}{ll}
\hline Command & Description \\
\hline getKey & Returns the key code of the next key pressed. \\
Input & \begin{tabular}{l} 
Prompts the user to enter an expression. The \\
expression is treated according to how it is entered. \\
\\
\\
For example:
\end{tabular}
\end{tabular}
- A numeric expression is treated as an expression.
- An expression enclosed in "quotes" is treated as a string.

Input can also display the Graph screen and let the user update the variables xc and yc ( rc and \(\theta \mathrm{c}\) in polar mode) by positioning the graph cursor.

InputStr

PopUp Displays a pop-up menu box and lets the user select an item.

Prompt Prompts the user to enter a series of expressions. As with Input, each expression is treated according to how it is entered.

Request Displays a dialog box that prompts the user to enter an expression. Request always treats the entered expression as a string.

\section*{Getting Input from the User and Displaying Output (Continued)}

\section*{Output Commands}

Note: In a program, simply performing a calculation does not display the result. You must use an output command.

Tip: After Disp and Output, the program immediately continues. You may want to add a Pause command.

\section*{Graphical User Interface Commands}

Tip: When you run a program that sets up a custom toolbar, that toolbar is still available even after the program has stopped.

Note: Request and Text are stand-alone commands that can also be used outside of a dialog box or toolbar program block.
\begin{tabular}{ll}
\hline Command & Description \\
\hline ClrIO & \begin{tabular}{l} 
Clears the Program I/O screen. \\
Disp \\
\\
Displays an expression or string on the Program I/O \\
screen. Disp can also display the current contents of \\
the Program I/O screen without displaying \\
additional information.
\end{tabular} \\
DispTbl & \begin{tabular}{l} 
Displays the current contents of the Graph screen. \\
Output
\end{tabular} \\
Format & \begin{tabular}{l} 
Displays the current contents of the Table screen. \\
coordinates on the Program I/O screen.
\end{tabular} \\
Pause & \begin{tabular}{l} 
Formats the way in which numeric information is \\
displayed.
\end{tabular} \\
& \begin{tabular}{l} 
Suspends program execution until the user presses \\
ENTER. Optionally, you can display an expression \\
during the pause. A pause lets users read your \\
output and decide when they are ready to continue.
\end{tabular} \\
Text & \begin{tabular}{l} 
Displays a dialog box that contains a specified \\
character string.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline \begin{tabular}{l} 
Dialog... \\
endDlog
\end{tabular} & \begin{tabular}{l} 
Defines a program block (consisting of Title, \\
Request, etc., commands) that displays a dialog box.
\end{tabular} \\
Toolbar... & \begin{tabular}{l} 
Defines a program block (consisting of Title, Item, \\
etc., commands) that replaces the toolbar menus. \\
The redefined toolbar is in effect only while the \\
program is running and only until the user selects an \\
item. Then the original toolbar is redisplayed.
\end{tabular} \\
& \begin{tabular}{l} 
Defines a program block that displays a custom \\
toolbar when the user presses [nd [custom]. That \\
toolbar remains in effect until the user presses
\end{tabular} \\
Custom... & 2nd [cusTom] again or changes applications. \\
EndCustm & \begin{tabular}{l} 
Displays a drop-down menu within a dialog box.
\end{tabular} \\
DropDown & \begin{tabular}{l} 
Displays a menu item for a redefined toolbar. \\
Item
\end{tabular} \\
Request & Creates an input box within a dialog box. \\
Text & \begin{tabular}{l} 
Displays a character string within a dialog box.
\end{tabular} \\
Title & \begin{tabular}{l} 
Displays the title of a dialog box or a menu title \\
within a toolbar.
\end{tabular}
\end{tabular}

\section*{Table Commands}

\section*{Graphing Commands}

Note: For more information about using setMode, refer to page 316.
\begin{tabular}{ll}
\hline Command & Description \\
\hline DispTbl & Displays the current contents of the Table screen. \\
setTable & \begin{tabular}{l} 
Sets the Graph <-> Table or Independent table \\
parameters. (To set the other two table parameters, \\
you can store the applicable values to the tblStart \\
and \(\Delta\) tbl system variables.)
\end{tabular} \\
Table & \begin{tabular}{l} 
Builds and displays a table based on one or more \\
expressions or functions.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline ClrGraph & \begin{tabular}{l} 
Erases any functions or expressions that were \\
graphed with the Graph command.
\end{tabular} \\
Define & \begin{tabular}{l} 
Creates a user-defined function.
\end{tabular} \\
DispG & Displays the current contents of the Graph screen. \\
FnOff & Deselects all (or only specified) Y= functions. \\
FnOn & Selects all (or only specified) Y= functions. \\
Graph & \begin{tabular}{l} 
Graphs one or more specified expressions, using the \\
current graphing mode.
\end{tabular} \\
Input & \begin{tabular}{l} 
Displays the Graph screen and lets the user update \\
the variables xc and yc (rc and \(\theta c\) in polar mode) by
\end{tabular} \\
& \begin{tabular}{l} 
positioning the graph cursor.
\end{tabular} \\
NewPlot & Creates a new stat plot definition. \\
PlotsOff & \begin{tabular}{l} 
Deselects all (or only specified) stat data plots.
\end{tabular} \\
PlotsOn & \begin{tabular}{l} 
Selects all (or only specified) stat data plots.
\end{tabular} \\
setGraph & \begin{tabular}{l} 
Changes settings for the various graph formats \\
(Coordinates, Graph Order, etc.).
\end{tabular} \\
setMode & \begin{tabular}{l} 
Sets the Graph mode, as well as other modes. \\
Style
\end{tabular} \\
Sets the display style for a function.
\end{tabular}

\section*{Creating a Table or Graph (Continued)}

\section*{Graph Picture and Database Commands}

Note: For information about graph pictures and databases, also refer to Chapter 15.
\begin{tabular}{ll}
\hline Command & Description \\
\hline AndPic & \begin{tabular}{l} 
Displays the Graph screen and superimposes a \\
stored graph picture by using AND logic.
\end{tabular} \\
CyclePic & Animates a series of stored graph pictures. \\
NewPic & Creates a graph picture variable based on a matrix. \\
RcIGDB & \begin{tabular}{l} 
Restores all settings stored in a graph database. \\
RcIPic \\
Risplays the Graph screen and superimposes a \\
stored graph picture by using OR logic.
\end{tabular} \\
StoGDB & \begin{tabular}{l} 
Clears the Graph screen and displays a stored graph \\
picture.
\end{tabular} \\
StoPic & \begin{tabular}{l} 
Stores the current graph settings to a graph \\
database variable.
\end{tabular} \\
XorPic & \begin{tabular}{l} 
Copies the Graph screen (or a specified rectangular \\
portion) to a graph picture variable. \\
Displays the Graph screen and superimposes a \\
stored graph picture by using XOR logic.
\end{tabular} \\
\hline
\end{tabular}

\section*{Drawing on the Graph Screen}

\section*{Pixel vs. Point Coordinates}

Tip: For information about pixel coordinates in split screens, refer to Chapter 5.

Note: Pixel commands start with Pxl, such as PxIChg.

\section*{Erasing Drawn Objects}

\section*{Drawing a Point or Pixel}

To create a drawing object on the Graph screen, use the commands listed in this section.

When drawing an object, you can use either of two coordinate systems to specify a location on the screen.
- Pixel coordinates - Refer to the pixels that physically make up the screen. These are independent of the viewing window because the screen is always 239 ( 0 to 238) pixels wide and 103 (0 to 102) pixels tall.
- Point coordinates - Refer to the coordinates in effect for the current viewing window (as defined in the Window Editor).
\begin{tabular}{|l|c|}
\hline\(\chi_{(0,0)}\) & \((238,0)\) \\
\hline\(\ldots \ldots .102)\) & \(\ldots\). \\
\hline
\end{tabular}

Pixel coordinates (independent of viewing window)


Point coordinates (for standard viewing window)

Many drawing commands have two forms: one for pixel coordinates and one for point coordinates.
\begin{tabular}{ll}
\hline Command & Description \\
\hline ClrDraw & Erases all drawn objects from the Graph screen. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline PtChg or & \begin{tabular}{l} 
Toggles (inverts) a pixel at the specified coordinates. \\
PtChg, which uses point coordinates, affects the \\
pixel closest to the specified point. If the pixel is off, \\
it is turned on. If the pixel is on, it is turned off.
\end{tabular} \\
PtOff or & \begin{tabular}{l} 
Turns off (erases) a pixel at the specified \\
coordinates. PtOff, which uses point coordinates, \\
affects the pixel closest to the specified point.
\end{tabular} \\
PtOn or & \begin{tabular}{l} 
Turns on (displays) a pixel at the specified \\
coordinates. PtOn, which uses point coordinates, \\
affects the pixel closest to the specified point.
\end{tabular} \\
PtTest or & \begin{tabular}{l} 
Returns true or false to indicate if the specified \\
coordinate is on or off, respectively.
\end{tabular} \\
PxITest & \begin{tabular}{l} 
Displays a character string at the specified \\
coordinates.
\end{tabular} \\
PtText or
\end{tabular}

\section*{Drawing on the Graph Screen (Continued)}

\section*{Drawing Lines and \\ Circles}

\section*{Drawing \\ Expressions}
\begin{tabular}{ll}
\hline Command & Description \\
\hline Circle or & \begin{tabular}{l} 
Draws, erases, or inverts a circle with a specified \\
center and radius.
\end{tabular} \\
PxICrcl & \begin{tabular}{l} 
Draws a line with a specified slope through a \\
specified point.
\end{tabular} \\
DrawSIp & \begin{tabular}{l} 
Draws, erases, or inverts a line between two sets of \\
coordinates.
\end{tabular} \\
Line or & PxILine \\
LineHorz or & \begin{tabular}{l} 
Draws, erases, or inverts a horizontal line at a \\
specified row coordinate.
\end{tabular} \\
PxIHorz & \begin{tabular}{l} 
Draws a tangent line for a specified expression at a \\
specified point. (This draws the tangent line only,
\end{tabular} \\
LineTan & \begin{tabular}{l} 
not the expression.)
\end{tabular} \\
LineVert or & \begin{tabular}{l} 
Draws, erases, or inverts a vertical line at a specified \\
column coordinate.
\end{tabular} \\
PxIVert &
\end{tabular}
\begin{tabular}{ll}
\hline Command & Description \\
\hline DrawFunc & Draws a specified expression. \\
DrawInv & \begin{tabular}{l} 
Draws the inverse of a specified expression. \\
DrawParm
\end{tabular} \\
\begin{tabular}{l} 
Draws a parametric equation using specified \\
expressions as its x and y components.
\end{tabular} \\
DrawPol & \begin{tabular}{l} 
Draws a specified polar expression.
\end{tabular} \\
Shade & \begin{tabular}{l} 
Draws two expressions and shades the areas where \\
expression1 <expression2.
\end{tabular} \\
\hline
\end{tabular}

\section*{Accessing Another TI-92, a CBL 2/CBL, or a CBR}

If you link two TI-92s (described in Chapter 18), programs on both units can transmit variables between them. If you link a TI-92 to a CBL 2/CBL or a CBR, a program on the TI-92 can access the CBL 2/CBL or CBR.

F3 I/O Toolbar Menu

Accessing Another TI-92

Note: For a sample program that synchronizes the receiving and sending units so that GetCalc and SendCalc are executed in the proper sequence, refer to "Transmitting Variables under Program Control" in Chapter 18.

\section*{Accessing a} CBL 2/CBL or CBR

Use the Program Editor's F3 I/O toolbar menu to enter the commands in this section.
1. Press F3 and select 8:Link.
2. Select a command.


When two TI-92s are linked, one acts as a receiving unit and the other as a sending unit.
\begin{tabular}{ll}
\hline Command & Description \\
\hline GetCalc & \begin{tabular}{l} 
Executed on the receiving unit. Sets up the unit to \\
receive a variable via the I/O port.
\end{tabular} \\
& - \(\quad\)\begin{tabular}{l} 
After the receiving unit executes GetCalc, the \\
sending unit must execute SendCalc.
\end{tabular} \\
- \(\quad\)\begin{tabular}{l} 
After the sending unit executes SendCalc, the \\
sent variable is stored on the receiving unit (in \\
the variable name specified by GetCalc).
\end{tabular} \\
& \begin{tabular}{l} 
Executed on the sending unit. Sends a variable to \\
the receiving unit via the I/O port. \\
\\
\end{tabular} \\
& \begin{tabular}{l} 
Before the sending unit executes SendCalc, the \\
receiving unit must execute GetCalc.
\end{tabular} \\
\hline
\end{tabular}

For additional information, refer to the manual that comes with the CBL 2/CBL or CBR unit.
\begin{tabular}{ll}
\hline Command & Description \\
\hline Get & \begin{tabular}{l} 
Gets a variable from an attached CBL 2/CBL or CBR \\
and stores it in the TI-92.
\end{tabular} \\
Send & \begin{tabular}{l} 
Sends a list variable from the TI-92 to the CBL 2/CBL \\
or CBR.
\end{tabular} \\
\hline
\end{tabular}

\section*{Debugging Programs and Handling Errors}

After you write a program, you can use several techniques to find and correct errors. You can also build an error-handling command into the program itself.

\author{
Run-Time Errors
}

\section*{Debugging}

Techniques

The first step in debugging your program is to run it. The TI-92 automatically checks each executed command for syntax errors. If there is an error, a message indicates the nature of the error.
- To display the program in the Program Editor, press ENTER. The cursor appears in the approximate area of the error.

- To cancel program execution and return to the Home screen, press ESC.

If your program allows the user to select from several options, be sure to run the program and test each option.

Run-time error messages can locate syntax errors but not errors in program logic. The following techniques may be useful.
- During testing, do not use local variables so that you can check the variable values after the program stops. When the program is debugged, declare the applicable variables as local.
- Within a program, temporarily insert Disp and Pause commands to display the values of critical variables.
- Disp and Pause cannot be used in a user-defined function. To temporarily change the function into a program, change Func and EndFunc to Prgm and EndPrgm. Use Disp and Pause to debug the program. Then remove Disp and Pause and change the program back into a function.
- To confirm that a loop is executed the correct number of times, display the counter variable or the values in the conditional test.
- To confirm that a subroutine is executed, display messages such as "Entering subroutine" and "Exiting subroutine" at the beginning and end of the subroutine.

\section*{Error-Handling Commands}
\begin{tabular}{ll}
\hline Command & Description \\
\hline Try...EndTry & \begin{tabular}{l} 
Defines a program block that lets the program \\
execute a command and, if necessary, recover from \\
an error generated by that command.
\end{tabular} \\
ClrErr & \begin{tabular}{l} 
Clears the error status and sets the error number in \\
system variable Errornum to zero.
\end{tabular} \\
PassErr & \begin{tabular}{l} 
Passes an error to the next level of the Try...EndTry \\
block.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example: Using Alternative Approaches}

The preview at the beginning of this chapter shows a program that prompts the user to enter an integer, sums all integers from 1 to the entered integer, and displays the result. This section gives several approaches that you can use to achieve the same goal.

\section*{Example 1}

\section*{Example 2}

Tip: For \(\leq\), type <=. For \&, press 2nd H.

\section*{Example 3}

Note: Because Prompt returns \(n\) as a number, you do not need to use expr to convert \(n\).

Tip: For \(\leq\), type \(<=\).

This example is the program given in the preview at the beginning of the chapter. Refer to the preview for detailed information.


This example uses InputStr for input, a While...EndWhile loop to calculate the result, and Text to display the result.


This example uses Prompt for input, Lbl and Goto to create a loop, and Disp to display the result.
:prog3()
: Prgm


\section*{Example: Using Alternative Approaches (Continued)}

\section*{Example 4}

\section*{Example 5}

Note: Because Input returns \(n\) as a number, you do not need to use expr to convert \(n\).

This example uses Dialog...EndDlog to create dialog boxes for input and output. It uses Loop...EndLoop to calculate the result.


This example uses the TI-92's built-in functions to calculate the result without using a loop.

\begin{tabular}{ll}
\hline Function & Used in this example to: \\
\hline seq & Generate the sequence of integers from 1 to n. \\
& seq(expression, var, low, high [,step]) \\
sum & Sum the integers in the list generated by seq. \\
\hline
\end{tabular}

\section*{Memory and Variable Management}


Note: For information about using folders, refer to Chapter 10.

Note: To communicate with a PC or Macintosh, you must use the TI-GRAPH LINK, an optional accessory.
Preview of Memory and Variable Management ..... 328
Checking and Resetting Memory ..... 330
Displaying the VAR-LINK Screen ..... 331
Manipulating Variables and Folders with VAR-LINK ..... 333
Pasting a Variable Name to an Application ..... 335
Transmitting Variables between Two TI-92s ..... 336
Transmitting Variables under Program Control. ..... 339

This chapter describes how you can manage the TI-92's memory, including the variables stored in memory, by using the MEMORY screen and the VAR-LINK screen.


The MEMORY screen shows how the memory is currently being used.

The VAR-LINK screen displays a list of defined variables and folders.


You can also use VAR-LINK to send/receive variables between two TI-92s or between the TI-92 and a personal computer. For information about:
- Linking two TI-92s, refer to the applicable section at the end of this chapter.
- Using the optional TI-GRAPH LINK \(^{\text {TM }}\) to communicate with a PC or Macintosh, refer to the manual that comes with the TI-GRAPH LINK.

\section*{Preview of Memory and Variable Management}

Assign values to different variables using a variety of data types. Use the VAR-LINK screen to view a list of the defined variables. Then delete the unused variables so that they will not take up memory.

Steps
From the Home screen, assign
variables with the following variable
types.
Expression: \(5 \rightarrow x 1\)
Function: \(\mathrm{xx}{ }^{2}+4 \rightarrow f(\mathrm{xx})\)
List: \(\{5,10\} \rightarrow 11\)
Matrix: \([30,25] \rightarrow \mathrm{m} 1\)
2. Suppose you start to perform an operation using a function variable but can't remember its name.
3. Display the VAR-LINK screen. By default, this screen lists all defined variables.

This example assumes that the variables assigned above are the only ones defined.
4. Change the screen's view to show only function variables.
Although this may not seem particularly useful in an example with four variables, consider how useful it could be if there were many variables of all different types.

\section*{Keystrokes Display}


5区
```

5*

```


5. Highlight the f function variable, and \(\bigcirc\) © 6

\begin{tabular}{|c|c|c|}
\hline Steps & Keystrokes & Display \\
\hline 6. Close the Contents window. & ESC & \\
\hline 7. With the f variable still highlighted, close the VAR-LINK screen and paste the variable name to the entry line. & ENTER & \(\frac{5 * \mathrm{f}( }{L}\) Notice that " ( is pasted. \\
\hline 8. Complete the operation. & \(2 \square\) ENTER & \(5 * f(2) 40\) \\
\hline \begin{tabular}{l}
9. Redisplay the VAR-LINK screen. \\
The previous change in view is no longer in effect. The screen lists all defined variables.
\end{tabular} & 2nd [VAR-LINK] & \\
\hline \begin{tabular}{l}
10. Use the F5 All toolbar menu to select all variables. \\
A \(\checkmark\) mark indicates items that are selected. Notice that this also selected the MAIN folder (see Step 13). \\
Note: Instead of using FF5 (if you don't want to delete all your variables), you can select individual variables. Highlight each item to delete and press (F4.
\end{tabular} & F5 1 & \begin{tabular}{l}
開 \\
1:Select. A11 \\
z:Beielect A11 \\
3:Select current.
\end{tabular} \\
\hline 11. Use the F1 Manage toolbar menu to delete. & F1 1 &  \\
\hline 12. Confirm the deletion. & ENTER &  \\
\hline \begin{tabular}{l}
13. Because F5 1 also selected the MAIN folder, an error message states that you cannot delete the MAIN folder. Acknowledge the message. \\
When VAR-LINK is redisplayed, the deleted variables are not listed.
\end{tabular} & ENTER &  \\
\hline \begin{tabular}{l}
14. Close the VAR-LINK screen and return to the current application (Home screen in this example). \\
When you use ESC (instead of ENTER) to close VAR-LINK, the highlighted name is not pasted to the entry line.
\end{tabular} & ESC & \\
\hline
\end{tabular}

\section*{Checking and Resetting Memory}

\section*{Displaying the MEMORY Screen}

Resetting the Memory

Note: Selecting 1:All resets the display contrast to its factory setting. To adjust the contrast, use \(\square \square\) and \(\square \square\).
1. Press 2nd [MEM].

2. To close the screen, press ENTER.
- or -

To reset the memory, use the following procedure.

From the MEMORY screen:
1. Press F1.
2. Select the applicable item.

\begin{tabular}{ll}
\hline Item & Description \\
\hline All & \begin{tabular}{l} 
Deletes all user-defined variables, functions, and \\
folders; resets all system variables and modes to their \\
original factory settings.
\end{tabular} \\
Memory & \begin{tabular}{l} 
Deletes all user-defined variables, functions, and \\
folders. This does not affect system variables (xmin, \\
ymin, etc.) or mode settings.
\end{tabular} \\
Default & \begin{tabular}{l} 
Resets all system variables and modes to their \\
original factory settings. This does not affect any \\
user-defined variables, functions, or folders.
\end{tabular} \\
\hline
\end{tabular}
3. When prompted for confirmation, press ENTER.

The TI-92 displays a message when the reset is complete.
4. Press ENTER to acknowledge the message.

The MEMORY screen lets you delete all user-defined variables. To delete individual variables only, use the VAR-LINK screen (2nd [Var-LINk]). Refer to page 333.

\section*{Displaying the VAR-LINK Screen}

\section*{Displaying the VAR-LINK Screen}

Note: For information about using folders, refer to Chapter 10.

Tip: Type a letter repeatedly to cycle through the names that start with that letter.

Variable Types as Listed on VAR-LINK

The VAR-LINK screen lists the variables and folders that are currently defined. After displaying the screen, you can manipulate the variables and/or folders as described in the remaining sections of this chapter.

Press 2nd [VAR-LINK]. By default, the VAR-LINK screen lists all userdefined variables in all folders and with all data types.


To scroll through the list:
- Press \(\bigcirc\) or \(\bigcirc\). (Use 2nd \(\bigcirc\) or 2nd \(\bigcirc\) to scroll one page at a time.) - or -
- Type a letter. If there are any variable names that start with that letter, the cursor moves to highlight the first of those variable names.
\begin{tabular}{ll}
\hline Type & Description \\
\hline DATA & Data \\
EXPR & Expression (includes numeric values) \\
FIG & Geometry session \\
FUNC & Function \\
GDB & Graph database \\
LIST & List \\
MAC & Macro for a geometry session \\
MAT & Matrix \\
PIC & Picture of a graph \\
PRGM & Program \\
STR & String \\
TEXT & Text Editor session \\
\hline
\end{tabular}

\section*{Displaying the VAR-LINK Screen (Continued)}

\author{
Listing Only a Specified Folder and/or Variable Type
}

Tip: To cancel a menu, press ESC].

Tip: To list system variables ( \(Y=\) Editor functions, window variables, etc.), select E :System, the last item in the Var Type menu.

\section*{Closing the VAR-LINK Screen}

Tip: For more information on using the ENTER paste feature, refer to page 335.

If you have a lot of variables and/or folders, it may be difficult to locate a particular variable. By changing VAR-LINK's view, you can specify the information you want to see.

From the VAR-LINK screen:
1. Press F2 View.
2. Highlight the setting you want to change, and press \(\bigcirc\). This displays a menu of valid
 choices.

Folder - Always lists 1:All and 2:main, but lists other folders only if you have created them.


Var Type - Lists the valid variable types.

\(\downarrow\) indicates that you can scrol for additional variable types.
3. Select the new setting.
4. When you are back on the VAR-LINK VIEW screen, press ENTER.

The VAR-LINK screen is updated to show only the specified folder and/or variable type.

To close the VAR-LINK screen and return to the current application, use ENTER or ESC as described below.
\begin{tabular}{ll} 
Press: & To: \\
\hline ENTER & \begin{tabular}{l} 
Paste the highlighted variable or folder name to the cursor \\
location in the current application.
\end{tabular} \\
EESC & \begin{tabular}{l} 
Return to the current application without pasting the \\
highlighted name.
\end{tabular}
\end{tabular}

\section*{Manipulating Variables and Folders with VAR-LINK}

On the VAR-LINK screen, you can show the contents of a variable. You can also select one or more listed items and manipulate them by using the operations in this section.

\section*{Showing the Contents of a Variable}

Note: You cannot edit the contents from this screen.

\section*{Selecting Items from the List}

Note: If you use F4] to \(\checkmark\) one or more items and then highlight a different item, the following operations affect only the \(\sqrt{ }\) 'ed items.

\section*{Deleting Variables or Folders}

Tip: When you use F4 to select a folder, its variables are selected automatically so that you can delete the folder and its variables at the same time.

You can show all variable types except DATA, FIG, GDB, and MAC. For example, you must open a FIG variable as a geometry session.
1. On VAR-LINK, move the cursor to highlight the variable.
2. Press \({ }^{[66}\) Contents.

If you highlight a folder, the screen shows the number of variables in that folder.
3. To return to VAR-LINK, press

any key.

For other operations, select one or more variables and/or folders.
\begin{tabular}{ll}
\hline To select: & Do this: \\
\hline \begin{tabular}{l} 
A single variable \\
or folder
\end{tabular} & Move the cursor to highlight the item.
\end{tabular}

A group of variables or folders

All folders and all variables

Highlight each item and press [F4. A \(\checkmark\) is displayed to the left of each selected item. (If you select a folder, all variables in that folder are selected.) Use F4 to select or deselect an item.

Press F5 All and select 1:Select All.


To delete a folder, you must delete all of the variables in that folder. However, you cannot delete the MAIN folder even if it is empty.
1. On VAR-LINK, select the variables and/or folders.
2. Press F1 Manage and select 1:Delete. (You can press instead of F1 1.)


\section*{Manipulating Variables and Folders with VAR-LINK (Continued)}

\section*{Creating a New} Folder

For information about using folders, refer to Chapter 10.
1. On VAR-LINK, press F1 Manage and select 5:Create Folder.
2. Type a unique name, and press ENTER twice.


You must have at least one folder other than MAIN. You cannot use VAR-LINK to copy variables within the same folder.
1. On VAR-LINK, select the variables.
2. Press F1 Manage and select 2:Copy or 4:Move.
3. Select the destination folder.
4. Press ENTER.

The copied or moved variables retain their original names.
Uariable: f,l1,m1,Fici
To: ERESA
```

Folder: mヨin

```
```

Folder: mヨin

```

Enter=DK \(\quad\) ESC=C:HFELC

\section*{Renaming Variables or Folders}

\section*{Locking or \\ Unlocking Variables or Folders}

Copying or Moving Variables from One Folder to Another

Tip: To copy a variable to a different name in the same folder, use STO• (such as a1 \(\rightarrow \mathrm{a} 2\) ) or the CopyVar command from the Home screen.

Remember, if you use F54 to select a folder, the variables in that folder are selected automatically. As necessary, use F4 to deselect individual variables.
1. On VAR-LINK, select the variables and/or folders.
2. Press F1 Manage and select 3:Rename.
3. Type a unique name, and press ENTER twice.

If you selected multiple items, you are prompted to enter a
 new name for each one.

When a variable is locked, you cannot delete, rename, or store to it. However, you can copy, move, or display its contents. When a folder is locked, you can manipulate the variables in the folder (assuming the variables are not locked), but you cannot delete the folder.
1. On VAR-LINK, select the variables and/or folders.
2. Press F1 Manage and select 6:Lock Variable or 7:UnLock Variable.


\section*{Pasting a Variable Name to an Application}

Which Applications Can You Use?

Note: You can also highlight and paste folder names.

Note: This pastes the variable's name, not its contents. (Use 2nd [RCL], instead of [2nd [VAR-LINK], to recall a variable's contents.)

Suppose you are typing an expression on the Home screen and can't remember which variable to use. You can display the VAR-LINK screen, select a variable from the list, and paste that variable name directly onto the Home screen's entry line.

From the following applications, you can paste a variable name to the current cursor location.
- Home screen or Y= Editor - The cursor must be on the entry line.
- Text Editor or Program Editor - The cursor can be anywhere on the screen.

Starting from an application listed above:
1. Position the cursor where you want to insert the variable name.
2. Press 2nd [VAR-LINK].
3. Highlight the applicable variable.

4. Press ENTER to paste the variable name.
5. Finish typing the expression.
sin(a1)

If you paste a variable name that is not in the current folder, the variable's pathname is pasted.


By linking two TI-92s, you can transmit variables and folders from one unit to the other. This is a convenient way to share any variable listed on the VAR-LINK screen - functions, text sessions, programs, etc.

\section*{Linking Two TI-92s}

Your TI-92 comes with a cable that lets you link two units. Using firm pressure, insert each end of the cable into the I/O port of a TI-92. It doesn't matter which end of the cable goes into which unit.

Note: You cannot link a TI-92 to another graphing calculator such as a TI-81, TI-82, or TI-85.

\section*{Transmitting Variables}

Note: If you set up the sending unit first, it may display an error message or it may remain BUSY until you cancel the transmission.

Note: Depending on transmission speed and variable sizes, messages in the status line may be displayed only briefly.


One TI-92 acts as the sending unit; the other acts as the receiving unit. Either unit can send or receive, depending on how you set them up from the VAR-LINK screen.

After linking the two units, use the following procedure to set up the receiving unit first. Then set up the sending unit.

\section*{On the: Do this:}

Receiving 1. Display the VAR-LINK screen ([2nd [VAR-LINK]).
unit
2. Press F3 Link and select 2:Receive.

The message VAR-LINK: WAITING TO
 RECEIVE and the BUSY indicator are displayed in the status line.
Sending 1. Display the VAR-LINK screen (2nd [VAR-LINK]). unit
2. Select the variables to send, as described earlier in this chapter.
3. Press F3 Link and select 1:Send.

This starts the transmission.
- During transmission, messages are displayed in the status line of both units to show the name of each transmitted item.
- When transmission is complete, the VAR-LINK screen is updated on the receiving unit.

Rules for
Transmitting Variables or Folders

\section*{Canceling a Transmission}

\section*{Common Error and Notification Messages}

Note: The sending unit may not always display this message. Instead, it may remain BUSY until you cancel the transmission.
If you select a: What happens:

Variable (but not the The variable is transmitted to the current folder it is in) folder on the receiving unit.

Folder
The folder and its contents are transmitted to the receiving unit.

Note: If you use F4 to select a folder, all variables in that folder are selected automatically. Use F4 to deselect any variables that you do not want to transmit.

From either the sending or receiving unit:
1. Press ON.

An error message is displayed.
2. Press ESC or ENTER.

\begin{tabular}{ll}
\hline Shown on: & Message and Description \\
\hline Sending unit & \multicolumn{1}{c}{ ERFDF } \\
\cline { 2 - 4 } \\
&
\end{tabular}

This is displayed after several seconds if:
- A cable is not attached to the sending unit's I/O port.
- or -
- A receiving unit is not attached to the other end of the cable.
- or -
- The receiving unit is not set up to receive.

Press ESC or ENTER to cancel the transmission.

\section*{Transmitting Variables between Two TI-92s (Continued)}

\section*{Common Error and Notification Messages (Continued)}

Tip: In the New Name input box, you can keep the same variable name and specify a different folder. For example:


Variable name Folder name


The receiving unit has a variable with the same name as the specified variable being sent.
- To overwrite the existing variable, press ENTER. (By default, Overwrite variable = YES.)
- To store the variable to a different name, set Overwrite variable = NO. In the New Name input box, type a variable name that does not exist in the receiving unit. Then press ENTER twice.
- To skip this variable and continue with the next one, set Overwrite variable = SKIP and press ENTER.
- To cancel the transmission, press ESC.


The receiving unit does not have enough memory for the variable being sent. Press ESC or ENTER to cancel the transmission.

\section*{Transmitting Variables under Program Control}

In a program, you can use the GetCalc and SendCalc instructions to transmit a variable between two linked TI-92s. However, the programs on the two units must be synchronized so that the receiving unit executes GetCalc before the sending unit executes SendCalc.

The "Chat" Program The following program illustrates how to use GetCalc and SendCalc. The program sets up two loops (one for each of the linked TI-92s) so that the units can take turns sending and receiving/displaying a variable named msg. The InputStr instruction lets each user enter a message in the msg variable.


To synchronize GetCalc and SendCalc, the loops are arranged so that the receiving unit executes GetCalc while the sending unit is waiting for the user to enter a message.

\section*{Transmitting Variables under Program Control (Continued)}

\section*{Running the Program}

Note: For information about using the Program Editor, refer to Chapter 17.

This procedure assumes that:
- Two TI-92s are linked with the connecting cable as described on page 336.
- The Chat program is loaded on both TI-92s.
- Use each unit's Program Editor to enter the program. - or -
- Enter the program on one unit and then use the VAR-LINK screen to transmit the program variable to the other unit, as described in the previous section.

To run the program on both units:
1. On the Home screen of each unit, enter:
chat()
2. When each unit displays its initial prompt, respond as shown below.
\begin{tabular}{ll}
\hline On the: & Type: \\
\hline \begin{tabular}{l} 
Unit that will send the first \\
message
\end{tabular} \\
1 and press ENTER. \\
Unit that will receive the first 0 and press ENTER. \\
message.
\end{tabular}
3. Take turns typing a message and pressing ENTER to send the variable msg to the other unit.

Because the Chat program sets up an infinite loop on both units, press ON (on both units) to break the program.

The program stops on the Program I/O screen. Press [F5 or ESC to return to the Home screen.

\section*{Applications}

App. 1: Analyzing the Pole-Corner Problem ..... 342
App. 2: Deriving the Quadratic Formula ..... 344
App. 3: Exploring a Matrix ..... 346
App. 4: Exploring \(\cos (\mathrm{x})=\sin (\mathrm{x})\) ..... 347
App. 5: Finding Minimum Surface Area of a Parallelepiped ..... 348
App. 6: Running a Tutorial Script Using the Text Editor ..... 350
App. 7: Decomposing a Rational Function ..... 352
App. 8: Studying Statistics: Filtering Data by Categories ..... 354
App. 9: CBL 2/CBL Program for the TI-92 ..... 357
App. 10: Studying the Flight of a Hit Baseball ..... 358
App. 11: Visualizing Complex Zeros of a Cubic Polynomial ..... 360
App. 12: Exploring Euclidean Geometry ..... 362
App. 13: Creating a Trisection Macro in Geometry ..... 364
App. 14: Solving a Standard Annuity Problem ..... 367
App. 15: Computing the Time-Value-of-Money ..... 368
App. 16: Finding Rational, Real, and Complex Factors ..... 369
App. 17: A Simple Function for Finding Eigenvalues ..... 370
App. 18: Simulation of Sampling without Replacement ..... 371

This chapter contains applications that show how the TI-92 can be used to solve, analyze, and visualize actual mathematical problems.


\section*{App. 1: Analyzing the Pole-Corner Problem}

\section*{Maximum Length of Pole in Hallway}

Tip: When you want to define a function, use multiple character names as you build the definition. (See page 213.)

Note: The maximum length of the pole is the minimum value of \(\mathrm{c}(\mathrm{w})\).

A ten-foot-wide hallway meets a five-foot-wide hallway in the corner of a building. Find the maximum length pole that can be moved around the corner without tilting the pole.

The maximum length of a pole \(c\) is the shortest line segment touching the interior corner and opposite sides of the two hallways as shown in the diagram below.

Hint: Use proportional sides and the Pythagorean theorem to find the length \(c\) with respect to \(w\). Then find the zeros of the first derivative of \(c(w)\). The minimum value of \(c(w)\) is the maximum length of the pole.

1. Enter the expression for side a in terms of ww and store it in aa.
2. Enter the expression for side \(b\) in terms of ww and store it in bb.
3. Use the store ( \(\rightarrow\) ) command to express the length of side cas a function of \(w w\).
4. Use the zeros() command to compute the zeros of the first derivative of \(c(w)\) to find the minimum
 value of \(c(w)\).
5. Compute the exact maximum length of the pole.

Enter: c ( 2 [nd [ANS] \()\)
\[
\begin{aligned}
& \text { - zeros }\left(\frac{a}{d^{2}}(c(\omega), \omega) \quad\left[5 \cdot 2^{2 / 3}\right)\right. \\
& \left.-6\left(65 \cdot 2^{2 / 3}\right)\right\}\left[\frac{5 \cdot\left(2^{2 / 3}+1\right) \cdot \sqrt{2^{4 / 3}+4}}{2^{2 / 3}}\right\}
\end{aligned}
\]

Hint: Use the auto-paste feature (page 42) to copy the result from step 4 to the entry line inside the parentheses of c() and press ENTER.
6. Compute the approximate maximum length of the pole.

Result:
Approximately 20.8097 feet.
\[
\left\lvert\,-\operatorname{zeros}\left(\frac{d^{2}}{d^{2} \omega}(\cos ), w\right) \quad\left(5 \cdot 2^{2 / 3}\right)\right.
\]
\[
-\left(62^{2 / 3}\right) \quad\left\{\frac{5 \cdot\left(2^{2 / 3}+1\right) \cdot \sqrt{2^{4 / 3}+4}}{2^{2 / 3}}\right\}
\]
\[
\mathrm{c}\left(65 \cdot 2^{2 / 3}\right)
\]
\[
\frac{c\left(<5 * 2^{\wedge}(2 / 3) 3\right)}{\text { Finll }}
\]
\[
620.80972
\]
\[
\text { FUNC } 3 \% \%
\]

\section*{App. 2: Deriving the Quadratic Formula}

\section*{Performing Computations to Derive the Quadratic Formula}

Note: This example uses the result of the last answer to perform computations on the TI-92. This feature reduces keystroking and chances for error
Tip: Continue to use the last answer ([2nd [ANS]) as in step 3 in steps 4 through 9.

This application shows you how to derive the quadratic formula:
\[
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\]

Detailed information about using the commands in this example can be found in Chapter 6: Symbolic Manipulation.

Perform the following steps to derive the quadratic formula by completing the square of the generalized quadratic equation.

Clear all one-character variables in the current folder by pressing F6 ENTER.

On the Home screen, enter the generalized quadratic equation: \(a x^{2}+b x+c=0\).

Subtract c from both sides of the equation.

Enter: [2nd [ANS]-c

Use the expand() command to expand the result of the last answer.

Complete the square by adding ((b/a)/2) \({ }^{2}\) to both sides of the equation.

\[
\begin{aligned}
&-\left[x^{2}+\frac{b \cdot x}{a}=\frac{-c}{a}\right]+\left(\frac{\frac{b}{a}}{2}\right)^{2} \\
& x^{2}+\frac{b \cdot x}{a}+\frac{b^{2}}{4 \cdot a^{2}}=\frac{-c}{a}+\frac{b^{2}}{4 \cdot a^{2}}
\end{aligned}
\]
an \(2(1)+4\left\langle\ln (3) y^{3}\right)+2\)
MAlk \(\quad\) RAN HUTL

Factor the result using the factor() command.

Multiply both sides of the equation by \(4 a^{2}\).

Take the square root of both sides of the equation with the constraint that \(a>0\) and \(b>0\) and \(x>0\).
10. Solve for x by subtracting \(b\) from both sides and then dividing by 2 a .
- \(4 \cdot a^{2} \cdot\left(\frac{(2 \cdot a \cdot x+b)^{2}}{4 \cdot a^{2}}=\frac{-\left(4 \cdot a \cdot c-b^{2}\right)}{4 \cdot a^{2}}\right)\)

- factor \(\left(x^{2}+\frac{b \cdot x}{a}+\frac{b^{2}}{4 \cdot a^{2}}=\frac{-a}{a}+\frac{b^{2}}{4 \cdot a^{2}}\right)\) \(\frac{(2 \cdot a \cdot x+b)^{2}}{4 \cdot a^{2}}=\frac{-\left(4 \cdot a \cdot \varepsilon-b^{2}\right]}{4 \cdot a^{2}}\)
factor(ans (1) )

FUNF 1,200

\(-\left(2 \cdot a \cdot x+b=\sqrt{-\left(4 \cdot a \cdot c-b^{2}\right)}\right)-b\)
\(2 \cdot a \cdot x=\sqrt{-\left(4 \cdot a \cdot c-b^{2}\right)}-b\)


\section*{App. 3: Exploring a Matrix}

\section*{Exploring a 3x3 Matrix}

Tip: Use the cursor in the history area to scroll the result.

Tip: Use the cursor in the history area to scroll the result.

This application shows you how to perform several matrix operations.

Perform these steps to generate a random matrix, augment and find the identity matrix, and then solve to find an invalid value of the inverse.

On the Home screen, use
RandSeed to set the random number generator seed to the factory default, and then use randMat() to
 create a random \(3 x 3\) matrix and store it in a.

Replace the [2,3] element of the matrix with the variable \(x\), and then use the augment() command, to augment the \(3 x 3\) identity to a and store the result in b.

Use rref() to "row reduce" matrix b:

The result will have the identity matrix in the first three columns and \(\mathrm{a}^{\wedge-1}\) in the last three columns.

Solve for the value of \(x\) that will cause the inverse of the matrix to be invalid.

Enter: solve(getDenom( 2nd \([\operatorname{ANS}][1,4])=0, x\) )

Result: \(x=-70 / 17\)


\section*{App. 4: Exploring \(\boldsymbol{\operatorname { c o s }}(\mathrm{x})=\boldsymbol{\operatorname { s i n }}(\mathrm{x})\)}

\section*{Method 1: Graph Plot}

Hint: Press F5 and select 5:Intersection. Respond to the screen prompts to select the two curves, and the lower and upper bounds for intersection A.

Method 2:

\section*{Symbolic} Manipulation

Hint: Move the cursor into the history area to highlight the last answer. Press ENTER to copy the result of the general solution.

Hint: Press 2nd K to get the "with"[I] operator.

This application uses two methods to find where \(\cos (x)=\sin (x)\) for the values of \(x\) between 0 and \(3 \pi\).

Perform the following steps to observe where the graphs of the functions \(\mathrm{y} 1(\mathrm{x})=\cos (\mathrm{x})\) and \(\mathrm{y} 2(\mathrm{x})=\sin (\mathrm{x})\) intersect.
1. In the \(\mathrm{Y}=\) Editor, set \(y 1(x)=\cos (x)\) and \(y 2(x)=\sin (x)\).
2. In the Window Editor, set \(x \min =0\) and \(x \max =3 \pi\).

3. Press F2 and select A:ZoomFit.
4. Find the intersection points of the two functions.
5. Note the \(x\) and \(y\) coordinates. (Repeat steps 4 and 5 to find the other intersections.)


Perform the following steps to solve the equation \(\sin (x)=\cos (x)\) with respect to \(x\).
1. On the Home screen, enter solve \((\sin (x)=\) \(\cos (x), x)\).

The solutions for \(x\) is where @ \(n 1\) is any integer.
2. Using the ceiling and floor commands, find the ceiling and floor values for the intersection points as shown.

3 Enter the general solution for x and apply the constraint for @n1 as shown.

Compare the result with Method 1.


\section*{App. 5: Finding Minimum Surface Area of a Parallelepiped}

Exploring a 3D Graph of the Surface Area of a Parallelepiped

This application shows you how to find the minimum surface area of a parallelepiped having a constant volume V. Detailed information about the steps used in this example can be found in Chapter 6: Symbolic Manipulation and Chapter 14: 3D Graphing.

Perform the following steps to define a function for the surface area of a parallelepiped, draw a 3D graph, and use the Trace tool to find a point close to the minimum surface area.
1. On the Home screen, define the function \(\mathrm{sa}(\mathrm{xx}, \mathrm{yy}, \mathrm{vv})\) for the surface area of a parallelepiped.


Enter: define
\(\mathrm{sa}(\mathrm{xx}, \mathrm{yy}, \mathrm{vv})=2 * \mathrm{xx} * \mathrm{yy}+\) \(2 v v / x x+2 v v / y y\)
2. Select the 3D Graph mode. Then enter the function for \(\mathrm{z} 1(\mathrm{x}, \mathrm{y})\) as shown in this example with volume \(v=300\).

3. Set the Window variables to:
\begin{tabular}{rl} 
eye \(=\) & {\([60,90]\)} \\
\(x=\) & {\([0,15,15]\)} \\
\(y=\) & {\([0,15,15]\)} \\
\(z=\) & {\([260,300,5]\)}
\end{tabular}

4. Graph the function and use Trace to go to the point close to the minimum value of the surface area function.


The Trace cursor is here.

\section*{Finding the Minimum Surface Area Analytically}

Hint: Copy and paste the result from step 1 after the "with" symbol (I). Then edit to delete the negative solution.

Hint: Press ENTER to obtain the exact result in symbolic form. Press - ENTER to obtain the approximate result in decimal form.

Perform the following steps to solve the problem analytically on the Home screen.
1. Solve for \(x\) in terms of \(v\) and \(y\).

Enter: solve(d(sa(x,y,v), \(\mathrm{x})=0, \mathrm{x}\) )
- solve \(\left(\frac{d}{d x}(\operatorname{seg}(x, y, w)=0, x)\right.\)
\(x=-\sqrt{\frac{U}{y}}\) arid \(\frac{\frac{y}{y}}{\underline{y}} \underline{0}\) or \(x=\sqrt{\frac{y}{y}}\) and \(\frac{u}{y} \geq 0\)
solue \(\langle\boldsymbol{\operatorname { s i n }}(\mathrm{sa}(x, y, u), x)=0, x\rangle\) Finilk Fiñ illta
\(-\operatorname{solve}\left(\left.\frac{d}{d y}(\operatorname{seg}(x, y, v)=\theta, y) \right\rvert\, \times=\sqrt{\frac{v}{y}}\right.\) and \(\frac{1}{1}\)

3. Evaluate for x in terms of \(v\) by substituting the y result into the result from step 1.

Enter: \(x=\sqrt{ }(v / y) \mid\) \(y=v^{\wedge}(1 / 3)\) and \(v>0\)
4. Find the minimum surface area when the value of \(v\) equals 300 .

Enter: \(300 \rightarrow \vee\)
Enter: sa(v^(1/3), \(\left.v^{\wedge}(1 / 3), v\right)\)


\section*{App. 6: Running a Tutorial Script Using the Text Editor}

\section*{Running a Tutorial Script}

Note: The command symbol "C" is accessed from the F2 1:Command toolbar menu.

This application shows you how to use the Text Editor to run a tutorial script. Detailed information about text operations can be found in Chapter 16: Text Editor.

Perform the following steps to write a script using the Text Editor, test each line, and observe the results in the history area on the Home screen.
1. Open the Text Editor, and create a new variable named demo1.

2. Type the following lines into the Text Editor.
: Compute the maximum value of \(f\) on the closed interval \([a, b]\)
: assume that \(f\) is differentiable on [a,b]
C : define \(f(x x)=x x^{\wedge} 3-2 x x^{\wedge} 2+x x-7\)
C: \(1 \rightarrow a: 3.22 \rightarrow b\)
C : \(d(f(x x), x x) \rightarrow d f(x x)\)
C : zeros(df(x),x)
C: \(\mathrm{f}(\mathrm{ans}(1))\)
\(\mathrm{C}: \mathrm{f}(\{\mathrm{a}, \mathrm{b}\})\)
: The largest number from the previous two commands is the maximum value of the function. The smallest number is the minimum value.


3. Press F3 and select 1:Script view to show the Text Editor and the Home screen on a split-screen. Move the cursor to the first line in the Text Editor.


Note: Press F3 and select 2:Clear split to go back to a full-sized Text Editor screen.

Tip: Press 2nd [QUIT] twice to display the Home screen.
4. Press F4 repeatedly to execute each line in the script one at a time.

5. To see the results of the script on a full-sized screen, go to the Home screen.


\section*{App. 7: Decomposing a Rational Function}

\section*{Decomposing a Rational Function}

Note: Actual entries are displayed in reverse type in the example screens.

Hint: Move the cursor into the history area to highlight the last answer. Press ENTER to copy it to the entry line .

To examine the decomposition of the rational function \(f(x)=\left(x^{3}-10 x^{2}-x+50\right) /(x-2)\) on a graph:
1. On the Home screen, enter the rational function as shown below and store it in a function \(f(x x)\).


Enter:
\(\left(x x^{\wedge} 3-10 x x^{\wedge} 2-x x+50\right) /\)
( \(\mathrm{xx}-2\) ) \(\rightarrow \mathrm{f}(\mathrm{xx})\)
2. Use the proper fraction command (propFrac) to split the function into a quotient and
 remainder.
3. Copy the last answer to the entry line.
-or-
Enter: 16/(x-2)+x^2-8*x-17

4. Edit the last answer in the entry line. Store the remainder to \(\mathrm{y} 1(\mathrm{x})\) and the quotient to \(\mathrm{y} 2(\mathrm{x})\) as shown.
\(-\frac{16}{x-2}+y 1(\infty): x^{2}-8 \cdot x-17+42(x) \quad\) Done


Enter: 16/ (x-2) \(\rightarrow \mathrm{y} 1(\mathrm{x})\) :
\(x^{\wedge} 2-8 * x-17 \rightarrow y 2(x)\)
5. In the Y= Editor, select the thick graphing style for \(\mathrm{y} 2(\mathrm{x})\).

6. Add the original function \(\mathrm{f}(\mathrm{x})\) to \(\mathrm{y} 3(\mathrm{x})\) and select the square graphing style.

7. In the Window Editor, set the window variables to:
\[
\begin{aligned}
& x=[-10,15,10] \\
& y=[-100,100,10]
\end{aligned}
\]

Note: Be sure the Graph mode is set to Function.
8. Draw the graph.

Observe that the global behavior of the \(f(x)\) function is basically represented by the quadratic quotient \(\mathrm{y} 2(\mathrm{x})\). The rational expression is basically a quadratic function as \(x\) gets very large in both the positive and negative directions.
The lower graph is \(\mathrm{y} 3(\mathrm{x})=\mathrm{f}(\mathrm{x})\) graphed separately using the line style.


\section*{App. 8: Studying Statistics: Filtering Data by Categories}

This application provides a statistical study of the weights of high school students using categories to filter the data. Detailed information about using the commands in this example can be found in Chapter 8: Data/Matrix Editor, and Chapter 9: Statistics and Data Plots.

Filtering Data by Categories

Each student is placed into one of eight categories depending on the student's sex and academic year (freshman, sophomore, junior, or senior). The data (weight in pounds) and respective categories are entered in the Data/Matrix Editor.

Table 1: Category vs. Description
\begin{tabular}{|c|l|}
\hline Category (C2) & Academic Year and Sex \\
\hline 1 & Freshman boys \\
2 & Freshman girls \\
3 & Sophomore boys \\
4 & Sophomore girls \\
5 & Junior boys \\
6 & Junior girls \\
7 & Senior boys \\
8 & Senior girls \\
\hline
\end{tabular}

Table 2: C1 (weight of each student in pounds) vs. C2 (category)
\begin{tabular}{|c|c|r|c|c|c|c|c|}
\hline C1 & C2 & C1 & C2 & C1 & C2 & C1 & C2 \\
\hline 110 & 1 & 115 & 3 & 130 & 5 & 145 & 7 \\
125 & 1 & 135 & 3 & 145 & 5 & 160 & 7 \\
105 & 1 & 110 & 3 & 140 & 5 & 165 & 7 \\
120 & 1 & 130 & 3 & 145 & 5 & 170 & 7 \\
140 & 1 & 150 & 3 & 165 & 5 & 190 & 7 \\
85 & 2 & 90 & 4 & 100 & 6 & 110 & 8 \\
80 & 2 & 95 & 4 & 105 & 6 & 115 & 8 \\
90 & 2 & 85 & 4 & 115 & 6 & 125 & 8 \\
80 & 2 & 100 & 4 & 110 & 6 & 120 & 8 \\
95 & 2 & 95 & 4 & 120 & 6 & 125 & 8 \\
\hline
\end{tabular}

Perform the following steps to compare the weight of high school students to their year in school.
1. Start the Data/Matrix Editor, and create a new Data variable named students.


Note: Set up several box plots to compare different subsets of the entire data set.
2. Enter the data and categories from Table 2 into columns c1 and c2, respectively.

3. Open the F2 Plot Setup toolbar menu.

4. Define the plot and filter parameters for Plot 1 as shown in this screen.

5. Copy Plot 1 to Plot 2.

6. Repeat step 5 and copy Plot 1 to Plot 3, Plot 4, and Plot 5.


Note: Only Plot 1 through Plot 5 should be selected.
7. Press F1, and modify the Include Categories item for Plot 2 through Plot 5 to the following:

Plot 2: \{1,2\}
(freshman boys, girls)
Plot 3: \(\{7,8\}\)
(senior boys, girls)
Plot 4: \(\{1,3,5,7\}\)
(all boys)
Plot 5: \(\{2,4,6,8\}\)
(all girls)

8. In the \(Y=\) Editor, deselect any functions that may be selected from a previous application.

9. Display the plots by pressing F2 and selecting 9:Zoomdata.

10. Use the Trace tool to compare the median student weights for


\section*{App. 9: CBL 2/CBL Program for the TI-92}

This application provides a program that can be used when the TI-92 is connected to a Calculator-Based Laboratory \({ }^{\text {TM }}\left(\mathrm{CBL} 2^{\text {TM }}\right.\), CBL \(\left.^{\text {TM }}\right)\) ) unit. This program works with the "Newton's Law of Cooling" experiment and, with minor changes, the "Coffee To Go" experiment in the CBL System Experiment Workbook.
\begin{tabular}{|c|c|}
\hline Program Instruction & Description \\
\hline : cooltemp() & Program name \\
\hline \multicolumn{2}{|l|}{: Prgm} \\
\hline : Local i & Declare local variable; exists only at run time. \\
\hline :setMode("Graph", "FUNCTION") & Set up the TI-92 for function graphing. \\
\hline : Plots0ff & Turn off any previous plots. \\
\hline : Fn0ff & Turn off any previous functions. \\
\hline : ClrDraw & Clear any items previously drawn on graph screens. \\
\hline : C1rGraph & Clear any previous graphs. \\
\hline :Clrio & Clear the TI-92 Program IO (input/output) screen. \\
\hline : \(-10 \rightarrow x \mathrm{~min}\) & Set up the Window variables. \\
\hline \multicolumn{2}{|l|}{:99 \(\rightarrow\) xmax} \\
\hline \multicolumn{2}{|l|}{: \(10 \rightarrow \mathrm{xscl}\)} \\
\hline \multicolumn{2}{|l|}{:-20 \(\rightarrow\) ymin} \\
\hline \multicolumn{2}{|l|}{: \(100 \rightarrow y \mathrm{max}\)} \\
\hline \multicolumn{2}{|l|}{: \(10 \rightarrow \mathrm{yscl}\)} \\
\hline \multicolumn{2}{|l|}{:} \\
\hline \(:\{0\} \rightarrow\) data & Create and/or clear a list named data. \\
\hline : \(\{0\} \rightarrow\) time & Create and/or clear a list named time. \\
\hline : Send \(\{1,0\}\) & Send a command to clear the CBL 2/CBL unit. \\
\hline : Send \(\{1,2,1\}\) & Set up Chan. 2 of the CBL 2/CBL to AutoID to record temperature. \\
\hline :Disp "Press ENTER to start graphing" & Prompt the user to press ENTER. \\
\hline \multicolumn{2}{|l|}{:Disp "Temperature."} \\
\hline : Pause & Wait until the user is ready to start. \\
\hline : PtText "TEMP(C)",2,99 & Label the y axis of the graph. \\
\hline : PtText "T(S)",80,-5 & Label the x axis of the graph. \\
\hline : Send \(\{3,1,-1, \varnothing\}\) & Send the Trigger command to the CBL 2/CBL; collect data \\
\hline : & in real-time. \\
\hline : For i, 1,99 & Repeat next two instructions for 99 temperature readings. \\
\hline :Get data[i] & Get a temperature from the CBL 2/CBL and store it in a list. \\
\hline :PtOn i, data[i] & Plot the temperature data on a graph. \\
\hline \multicolumn{2}{|l|}{: EndFor} \\
\hline : seq(i, i, 1, 99, 1) \(\rightarrow\) time & Create a list to represent time or data sample number. \\
\hline :NewPlot 1,1,time,data, , , 4 & Plot time and data using NewPlot and the Trace tool. \\
\hline : Dispg & Display the graph. \\
\hline :PtText "TEMP(C)",2,99 & Re-label the axes. \\
\hline : PtText "T(S)",80,-5 & \\
\hline : EndPrgm & Stop the program. \\
\hline
\end{tabular}

\section*{App. 10: Studying the Flight of a Hit Baseball}

This application uses the split screen settings to show a parametric graph and a table at the same time to study the flight of a hit baseball.

\section*{Setting Up a Parametric Graph and Table}

Hint: Press 2nd D to obtain the degree symbol.

Perform the following steps to study the flight of a hit baseball that has an initial velocity of 95 feet per second and an initial angle of 32 degrees.
1. Set the modes for Page 1 as shown in this screen.

2. Set the modes for Page 2 as shown in this screen.

3. In the \(\mathrm{Y}=\) Editor on the left side, enter the equation for the distance of the ball at time t for \(\mathrm{xt} 1(\mathrm{t})\).

4. In the \(\mathrm{Y}=\) Editor, enter the equation for the height of the ball at time \(t\) for \(y t 1(t)\).



Optional Exercise

Assuming the same initial velocity of 95 feet per second, find the angle that the ball should be hit to achieve the greatest distance.

\section*{App. 11: Visualizing Complex Zeros of a Cubic Polynomial}

This application describes graphing the complex zeros of a cubic polynomial. Detailed information about the steps used in this example can be found in Chapter 6: Symbolic Manipulation and Chapter 14: 3D Graphing.

\section*{Visualizing Complex Roots}

Note: Actual entries are displayed in reverse type in the example screens.

Hint: Move the cursor into the history area to highlight the last answer and press EENTER, or press -C to copy and \(\square \mathrm{V}\) to paste.

Note: The absolute value of a function forces any roots to visually just touch rather than cross the \(x\) axis. Likewise, the absolute value of a function of two variables will force any roots to visually just touch the xy plane.
Note: The graph of \(\mathrm{z} 1(\mathrm{x}, \mathrm{y})\) will be the modulus surface.

Perform the following steps to expand the cubic polynomial \((x-1)(x-i)(x+i)\), find the absolute value of the function, graph the modulus surface, and use the Trace tool to explore the modulus surface.
1. On the Home screen, use the expand command to expand the cubic expression ( \(\mathrm{xx}-1\) ) \((\mathrm{xx}-i)(\mathrm{xx}+i)\) and see the first polynomial.
2. Copy and paste the last answer to the entry line and store it in the function \(f(x x)\).
3. Use the abs command to find the absolute value of \(f(x+y i)\).
(This calculation may take about 2 minutes.)
4. Copy and paste the last answer to the entry line and store it in the function \(\mathrm{z} 1(\mathrm{x}, \mathrm{y})\).

5. Set the unit to 3D graph mode, turn on the axes for graph format, and set the Window variables to:
eye \(=[20,70]\)
\(x=\quad[-2,2,20]\)
\(y=\quad[-2,2,20]\)
\(\mathrm{z}=\quad[-1,2, .5]\)

Note: Calculating and drawing the graph takes about three minutes.

\section*{Summary}
6. Graph the modulus surface.

The 3D graph is used to visually display a picture of the roots where the surface touches the xy plane.
7. Use the Trace tool to explore the function values at \(x=1\) and \(y=0\).
8. Use the Trace tool to explore the function values at \(\mathrm{x}=0\) and \(\mathrm{y}=1\).
9. Use the Trace tool to explore the function values at \(\mathrm{x}=0\) and \(\mathrm{y}=-1\).


Note that zc is zero for each of the function values in steps 7-9. Thus, the complex zeros \(1,-i, i\) of the polynomial \(x^{3}-x^{2}+x-1\) can be visualized with the three points where the graph of the modulus surface touches the xy plane.

\section*{App. 12: Exploring Euclidean Geometry}

\section*{Creating the Construction}

Hint: The circle passes through each vertex of the triangle and its center point is the intersection of the perpendicular bisectors.

Hint: Press F7 and select 1:Hide/Show.

This application investigates the reflections of a point on the circumcircle of a triangle and the orthocenter.

Perform the following steps to create the reflected points of a circle with respect to an inscribed triangle and the altitudes of the triangle.
1. Create a triangle that looks like the one shown to the right.
2. Construct perpendicular bisectors for two sides of the triangle.
3. Create a circle to circumscribe the triangle.

3a. (Optional) Drag the triangle around to verify that the geometric constraints are correctly defined.
4. Hide the extraneous objects (two lines and center point of the circle).
5. Place and label a point anywhere on the circle as shown.


Hint: Press F6 and select 8:Check Property.

Hint: Press F7 for both.

Hint: Press ENTER to pause the animation. Press ENTER again to resume. Press 0 N to stop the animation.

\section*{Exploring Reflections and Orthocenters}
6. Create the reflections of point A with respect to each side of the triangle.
7. Verify if the three points are collinear.
8. Drag point A around the circle while observing the three reflected points.
9. Select each of the three reflected points for tracing, and then animate point \(A\).
10. Pause or stop the animation, and draw the altitudes of the original triangle to construct the orthocenter.


In step 8, what do you notice about the three reflected points?
In step 9 , what do you notice about the traces of the reflected points? Are the reflected points always collinear?

In step 10, what can you conclude about the intersection of the loci of the three reflected points and the intersection of the altitudes (orthocenter).

\section*{App. 13: Creating a Trisection Macro in Geometry}

\section*{Trisecting a Segment}

Note: Create three circles that are on and attached to the perpendicular line such that the radius of each circle passes through the center point of the previous circle.

Note: Attach the second and third circles to the perpendicular line.

This application shows you how to create a macro in Geometry that can be used to trisect any segment or the side of any polygon.

Although the TI-92 does not have a trisection tool, you can create a macro for one by first creating a trisection construction.
1. Create a segment.
2. Construct a perpendicular line to the segment that passes through one of its endpoints.
3. Create a circle with its center point at the intersection of the endpoint of the segment and the perpendicular line (attach the circle to the perpendicular line).
4. Create the second circle as shown.
5. Create the third circle as shown.


Hint: You can verify your construction by dragging the endpoint of the first segment while observing the changes in the measured distance between the three sections.

\section*{Creating the Trisection Macro}

Hint: Press F4 and select 6:Macro Construction before selecting 2:Initial Objects and 3 :Final Objects.
6. Create a second segment from the intersection of the top circle and the perpendicular line to the other endpoint of the first segment.
7. Create two lines both of which are parallel to the second segment and pass through the intersections of the circles on the perpendicular line.

8. Create the intersection points where the two parallel lines intersect the first segment.
9. (Optional) Measure the distance between the three sections of the first segment.


Perform the following steps to create a trisection macro.
1. Select the Initial Objects menu item, and then select the first segment.
2. Select the Final Objects menu item, and then select the two trisection points.


\section*{Creating the \\ Trisection Macro}
(Continued)
3. Select the Define Macro menu item to enter the macro name and object name as shown.
4. Select a folder and enter the name of the variable in which to save the macro.



Perform the following steps to apply the Trisection macro to a segment or side of a triangle.
1. Create a triangle in your construction as shown.

2. Execute the Trisection macro, and then point to a side of the triangle.
3. When you press ENTER to apply the macro, the selected side is trisected.


You can use the Trisection macro in other constructions by first opening the macro, and then selecting 1:Execute Macro from the Macro Construction dialog box.

\section*{App. 14: Solving a Standard Annuity Problem}

Finding the Interest Rate of an Annuity

Tip: Press [2nd K to enter the "with" (|) operator.

Tip: Press ENTER to obtain a floating-point result.

Finding the Future Value of an Annuity

This application can be used to find the interest rate, starting principal, number of compounding periods, and future value of an annuity.

Perform the following steps to find the interest rate (i) of an annuity where the starting principal ( p ) is 1,000 , number of compounding periods ( n ) is 6 , and the future value ( s ) is 2,000 .
1. On the Home screen, enter the equation to
solve for \(p\).

■ solve \(\left(s=F \cdot(1+i)^{n}, F\right) \quad P=(i+1)^{-n} \cdot s\)

2. Enter the equation to solve for \(n\).

3 Enter the equation to solve for i using the "with" operator.
solve (s=p*(1+i)^n,i) |

\(s=2000\) and \(p=1000\) and n=6

Result: The interest rate is \(12.246 \%\).

Find the future value of an annuity using the values from the previous example where the interest rate is \(14 \%\).

Enter the equation to solve for s .
solve( \(\left.s=p *(1+i)^{\wedge} n, s\right) \mid i=.14\)
and \(\mathrm{p}=1000\) and \(\mathrm{n}=6\)

\(\frac{\text { Wr }}{\text { Whill }}\)
fifin MUT FUNE 1r20

Result: The future value at \(14 \%\) interest is \(2,194.97\).

\section*{App. 15: Computing the Time-Value-of-Money}

\section*{Time-Value-ofMoney Function}

This application creates a function that can be used to find the cost of financing an item. Detailed information about the steps used in this example can be found in Chapter 17: Programming.

In the Program Editor, define the following Time-Value-of-Money (tvm) function where temp1= number of payments, temp2= annual interest rate, temp3= present value, temp4= monthly payment, temp \(5=\) future value, and temp6=begin- or end-of-payment period ( \(1=\) begining of month, \(0=\) end of month).
:tvm(temp1,temp2,temp3,temp4,temp5,temp6)
:Func
:Local tempi,tempfunc,tempstr1
:-temp3+(1+temp2/1200*temp6)*temp4*((1-(1+temp2/1200)^
( -temp1))/(temp2/1200))-temp5*(1+temp2/1200)^(-temp1)
\(\rightarrow\) tempfunc
:For tempi,1,5,1
:"temp"\&exact(string(tempi)) \(\rightarrow\) tempstr1
:If when(\#tempstr1=0,false,false,true) Then
:If tempi=2
:Return approx(nsolve(tempfunc=0,\#tempstr1) | \#tempstr1>0 and \#tempstr1<100)
:Return approx(nsolve(tempfunc=0,\#tempstr1))
:Endlf
:EndFor
:Return "parameter error"
:EndFunc

Finding the Monthly Payment

Find the monthly payment on 10,000 if you make 48 payments at \(10 \%\) interest per year.
On the Home screen, enter the tvm values to find pmt.

Result: The monthly
 payment is 251.53 .

Find the number of payments it will take to pay off the loan if you could make a 300 payment each month.

On the Home screen, enter the tvm values to find \(n\).

Result: The number of payments is 38.8308 .

Finding the Number of Payments


\section*{App. 16: Finding Rational, Real, and Complex Factors}

This application shows how to find rational, real, or complex factors of expressions. Detailed information about the steps used in this example can be found in Chapter 6: Symbolic Manipulation.

Finding Factors Enter the expressions shown below on the Home screen.
1. factor \(\left(x^{\wedge} 3-5 x\right)\) ENTER displays a rational result.

2. factor \(\left(x^{\wedge} 3+5 x\right)\) ENTER displays a rational result.

3. factor \(\left(x^{\wedge} 3-5 x, x\right)\) ENTER displays a real result.


\section*{App. 17: A Simple Function for Finding Eigenvalues}

This application shows how to define a function to find the eigenvalues of a matrix.

Finding Eigenvalues Perform the following steps to define a function to calculate eigenvalues.
1. On the Home screen, enter the following
function:
define eigen(mat1)=


Zeros (det \((x-m a t 1), x)=\) EndFunc
func:Local \(x\) :Return
cZeros (det(x-mat1),
x):EndFunc

Note: The matrix must be of equal dimensions.
2. To find the
eigenvalues of a matrix, substitute your values for those shown in the entry line. For
 example, enter: eigen([4,0,1;-2,1, \(0 ;-2,0,1])\)

\section*{App. 18: Simulation of Sampling without Replacement}

This application simulates drawing different colored balls from an urn without replacing them. Detailed information about the steps used in this example can be found in Chapter 17: Programming.

Sampling-withoutReplacement Function

\section*{Sampling without Replacement}

In the Program Editor, define drawball() as a function that can be called with two parameters. The first parameter is a list where each element is the number of balls of a certain color. The second parameter is the number of balls to select. This function returns a list where each element is the number of balls of each color that were selected.
```

:drawball(urnlist,drawnum)
:Func
:Local templist,drawlist,colordim,
numballs,i,pick,urncum,j
:lf drawnum>Sum(urnlist)
:Return "too few balls"
:dim(urnlist)->colordim
:urnlist>templist
:newlist(colordim)->drawlist
:For i,1,drawnum,1
:sum(templist)->numballs
:rand(numballs) }->\mathrm{ pick
:For j,1,colordim,1
:cumSum(templist)>urncum
(continued in next column)

```
:If pick \(\leq\) urncum[j] Then
:drawlist[j]+1 \(\rightarrow\) drawlist[j]
:templist[j]-1 \(\rightarrow\) templist[j]
:Exit
:Endlf
:EndFor
:EndFor
:Return drawlist
:EndFunc

Suppose an urn contains \(n 1\) balls of a color, \(n 2\) balls of a second color, \(n 3\) balls of a third color, etc. Simulate drawing balls without replacing them.
1. Enter a random seed using the RandSeed command.
2. Assuming the urn contains 10 red balls and 25 white balls, simulate picking 5 balls at random from
 the urn without replacement. Enter drawball(\{10,25\},5).

Result: 2 red balls and 3 white balls.

\section*{TI-92 Functions and Instructions}

Quick-Find Locator ..... 374
Alphabetical Listing of Operations ..... 377

This appendix describes the syntax and the action of each TI-92 function and instruction.


Syntax line shows the order and the type of arguments that you supply. Be sure to separate multiple arguments with a comma (, ).

This section lists the TI-92 functions and instructions in functional groups along with the page numbers where they are described in this appendix.

Algebra
\begin{tabular}{|c|c|c|c|c|c|}
\hline I ("with") & 468 & cFactor() & 380 & comDenom() & 383 \\
\hline cSolve() & 385 & cZeros() & 387 & expand() & 397 \\
\hline factor() & 399 & getDenom() & 404 & getNum() & 404 \\
\hline nSolve() & 422 & propFrac() & 427 & randPoly() & 432 \\
\hline solve & 442 & tCollect() & 448 & tExpand() & 449 \\
\hline zeros() & 453 & & & & \\
\hline
\end{tabular}

Calculus

Graphics
\begin{tabular}{|c|c|c|c|c|c|}
\hline J() (integrate) & 464 & \(\Pi\) () & 465 & \(\Sigma()\) & 465 \\
\hline arcLen() & 379 & avgRC() & 379 & \(\boldsymbol{d}\) () (different.) & 388 \\
\hline fMax() & 400 & fMin() & 401 & limit() & 411 \\
\hline nDeriv() & 419 & nInt() & 421 & seq() & 436 \\
\hline
\end{tabular}
taylor() 448
\begin{tabular}{|c|c|c|c|c|c|}
\hline AndPic & 377 & Circle & 381 & CIrDraw & 381 \\
\hline CIrGraph & 381 & CyclePic & 387 & DrawFunc & 392 \\
\hline Drawlnv & 392 & DrawParm & 393 & DrawPol & 393 \\
\hline DrawSIp & 393 & FnOff & 401 & FnOn & 401 \\
\hline Graph & 406 & Line & 411 & LineHorz & 412 \\
\hline LineTan & 412 & LineVert & 412 & NewPic & 420 \\
\hline PtChg & 427 & PtOff & 427 & PtOn & 427 \\
\hline ptTest() & 427 & PtText & 428 & PxiChg & 428 \\
\hline PxICrcl & 428 & PxiHorz & 428 & PxILine & 428 \\
\hline PxiOff & 429 & PxiOn & 429 & pxITest() & 429 \\
\hline PxIText & 429 & PxIVert & 429 & RcIGDB & 432 \\
\hline RcIPic & 432 & RplcPic & 435 & Shade & 439 \\
\hline StoGDB & 444 & StoPic & 444 & Style & 445 \\
\hline Trace & 450 & XorPic & 453 & ZoomBox & 454 \\
\hline ZoomData & 454 & ZoomDec & 454 & ZoomFit & 455 \\
\hline Zoomln & 455 & ZoomInt & 455 & ZoomOut & 456 \\
\hline ZoomPrev & 456 & ZoomRcl & 456 & ZoomSqr & 456 \\
\hline ZoomStd & 457 & ZoomSto & 457 & ZoomTrig & 457 \\
\hline
\end{tabular}

\section*{Lists}
\begin{tabular}{|c|c|c|c|c|c|}
\hline + (add) & 458 & - (subtract) & 458 & * (multiply) & 459 \\
\hline / (divide) & 459 & - (negate) & 460 & \(\wedge\) (power) & 466 \\
\hline augment() & 379 & crossP() & 385 & cumSum() & 386 \\
\hline dim() & 391 & \(\operatorname{dotP}()\) & 392 & exprlist() & 396 \\
\hline left() & 410 & listrmat() & 413 & mat>list() & 415 \\
\hline \(\max ()\) & 415 & mid() & 417 & \(\min ()\) & 417 \\
\hline newList() & 420 & polyEval() & 425 & product() & 426 \\
\hline right() & 434 & shift() & 440 & SortA & 443 \\
\hline SortD & 443 & sum() & 445 & & \\
\hline
\end{tabular}

Math
\begin{tabular}{|c|c|c|c|c|c|}
\hline + (add) & 458 & - (subtract) & 458 & * (multiply) & 459 \\
\hline / (divide) & 459 & - (negate) & 460 & \% (percent) & 460 \\
\hline ! (factorial) & 463 & \(\sqrt{ }()\) (sqr. root) & 465 & \(\wedge\) (power) & 466 \\
\hline 10^() & 466 & \({ }^{\circ}\) (degree) & 467 & \(\angle\) (angle) & 467 \\
\hline ',',' & 467 & Cylind & 387 & DD & 388 \\
\hline DMS & 392 & PPolar & 425 & -Rect & 433 \\
\hline -Sphere & 443 & abs() & 377 & and & 377 \\
\hline angle() & 378 & approx() & 378 & ceiling() & 379 \\
\hline conj() & 383 & \(\cos ()\) & 384 & \(\cos ^{-1}()\) & 384 \\
\hline \(\cosh ()\) & 384 & \(\cosh ^{-1}()\) & 384 & E & 394 \\
\hline \(\boldsymbol{e}^{\wedge}()\) & 394 & exact() & 396 & floor() & 400 \\
\hline fpart() & 402 & \(\operatorname{gcd}()\) & 403 & imag() & 407 \\
\hline int() & 409 & intDiv() & 409 & iPart() & 409 \\
\hline Icm() & 410 & \(\boldsymbol{I n}()\) & 413 & \(\log ()\) & 415 \\
\hline \(\max ()\) & 415 & \(\min ()\) & 417 & \(\bmod ()\) & 418 \\
\hline nCr() & 419 & nPr() & 422 & P>Rx() & 424 \\
\hline PrRy() & 424 & \(\mathbf{r}\) (radian) & 467 & R>P \(\boldsymbol{\theta}\) () & 431 \\
\hline R>Pr() & 431 & real() & 432 & remain() & 433 \\
\hline round() & 434 & sign() & 440 & \(\boldsymbol{\operatorname { s i n }}()\) & 441 \\
\hline \(\boldsymbol{s i n}^{-1}()\) & 441 & \(\sinh ()\) & 441 & \(\sinh ^{-1}()\) & 441 \\
\hline \(\boldsymbol{\operatorname { t a n }}\) () & 447 & \(\boldsymbol{\operatorname { t a n }}^{-1}()\) & 447 & \(\boldsymbol{t a n h}()\) & 448 \\
\hline \(\tanh ^{-1}()\) & 448 & \(\mathbf{x}^{-1}\) & 468 & & \\
\hline
\end{tabular}

\section*{Matrices}
\begin{tabular}{|c|c|c|c|c|c|}
\hline + (add) & 458 & - (subtract) & 458 & * (multiply) & 459 \\
\hline / (divide) & 459 & - (negate) & 460 & .+ (dot add) & 462 \\
\hline .- (dot subt.) & 462 & .* (dot mult.) & 462 & ./ (dot divide) & 463 \\
\hline .\(^{\wedge}\) (dot power) & 463 & \(\wedge\) (power) & 466 & augment() & 379 \\
\hline colDim() & 382 & colNorm() & 382 & crossP() & 385 \\
\hline cumSum() & 386 & det() & 390 & diag() & 390 \\
\hline \(\operatorname{dim}()\) & 391 & \(\operatorname{dotP}()\) & 392 & Fill & 400 \\
\hline identity() & 406 & listrmat() & 413 & mat>list() & 415 \\
\hline \(\max ()\) & 415 & mean() & 416 & median() & 416 \\
\hline \(\min ()\) & 417 & mRow() & 418 & mRowAdd() & 418 \\
\hline newMat() & 420 & norm() & 421 & product() & 426 \\
\hline randMat() & 431 & ref() & 433 & rowAdd() & 434 \\
\hline rowDim() & 435 & rowNorm() & 435 & rowSwap() & 435 \\
\hline rref() & 435 & simult() & 440 & stdDev() & 443 \\
\hline subMat() & 445 & sum() & 445 & T (transpose) & 446 \\
\hline unitV() & 451 & variance() & 451 & \(\mathbf{x}^{-1}\) & 468 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{31}{*}{Programming} & = & 460 & I= (not equal) & 460 & < & 461 \\
\hline & < & 461 & > & 461 & >= & 462 \\
\hline & \# (indirection) & 466 & \(\rightarrow\) (store) & 469 & © & 469 \\
\hline & and & 377 & ans() & 378 & ClrErr & 381 \\
\hline & CIrGraph & 381 & ClrHome & 382 & Clrio & 382 \\
\hline & CIrTable & 382 & CopyVar & 384 & Custom & 386 \\
\hline & Cycle & 387 & Define & 389 & DelFold & 390 \\
\hline & DelVar & 390 & Dialog & 390 & Disp & 391 \\
\hline & DispG & 391 & DispTbl & 391 & DropDown & 394 \\
\hline & Else & 395 & Elself & 395 & EndCustm & 395 \\
\hline & EndDlog & 395 & EndFor & 395 & EndFunc & 395 \\
\hline & Endlf & 395 & EndLoop & 395 & EndPrgm & 395 \\
\hline & EndTBar & 395 & EndTry & 395 & EndWhile & 395 \\
\hline & entry() & 396 & Exit & 396 & For & 402 \\
\hline & format() & 402 & Func & 403 & Get & 403 \\
\hline & GetCalc & 403 & getFold() & 404 & getKey() & 404 \\
\hline & getMode() & 404 & getType() & 405 & Goto & 405 \\
\hline & If & 407 & Input & 408 & InputStr & 408 \\
\hline & Item & 409 & Lbl & 410 & left() & 410 \\
\hline & Local & 414 & Lock & 414 & Loop & 415 \\
\hline & MoveVar & 418 & NewFold & 420 & not() & 421 \\
\hline & or & 423 & Output & 423 & PassErr & 424 \\
\hline & Pause & 424 & PopUp & 425 & Prgm & 426 \\
\hline & Prompt & 426 & Rename & 433 & Request & 433 \\
\hline & Return & 434 & right() & 434 & Send & 436 \\
\hline & SendCalc & 436 & setFold() & 436 & setGraph() & 437 \\
\hline & setMode() & 438 & setTable() & 439 & Stop & 444 \\
\hline & Style & 445 & switch() & 446 & Table & 447 \\
\hline & Text & 449 & Then & 449 & Title & 449 \\
\hline & Toolbar & 450 & Try & 450 & Unlock & 451 \\
\hline & when() & 452 & While & 452 & xor & 453 \\
\hline \multirow[t]{10}{*}{Statistics} & \multirow[t]{10}{*}{\begin{tabular}{l}
! (factorial) \\
ExpReg \\
mean() \\
nCr() \\
\(n P r()\) \\
PlotsOn \\
QuartReg \\
RandSeed \\
SortD \\
variance()
\end{tabular}} & 463 & \multirow[t]{10}{*}{CubicReg LinReg median() NewData OneVar PowerReg rand() ShowStat stdDev()} & 386 & \multirow[t]{10}{*}{\begin{tabular}{l}
cumSum() \\
LnReg \\
MedMed \\
NewPlot \\
PlotsOff \\
QuadReg \\
randNorm() \\
SortA \\
TwoVar
\end{tabular}} & 386 \\
\hline & & 398 & & 413 & & 414 \\
\hline & & 416 & & 416 & & 416 \\
\hline & & 419 & & 419 & & 420 \\
\hline & & 422 & & 423 & & 425 \\
\hline & & 425 & & 426 & & 430 \\
\hline & & 430 & & 431 & & 431 \\
\hline & & 432 & & 440 & & 443 \\
\hline & & 443 & & 443 & & 451 \\
\hline & & 451 & & & & \\
\hline \multirow[t]{4}{*}{Strings} & \multirow[t]{4}{*}{\& (append) \(\operatorname{dim}()\) inString() ord()} & 463 & \multirow[t]{4}{*}{```
# (indirection)
expr()
left()
right()
```} & 466 & char() & 380 \\
\hline & & 391 & & 398 & format() & 402 \\
\hline & & 408 & & 410 & mid() & 417 \\
\hline & & 423 & & 434 & string() & 444 \\
\hline
\end{tabular}

\section*{Alphabetical Listing of Operations}

Operations whose names are not alphabetic (such as +, !, and \(>\)) are listed at the end of this appendix, starting on page 458. Unless otherwise specified, all examples in this section were performed in the default reset mode, and all variables are assumed to be undefined. Additionally, due to formatting restraints, approximate results are truncated at three decimal places (3.14159265359 is shown as 3.141 ...).
\begin{tabular}{|c|c|c|c|}
\hline abs() & \multicolumn{3}{|l|}{MATH/Number menu} \\
\hline & ```
abs(expression1) = expression
abs(list1) = list
abs(matrix1) = matrix
``` & \(\operatorname{abs}\left(\left\{\pi / 2,{ }^{-} \pi / 3\right\}\right)\) ENTER abs (2-3i) ENTER & \[
\begin{array}{rr}
\left\{\begin{array}{ll}
\frac{\pi}{2} & \frac{\pi}{3}
\end{array}\right\} \\
\sqrt{13}
\end{array}
\] \\
\hline & Returns the absolute value of the argument. & \(\mathrm{abs}(\mathrm{z})\) ENTER & z \\
\hline & If the argument is a complex number, returns the number's modulus. & \(\mathrm{abs}(\mathrm{x}+\mathrm{y} i)\) ENTER & \(\sqrt{x^{2}+y^{2}}\) \\
\hline & Note: All undefined variables are treated as real variables. & & \\
\hline \multirow[t]{4}{*}{and} & \multicolumn{3}{|l|}{MATH/Test menu} \\
\hline & Boolean expression1 and expression2 \(\Rightarrow\) Boolean expression & \(x \geq 3\) and \(x \geq 4\) ENTER & \(x \geq 4\) \\
\hline & Boolean list1 and list2 \(\Rightarrow\) Boolean list & \(\{x \geq 3, x \leq 0\}\) and \(\{x \geq 4, x \leq-2\}\) ENTER & \\
\hline & Boolean matrix1 and matrix2 \(\Rightarrow\) Boolean matrix & & \(x \leq-2\}\) \\
\hline
\end{tabular}

Returns true or false or a simplified form of the original entry.

\section*{AndPic CATALOG}

AndPic picVar[, row, column]
Displays the Graph screen and logically "ANDS" the picture stored in picVar and the current graph screen at pixel coordinates (row, column).
picVar must be a picture type.
Default coordinates are ( 0,0 ), which is the upper left corner of the screen.

In function graphing mode and \(\mathrm{Y}=\) Editor:
\(y 1(x)=\cos (x)\)
F6 Style = 3:Square
(F2) Zoom \(=7:\) ZoomTrig
F1 = 2:Save Copy As...
Type = Picture, Variable = PIC1

\(y 2(x)=\sin (x)\)
F6 Style = 3:Square
y1 = no checkmark (F4 to deselect)
(F2) Zoom \(=7:\) ZoomTrig

- [HOME]

AndPic PIC1 ENTER Done

angle(expression 1\() \Rightarrow\) expression
Returns the angle of expression1, interpreting expression 1 as a complex number.

Note: All undefined variables are treated as real variables.

In Degree angle mode:
angle \((0+2 i)\) ENTER
In Radian angle mode:
\[
\text { angle }(1+i) \text { ENTER } \quad \frac{\pi}{4}
\]
angle(z) ENTER
angle ( \(x+i y\) ) ENTER

```

angle(list1) }=>\mathrm{ list
angle(matrix1) => matrix

```

Returns a list or matrix of angles of the elements in list1 or matrix1, interpreting each element as a complex number that represents a two-dimensional rectangular coordinate point.
\begin{tabular}{|c|c|}
\hline ans() & [2nd [ANS] key \\
\hline & \(\Rightarrow\) value \\
\hline
\end{tabular}

Returns a previous answer from the Home screen history area.
integer, if included, specifies which previous answer to recall. Valid range for integer is from 1 to 99 and cannot be an expression. Default is 1 , the most recent answer.

\section*{approx() MATH/Algebra menu}


Returns the evaluation of expression as a decimal value, when possible, regardless of the current Exact/Approx mode.

This is equivalent to entering expression and pressing ENTER on the Home screen.
\(\operatorname{approx}(\) list 1\() \Rightarrow\) list \(\quad \operatorname{approx}(\{\sin (\pi), \cos (\pi)\})\) ENTER
approx(matrix1) \(\Rightarrow\) matrix
Returns a list or matrix where each element has been evaluated to a decimal value, when possible.

To use ans() to generate the Fibonacci sequence on the Home screen, press:

1 ENTER 1
1 ENTER 1
2nd [ANS] \(\square\) 2nd [ANS] \(\odot \square 2\) [ENTER 2
ENTER
ENTER

 5

In Radian angle mode:
angle ( \(\{1+2 i, 3+0 i, 0-4 i\})\) ENTER
- angle( \((1+2 \cdot i \quad 3+6 \cdot i \quad 0-4 \cdot i 3)\)
\[
\left\{\begin{array}{ll}
-\tan -1(1 / 2)+\frac{\pi}{2} & \square
\end{array} \frac{-\pi}{2}\right\}
\]

\section*{arcLen() MATH/Calculus menu}
arcLen(expression1,var,start,end) \(\Rightarrow\) expression
\(\operatorname{arcLen}(\cos (x), x, 0, \pi)\) ENTER \(3.820 \ldots\)
Returns the arc length of expression 1 from start to end with respect to variable var.

Regardless of the graphing mode, arc length is calculated as an integral assuming a
\[
\begin{aligned}
& \operatorname{arcLen}(f(x), x, a, b) \text { ENTER } \\
& \qquad \int_{a} \sqrt{\left(\frac{d}{d x}(f(x))\right)^{2}+1} d x
\end{aligned}
\] function mode definition.
\(\operatorname{arcLen}(\) list1,var,start,end \() \Rightarrow\) list \(\quad \operatorname{arcLen}(\{\sin (x), \cos (x)\}, x, 0, \pi)\)
Returns a list of the arc lengths of each element of list1 from start to end with respect to var.

\section*{augment() MATH/Matrix menu}
\[
\text { augment(list1, list2) } \Rightarrow \text { list }
\]
\[
\text { augment }(\{1,-3,2\},\{5,4\}) \text { ENTER }
\]

Returns a new list that is list2 appended to the end of list1.
augment(matrix1, matrix2) \(\Rightarrow\) matrix
Returns a new matrix by appending matrix2 to matrix1 as new columns. Does not alter matrix1 or matrix2.
\begin{tabular}{lr}
{\([1,2 ; 3,4] \rightarrow\) M1 ENTER } & {\(\left[\begin{array}{ll}1 & 2 \\
3 & 4\end{array}\right]\)} \\
{\([5 ; 6] \rightarrow\) M2 ENTER } & {\(\left[\begin{array}{l}5 \\
6\end{array}\right]\)} \\
augment (M1, M2) (ENTER & {\(\left[\begin{array}{lll}1 & 2 & 5 \\
3 & 4 & 6\end{array}\right]\)}
\end{tabular}

Both arguments must have equal row dimensions.

\section*{\(\operatorname{avgRC}() \quad\) CATALOG}
\(\operatorname{avgRC}(\) expression \(1, \operatorname{var}[, h]) \Rightarrow \operatorname{expression} \operatorname{avgRC}(f(x), x, h)\) ENTER
Returns the forward-difference quotient
\[
\frac{f(x+h)-f(x)}{h}
\] (average rate of change).
expression 1 can be a user-defined function name (see Func, page 403).
\(h\) is the step value. If \(h\) is omitted, it defaults to 0.001 .

Note that the similar function nDeriv() uses the central-difference quotient.
\[
\begin{aligned}
& \operatorname{avgRC}(\sin (x), x, h) \mid x=2 \text { ENTER } \\
& \frac{\sin (h+2)-\sin (2)}{h} \\
& \operatorname{avgRC}\left(x^{\wedge} 2-x+2, x\right) \text { ENTER } 2 . \cdot(x-.4995) \\
& \operatorname{avgRC}\left(x^{\wedge} 2-x+2, x, .1\right) \text { ENTER } \\
& \\
& \begin{aligned}
\operatorname{avgRC}\left(x^{\wedge} 2-x+2, x, 3\right) \text { ENTER } & 2 \cdot(x+1)
\end{aligned}
\end{aligned}
\]

\section*{ceiling() MATH/Number menu}
ceiling(expression1) \(\Rightarrow\) integer
ceiling(0.456) ENTER
1.

Returns the nearest integer that is \(\geq\) the argument.

The argument can be a real or a complex number.

Note: See also floor() (page 400).
```

ceiling(list1) m list ceiling({-3.1,1,2.5}) ENTER
ceiling(matrix1) = matrix
{-3. 1 3.}
Returns a list or matrix of the ceiling of each ceiling($[0,-3.2 i ; 1.3,4]$) ENTER element.

```


The valid range for integer is \(0-255\).

\section*{Circle catalog}

Circle \(x, y, r[, d r a w M o d e]\)
Draws a circle with its center at window coordinates \((x, y)\) and with a radius of \(r\).
\(x, y\), and \(r\) must be real values.
If drawMode \(=1\), draws the circle (default).
If \(d r a w M o d e=0\), turns off the circle.
If drawMode \(=-1\), inverts pixels along the circle.

Note: Regraphing erases all drawn items. See also PxICrcl (page 428).

\section*{ClrDraw catalog}

\section*{ClrDraw}

Clears the Graph screen and resets the Smart Graph feature so that the next time the Graph screen is displayed, the graph will be redrawn.

While viewing the Graph screen, you can clear all drawn items (such as lines and points) by pressing [F4 (ReGraph) or pressing F6 and selecting 1:ClrDraw.

\section*{ClrErr CATALOG}

\section*{CIrErr}

Clears the error status. It sets errornum to zero and clears the internal error context variables.

The Else clause of the Try...EndTry in the program should use CIrErr or PassErr. If the error is to be processed or ignored, use ClrErr. If what to do with the error is not known, use PassErr to send it to the next error handler. If there are no more pending Try...EndTry error handlers, the error dialog box will be displayed as normal.

Note: See also PassErr (page 424) and Try (page 450).

In a ZoomSqr viewing window:
ZoomSqr:Circle 1,2,3 ENTER


\section*{CIrHome catalog}

\section*{ClrHome}

Clears all items stored in the entry() and ans()
Home screen history area.
Does not clear the current entry line.
While viewing the Home screen, you can clear the history area by pressing \(\mathbb{F 1}\) and selecting 8:Clear Home.

\section*{ClrIO CATALOG}

\section*{ClrIO}

Clears the Program I/O screen.

\section*{ClrTable catalog}

\section*{CIrTable}

Clears all table values. Applies only to the ASK setting on the Table Setup dialog box.

While viewing the Table screen in Ask mode, you can clear the values by pressing \(\mathbb{F}\) and selecting 8:Clear Table.

\section*{colDim() MATH/Matrix/Dimensions menu}
colDim(matrix) \(\Rightarrow\) expression
colDim([0,1,2;3,4,5]) ENTER
Returns the number of columns contained in matrix.

Note: See also rowDim() (page 435).

\section*{colNorm() MATH/Matrix/Norms menu}
colNorm(matrix) \(\Rightarrow\) expression
Returns the maximum of the sums of the absolute values of the elements in the columns in matrix.

Note: Undefined matrix elements are not allowed. See also rowNorm() (page 435).

\section*{comDenom() MATH/Algebra menu}
comDenom(expression1 \([, v a r]\) ) \(\Rightarrow\) expression
comDenom(list1[,var]) \(\Rightarrow\) list
comDenom(matrix \(1[, v a r]) \Rightarrow\) matrix
comDenom(expression1) returns a reduced ratio of a fully expanded numerator over a fully expanded denominator.
comDenom( \(\left.\left(y^{\wedge} 2+y\right) /(x+1)^{\wedge} 2+y^{\wedge} 2+y\right)\) ENTER
\[
\begin{aligned}
& \text { - comilenom }\left[\frac{y^{2}+y}{(x+1)^{2}}+y^{2}+y\right] \\
& \frac{x^{2} \cdot y^{2}+x^{2} \cdot y+2 \cdot x \cdot y^{2}+2 \cdot x \cdot y+2 \cdot y^{2}+2 \cdot y}{x^{2}+2 \cdot x+1}
\end{aligned}
\]
comDenom(expression1,var) returns a reduced ratio of numerator and denominator expanded with respect to var. The terms and their factors are sorted with var as the main variable. Similar powers of var are collected. There might be some incidental factoring of the collected coefficients. Compared to omitting var, this often saves time, memory, and screen space, while making the expression more comprehensible. It also makes subsequent operations on the result faster and less likely to exhaust memory.

If var does not occur in expression1, comDenom(expression1,var) returns a reduced ratio of an unexpanded numerator over an unexpanded denominator. Such results usually save even more time, memory, and screen space. Such partially factored results also make subsequent operations on the result much faster and much less likely to exhaust memory.

Even when there is no denominator, the comden function is often a fast way to achieve partial factorization if factor() is too slow or if it exhausts memory.

Hint: Enter this comden() function definition and routinely try it as an alternative to comDenom() and factor().
conj() MATH/Complex menu
conj(expression1) \(\Rightarrow\) expression
conj(list1) \(\Rightarrow\) list
\(\operatorname{conj}(\) matrix 1\() \Rightarrow\) matrix
Returns the complex conjugate of the argument.

Note: All undefined variables are treated as real variables.
comDenom \(\left(\left(y^{\wedge} 2+y\right) /(x+1)^{\wedge} 2+y^{\wedge} 2+y, x\right)\) ENTER
\[
\begin{array}{|c|}
\hline \text { - GomDenom }\left(\frac{y^{2}+y}{(x+1)^{2}}+y^{2}+y, x\right) \\
\frac{x^{2} \cdot y \cdot(y+1)+2 \cdot x \cdot y \cdot(y+1)+2 \cdot y \cdot(y+1)}{x^{2}+2 \cdot x+1} \\
\hline
\end{array}
\]
comDenom \(\left(\left(y^{\wedge} 2+y\right) /(x+1)^{\wedge} 2+y^{\wedge} 2+y, y\right)\) ENTER
\[
\begin{aligned}
&-\operatorname{com}\left[\begin{array}{l}
\text { enom }
\end{array}\left(\frac{y^{2}+y}{(x+1)^{2}}+y^{2}+y, y\right)\right. \\
& \frac{y^{2} \cdot\left(x^{2}+2 \cdot x+2\right)+y \cdot\left(x^{2}+2 \cdot x+2\right)}{x^{2}+2 \cdot x+1}
\end{aligned}
\]
\[
\begin{aligned}
& \text { comDenom }(\text { exprn, abc }) \rightarrow \text { comden }(\text { exprn }) \\
& \text { ENTER } \\
& \text { comden }\left(\left(y^{\wedge} 2+y\right) /(x+1)^{\wedge} 2+y^{\wedge} 2+y\right) \\
& \text { ENTER } \\
& \begin{array}{|l}
\text { - conder }\left[\frac{y^{2}+y}{(x+1)^{2}}+y^{2}+y\right] \\
\frac{\left(x^{2}+2 \cdot x+2\right) \cdot y \cdot(y+1)}{(x+1)^{2}} \\
\hline
\end{array}
\end{aligned}
\]
comden(1234x^2*(y^3-y)+2468x* ( \(y^{\wedge} 2-1\) )) ENTER
\(1234 \cdot x \cdot(x \cdot y+2) \cdot\left(y^{2}-1\right)\)
\begin{tabular}{|c|c|c|}
\hline CopyVar catalog & & \\
\hline \begin{tabular}{l}
CopyVar var1, var2 \\
Copies the contents of variable var1 to var2. If var2 does not exist, CopyVar creates it. \\
Note: CopyVar is similar to the store instruction ( \(\rightarrow\) ) when you are copying an expression, list, matrix, or character string except that no simplification takes place when using CopyVar. You must use CopyVar with non-algebraic variable types such as Pic and GDB variables.
\end{tabular} & \[
\begin{aligned}
& x+y \rightarrow a \text { ENTER } \\
& 10 \rightarrow x \text { ENTER } \\
& \text { CopyVar } a, b \text { ENER } \\
& a \rightarrow c \text { ENTER } \\
& \text { Del Var } \times \text { ENTER } \\
& b \text { ENVER } \\
& c \text { ENTER }
\end{aligned}
\] & \[
\begin{array}{r}
x+y \\
10 \\
\text { Done } \\
y+10 \\
\text { Done } \\
x+y \\
y+10
\end{array}
\] \\
\hline cos() cos key & & \\
\hline \begin{tabular}{l}
\(\cos (\) expression1) \(\Rightarrow\) expression \\
\(\boldsymbol{\operatorname { c o s }}(\) list1 \() \Rightarrow\) list \\
cos(expression1) returns the cosine of the argument as an expression. \\
\(\cos (\) list1) returns a list of the cosines of all elements in list1. \\
Note: The argument is interpreted as either a degree or radian angle, according to the current angle mode setting. You can use \({ }^{\circ}\) (page 467) or \({ }^{r}\) (page 467) to override the angle mode temporarily.
\end{tabular} & \begin{tabular}{l}
In Degree angle mode: \(\cos ((\pi / 4)\) r) ENTER \(\cos (45)\) ENTER \(\cos (\{0,60,90\})\) ENTER \\
In Radian angle mode: \\
\(\cos (\pi / 4)\) ENTER \\
\(\cos \left(45^{\circ}\right)\) ENTER
\end{tabular} & \[
\begin{array}{ccc} 
& \frac{\sqrt{ } 2}{2} \\
1 & 1 / 2 & 0\} \\
& & \frac{\sqrt{ } 2}{2} \\
& \frac{\sqrt{2}}{2} \\
& \frac{\sqrt{ } 2}{2}
\end{array}
\] \\
\hline \(\cos ^{-1}() \quad\) 2nd \(\left[\mathrm{cos}^{-1}\right]\) key & & \\
\hline \begin{tabular}{l}
\(\cos ^{-1}\) (expression1) \(\Rightarrow\) expression \\
\(\cos ^{-1}(\) list 1\() \Rightarrow\) list \\
\(\cos ^{-1}\) (expression1) returns the angle whose cosine is expression 1 as an expression. \\
\(\boldsymbol{\operatorname { c o s }}^{-1}(\) list1) returns a list of the inverse cosines of each element of list1. \\
Note: The result is returned as either a degree or radian angle, according to the current angle mode setting.
\end{tabular} & \begin{tabular}{l}
In Degree angle mode: \(\cos ^{-1}(1)\) ENTER \\
In Radian angle mode:
\[
\begin{aligned}
\cos ^{-1}(\{0, .2, .5\}) & \underset{\left\{\frac{\pi}{2} \quad 1.369 \ldots\right. \text { ENT }}{ }
\end{aligned}
\]
\end{tabular} & \[
\text { 1.047... }\}
\] \\
\hline cosh() MATH/Hyperbolic menu & & \\
\hline \begin{tabular}{l}
cosh(expression1) \(\Rightarrow\) expression \(\cosh (\) list 1\() \Rightarrow\) list \\
cosh (expression1) returns the hyperbolic cosine of the argument as an expression. \\
cosh (list) returns a list of the hyperbolic cosines of each element of list1.
\end{tabular} & \begin{tabular}{l}
\(\cosh (1.2)\) ENTER \\
\(\cosh (\{0,1.2\})\) ENTER
\end{tabular} & \(1.810 \ldots\)
\(1.810 \ldots\) \\
\hline \(\cosh ^{-1}() \quad\) MATH/Hyperbolic menu & & \\
\hline \begin{tabular}{l}
\(\cosh ^{-1}\) (expression1) \(\Rightarrow\) expression \\
\(\cosh ^{-1}\) (list1) \(\Rightarrow\) list \\
cosh \(^{-1}\) (expression1) returns the inverse hyperbolic cosine of the argument as an expression. \\
\(\cosh ^{-1}\) (list1) returns a list of the inverse hyperbolic cosines of each element of list1.
\end{tabular} & \begin{tabular}{l}
\(\cosh ^{-1}(1)\) ENTER \\
\(\cosh ^{-1}(\{1,2.1,3\})\) ENTER
\end{tabular} &  \\
\hline
\end{tabular}
crossP(list1,list2) \(\Rightarrow\) list
Returns the cross product of list1 and list2 as a list.
list1 and list2 must have equal dimension, and the dimension must be either 2 or 3 .
```

crossP(vector1, vector2) }=>\mathrm{ vector

```

Returns a row or column vector (depending on the arguments) that is the cross product of vector 1 and vector2.
```

crossP({a1,b1},{a2,b2}) ENTER
{0 0 a1•b2-a2•b1}

```
\(\operatorname{crossP}(\{0.1,2.2,-5\},\{1,-.5,0\})\) ENTER
    \(\{-2.5-5 .-2.25\}\)
\(\operatorname{crossP}([1,2,3],[4,5,6])\) ENTER
                                    \(\left[\begin{array}{lll}-3 & 6 & -3\end{array}\right]\)
\(\operatorname{crossP}([1,2],[3,4])\) ENTER
    \(\left[\begin{array}{lll}0 & 0 & -2\end{array}\right]\)

Both vector 1 and vector2 must be row vectors, or both must be column vectors. Both vectors must have equal dimension, and the dimension must be either 2 or 3 .

\section*{cSolve() MATH/Algebra/Complex menu}
cSolve(equation, var) \(\Rightarrow\) Boolean expression
Returns candidate complex solutions of an equation for var. The goal is to produce candidates for all real and non-real solutions. Even if equation is real, cSolve() allows nonreal results in real mode.

Although the TI-92 processes all undefined variables as if they were real, cSolve() can solve polynomial equations for complex solutions. (See also "Using Undefined or Defined Variables" in Chapter 6: Symbolic Manipulation.)
cSolve() temporarily sets the domain to complex during the solution even if the current domain is real. In the complex domain, fractional powers having odd denominators use the principal rather than the real branch. Consequently, solutions from solve() to equations involving such fractional powers are not necessarily a subset of those from cSolve().
cSolve() starts with exact symbolic methods. Except in EXACT mode, cSolve() also uses iterative approximate complex polynomial factoring, if necessary.

Note: See also cZeros() (page 387), solve() (page 442), and zeros() (page 453).
cSolve( \(\left.x^{\wedge} 3=-1, x\right)\) ENTER
solve( \(x^{\wedge} 3=-1, x\) ) ENTER
- csolve \(\left(x^{3}=-1, x\right)\)
\(x=1 / 2+\frac{\sqrt{3}}{2} \cdot \mathbf{i}\) or \(x=1 / 2-\frac{\sqrt{3}}{2} \cdot i\) or \(x=-1\)
- solve ( \(\left.x^{3}=-1, x\right)\)
\[
\begin{array}{ll}
\text { cSolve }\left(x^{\wedge}(1 / 3)=-1, x\right) \text { ENTER } & \text { false } \\
\text { solve }\left(x^{\wedge}(1 / 3)=-1, x\right) \text { ENTER } & x=-1
\end{array}
\]

Display Digits mode in Fix 2 :
```

exact(cSolve((x^5+4x^4+5x^3-6x-3=0,
x)) ENTER
cSolve(ans(1),x) ENTER

```
```

- exacticsolvel (}\mp@subsup{}{}{5}+4\cdot\mp@subsup{x}{}{4}+5\cdot\mp@subsup{x}{}{3}-6\cdotx-3=
x.(x+4}+4\cdot\mp@subsup{x}{}{3}+5\cdot\mp@subsup{x}{}{2}-6)=
-csolve(x.(x4}+4\cdot\mp@subsup{x}{}{3}+5\cdot\mp@subsup{x}{}{2}-6)=3,x
x=-1.11+1.07\cdoti or x=-1.11-1.07:i

```

\section*{CubicReg MATH/Statistics/Regressions menu}

CubicReg list1, list2[, [list3] [, list4, list5]]
Calculates the cubic polynomial regression and updates all the statistics variables.

All the lists must have equal dimensions except for list5.
list1 represents xlist.
list2 represents ylist.
list3 represents frequency.
list 4 represents category codes.
list5 represents category include list.
Note: list1 through list 4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.

In function graphing mode.
\begin{tabular}{lllll}
\(\{0,1,2,3,4,5,6\} \rightarrow L 1\) ENTER & \(\left.\begin{array}{llll}0 & 1 & 2 & \ldots\end{array}\right\}\) \\
\(\{0,2,3,4,3,4,6\} \rightarrow L 2\) ENTER & \(\left\{\begin{array}{lll}0 & 2 & 3\end{array} \ldots\right.\) \\
CubicReg L1, L2 ENTER & & & Done
\end{tabular}

Cubicreg L1, L2 ENTER
Done
ShowStat ENTER
\begin{tabular}{|c|}
\hline STAT YAFS \\
\hline \(\underline{y}=3 \cdot x^{2}+b^{\prime} \cdot \times^{2}+6 \cdot x+d\) \\
\hline a \(\quad=.111111\) \\
\hline \(b \quad=-1.047619\) \\
\hline c = \(=2.293651\) \\
\hline d \(\quad=-119048\) \\
\hline \(\mathrm{R}^{2}\) - \(=.96 .56\) \\
\hline Enter=0K \\
\hline
\end{tabular}

ENTER
regeq \((x) \rightarrow y 1(x)\) ENTER Done

NewPlot \(1,1, \mathrm{~L} 1\), L2 ENTER
Done
\(\rightarrow\) [GRAPH]


\section*{cumSum( ) MATH/List menu}
cumSum(list1) \(\Rightarrow\) list
cumSum( \(\{1,2,3,4\}\) ) ENTER
\(\left\{\begin{array}{llll}1 & 3 & 6 & 10\end{array}\right\}\)
Returns a list of the cumulative sums of the elements in list1, starting at element 1.
```

cumSum(matrix1) }=>\mathrm{ matrix

```

Returns a matrix of the cumulative sums of the elements in matrix1. Each element is the cumulative sum of the column from top to bottom.

\section*{Custom [2nd [Custom] key}

\section*{Custom}

\section*{block}

\section*{EndCustm}

Sets up a toolbar that is activated when you press 2nd [CUSTOM]. It is very similar to the ToolBar instruction (page 450) except that Title and Item statements cannot have labels.
block can be either a single statement or a series of statements separated with the ":" character.

Note: 2nd [CUSTOM] acts as a toggle. The first instance invokes the menu, and the second instance removes the menu. The menu is removed also when you change applications.

Program listing:
:Test()
: Prgm
:Custom
:Title
: Item
: Item
:Item
:Title
:Item
: Item
:Title
"Lists"
"List1"
"Scores"
"L3"
"Fractions"
" \(f(x)\) "
"h(x)"
: EndCustm
: EndPrgm

\section*{Cycle CATALOG}

Cycle
Transfers program control immediately to the next iteration of the current loop (For, While, or Loop).

Cycle is not allowed outside the three looping structures (For, While, or Loop).

Program listing:
```

:© Sum the integers from 1 to 100
skipping 50
: $0 \rightarrow$ temp
:For i,1,100,1
: If $\mathrm{i}=50$
:Cycle
:temp+i \rightarrow temp
: EndFor
: Disp temp

```

Contents of temp after execution:

\section*{CyclePic catalog}

CyclePic picNameString, \(n\) [, [wait] , [cycles], [direction] \(]\)
Displays all the PIC variables specified and at the specified interval. The user has optional control over the time between pictures, the number of times to cycle through the pictures, and the direction to go, circular or forward and backwards.
direction is 1 for circular or \({ }^{-1}\) for forward and backwards. Default \(=1\).
1. Save three pics named pic1, pic2, and pic3.
2. Enter: CyclePic "pic",3,.5,4,-1
3. The three pictures (3) will be displayed automatically-one-half second (.5) between pictures, for four cycles (4), and forward and backwards (-1).

\section*{Cylind MATH/Matrix/Vector ops menu}
vector Cylind
Displays the row or column vector in cylindrical form [ \(\mathrm{r} \angle \theta, \mathrm{z}\) ].
vector must have exactly three elements. It can be either a row or a column.
\[
[2,2,3] \rightarrow C y l i n d \text { ENTER } \quad\left[2 \cdot \sqrt{2}<\frac{\pi}{4} \quad 3\right]
\]

\section*{cZeros() MATH/Algebra/Complex menu}
cZeros(expression, var) \(\Rightarrow\) list
Returns a list of candidate real and non-real values of var that make expression \(=0\). cZeros() does this by computing exp \(\stackrel{\text { list(cSolve(expression }=0, v a r), v a r) . ~}{\text {. }}\).
Otherwise, cZeros() is similar to zeros().
Note: See also cSolve() (page 385), solve() (page 442), and zeros() (page 453).

Display Digits mode in Fix 3:
```

cZeros(x^5+4x^4+5x^3-6x-3,x) ENTER
{-2.125 -. 612 . .965
-1.114-1.073\cdoti -1.114+1.073\cdoti}

```
```

d(expression1, var [,order]) }=>\mathrm{ expression
d(list1,var[,order]) }=>\mathrm{ list
d(matrix1,var [,order]) }=>\mathrm{ matrix

```

Returns the first derivative of expression 1 with respect to variable var. expression 1 can be a list or a matrix.
order, if included, must be an integer. If the order is less than zero, the result will be an anti-derivative.
\(\boldsymbol{d}()\) does not follow the normal evaluation mechanism of fully simplifying its arguments and then applying the function definition to these fully simplified arguments. Instead, \(\boldsymbol{d}()\) performs the following steps:
1. Simplify the second argument only to the extent that it does not lead to a nonvariable.
2. Simplify the first argument only to the extent that it does recall any stored value for the variable determined by step 1 .
3. Determine the symbolic derivative of the result of step 2 with respect to the variable from step 1.
4. If the variable from step 1 has a stored value or a value specified by a "with" (I) operator, substitute that value into the result from step 3.
number \(\boldsymbol{D D} \Rightarrow\) value
list1 \(\boldsymbol{D} D \mathrm{D} \Rightarrow\) list
matrix 1 DDD \(\Rightarrow\) matrix
Returns the decimal equivalent of the argument. The argument is a number, list, or matrix that is interpreted by the Mode setting in radians or degrees.

Note: \(\boldsymbol{D D D}\) can also accept input in radians.
\[
\begin{aligned}
& d\left(3 x^{\wedge} 3-x+7, x\right) \text { ENTER } 9 x^{2}-1 \\
& d\left(3 x^{\wedge} 3-x+7, x, 2\right) \text { ENTER } 18 \cdot x \\
& d(\mathrm{f}(\mathrm{x}) * \mathrm{~g}(\mathrm{x}), \mathrm{x}) \text { ENTER } \\
& \frac{d}{d x}(f(x)) \cdot g(x)+\frac{d}{d x}(g(x)) \cdot f(x) \\
& d(\sin (\mathrm{f}(\mathrm{x})), \mathrm{x}) \text { ENTER } \\
& \cos (f(x)) \frac{d}{d x}(f(x)) \\
& d\left(x^{\wedge} 3, x\right) \mid x=5 \text { ENTER } \\
& 75 \\
& d\left(d\left(x^{\wedge} 2 * y \wedge 3, x\right), y\right) \text { ENTER } \\
& 6 \cdot y^{2} \cdot x \\
& d\left(x^{\wedge} 2, x,-1\right) \text { ENTER } \\
& \frac{x^{3}}{3} \\
& d\left(\left\{x^{\wedge} 2, x^{\wedge} 3, x^{\wedge} 4\right\}, x\right) \text { ENTER } \\
& \left\{2 \cdot x \quad 3 \cdot x^{2} \quad 4 \cdot x^{3}\right\}
\end{aligned}
\]

In Degree angle mode:


In Radian angle mode:
\(1.5 \operatorname{DD}\) ENTER
\(85.9^{\circ}\)

Define funcName (arg1Name, arg2Name, ...) = expression
Creates funcName as a user-defined function. You then can use funcName(), just as you use built-in functions. The function evaluates expression using the supplied arguments and returns the result.
funcName cannot be the name of a system variable or built-in function.

The argument names are placeholders; you should not use those same names as arguments when you use the function.

Note: This form of Define is equivalent to executing the expression: expression \(\rightarrow\) funcName (arg1Name, arg2Name).
This command also can be used to define simple variables ; for example, Define \(a=3\).

Define funcName (arg1Name, arg2Name, ...) = Func block

\section*{EndFunc}

Is identical to the previous form of Define, except that in this form, the user-defined function funcName() can execute a block of multiple statements.
block can be either a single statement or a series of statements separated with the ":" character. block also can include expressions and instructions (such as If, Then, Else, and For). This allows the function funcName() to use the Return instruction to return a specific result.

Note: It is usually easier to author and edit this form of Function in the program editor rather than on the entry line. (See Chapter 17:
Programming.)
Define \(\operatorname{progName}(\arg 1 N a m e, \arg 2 N a m e, \ldots)=\) Prgm
block
EndPrgm
Creates progName as a program or subprogram, but cannot return a result using Return. Can execute a block of multiple statements.
block can be either a single statement or a series of statements separated with the ":" character. block also can include expressions and instructions (such as If, Then, Else, and For) without restrictions.

Note: It is usually easier to author and edit a program block in the Program Editor rather than on the entry line. (See Chapter 17:
Programming.)
\begin{tabular}{lr} 
Define \(g(x x, y y)=2 x x-3 y y\) ENTER & Done \\
\(g(1,2)\) ENTER & -4 \\
\(l \rightarrow a: 2 \rightarrow b: g(a, b)\) ENTER & -4 \\
Define \(h(x x)=\) when \((x x<2,2 x x-3\), & \\
\(-2 x x+3)\) ENTER & Done
\end{tabular}
\(h(-3)\) ENTER -9
\(h(4)\) ENTER -5
Define eigenvl(aa)=
cZeros(det(identity(dim(aa)
[1])-x*aa), x) ENTER Done
eigenv1 ([-1,2;4,3]) ENTER


```

Define listinpt()=prgm:Local
n,i,str1,num:InputStr "Enter
name of list",str1:Input "No. of
elements",n:For i,1,n,1:Input
"element "\&string(i),num:
num->非str1[i]:EndFor:EndPrgm ENTER
Done
listinpt() ENTER Enter name of list

```

DelFold folderName1[, folderName2] [,folderName3] ...
Deletes user-defined folders with the names folderName1, folderName2, etc. An error message is displayed if the folders contain NewFold games [ENTER Done (creates the folder games)

Delfold games ENTER Done (deletes the folder games) any variables.

Note: You cannot delete the main folder.

\section*{DelVar catalog}

DelVar var1[, var2] [, var3] ...
Deletes the specified variables from memory.
\begin{tabular}{lr}
\(2 \rightarrow a\) ENTER & 2 \\
\((a+2)^{\wedge} 2\) EENTER & 16 \\
DelVar a ENTER & Done \\
\((a+2)^{\wedge} 2\) ENTER & \((a+2)^{2}\)
\end{tabular}
det() MATH/Matrix menu
\(\operatorname{det}(\) squareMatrix) \(\Rightarrow\) expression
Returns the determinant of squareMatrix.
squareMatrix must be square.
\(\operatorname{det}([a, b ; c, d])\) ENTER \(a \cdot d-b \cdot c\)
\(\operatorname{det}([1,2 ; 3,4])\) ENTER -2
det(identity(3) - x*[1,-2,3;
\(-2,4,1 ;-6,-2,7]\) ) ENTER
\(-\left(98 \cdot x^{3}-55 \cdot x^{2}+12 \cdot x-1\right)\)

\section*{diag() MATH/Matrix menu}
\(\operatorname{diag}(\) list \() \Rightarrow\) matrix
\(\operatorname{diag}(\) rowMatrix \() \underset{\text { matrix }}{\boldsymbol{d i a g}(\text { columnMatrix })} \Rightarrow\) matrix \(\quad \operatorname{diag(\{ 2,4,6\} )\text {ENTER}} \quad\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6\end{array}\right]\)
diag(columnMatrix) \(\Rightarrow\) matrix
Returns a matrix with the values in the argument list or matrix in its main diagonal.
\begin{tabular}{ccc}
\(\operatorname{diag}(\) squareMatrix \() \Rightarrow\) rowMatrix & & \\
\begin{tabular}{l} 
Returns a row matrix containing the \\
elements from the main diagonal of
\end{tabular} & & {\(\left[\begin{array}{lll}4 & 6 & 8 \\
1 & 2 & 3 \\
5 & 7 & 9\end{array}\right]\)}
\end{tabular} squareMatrix.
squareMatrix must be square.

\section*{Dialog CATALOG}

\section*{Dialog}
block
EndDlog
Generates a dialog box when the program is executed.
block can be either a single statement or a series of statements separated with the ":" character. Valid block options in the F3 I/O, 1:Dialog menu item in the Program Editor are 1:Text, 2:Request, 4:DropDown, and 7:Title.

The variables in a dialog box can be given values that will be displayed as the default (or initial) value. If ENTER is pressed, the variables are updated from the dialog box and variable ok is set to 1 . If ESC is pressed, its variables are not updated, and system variable ok is set to zero.

Program listing:
: Dlogtest()
: Prgm
: Dialog
:Title "This is a dialog box"
: Request "Your name",Str1
: Dropdown "Month you were born", seq(string(i),i,i,12),Var1
: EndDlog
: EndPrgm

\(\operatorname{dim}() \quad \operatorname{MATH} /\) Matrix/Dimensions menu \(\quad \operatorname{dim}(\{0,1,2\})\) ENTER \(\quad 3\)

Returns the dimension of list.
\(\operatorname{dim}(\) matrix \() \Rightarrow\) list \(\quad \operatorname{dim}([1,-1,2 ;-2,3,5])\) ENTER \(\quad\{23\}\)
Returns the dimensions of matrix as a twoelement list \{rows, columns\}.
\(\operatorname{dim}(\) string \() \Rightarrow\) integer \(\quad \operatorname{dim}(" H e l l o ")\) ENTER 5

Returns the number of characters contained
dim("Hello"\&" there") ENTER
in character string string.

\section*{Disp CATALOG}

\section*{Disp}

Displays the current contents of the Program
I/O screen.
Disp [exprOrString1] [, exprOrString2] ...
Displays each expression or character string on a separate line of the Program I/O screen.

If Pretty Print \(=\mathrm{ON}\), expressions are displayed
 in pretty print.

\section*{DispG CATALOG}

\section*{DispG}

Displays the current contents of the Graph screen.

In function graphing mode:
Program segment:
\[
\begin{aligned}
& : 5 * \cos (x) \rightarrow y 1(x) \\
& :-10 \rightarrow x \min \\
& : 10 \rightarrow x \max \\
& :-5 \rightarrow y \min \\
& : 5 \rightarrow y \max \\
& : D i s p G
\end{aligned}
\]


\section*{DispTbl catalog}

\section*{DispTb}

Displays the current contents of the Table screen.

Note: The cursor pad is active for scrolling. Press ESC or ENTER to resume execution if in a program.
\(5 * \cos (x) \rightarrow y 1(x)\) ENTER
DispTbl ENTER

expression \(\\) DMS
list DMS
matrix \(>\) DMS
Interprets the argument as an angle and displays the equivalent DMS ( \(\left.D D D D D D^{\circ} M^{\prime}{ }^{\prime} S S . s s^{\prime \prime}\right)\) number. See \({ }^{\circ},{ }^{\prime}, ~ " ~ o n ~\) page 467 for DMS (degree, minutes, seconds) format.

Note: DMS will convert from radians to degrees when used in radian mode. If the input is followed by a degree symbol \(\left({ }^{\circ}\right)\), no conversion will occur. You can use \(\boldsymbol{D M S}\) only at the end of an entry line.

\section*{dotP() MATH/Matrix/Vector ops menu}
\(\operatorname{dot} \mathbf{P}(\) list1, list2) \(\Rightarrow\) expression
Returns the "dot" product of two lists.
\(\operatorname{dot} \mathbf{P}\) (vector1, vector2) \(\Rightarrow\) expression
Returns the "dot" product of two vectors.
Both must be row vectors, or both must be column vectors.

\section*{DrawFunc catalog}

\section*{DrawFunc expression}

Draws expression as a function, using x as the independent variable.

Note: Regraphing erases all drawn items.

In Degree angle mode:
45.371 DMS ENTER \(\quad 45^{\circ} 22^{\prime \prime} 15.6^{\prime \prime}\)
\(\{45.371,60\} \rightarrow D M S\) ENTER
\(\left\{45^{\circ} 22^{\prime} 15.6^{\prime \prime} 60^{\circ}\right\}\)
\(\operatorname{dot} P(\{a, b, c\},\{d, e, f\})\) ENTER \(a \cdot d+b \cdot e+c \cdot f\)
\(\operatorname{dotP}(\{1,2\},\{5,6\})\) ENTER
17
\(\operatorname{dotP}([a, b, c],[d, e, f])\) ENTER
\(a \cdot d+b \cdot e+c \cdot f\)
\(\operatorname{dot} P([1,2,3],[4,5,6])\) ENTER

In function graphing mode and ZoomStd window:

DrawFunc 1.25x*cos(x) ENTER


\section*{Drawinv catalog}

\section*{Drawlnv expression}

Draws the inverse of expression by plotting \(x\) values on the \(y\) axis and \(y\) values on the \(x\) axis.
\(x\) is the independent variable.
Note: Regraphing erases all drawn items.

In function graphing mode and ZoomStd window:

DrawInv 1.25x*cos(x) ENTER


DrawParm expression1, expression2
\([\), tmin \(][\), tmax \(][\), tstep \(]\)
Draws the parametric equations expression1 and expression2, using \(t\) as the independent variable.

Defaults for tmin, tmax, and tstep are the current settings for the Window variables tmin, tmax, and tstep. Specifying values does not alter the window settings. If the current graphing mode is not parametric, these three arguments are required.

Note: Regraphing erases all drawn items.

\section*{DrawPol}

CATALOG
DrawPol expression [, \(\theta\) min \(]\left[, \theta_{\max }\right][, \theta\) step \(]\)
Draws the polar graph of expression, using \(\theta\) as the independent variable.

Defaults for \(\theta \min , \theta \max\), and \(\theta\) step are the current settings for the Window variables \(\theta \mathrm{min}, \theta \mathrm{max}\), and \(\theta\) step. Specifying values does not alter the window settings. If the current graphing mode is not polar, these three arguments are required.

Note: Regraphing erases all drawn items.

\section*{DrawSIp \\ CATALOG}

DrawSIp \(x 1, y 1\), slope
Displays the graph and draws a line using the formula \(y-y 1=\) slope \(\cdot(x-x 1)\).

Note: Regraphing erases all drawn items.

In function graphing mode and ZoomStd window:

DrawParm t*cos(t),t*sin(t), \(0,10, .1\) ENTER


In function graphing mode and ZoomStd window:

DrawPol \(5 * \cos (3 * \theta), 0,3.5, .1\) ENTER


In function graphing mode and ZoomStd window:

DrawS1p 2,3,-2 ENTER


\section*{DropDown catalog}

DropDown titleString, \(\{\) item 1String, item2String, ...\}, varName

Displays a drop-down menu with the name titleString and containing the items 1:item1String, 2: item2String, and so forth. DropDown must be within a Dialog...EndDlog block.

If varName already exists and has a value within the range of items, the referenced item is displayed as the default selection. Otherwise, the menu's first item is the default selection.

When you select an item from the menu, the corresponding number of the item is stored in the variable varName. (If necessary, DropDown creates varName.)


Elself CATALOG See also If, page 407.

If Boolean expression 1 Then block1
Elself Boolean expression2 Then block2

Elself Boolean expressionN Then blockN
Endlf

Elself can be used as a program instruction for program branching.

Program segment:
```

:If choice=1 Then
:Goto option1
: ElseIf choice=2 Then
: Goto option2
ElseIf choice=3 Then
Goto option3
ElseIf choice=4 Then
Disp "Exiting Program"
Return
: EndIf
En

```

EndCustm See Custom, page 386.

EndDlog See Dialog, page 390.

EndFor See For, page 402.
EndFunc See Func, page 403.

Endlf See If, page 407.
EndLoop See Loop, page 415.
EndPrgm See Prgm, page 426.
EndTBar See ToolBar, page 450.
EndTry See Try, page 450.
EndWhile See While, page 452.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{CATALOG} \\
\hline \multicolumn{2}{|r|}{\[
\begin{aligned}
& \text { entry }() \Rightarrow \text { expression } \\
& \text { entry(integer }) \Rightarrow \text { expression }
\end{aligned}
\]} & \multicolumn{2}{|l|}{On the Home screen:} \\
\hline & Returns a previous entry-line entry from the Home screen history area. & 1+1/entry (1) ENTER & \(\frac{-1}{x+1}+2\) \\
\hline & integer, if included, specifies which entry expression in the history area. The default is 1 , the most recently evaluated entry. Valid range is from 1 to 99 and cannot be an expression. & ENTER
ENTER & \[
\begin{aligned}
& \frac{1}{2 \cdot(2 \cdot x+1)}+3 / 2 \\
& \frac{-1}{3 \cdot(3 \cdot x+2)}+5 / 3
\end{aligned}
\] \\
\hline & Note: If the last entry is still highlighted on the Home screen, pressing ENTER is equivalent to executing entry(1). & entry (4) ENTER & \(\frac{1}{x}+1\) \\
\hline \multicolumn{2}{|l|}{exact() MATH/Num} & & \\
\hline \multicolumn{2}{|r|}{\[
\begin{aligned}
& \operatorname{exact}(\text { expression } 1[, \text { tol }]) \Rightarrow \text { expression } \\
& \text { exact }(\text { list } 1[, \text { tol }]) \Rightarrow \text { list } \\
& \operatorname{exact}(\text { matrix } 1[, \text { tol }]) \Rightarrow \text { matrix }
\end{aligned}
\]} & \begin{tabular}{l}
exact (.25) ENTER \\
exact(. 333333 ) ENTER
\end{tabular} & \[
\begin{array}{r}
1 / 4 \\
\frac{333333}{1000000}
\end{array}
\] \\
\hline & Uses Exact mode arithmetic regardless of the Exact/Approx mode setting to return, when possible, the rational-number equivalent of the argument. & exact \((.33333, .001)\)
exact \((3.5 x+y)\) ENTER & \[
\begin{array}{r}
1 / 3 \\
\frac{7 \cdot x}{2}+y
\end{array}
\] \\
\hline & \(t o l\) specifies the tolerance for the conversion; the default is 0 (zero). & \[
\operatorname{exact}(\{.2, .33,4.12
\] & \[
\left\{1 / 5 \frac{33}{100} 33 / 8\right\}
\] \\
\hline \multicolumn{4}{|l|}{Exit CATALOG} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Exit \\
Exits the current For, While, or Loop block. \\
Exit is not allowed outside the three looping structures (For, While, or Loop).
\end{tabular}}} & \multicolumn{2}{|l|}{Program listing:} \\
\hline & & ```
:0->temp
:For i,1,100,1
    temp+i>temp
    If temp>20
    Exit
:EndFor
:Disp temp
``` & \\
\hline & & Contents of temp after e & eecution: 21 \\
\hline \multicolumn{4}{|l|}{explist() cATALOG} \\
\hline \multicolumn{2}{|r|}{exprlist(expression,var) \(\Rightarrow\) list} & \multicolumn{2}{|l|}{solve(\(\left.x^{\wedge} 2-x-2=0, x\right)\) ENTER \(x=2\) or \(x=-1\)} \\
\hline & Examines expression for equations that are separated by the word "or," and returns a list containing the right-hand sides of the equations of the form var=expression. This gives you an easy way to extract some solution values embedded in the results of the solve(), cSolve(), fMin(), and fMax() functions. & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { explist(solve(x^2-x-2=0,x), } x) \text { ENTER } \\
& \begin{cases}-1 & 2\}\end{cases}
\end{aligned}
\]}} \\
\hline & Note: explist() is not necessary with the zeros and cZeros() functions because they return a list of solution values directly & & \\
\hline
\end{tabular}
```

expand(expression1 [, var]) $\Rightarrow$ expression
expand(list1 [,var]) $\Rightarrow$ list
expand(matrix $1[, v a r]) \Rightarrow$ matrix

```
expand(expression1) returns expression1 expanded with respect to all its variables. The expansion is polynomial expansion for polynomials and partial fraction expansion for rational expressions.

The goal of expand() is to transform expression1 into a sum and/or difference of simple terms. In contrast, the goal of factor() is to transform expression 1 into a product and/or quotient of simple factors.
```

expand ( $\left.(x+y+1)^{\wedge} 2\right)$ ENTER
$x^{2}+2 \cdot x \cdot y+2 \cdot x+y^{2}+2 \cdot y+1$
expand ( ( $\left.x^{\wedge} 2-x+y^{\wedge} 2-y\right) /\left(x^{\wedge} 2 * y^{\wedge} 2-x^{\wedge} 2\right.$
*y $\left.\left.-x * y^{\wedge} 2+x * y\right)\right)$ ENTER

```
\(-\exp =\left(\frac{x^{2}-x+y^{2}-y}{x^{2} \cdot y^{2}-x^{2} \cdot y-x \cdot y^{2}+x \cdot y}\right) \quad \frac{1}{x-1}-\frac{1}{x}+\frac{1}{y-1}-\frac{1}{y}\)
expand(expression1,var) returns expression expanded with respect to var. Similar powers of var are collected. The terms and their factors are sorted with var as the main variable. There might be some incidental factoring or expansion of the collected coefficients. Compared to omitting var, this often saves time, memory, and screen space, while making the expression more comprehensible.

Even when there is only one variable, using var might make the denominator factorization used for partial fraction expansion more complete.

Hint: For rational expressions, propFrac() (page 427) is a faster but less extreme alternative to expand().

Note: See also comDenom() (page 383) for an expanded numerator over an expanded denominator.
expand(expression1,[var]) also distributes logarithms and fractional powers regardless of var. For increased distribution of logarithms and fractional powers, inequality constraints might be necessary to guarantee that some factors are nonnegative.
expand(expression1, \([v a r])\) also distributes absolute values, sign(), and exponentials, regardless of var.

Note: See also tExpand() (page 449) for trigonometric angle-sum and multiple-angle expansion.
\[
\begin{aligned}
& \text { expand }\left((x+y+1)^{\wedge} 2, y\right) \text { ENTER } \\
& y^{2}+2 \cdot y \cdot(x+1)+(x+1)^{2} \\
& \text { expand }\left((x+y+1)^{\wedge} 2, x\right) \text { ENTER } \\
& x^{2}+2 \cdot x \cdot(y+1)+(y+1)^{2} \\
& \text { expand ((} \left.x^{\wedge} 2-x+y^{\wedge} 2-y\right) /\left(x^{\wedge} 2 * y^{\wedge} 2-x^{\wedge} 2\right. \\
& \text { * } \left.\left.y-x^{*} y^{\wedge} 2+x^{*} y\right), y\right) \text { ENTER } \\
& \begin{array}{r}
-\operatorname{expand}\left(\frac{x^{2}-x+y^{2}-y}{x^{2} \cdot y^{2}-x^{2} \cdot y-x \cdot y^{2}+x \cdot y}, y\right) \\
\frac{1}{y-1}-\frac{1}{y}+\frac{1}{x \cdot(x-1)}
\end{array} \\
& \text { expand(ans(1), x) ENTER } \\
& \text { expand ((} \left.\left.x^{\wedge} 3+x^{\wedge} 2-2\right) /\left(x^{\wedge} 2-2\right)\right) \text { ENTER } \\
& \frac{2 \cdot x}{x^{2}-2}+x+1
\end{aligned}
\]
expand (ans (1), x) ENTER
\[
\frac{1}{x-\sqrt{2}}+\frac{1}{x+\sqrt{2}}+x+1
\]
```

ln(2x*y)+\sqrt{}{(2x*y) ENTER}
ln(2\cdotx\cdoty)}+\sqrt{}{(2\cdotx
expand(ans(1)) ENTER
ln}(x\cdoty)+\sqrt{}{2}\cdot\sqrt{}{(}(x\cdoty)+1n(2
expand(ans(1)) | y >=0 EENTER
ln}(x)+\sqrt{}{2}\cdot\sqrt{}{x}\cdot\sqrt{}{y}+1n(y)+1n(2
sign(x*y)+abs(x*y)+ e^(2x+y) ENTER
e}2\textrm{x}+\textrm{y}+\operatorname{sign}(\textrm{x}\cdot\textrm{y})+|x\cdoty
expand(ans(1)) [ENTER
( (ex)}\mp@subsup{)}{}{2}\cdot\mp@subsup{e}{}{y}+\operatorname{sign}(x)\cdot\operatorname{sign}(y)+|x|\cdot|y

```

\section*{expr() MATH/String menu}
\(\operatorname{expr}(\) string \() \Rightarrow\) expression
Returns the character string contained in string as an expression and immediately executes it.
expr("1+2+x^2+x") ENTER \(x^{2}+x+3\)
expr("expand ((1+x)^2)") ENTER \(x^{2}+2 \cdot x+1\)
"Define cube(\(x x\)) \(=x x^{\wedge} 3\) " \(\rightarrow\) funcstr ENTER
"Define cube(xx)=xx^3"
expr(funcstr) ENTER Done
cube (2) ENTER 8

\section*{ExpReg MATH/Statistics/Regressions menu}

ExpReg list1, list2 [, [list3] [, list4, list5]]
Calculates the exponential regression and updates all the system statistics variables.

All the lists must have equal dimensions except for list5.
list1 represents xlist.
list2 represents ylist. list3 represents frequency.
list4 represents category codes. list5 represents category include list.

Note: list 1 through list' must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.

In function graphing mode:
\(\{1,2,3,4,5,6,7,8\} \rightarrow L 1\) ENTER \(\{12 \ldots\}\)
\(\{1,2,2,2,3,4,5,7\} \rightarrow\) L2 ENTER
\{1 \(2 \ldots\}\)
ExpReg L1, L2 ENTER
Done
ShowStat ENTER

\begin{tabular}{ll}
ENTER & \\
Regeq \((x) \rightarrow y 1(x)\) ENTER & Done \\
NewPlot 1,1, L1,L2 ENTER & Done
\end{tabular}
- [GRAPH]

factor(expression1[,var]) \(\Rightarrow\) expression
factor(list1[,var]) \(\Rightarrow\) list
factor (matrix \(1[\), var \(]\)) \(\Rightarrow\) matrix
factor(expression1) returns expression1 factored with respect to all of its variables over a common denominator.
expression 1 is factored as much as possible toward linear rational factors without introducing new non-real subexpressions.
This alternative is appropriate if you want factorization with respect to more than one variable.
factor(expression1,var) returns expression1 factored with respect to variable var.
expression 1 is factored as much as possible toward real factors that are linear in var, even if it introduces irrational constants or subexpressions that are irrational in other variables.

The factors and their terms are sorted with var as the main variable. Similar powers of var are collected in each factor. Include var if factorization is needed with respect to only that variable and you are willing to accept irrational expressions in any other variables to increase factorization with respect to var. There might be some incidental factoring with respect to other variables.

For the AUTO setting of the Exact/Approx mode, including var permits approximation with floating-point coefficients where irrational coefficients cannot be explicitly expressed concisely in terms of the built-in functions. Even when there is only one variable, including var might yield more complete factorization.

Note: See also comDenom() (page 383)for a fast way to achieve partial factoring when factor() is not fast enough or if it exhausts memory.
factor \(\left(a^{\wedge} 3 * x^{\wedge} 2-a * x^{\wedge} 2-a^{\wedge} 3+a\right)\) ENTER \(a \cdot(a-1) \cdot(a+1) \cdot(x-1) \cdot(x+1)\)
factor \(\left(x^{\wedge} 2+1\right)\) ENTER \(x^{2}+1\)
factor \(\left(x^{\wedge} 2-4\right)\) ENTER \((x-2) \cdot(x+2)\)
factor \(\left(x^{\wedge} 2-3\right)\) ENTER \(x^{2}-3\)
factor \(\left(x^{\wedge} 2-a\right)\) ENTER \(x^{2}-a\)
```

factor(a^3**^2-a**^2-a^3+a,x) ENTER
a\cdot(a2 - 1)\cdot(x-1)\cdot(x+1)
factor( }\mp@subsup{x}{}{\wedge}2-3,x)\mathrm{ ENTER }(x+\sqrt{}{3})\cdot(x-\sqrt{}{3}
factor( }\mp@subsup{x}{}{\wedge}2-a,x)\mathrm{ ENTER }(x+\sqrt{}{a})\cdot(x-\sqrt{}{a}

```
factor \(\left(x^{\wedge} 5+4 x^{\wedge} 4+5 x^{\wedge} 3-6 x-3\right)\) ENTER
\(x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3\)\(\quad \begin{array}{r}\text { factor(ans(1), } x) \text { ENTER } \\ (x-.965) \cdot(x+.612) \cdot \\ (x+2.13) \cdot\left(x^{2}+2.23 \cdot x+2.39\right)\end{array}\)

Note: See also cFactor() (page 380) for factoring all the way to complex coefficients in pursuit of linear factors.
factor(rational_number) returns the rational number factored into primes and a residual having prime factors that exceed 65521.
factor(28!/4293001441) ENTER
- factor \(\left(\frac{28!}{4293014441}\right)\)
\(\frac{23 \cdot 19 \cdot 17 \cdot 13^{2} \cdot 11^{2} \cdot 7^{4} \cdot 5^{6} \cdot 3^{13} \cdot 2^{25}}{65521^{2}}\)

Fill expression, matrixVar \(\Rightarrow\) matrix
Replaces each element in variable matrixVar with expression.
\([1,2 ; 3,4] \rightarrow\) amatrx ENTER
Fill 1.01,amatrx ENTER
amatrx ENTER
\(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\)
Done
\(\left[\begin{array}{ll}1.01 & 1.01 \\ 1.01 & 1.01\end{array}\right]\)
matrixVar must already exist.

Fill expression, listVar \(\Rightarrow\) list
Replaces each element in variable listVar with expression.
\(\{1,2,3,4,5\} \rightarrow\) alist ENTER \(\quad\left\{\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right\}\)
Fill 1.01, alist ENTER
alist ENTER
\(\left\{\begin{array}{lllll}1.01 & 1.01 & 1.01 & 1.01 & 1.01\end{array}\right\}\)
listVar must already exist.

\section*{floor() MATH/Number menu}
floor(expression) \(\Rightarrow\) integer
Returns the greatest integer that is \(\leq\) the argument. This function is identical to int().

The argument can be a real or a complex number.
floor(list1) \(\Rightarrow\) list
floor(matrix1) \(\Rightarrow\) matrix
Returns a list or matrix of the floor of each element.

Note: See also ceiling() (page 379) and int() (page 409).

\section*{fMax() MATH/Calculus menu}
fMax(expression, var) \(\Rightarrow\) Boolean expression
Returns a Boolean expression specifying candidate values of var that maximize expression or locate its least upper bound.

Use the "।" operator to restrict the solution interval and/or specify the sign of other undefined variables.

For the APPROX setting of the Exact/Approx mode, fMax() iteratively searches for one approximate local maximum. This is often faster, particularly if you use the "I" operator to constrain the search to a relatively small interval that contains exactly one local maximum.

Note: See also \(\mathbf{f M i n}()\) (page 401) and \(\max ()\) (page 415).
\(f \operatorname{Max}\left(1-(x-a)^{\wedge} 2-(x-b)^{\wedge} 2, x\right)\) ENTER

\begin{tabular}{|c|c|c|}
\hline fMin() & MATH/Calculus menu & \\
\hline \multicolumn{2}{|r|}{\(\mathrm{fMin}(\) expression, var) \(\Rightarrow\) Boolean expression} & \(f \operatorname{Min}\left(1-(x-a) \wedge 2-(x-b)^{\wedge} 2, x\right)\) ENTER \\
\hline & Returns a Boolean expression specifying candidate values of var that minimize expression or locate its greatest lower bound. & fMin(.5x^3-x-2,x)|x>1 ENTER \(\quad x=1\) \\
\hline & Use the "I" operator to restrict the solution interval and/or specify the sign of other undefined variables. & \begin{tabular}{l}
fMin(a*x^2,x) ENTER \\
\(x=\infty\) or \(x=-\infty\) or \(x=0\) or \(a=0\) \\
\(f \operatorname{Min}\left(a * x^{\wedge} 2, x\right) \mid a>0\) and \(x>1\) ENEE \(x=1\).
\end{tabular} \\
\hline & For the APPROX setting of the Exact/Approx mode, \(\boldsymbol{f} \operatorname{Min}()\) iteratively searches for one approximate local minimum. This is often faster, particularly if you use the "" operator to constrain the search to a relatively small interval that contains exactly one local minimum. & \(f \operatorname{Min}\left(\mathrm{a} * \mathrm{x}^{\wedge} 2, x\right) \mid a>0\) ENTER \(\quad \mathrm{x}=0\) \\
\hline & Note: See also fMax() (page 400) and \(\boldsymbol{\operatorname { m i n } ()}\) (page 417). & \\
\hline FnOff & CATALOG & \\
\hline
\end{tabular}

FnOff
Deselects all \(\mathrm{Y}=\) functions for the current graphing mode.

In split-screen, two-graph mode, FnOff only applies to the active graph.

\section*{FnOff [1] [, 2] ... [,99]}

Deselects the specified \(\mathrm{Y}=\) functions for the current graphing mode.

In function graphing mode: FnOff 1,3 ENTER deselects \(\mathrm{y} 1(\mathrm{x})\) and \(\mathrm{y} 3(\mathrm{x})\).

In parametric graphing mode: FnOff 1,3 ENTER deselects xt1 (t), yt1 (t), \(x t 3(t)\), and \(y t 3(t)\).

\section*{FnOn catalog}

FnOn
Selects all \(\mathrm{Y}=\) functions that are defined for the current graphing mode.

In split-screen, two-graph mode, FnOn only applies to the active graph.

FnOn [1] [, 2] ... [,99]
Selects the specified \(Y=\) functions for the current graphing mode.

Note: In 3D graphing mode, only one function at a time can be selected. FnOn 2 selects \(\mathrm{z2}(\mathrm{x}, \mathrm{y})\) and deselects any previously selected function. In the other graph modes, previously selected functions are not affected.

For var, low, high [, step] block

\section*{EndFor}

Executes the statements in block iteratively for each value of var, from low to high, in increments of step.
var must not be a system variable.
step can be positive or negative. The default value is 1 .
block can be either a single statement or a series of statements separated with the ":" character.

Program segment:
```

\vdots
:0->tempsum : 1 1 step
:For i,1,100,step
: tempsum+i->tempsum
:EndFor
:Disp tempsum

```

Contents of tempsum after execution: 5050
Contents of tempsum when step is changed to 2 : 2500

\section*{format() MATH/String menu}
format(expression[,formatString]) \(\Rightarrow\) string
Returns expression as a character string based on the format template.
expression must simplify to a number. formatString is a string and must be in the form: " \(\mathrm{F}[n]\) ", " \(\mathrm{S}[n]\) ", " \(\mathrm{E}[n]\) ", " \(\mathrm{G}[n][c]\) ", where [] indicate optional portions.
\(\mathrm{F}[n]\) : Fixed format. \(n\) is the number of digits to display after the decimal point.
\(\mathrm{S}[n]\) : Scientific format. \(n\) is the number of digits to display after the decimal point.
\(\mathrm{E}[n]\) : Engineering format. \(n\) is the number of digits after the first significant digit. The exponent is adjusted to a multiple of three, and the decimal point is moved to the right by zero, one, or two digits.
\(\mathrm{G}[n][c]\) : Same as fixed format but also separates digits to the left of the radix into groups of three. \(c\) specifies the group separator character and defaults to a comma. If \(c\) is a period, the radix will be shown as a comma.
\([R c]\) : Any of the above specifiers may be suffixed with the Rc radix flag, where \(c\) is a single character that specifies what to substitute for the radix point.

\section*{fpart() MATH/Number menu}
fpart(expression1) \(\Rightarrow\) expression
fpart(list1) \(\Rightarrow\) list
fpart(matrix1) \(\Rightarrow\) matrix
Returns the fractional part of the argument.
For a list or matrix, returns the fractional parts of the elements.

The argument can be a real or a complex number. .
fpart(-1.234) ENTER -. 234
fpart(\{1, -2.3, 7.003\}) ENTER
format(1.234567,"f3") ENTER "1.235"
format(1.234567,"s2") ENTER "1.23E0"
format(1.234567,"e3") ENTER " 1.235 E 0 "
format(1.234567,"g3") ENTER "1.235"
format(1234.567, "g3") ENTER
format(1.234567, "g3,r:") ENTER \(11: 235\) "

getDenom(expression1) \(\Rightarrow\) expression
Transforms expression1 into one having a reduced common denominator, and then returns its denominator.
getDenom (\((x+2) /(y-3))\) ENTER \(y-3\)
getDenom(2/7) ENTER 7
getDenom \(\left(1 / x+\left(y^{\wedge} 2+y\right) / y^{\wedge} 2\right)\) ENTER \(x \cdot y\)

\section*{getFold() CATALOG}
```

getFold() = nameString

```

Returns the name of the current folder as a string.
getFold() ENTER "main"
getFold() \(\rightarrow\) oldfoldr ENTER "main"
oldfoldr ENTER "main"

\section*{getKey() CATALOG}
```

getKey() => integer

```

Returns the key code of the key pressed. Returns 0 if no key is pressed.

The prefix keys (shift \(\uparrow\), second function 2nd, option \(\bullet\), and drag (e)) are not recognized by themselves; however, they modify the keycodes of the key that follows them. For example: \(K \neq K \neq 2 n d K\).

For a listing of key codes, see Appendix B.

Program listing:
: Disp
: Loop
\[
\text { getKey }() \rightarrow \text { key }
\]
while key=0 getKey () \(\rightarrow\) key
EndWhile
Disp key
If key = ord("a")
: Stop
: EndLoop

\section*{getMode() CATALOG}

\section*{getMode(modeNameString) \(\Rightarrow\) string} getMode("ALL") \(\Rightarrow\) ListStringPairs

If the argument is a specific mode name, returns a string containing the current setting for that mode.

If the argument is "ALL", returns a list of string pairs containing the settings of all the modes. If you want to restore the mode settings later, you must store the getMode("ALL") result in a variable, and then use setMode to restore the modes.

For a listing of mode names and possible settings, see setMode on page 438.
```

getMode("angle") ENTER "RADIAN"
getMode("graph") ENTER "FUNCTION"
getMode("al1") ENTER
{"Graph" "FUNCTION" "Display Digits"
"FLOAT 6" "Angle" "RADIAN"
"Exponential Format" "NORMAL"
"Complex Format" "REAL" "Vector
Format" "RECTANGULAR" "Pretty Print"
"ON" "Split Screen" "FULL" "Split 1
App" "Home" "Split 2 App" "Graph"
"Number of Graphs" "1" "Graph 2"
"FUNCTION" "Split Screen Ratio"
"1:1" "Exact/Approx" "AUTO" }

```

Note: Your screen may display different mode settings.

\section*{getNum() MATH/Algebra/Extract menu}
\[
\text { getNum(expression1) } \Rightarrow \text { expression }
\]

Transforms expression1 into one having a reduced common denominator, and then returns its numerator.
\begin{tabular}{lr}
\(\operatorname{getNum}((x+2) /(y-3))\) ENTER & \(x+2\) \\
\(\operatorname{getNum}(2 / 7)\) ENTER & 2 \\
\(\operatorname{getNum}(1 / x+1 / y)\) ENTER & \(x+y\)
\end{tabular}
getNum(2/7) ENTER 2 \(\operatorname{getNum}(1 / x+1 / y)\) ENTER \(x+y\)
getType() catalog
getType(var) \(\Rightarrow\) string
Returns a string indicating the TI-92 data type of variable var.

If var has not been defined, returns the string "NONE."
\begin{tabular}{|c|c|}
\hline \(\{1,2,3\} \rightarrow\) temp ENTER getType(temp) ENTER & \[
\left\{\begin{array}{lll}
1 & 2 & 3 \\
" L I S T "
\end{array}\right.
\] \\
\hline \(2+3 i \rightarrow\) temp ENTER & \(2+3 i\) \\
\hline getType(temp) ENTER & "EXPR" \\
\hline DelVar temp ENTER getType(temp) ENTER & \begin{tabular}{l}
Done \\
"NONE"
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Data Type & Variable Contents \\
\hline "DATA" & Data type \\
\hline "EXPR" & Expression (includes complex/arbitrary/undefined, \(\infty,-\infty\), \\
& TRUE, FALSE, pi, \(e\))
\end{tabular}
\begin{tabular}{ll}
"FIG" & Geometry figure \\
\hline "FUNC" & Function
\end{tabular}
"GDB" Graph Data Base
"LIST" List
\begin{tabular}{ll}
\hline "MAC" & Geometry macro \\
\hline "MAT" & Matrix
\end{tabular}
"NONE" Variable does not exist
"NUM" Real number
\begin{tabular}{ll}
\hline "PIC" & Picture \\
\hline "PRGM" & Program \\
\hline
\end{tabular}
"STR" String
"TEXT" Text type
"VAR" Name of another variable

\section*{Goto CATALOG}

\section*{Goto labelName}

Transfers program control to the label labelName.
labelName must be defined in the same program using a Lbl instruction. (See page 410.)

Program segment:
: \(0 \rightarrow\) temp
: \(1 \rightarrow i\)
:Lbl TOP
: temp+i>temp
If \(\mathrm{i}<10\) Then i \(+1 \rightarrow\) i
Goto TOP
EndIf
: Disp temp

Graph expression1[, expression2] [, var1] [, var2]
The Smart Graph feature graphs the requested expressions/ functions using the current graphing mode.

Expressions entered using the Graph or Table (page 447) commands are assigned increasing function numbers starting with 1. They can be modified or individually deleted using the edit functions available when the table is displayed by pressing F4 Header. The currently selected \(\mathrm{Y}=\) functions are ignored.

If you omit an optional var argument, Graph uses the independent variable of the current graphing mode.

Note: Not all optional arguments are valid in all modes because you can never have all four arguments at the same time.

Some valid variations of this instruction are:
Function graphing
Graph expr, \(x\)
Parametric graphing
Graph \(x E x p r, y E x p r, t\)
Polar graphing
Graph expr, \(\theta\)
Sequence graphing
Not allowed.
3D graphing
Graph expr, \(x, y\)

Note: Use CIrGraph (page 381) to clear these functions, or go to the Y= Editor to re-enable the system \(Y=\) functions.

\section*{identity() MATH/Matrix menu}
identity(expression) \(\Rightarrow\) matrix
Returns the identity matrix with a dimension of expression.
expression must evaluate to a positive integer.

CATALOG

If Boolean expression statement

If Boolean expression Then block
Endlf
If Boolean expression evaluates to true, executes the single statement statement or the block of statements block before continuing execution.

If Boolean expression evaluates to false, continues execution without executing the statement or block of statements.
block can be either a single statement or a sequence of statements separated with the ":" character.

If Boolean expression Then
block 1
Else block2
Endlf
If Boolean expression evaluates to true, executes block1 and then skips block2.

If Boolean expression evaluates to false, skips block1 but executes block2.
block1 and block2 can be a single statement.
If Boolean expression 1 Then block1
Elself Boolean expression2 Then

\section*{block2}

Elself Boolean expressionN Then blockN
Endlf
Allows for program branching. If Boolean expression1 evaluates to true, executes block1.
If Boolean expression1 evaluates to false, evaluates Boolean expression2, etc.

Program segment:
\[
\begin{aligned}
& \text { : If } x<0 \\
& \text { :Disp "x is negative" } \\
& \text {-or- } \\
& \text { : If } x<0 \text { Then } \\
& \text { : Disp "x is negative" } \\
& : \text { abs }(x) \rightarrow x \\
& \text { : EndIf }
\end{aligned}
\]

Program segment:
: If \(x<0\) Then
: Disp "x is negative"
: E1se
: Disp "x is positive or zero" : EndIf

\section*{imag() MATH/Complex menu}
\[
\text { imag(expression1) } \Rightarrow \text { expression }
\]
imag(expression1) returns the imaginary part of the argument.
\(i m a g(1+2 i)\) ENTER 2
imag \((z)\) ENTER 0

Note: All undefined variables are treated as real variables. See also real() (page 432).
\begin{tabular}{lll}
\hline imag \((l i s t 1)\)
\end{tabular}\(\Rightarrow\) list \(\quad \operatorname{imag}(\{-3,4-i, i\})\) ENTER \(\quad\left\{\begin{array}{lll}10 & -1 & 1\}\end{array}\right.\)

Returns a list of the imaginary parts of the elements.
\(\overline{\text { imag }(\text { matrix } 1)} \Rightarrow\) matrix \(\quad i m a g([a, b ; i c, i d])\) ENTER \(\quad\left[\begin{array}{ll}0 & 0 \\ c & d\end{array}\right]\)

Returns a matrix of the imaginary parts of the elements.

\section*{Input CATALOG}

\section*{Input}

Pauses the program, displays the current Graph screen, and lets you update variables \(x c\) and \(y c\) (also \(r c\) and \(\theta c\) for polar coordinate mode) by positioning the graph cursor.

When you press ENTER, the program resumes.

Program segment:
```

Get 10 points from the Graph
Screen
:For i,1,10
: Input
: xc->XLIST[i]
: yc->YLIST[i]
:EndFor

```
:

Input [promptString,] var
Input [promptString], var pauses the program, displays promptString on the Program I/O screen, waits for you to enter an expression, and stores the expression in variable var.

If you omit promptString, "?" is displayed as a prompt.

\section*{InputStr CATALOG}

InputStr [promptString,] var
Pauses the program, displays promptString on the Program I/O screen, waits for you to enter a response, and stores your response as a string in variable var.

If you omit promptString, "?" is displayed as a prompt.

Note: The difference between Input and InputStr is that InputStr always stores the result as a string so that "" are not required.

\section*{inString() MATH/String menu}
inString(srcString, subString[, start \(]\)) \(\Rightarrow\) integer
Returns the character position in string srcString at which the first occurrence of string subString begins.
start, if included, specifies the character position within srcString where the search begins. Default = 1 (the first character of srcString).

If srcString does not contain subString or start is \(>\) the length of srcString, returns zero.

Defines a label with the name labelName in the program.

You can use a Goto labelName instruction to transfer program control to the instruction immediately following the label.

Program segment:
```

:Lbl 1bl1
:InputStr "Enter password", str1
:If str1\not=password
: Goto lbl1
:Disp "Welcome to ..."

```
labelName must meet the same naming requirements as a variable name.

Returns the leftmost num characters contained in character string sourceString.

If you omit num, returns all of sourceString.
\(\operatorname{left}(\) list \(1[, n u m]) \Rightarrow\) list \(\quad \operatorname{left}(\{1,3,-2,4\}, 3)\) ENTER \(\quad\left\{\begin{array}{lll}1 & 3 & -2\}\end{array}\right.\)
Returns the leftmost num elements contained in list1.

If you omit num, returns all of list1.
left \((\) comparison \() \Rightarrow\) expression \(1 \mathrm{eft}(\mathrm{x}<3)\) ENTER x
Returns the left-hand side of an equation or inequality.

\section*{limit() MATH/Calculus menu}
\(\operatorname{limit}(\) expression1, var, point[, direction]) \(\Rightarrow\) expression
\(\operatorname{limit}(\) list1, var, point \([\), direction \(]) \Rightarrow\) list
\(\operatorname{limit}(\) matrix1, var, point \([\), direction \(]) \quad \Rightarrow\) matrix
Returns the limit requested
direction: negative=from left, positive=from right, otherwise=both. (If omitted, direction defaults to both.)

Limits at positive \(\infty\) and at negative \(\infty\) are always converted to one-sided limits from the finite side.

Depending on the circumstances, limit() returns itself or undef when it cannot determine a unique limit. This does not necessarily mean that a unique limit does not exist. undef means that the result is either an unknown number with finite or infinite magnitude, or it is the entire set of such numbers.
limit() uses methods such as L'Hopital's rule, so there are unique limits that it cannot determine. If expression 1 contains undefined variables other than var, you might have to constrain them to obtain a more concise result.

Limits can be very sensitive to rounding error. When possible, avoid the APPROX setting of the Exact/Approx mode and approximate numbers when computing limits. Otherwise, limits that should be zero or have infinite magnitude probably will not, and limits that should have finite non-zero magnitude might not.
\(1 \operatorname{imit}(2 x+3, x, 5)\) ENTER 13
\(1 \operatorname{imit}(1 / x, x, 0,1)\) ENTER \(\infty\)
1imit(\(\sin (x) / x, x, 0)\) ENTER 1
\(1 \mathrm{imit}((\sin (x+h)-\sin (x)) / h, h, 0)\) ENTER

1imit((1+1/n)^n,n, \(\infty\)) ENTER \(e\)
\begin{tabular}{lr}
\(1 \operatorname{limit}\left(a^{\wedge} x, x, \infty\right)\) & undef \\
\(1 \operatorname{limit}\left(a^{\wedge} x, x, \infty\right) \mid a>1\) ENTER & \(\infty\) \\
\(1 \operatorname{limit}\left(a^{\wedge} x, x, \infty\right) \mid a>0\) and \(a<1\) ENTER & 0
\end{tabular}

\section*{Line CATALOG}

Line \(x\) Start, \(y\) Start, \(x E n d\), \(y E n d[\), drawMode]
Displays the Graph screen and draws, erases, or inverts a line segment between the window coordinates (xStart, yStart) and (\(x E n d, y E n d\)), including both endpoints.

If drawMode \(=1\), draws the line (default). If \(d r a w M o d e=0\), turns off the line.
If drawMode \(=-1\), turns a line that is on to off or off to on (inverts pixels along the line).

Note: Regraphing erases all drawn items. See also PxILine (page 428).

In the ZoomStd window, draw a line and then erase it.

Line \(0,0,6,9\) ENTER

- [HOME]

Line \(0,0,6,9,0\) ENTER

\section*{LineHorz \(y\) [, drawMode]}

Displays the Graph screen and draws, erases, or inverts a horizontal line at window position \(y\).

If \(d\) rawMode \(=1\), draws the line (default). If \(d r a w M o d e=0\), turns off the line. If drawMode \(=-1\), turns a line that is on to off or off to on (inverts pixels along the line).

Note: Regraphing erases all drawn items. See also PxIHorz (page 428).

\section*{LineTan catalog}

\section*{LineTan expression1, expression2}

Displays the Graph screen and draws a line tangent to expression 1 at the point specified.
expression 1 is an expression or the name of a function, where \(x\) is assumed to be the independent variable, and expression2 is the x value of the point that is tangent.

Note: In the example shown, expression 1 is graphed separately. LineTan does not graph expression1.

In a ZoomStd window:
LineHorz 2.5 ENTER
\begin{tabular}{|c|c|}
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

In function graphing mode and a ZoomTrig window:

Graph \(\cos (x)\)
- [HOME]

LineTan \(\cos (x), \pi / 4\) ENTER

\section*{LineVert catalog}

LineVert \(x[\),drawMode]
Displays the Graph screen and draws, erases, or inverts a vertical line at window position \(x\).

If \(d r a w M o d e=1\), draws the line (default).
If \(d r a w M o d e=0\), turns off the line.
If drawMode \(=-1\), turns a line that is on to off or off to on (inverts pixels along the line).

In a ZoomStd window:
LineVert -2.5 ENTER

Note: Regraphing erases all drawn items. See also PxIVert (page 429).

\section*{LinReg MATH/Statistics/Regressions menu}

LinReg list1, list2[, [list3] [, list4, list5]]
Calculates the linear regression and updates all the system statistics variables.

All the lists must have equal dimensions except for list5.
list1 represents xlist.
list2 represents ylist. list3 represents frequency. list 4 represents category codes. list5 represents category include list.

Note: list 1 through list 4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.

In function graphing mode:

ShowStat Enter

ENTER
\(\operatorname{Regeq}(x) \rightarrow y 1(x)\) ENTER Done

NewPlot 1,1,L1,L2 ENTER Done
- [GRAPH]

\section*{list/mat() MATH/List menu}
listımat(list [, elementsPerRow]) \(\Rightarrow\) matrix
Returns a matrix filled row-by-row with the elements from list.
elementsPerRow, if included, specifies the number of elements per row. Default is the number of elements in list (one row).

If list does not fill the resulting matrix, zeros are added.
\(\ln (\) expression 1\() \Rightarrow\) expression
\(\ln (\) list 1\() \Rightarrow\) list
Returns the natural logarithm of the argument.

For a list, returns the natural logarithms of the elements.
listrmat(\(\{1,2,3\})\) ENTER
\(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\)
listrmat(\{1,2,3,4,5\},2) ENTER

LN key
\[
\ln (2.0) \text { ENTER }
\]
. 693...
If complex format mode is REAL:
\(\ln (\{-3,1.2,5\})\) ENTER Error: Non-real result

If complex format mode is
RECTANGULAR:
```

ln({-3,1.2,5}) ENTER
{ln(3) +\pi\cdoti . 182···.. ln(5)}

```

\section*{LnReg MATH/Statistics/Regressions menu}

LnReg list1, list2[, [list3] [, list4, list5]]
Calculates the logarithmic regression and updates all the system statistics variables.

All the lists must have equal dimensions except for list5.
list1 represents xlist.
list2 represents ylist. list3 represents frequency. list 4 represents category codes. list5 represents category include list.

Note: list1 through list 4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.

In function graphing mode:
\begin{tabular}{|c|c|}
\hline \(\{1,2,3,4,5,6,7,8\} \rightarrow L 1\) ENTER & \(\left\{\begin{array}{llll}1 & 2 & 3\end{array} . ..\right\}\) \\
\hline \(\{1,2,2,3,3,3,4,4\} \rightarrow\) L2 ENTER & \(\left\{\begin{array}{llll}1 & 2 & 2\end{array}\right.\) \\
\hline LnReg L1, L2 ENTER & Done \\
\hline ShowStat ENTER & \\
\hline STht MAES & \\
\hline & \\
\hline Enter= \(=0 \mathrm{C}\) & \\
\hline
\end{tabular}

ENTER
Regeq \((x) \rightarrow y 1(x)\) ENTER Done
NewPlot 1,1,L1,L2 ENTER Done
- [GRAPH]

\section*{Local catalog}

Local var1[, var2] [, var3] ...
Declares the specified vars as local variables. Those variables exist only during evaluation of a program or function and are deleted when the program or function finishes execution.

Note: Local variables save memory because they only exist temporarily. Also, they do not disturb any existing global variable values. Local variables must be used for For loops and for temporarily saving values in a multiline function since modifications on global variables are not allowed in a function.

Program listing:
:prgmname()
: Prgm
: Local x,y
:Input "Enter x",x
:Input "Enter y",y
:Disp x*y
: EndPrgm
Note: \(x\) and \(y\) do not exist after the program executes.

\section*{Lock CATALOG}

Lock var1[, var2] ...
Locks the specified variables. This prevents you from accidentally deleting or changing the variable without first using the unlock instruction on that variable.

In the example to the right, the variable L 1 is locked and cannot be deleted or modified.

Note: The variables can be unlocked using the unlock command (page 451).
\(\{1,2,3,4\} \rightarrow L 1\) ENTER
\(\{1,2,3,4\}\)
Lock L1 ENTER
Done
Delvar L1 ENTER
Error: Variable is locked or protected
\[
\log (\text { expression1) } \Rightarrow \text { expression }
\]
\[
\log (\text { list } 1) \Rightarrow \text { list }
\]

Returns the base- 10 logarithm of the argument.

For a list, returns the base-10 logs of the elements.
\(\log (2.0)\) ENTER
. \(301 .\).
If complex format mode is REAL:
```

$\log (\{-3,1.2,5\})$ ENTER Error: Non-real result

```

If complex format mode is
RECTANGULAR:
\(\log (\{-3,1.2,5\})\) ENTER
\[
\left\{\frac{\ln (3)}{\ln (10)}+\frac{\pi}{\ln (10)} \cdot i \quad .079 \ldots \frac{\ln (5)}{\ln (10)}\right\}
\]

\section*{Loop CATALOG}

\section*{Loop}
block
EndLoop
Repeatedly executes the statements in block. :Loop
Note that the loop will be executed endlessly, : Rand (6) \(\rightarrow\) die1 unless a Goto or Exit instruction is executed within block.
block is a sequence of statements separated with the ":" character.

Program segment:
\[
\begin{aligned}
& \quad \vdots \\
& : 1 \rightarrow i \\
& : \text { Loop } \\
& : \quad \text { Rand }(6) \rightarrow \text { die1 } \\
& : \quad \text { Rand }(6) \rightarrow \text { die2 } \\
& \vdots \text { If diel=6 and die2=6 } \\
& : \quad \text { Goto End } \\
& \vdots \text { i+1 } \rightarrow i \\
& : \text { EndLoop } \\
& : \text { Lbl End } \\
& : D i s p \text { "The number of rolls is", i }
\end{aligned}
\]

\section*{mat>list() MATH/List menu}
mat>list(matrix) \(\Rightarrow\) list
Returns a list filled with the elements in matrix. The elements are copied from matrix row by row.

\section*{\(\max () \quad\) MATH/List menu}
\begin{tabular}{llr}
\(\max (\) expression 1, expression2 \() \Rightarrow\) expression & \(\max (2.3,1.4)\) ENTER & 2.3 \\
\(\boldsymbol{\operatorname { m a x } (\text { list } 1 , \text { list })} \boldsymbol{\Rightarrow} \Rightarrow\) list & \(\max (\{1,2\},\{-4,3\})\) ENTER & \(\{13\}\)
\end{tabular}
\(\max (\) matrix1, matrix2) \(\Rightarrow\) matrix
Returns the maximum of the two arguments.
If the arguments are two lists or matrices, returns a list or matrix containing the maximum value of each pair of corresponding elements.
\(\overline{\max (\text { list }) \Rightarrow \text { expression }} \max (\{0,1,-7,1.3, .5\})\) ENTER \(\quad 1.3\)

Returns the maximum element in list.
\(\overline{\max (\text { matrix } 1)} \Rightarrow\) matrix \(\quad \max ([1,-3,7 ;-4,0, .3])\) ENTER [1 0 7]

Returns a row vector containing the maximum element of each column in matrix1.

Note: See also \(\operatorname{fMax}()\) (page 400) and \(\min ()\) (page 417).
mean() MATH/Statistics menu
mean(list) \(\Rightarrow\) expression
mean(\(\{.2,0,1,-.3, .4\})\) ENTER
Returns the mean of the elements in list.
\(\operatorname{mean}(\) matrix1 \() \Rightarrow\) matrix
Returns a row vector of the means of all the columns in matrix1.

In vector format rectangular mode:
mean([.2,0;-1,3;.4,-.5]) ENTER
\[
[-.133 \ldots .833 \ldots]
\]
mean(\([1 / 5,0 ;-1,3 ; 2 / 5,-1 / 2])\) ENTER
[-2/15 5/6]

\section*{median() MATH/Statistics menu}
median(list) \(\Rightarrow\) expression
median(\{.2,0,1,-. \(3, .4\})\) ENTER
. 2
Returns the median of the elements in list1.
median(matrix1) \(\Rightarrow\) matrix
median([.2,0;1,-. \(3 ; .4,-.5])\) ENTER
[. 4 -. 3]
Returns a row vector containing the medians of the columns in matrix1.

Note: All entries in the list or matrix must simplify to numbers.

\section*{MedMed MATH/Statistics/Regressions menu}

MedMed list1, list2[, [list3] [, list4, list5]]
Calculates the median-median line and updates all the system statistics variables.

All the lists must have equal dimensions except for list5.
list1 represents xlist. list2 represents ylist. list3 represents frequency. list'4 represents category codes. list5 represents category include list.

Note: list 1 through list 4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.

In function graphing mode:

\begin{tabular}{ll}
ENTER & \\
Regeq \((x) \rightarrow y 1(x)\) ENTER & Done \\
NewPlot 1,1, L1, L2 ENTER & Done
\end{tabular}
[GRAPH]

\(\operatorname{mid}(\) sourceString, start \([\), count \(]) \quad \Rightarrow\) string
Returns count characters from character string sourceString, beginning with character number start.

If count is omitted or is greater than the dimension of sourceString, returns all characters from sourceString, beginning with character number start.
count must be \(\geq 0\). If count \(=0\), returns an empty string.
\(\operatorname{mid}(\) sourceList, start \([\), count \(]) \Rightarrow\) list
Returns count elements from sourceList, beginning with element number start.

If count is omitted or is greater than the dimension of sourceList, returns all elements from sourceList, beginning with element number start.
count must be \(\geq 0\). If count \(=0\), returns an empty list.
\(\operatorname{mid}(\) sourceStringList, start \([\), count \(]) \quad \Rightarrow \quad\) list
Returns count strings from the list of strings sourceStringList, beginning with element number start.
\(\min () \quad\) MATH/List menu
\(\min (\) expression1, expression2) \(\Rightarrow\) expression \(\min (\) list1, list2) \(\Rightarrow\) list \(\min (\) matrix1, matrix2) \(\Rightarrow\) matrix
\(\operatorname{mid}(\{9,8,7,6\}, 3)\) ENTER \(\{76\}\)
\(\operatorname{mid}(\{9,8,7,6\}, 2,2)\) ENTER \(\{87\}\)
\(\operatorname{mid}(\{9,8,7,6\}, 1,2)\) ENTER \(\{98\}\)
\(\operatorname{mid}(\{9,8,7,6\}, 1,0)\) [ENTER
there"
 mid("Hello there", 7,3) ENTER "the"
 mid("Hello there", 1,5) ENTER "Hello"
 mid("Hello there",1,0) ENTER ""
\begin{tabular}{|c|c|}
\hline mod() MATH/Number menu & \\
\hline \begin{tabular}{l}
\(\bmod (\) expression 1, expression2) \(\Rightarrow\) expression \\
\(\bmod (\) list1, list2) \(\Rightarrow\) list \\
\(\bmod (\) matrix1, matrix2) \(\Rightarrow\) matrix \\
Returns the first argument modulo the second argument as defined by the identities:
\[
\begin{aligned}
\bmod (x, 0) & \equiv x \\
\bmod (x, y) & \equiv x-y \text { floor }(x / y)
\end{aligned}
\] \\
When the second argument is non-zero, the result is periodic in that argument. The result is either zero or has the same sign as the second argument. \\
If the arguments are two lists or two matrices, returns a list or matrix containing the modulo of each pair of corresponding elements. \\
Note: See also remain() (page 433).
\end{tabular} & \(\left.\left.\begin{array}{lr}\bmod (7,0) \text { ENTER } & 7 \\ \bmod (7,3) \text { ENTER } & 1 \\ \bmod (-7,3) \text { ENTER } & 2 \\ \bmod (7,-3) \text { ENTER } & -2 \\ \bmod (-7,-3) \text { ENTER } & -1 \\ \bmod (\{12,-14,16\},\{9,7,-5\}) \text { ENTER } & \\ & \{30\end{array}\right)-4\right\}\) \\
\hline MoveVar catalog & \\
\hline \begin{tabular}{l}
MoveVar var, oldFolder, newFolder \\
Moves variable var from oldFolder to newFolder. If newFolder does not exist, MoveVar creates it.
\end{tabular} & \[
\left.\begin{array}{l}
\{1,2,3,4\} \rightarrow \text { L1 ENTER } \\
\text { MoveVar L1,Main,Games ENTER }
\end{array} \begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right\}
\] \\
\hline mRow() MATH/Matrix/Row ops menu & \\
\hline \begin{tabular}{l}
mRow(expression, matrix1, index) \(\Rightarrow\) matrix \\
Returns a copy of matrix 1 with each element in row index of matrix 1 multiplied by expression.
\end{tabular} & \[
\begin{aligned}
& \text { mRow }(-1 / 3,[1,2 ; 3,4], 2) \text { ENTER } \\
& {\left[\begin{array}{cc}
1 & 2 \\
-1 & -4 / 3
\end{array}\right]}
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{mRowAdd() MATH/Matrix/Row ops menu} \\
\hline \begin{tabular}{l}
mRowAdd(expression, matrix1, index1, index2) \\
\(\Rightarrow\) matrix \\
Returns a copy of matrix1 with each element in row index 2 of matrix1 replaced with: \\
expression \(\times\) row index \(1+\) row index 2
\end{tabular} & \[
\begin{aligned}
& \operatorname{mRowAdd}(-3,[1,2 ; 3,4], 1,2) \text { ENTER } \\
& \left.\qquad \begin{array}{ll}
1 & 2 \\
0 & -2
\end{array}\right] \\
& \operatorname{mRowAdd}(n,[a, b ; c, d], 1,2) \text { ENTER } \\
& {\left[\begin{array}{ll}
a & b \\
a \cdot n+c & b \cdot n+d
\end{array}\right]}
\end{aligned}
\] \\
\hline
\end{tabular}
nCr()\(\quad\) MATH/Probability menu
\(\mathrm{nCr}(\) expression 1, expression 2\() \Rightarrow\) expression
For integer expression1 and expression2 with expression \(1 \geq\) expression \(2 \geq 0, \mathrm{nCr}()\) is the number of combinations of expression 1 things taken expression2 at a time. (This is also known as a binomial coefficient.)

Both arguments can be integers or symbolic expressions.
\[
\mathrm{nCr}(\mathrm{z}, 3) \quad \frac{\mathrm{z} \cdot(\mathrm{z}-2) \cdot(\mathrm{z}-1)}{6}
\]
\(\operatorname{ans}(1) \mid z=5\)
10
\(n C r(z, c)\)
\(\frac{z!}{c!(z-c)!}\)
ans(1)/nPr(z, c)
\(\frac{1}{c!}\)
\(\mathrm{nCr}(\) expression, 0\() \Rightarrow 1\)
nCr (expression, negInteger) \(\Rightarrow 0\)
\(\mathrm{nCr}(\) expression, posInteger \() \Rightarrow\) expression \(\cdot\) (expression-1)... (expression-posInteger +1)/ posInteger!
\(\mathrm{nCr}(\) expression, nonInteger \() \Rightarrow\) expression!/
((expression-nonInteger)! • nonInteger!))
\(\mathrm{nCr}(\) list 1, list2) \(\Rightarrow\) list
\(\operatorname{nCr}(\{5,4,3\},\{2,4,2\})\) ENTER \(\left\{\begin{array}{lll}10 & 1 & 3\end{array}\right\}\)
Returns a list of combinations based on the corresponding element pairs in the two lists.

The arguments must be the same size list.
\begin{tabular}{ccc}
\hline \(\mathbf{n C r}(\) matrix 1, matrix2 \() \Rightarrow\) matrix & \(\operatorname{nCr}([6,5 ; 4,3],[2,2 ; 2,2])\) ENTER & \\
\(\begin{array}{l}\text { Returns a matrix of combinations based on } \\
\text { the corresponding element pairs in the two }\end{array}\) & {\(\left[\begin{array}{cc}15 & 10\end{array}\right]\)} \\
6 & 3
\end{tabular} the corresponding element pairs in the two matrices.

The arguments must be the same size matrix.

\section*{nDeriv() MATH/Calculus menu}
nDeriv(expression 1, var \([, h]) \Rightarrow\) expression
Returns the numerical derivative as an expression. Uses the central difference quotient formula.
\(h\) is the step value. If \(h\) is omitted, it defaults to 0.001 .

Note: See also avgRC() (page 379) and \(\boldsymbol{d}()\) (page 388).
nDeriv \((\cos (x), x, h)\) ENTER
\(\frac{-(\cos (x-h)-\cos (x+h))}{2 \cdot h}\)
1 imit(nDeriv(\(\cos (x), x, h), h, 0) \underset{-\frac{\sin i n}{\operatorname{ENTER}}(x)}{ }\)
nDeriv(\(x^{\wedge} 3, x, 0.01\)) ENTER
\[
3 . \cdot\left(x^{2}+.000033\right)
\]
\(n \operatorname{Deriv}(\cos (x), x) \mid x=\pi / 2\) ENTER
\(-1\).

\section*{NewData catalog}

NewData dataVar, list1[, list2] [, list3]...
Creates data variable dataVar, where the columns are the lists in order.

Must have at least one list.
list1, list2, ..., listn can be lists as shown, expressions that resolve to lists, or list variable names.

NewData makes the new variable current in the Data/Matrix Editor.

NewData mydata, \(\{1,2,3\},\{4,5,6\} \frac{\text { ENTER }}{\text { Done }}\)
(Go to the Data/Matrix Editor and open the var mydata to display the data variable below.)

Creates a user-defined folder with the name folderName, and then sets the current folder to that folder. After you execute this instruction, you are in the new folder.

\section*{newList() CATALOG}
newList(numElements) \(\Rightarrow\) list
newList(4) ENTER
\(\left\{\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right\}\)
Returns a list with a dimension of numElements. Each element is zero.

\section*{newMat() Catalog}
newMat(numRows, numColumns) \(\Rightarrow\) matrix
newMat (2,3) ENTER
\(\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\)
Returns a matrix of zeros with the dimension numRows by numColumns.

NewPic CATALOG
NewPic matrix, picVar [, maxRow][, maxCol]
NewPic \([1,1 ; 2,2 ; 3,3 ; 4,4 ; 5,5\);
5,1;4,2;2,4;1,5],xpic ENTER Done
Creates a pic variable picVar based on matrix. matrix must be an \(n \times 2\) matrix in which each row represents a pixel. Pixel coordinates start at 0,0 . If picVar already exists, NewPic replaces it.
The default for picVar is the minimum area required for the matrix values. The optional arguments, maxRow and maxCol, determine

RclPic xpic ENTER
 the maximum boundary limits for picVar.

\section*{NewPlot CATALOG}

NewPlot \(n\), type, \(x\) List [, [yList], [frqList], [catList], [includeCatList], [mark] [, bucketSize]]

Creates a new plot definition for plot number \(n\).
type specifies the type of the graph plot.
1 = scatter plot
2 = xyline plot
3 = box plot
\(4=\) histogram
mark specifies the display type of the mark.
\(1=\) ㅁ (box)
\(2=\times(\) cross \()\)
\(3=+\) (plus)
\(4=\) - (square)
\(5=\cdot(\operatorname{dot})\)
bucketSize is the width of each histogram "bucket" (type \(=4\)), and will vary based on the window variables \(x\) min and xmax. bucketSize must be \(>0\). Default \(=1\).

Note: \(n\) can be \(1-9\). Lists must be variable names or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor), except for includeCatList, which does not have to be a variable name and cannot be c1-c99.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{MATH/Calculus menu} \\
\hline & & \(n \operatorname{Int}\left(e^{\wedge}\left(-x^{\wedge} 2\right), x,-1,1\right)\) ENTER & NTER 1.493... \\
\hline \multicolumn{4}{|c|}{If the integrand expression1 contains no variable other than var, and if lower and upper are constants, positive \(\infty\), or negative \(\infty\), then nint() returns an approximation of \(\int(\) expression 1, var, lower, upper). This approximation is a weighted average of some sample values of the integrand in the interval lower<var<upper.} \\
\hline & The goal is six significant digits. The adaptive algorithm terminates when it seems likely that the goal has been achieved, or when it seems unlikely that additional samples will yield a worthwhile improvement. & \(n \operatorname{Int}(\cos (\mathrm{x}), \mathrm{x},-\pi, \pi+1 \mathrm{E}-12)\)
\(\int\left(\cos (\mathrm{x}), \mathrm{x},-\pi, \pi+10^{\wedge}(-12)\right)\)
\(-\sin \left(\frac{10000}{1000}\right.\) & 2) \\
\hline & A warning is displayed ("Questionable accuracy") when it seems that the goal has not been achieved. & ans(1) ENTER & -1. e-12 \\
\hline & Nest nint() to do multiple numeric integration. Integration limits can depend on integration variables outside them. & \[
\begin{aligned}
& n \operatorname{Int}\left(n \operatorname { I n t } \left(e^{\wedge}(-x * y) / \sqrt{ }\left(x^{\wedge} 2-y\right.\right.\right. \\
& y,-x, x), x, 0,1) \text { ENTER }
\end{aligned}
\] & \[
\begin{array}{r}
\left.\wedge 2-y^{\wedge} 2\right), \\
3.304 \ldots
\end{array}
\] \\
\hline \multicolumn{4}{|c|}{Note: See also J() (page 464).} \\
\hline \multicolumn{4}{|l|}{norm() MATH/Matrix/Norms menu} \\
\hline \multicolumn{2}{|r|}{norm(matrix) \(\Rightarrow\) expression} & \multicolumn{2}{|l|}{norm([a, b; c, d]) ENTER \(\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+\mathrm{d}^{2}}\)} \\
\hline \multicolumn{2}{|r|}{Returns the Frobenius norm.} & norm(\([1,2 ; 3,4])\) ENTEER & \(\sqrt{30}\) \\
\hline \multicolumn{4}{|l|}{not() MATH/Test menu} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{not(Boolean expression1) \(\Rightarrow\) Boolean expression Returns true, false, or a simplified Boolean expression1.}} & \(\operatorname{not}(2>=3)\) & \\
\hline & & \begin{tabular}{l}
not (\(x<2\)) ENTER \\
not(not(innocent)) ENTER
\end{tabular} & \begin{tabular}{l}
\[
x \geq 2
\] \\
innocent
\end{tabular} \\
\hline
\end{tabular}

Returns a list of permutations based on the corresponding element pairs in the two lists.

The arguments must be the same size list.
\(\mathrm{n} \operatorname{Pr}(\) matrix1, matrix2) \(\Rightarrow\) matrix
Returns a matrix of permutations based on the corresponding element pairs in the two matrices.

The arguments must be the same size matrix.

\section*{nSolve() MATH/Algebra menu}
nSolve(equation, var) \(\Rightarrow\) number or error_string
Iteratively searches for one approximate real numeric solution to equation for its one variable var.
nSolve() is often much faster than solve() or zeros(), particularly if the "।" operator is used to constrain the search to a relatively small interval that contains exactly one simple solution.
nSolve() attempts to determine either one point where the residual is zero or two relatively close points where the residual has opposite signs and the magnitude of the residual is not excessive. If it cannot achieve this using a modest number of sample points, it returns the string "no solution found."

Therefore, if you use nSolve() in a program, you can use getType() (page 405), to check for a numeric result before using the result in an algebraic expression.

Note: See also cSolve() (page 385), cZeros() (page 387), solve() (page 442), and zeros() (page 453).

\section*{OneVar MATH/Statistics menu}

OneVar list1 [[, list2] [, list3] [, list 4]]
Calculates 1-variable statistics and updates all the system statistics variables.

All the lists must have equal dimensions except for list 4 .
list1 represents xlist. list2 represents frequency. list3 represents category codes. list4 represents category include list.
\(\{0,2,3,4,3,4,6\} \rightarrow\) L1 ENTER
OneVar L1 ENTER
ShowStat ENTER

Note: list1 through list3 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list 4 does not have to be a variable name and cannot be c1-c99.

\section*{Or MATH/Test menu}

Boolean expression1 or Boolean expression2 \(\Rightarrow\)
Boolean expression
Returns true or false or a simplified form of the original entry.

Returns true if either or both expressions simplify to true. Returns false only if both expressions evaluate to false.

Note: See xor (page 453).

\section*{ord() MATH/String menu}
ord(string) \(\Rightarrow\) integer
ord("hello") ENTER 104
ord(list1) \(\Rightarrow\) list
char(104) ENTER "h"
Returns the numeric code of the first character in character string string, or a list of the first characters of each list element.
ord(char(24)) ENTER 24

See Appendix B for a complete listing of TI-92 characters and their codes.

\section*{Output CATALOG}

\section*{Output row, column, exprOrString}

Displays exprOrString (an expression or character string) on the Program I/O screen at the text coordinates (row, column).

If Pretty Print \(=\mathrm{ON}\), exprOrString is "pretty printed."

Program segment:
```

:randseed(1147)
:ClrIO
:For i,1,100,10
: Output i, rand(200),"Hello"
: EndFor
:

```

Result after execution:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Hello} \\
\hline \multicolumn{2}{|c|}{10 Hello} \\
\hline \multicolumn{2}{|c|}{Hello} \\
\hline Hello & \\
\hline & Hello \\
\hline & Hello \\
\hline \multicolumn{2}{|l|}{Hello} \\
\hline
\end{tabular}

\section*{PlotsOff CATALOG}

\section*{PlotsOff [1] [, 2] [, 3] ... [, 9]}

Turns off the specified plots for graphing.
\begin{tabular}{ll}
Plots0ff \(1,2,5\) ENTER & Done \\
Plots0ff ENTER & Done
\end{tabular} When in 2-graph mode, only affects the active graph.

If no parameters, then turns off all plots.

\section*{PlotsOn catalog}

PlotsOn [1] [, 2] [, 3] ... [, 9]
Turns on the specified plots for graphing. When in 2-graph mode, only affects the active graph.

If you do not include any arguments, turns on all plots.

Plots0n 2,4,5 ENTER Done
Plots0n ENTER Done

\section*{Polar MATH/Matrix/Vector ops menu}

\section*{vector Polar}

Displays vector in polar form [r \(\angle \theta\)]. The vector must be of dimension 2 and can be a row or a column.

Note: Polar is a display-format instruction, not a conversion function. You can use it only at the end of an entry line, and it does not update ans.

Note: See also \(\boldsymbol{\nabla}\) Rect (page 433).

\section*{polyEval() MATH/List menu}
polyEval(list1, expression1) \(\Rightarrow\) expression
polyEval(list1,list2) \(\Rightarrow\) expression
Interprets the first argument as the coefficients of a descending-degree polynomial, and returns the polynomial evaluated for the value of the second argument.
\([1,3]>.P o l a r\) ENTER
\([x, y]\) Polar ENTER
\[
\begin{aligned}
& \text { - [1 3.] Polar [3.16228 } 1.24905]
\end{aligned}
\]
\[
\begin{aligned}
& {\left[\sqrt{x^{2}+y^{2}}<-\tan -1\left(\frac{x}{y}\right)+\frac{\pi \cdot \operatorname{singn}(\underline{y})}{2}\right]}
\end{aligned}
\]

\section*{PopUp catalog}

Displays a pop-up menu containing the character strings from itemList, waits for you to select an item, and stores the number of your selection in var.

PopUp \{"1990", "1991","1992"\},var1 ENTER

The elements of itemList must be character strings: \{item1String, item2String, item3String, ...\}

If \(v a r\) already exists and has a valid item number, that item is displayed as the default choice.
itemList must contain at least one choice.

\section*{PowerReg MATH/Statistics/Regressions menu}

PowerReg list1, list2[, [list3] [, list4, list5]]
Calculates the power regression and updates all the system statistics variables.

All the lists must have equal dimensions except for list5.
list1 represents xlist
list2 represents ylist. list3 represents frequency. list 4 represents category codes. list5 represents category include list.

Note: list1 through list 4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list 5 does not have to be a variable name and cannot be c1-c99.

In function graphing mode:
\(\{1,2,3,4,5,6,7\} \rightarrow L 1\) ENTER \(\left\{\begin{array}{lll}1 & 2 & 3 \ldots\end{array}\right\}\)
\(\{1,2,3,4,3,4,6\} \rightarrow L 2\) ENTER
PowerReg L1, L2 ENTER
\(\{123 \ldots\}\)
Done
ShowStat ENTER

ENTER
\(\operatorname{Regeq}(x) \rightarrow y 1(x)\) ENTER Done

NewPlot 1,1,L1,L2 ENTER
Done
- [GRAPH]

\section*{Prgm catalog}

\section*{Prgm}

EndPrgm
Required instruction that identifies the beginning of a program. Last line of program must be EndPrgm.

Program segment:
:prgmname()
: Prgm
:
: EndPrgm

\section*{product() MATH/List menu}
product(list) \(\Rightarrow\) expression
Returns the product of the elements contained in list.
product (\{1,2,3,4\}) ENTER 24
product \((\{2, x, y\})\) ENTER \(2 \cdot x \cdot y\)
product \((\) matrix1 \() \Rightarrow\) matrix
product ([1,2,3;4,5,6;7,8,9]) ENTER
Returns a row vector containing the products of the elements in the columns of matrix1.

\section*{Prompt catalog}

Prompt var1[, var2] [, var3] ..
Displays a prompt on the Program I/O screen for each variable in the argument list, using the prompt var1?. Stores the entered expression in the corresponding variable.

Program segment:
Prompt A,B,C
End \(\stackrel{\vdots}{\text { Prgm }}\)

Prompt must have at least one argument.

\section*{propFrac() MATH/Algebra menu}
propFrac(expression1[, var]) \(\Rightarrow \quad\) expression
propFrac (4/3) ENTER
\(1+1 / 3\)
propFrac \((-4 / 3)\) ENTER
\(-1-1 / 3\)
propFrac(rational_number) returns rational_number as the sum of an integer and a fraction having the same sign and a greater denominator magnitude than numerator magnitude.
propFrac(rational_expression,var) returns the sum of proper ratios and a polynomial with respect to var. The degree of var in the denominator exceeds the degree of var in the numerator in each proper ratio. Similar powers of var are collected. The terms and their factors are sorted with var as the main variable.

If var is omitted, a proper fraction expansion is done with respect to the most main variable. The coefficients of the polynomial part are then made proper with respect to their most main variable first and so on.

For rational expressions, propFrac() is a faster but less extreme alternative to expand() (page 397).
propFrac \(\left(\left(x^{\wedge} 2+x+1\right) /(x+1)+\right.\)
\(\left.\left(y^{\wedge} 2+y+1\right) /(y+1), x\right)\) ENTER
- propFrac \(\left(\frac{x^{2}+x+1}{x+1}+\frac{y^{2}+y+1}{y+1}, x\right)\) \(\frac{1}{x+1}+x+\frac{y^{2}+y+1}{y+1}\)
propFrac(ans(1))
\[
\begin{aligned}
&-\operatorname{propFrac}\left(\frac{1}{x+1}+x+\frac{y^{2}+y+1}{y+1}\right) \\
& \frac{\frac{1}{x+1}+x+\frac{1}{y+1}+y}{}\left(\frac{1}{x+1}\right.
\end{aligned}
\]

\section*{PtChg catalog}

PtChg \(x, y\)
PtChg \(x\) List, \(y\) List
Displays the Graph screen and reverses the screen pixel nearest to window coordinates \((x, y)\).

Note: PtChg through PtText show continuing similar examples.
PtChg 2,4 ENTER

\section*{PtOff CATALOG}

PtOff \(x, y\)
PtOff 2,4 ENTER
PtOff \(x\) List, \(y\) List
Displays the Graph screen and turns off the screen pixel nearest to window coordinates \((x, y)\).

PtOn CATALOG
PtOn \(x, y\)
PtOn \(x\) List, \(y\) List
Displays the Graph screen and turns on the screen pixel nearest to window coordinates \((x, y)\).

PtOn 3,5 ENTER

ptTest() catalog
ptTest \((x, y) \Rightarrow\) Boolean constant expression
ptTest(3,5) ENTER
true
ptTest (xList, yList) \(\Rightarrow\) Boolean constant expression
Returns true or false. Returns true only if the screen pixel nearest to window coordinates \((x, y)\) is on.

\section*{PtText catalog}

PtText string, \(x, y\)
Displays the Graph screen and places the character string string on the screen at the pixel nearest the specified \((x, y)\) window coordinates.

PtText "sample", 3,5 ENTER

string is positioned with the upper-left corner of its first character at the coordinates.

\section*{PxiChg CATALOG}

PxIChg row, col
PxlChg 2,4 ENTER
PxIChg rowList, colList
Displays the Graph screen and reverses the pixel at pixel coordinates (row, col).

Note: Regraphing erases all drawn items.

\section*{PxiCrcl CATALOG}

PxICrcl row, col, \(r\) [, drawMode]
Displays the Graph screen and draws a circle centered at pixel coordinates (row, col) with a radius of \(r\) pixels.

If drawMode \(=1\), draws the circle (default). If \(d r a w M o d e=0\), turns off the circle.

PxiCrcl 50,125,40,1 ENTER

If drawMode \(=-1\), inverts pixels along the circle.

Note: Regraphing erases all drawn items. See also Circle (page 381).

\section*{PxiHorz catalog}

PxIHorz row [, drawMode]
Displays the Graph screen and draws a horizontal line at pixel position row.

If \(d r a w M o d e=1\), draws the line (default). If \(d r a w M o d e=0\), turns off the line.
If drawMode \(=-1\), turns a line that is on to off

Px1Horz 25,1 ENTER
 or off to on (inverts pixels along the line).

Note: Regraphing erases all drawn items. See also LineHorz (page 412).

\section*{Pxiline catalog}

PxILine rowStart, colStart, rowEnd, colEnd [, drawMode]
Displays the Graph screen and draws a line between pixel coordinates (rowStart, colStart) and (rowEnd, colEnd), including both endpoints.

If drawMode \(=1\), draws the line (default).

PxiLine \(80,20,30,150,1\) ENTER
 If \(d r a w M o d e=0\), turns off the line.
If drawMode \(=-1\), turns a line that is on to off or off to on (inverts pixels along the line).

Note: Regraphing erases all drawn items. See also Line (page 411)

\section*{PxiOff catalog}

PxIOff row, col
PxiHorz 25,1 ENTER
PxIOff rowList, colList
Displays the Graph screen and turns off the pixel at pixel coordinates (row, col).

Note: Regraphing erases all drawn items.

Px10ff 25,50 ENTER

\section*{PxiOn catalog}

PxiOn row, col
Px10n 25,50 ENTER
PxIOn rowList, colList
Displays the Graph screen and turns on the pixel at pixel coordinates (row, col).

Note: Regraphing erases all drawn items.

\section*{pxiTest() CATALOG}
pxITest (row, col) \(\Rightarrow\) Boolean expression
Px10n 25,50 ENTER
pxITest (rowList, colList) \(\Rightarrow\) Boolean expression
\(\rightarrow\) [HOME]
Px1Test \((25,50)\) ENTER true
Returns true if the pixel at pixel coordinates (row, col) is on. Returns false if the pixel is off.

Note: Regraphing erases all drawn items.

Pxl0ff 25,50 ENTER
- [HOME]

Px1Test 25,50) ENTER false

\section*{PxIText CATALOG}

PxIText string, row, col
Displays the Graph screen and places character string string on the screen, starting at pixel coordinates (row, col).
string is positioned with the upper-left corner of its first character at the coordinates.

PxlText "sample text", 20,50 ENTER

Note: Regraphing erases all drawn items.

\section*{PxiVert catalog}

PxIVert col [, drawMode]
Draws a vertical line down the screen at pixel position col.

If \(d r a w M o d e=1\), draws the line (default).
If drawMode \(=0\), turns off the line.
If drawMode \(=-1\), turns a line that is on to off

PxlVert 50,1 ENTER
 or off to on (inverts pixels along the line).

Note: Regraphing erases all drawn items. See also LineVert (page 412).

\section*{QuadReg MATH/Statistics/Regressions menu}

QuadReg list1, list2[, [list3] [, list4, list5]]
Calculates the quadratic polynomial regression and updates the system statistics variables.

All the lists must have equal dimensions except for list5.
list1 represents xlist.
list2 represents ylist.
list3 represents frequency.
list 4 represents category codes.
list5 represents category include list.
Note: list1 through list 4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.

In function graphing mode:

ENTER
\begin{tabular}{ll}
Regeq \((x) \rightarrow y 1(x)\) ENTER & Done \\
NewPlot \(1,1, L 1, L 2\) ENTER & Done
\end{tabular}
[GRAPH]

\section*{QuartReg MATH/Statistics/Regressions menu}

> QuartReg list1, list2[, [list3] [, list4, list5]]

Calculates the quartic polynomial regression and updates the system statistics variables.

All the lists must have equal dimensions except for list5.
list1 represents xlist. list2 represents ylist. list3 represents frequency. list 4 represents category codes. list5 represents category include list.

Note: list 1 through list 4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.

In function graphing mode:
\(\left.\{-2,-1,0,1,2,3,4,5,6\} \rightarrow \mathrm{L} 1 \frac{\text { ENTER }}{\{-2-1} 0 \ldots\right\}\)
\(\{4,3,1,2,4,2,1,4,6\} \rightarrow \mathrm{L} 2\) ENTER
\(\left\{\begin{array}{lll}4 & 3 & 1\end{array}\right.\)... \(\}\)
QuartReg L1, L2 ENTER Done
ShowStat ENTER

ENTER
Regeq \((x) \rightarrow y 1(x)\) ENTER Done
NewPlot 1,1,L1,L2 ENTER Done
[GRAPH]

\section*{\(\operatorname{R>P} \theta() \quad\) MATH/Angle menu}

R>P \(\theta\) (xExpression, yExpression) \(\Rightarrow\) expression
\(\mathbf{R} \mathbf{P} \theta(x\) List, \(y\) List \() \Rightarrow\) list
\(\mathbf{R}>\mathbf{P} \theta(x\) Matrix,\(y\) Matrix \() \Rightarrow\) matrix
Returns the equivalent \(\theta\)-coordinate of the (\(\mathrm{x}, \mathrm{y}\)) pair arguments.

Note: The result is returned as either a degree or radian angle, according to the current angle mode.

In Degree angle mode:
\(R \vee P \theta(x, y)\) ENTER

In Radian angle mode:
\(\operatorname{R} P \operatorname{P\theta }(3,2)\) ENTER
\(\operatorname{R} P \operatorname{P\theta }([3,-4,2],[0, \pi / 4,1.5])\) ENTER
\[
\begin{aligned}
& \text {-RrPer } 3,2 \text {) } \tan ^{11}(2 / 3)
\end{aligned}
\]
\[
\begin{aligned}
& {\left[\begin{array}{lll}
0 & \tan -1\left(\frac{4}{\pi^{4}}\right)+\frac{\pi}{2} & .643501
\end{array}\right]}
\end{aligned}
\]

\section*{\(\operatorname{R}>\operatorname{Pr}() \quad\) MATH/Angle menu}

R>Pr \((x\) Expression, \(y\) Expression \() \Rightarrow\) expression
\(\mathbf{R}>\operatorname{Pr}(x\) List,\(y\) List \() \Rightarrow\) list
\(\mathbf{R}>\operatorname{Pr}(x\) Matrix, \(y\) Matrix \() \Rightarrow\) matrix
Returns the equivalent \(r\)-coordinate of the \((x, y)\) pair arguments.

In Radian angle mode:
\(\operatorname{RP} \operatorname{Pr}(3,2)\) ENTER
\(R \operatorname{Pr}(x, y)\) ENTER
\(\operatorname{R} \operatorname{Pr}([3,-4,2],[0, \pi / 4,1.5])\) ENTER

\section*{rand() MATH/Probability menu}
\(\operatorname{rand}(n) \Rightarrow\) expression
\(n\) is an integer \(\neq\) zero.
With no parameter, returns the next random number between 0 and 1 in the sequence. When an argument is positive, returns a random integer in the interval \([1, n]\). When an argument is negative, returns a random integer in the interval [\(\left.{ }^{-} n,-1\right]\).

\section*{randMat() MATH/Probability menu}
randMat(numRows, numColumns) \(\Rightarrow\) matrix
Returns a matrix of integers between -9 and 9 of the specified dimension.

Both arguments must simplify to integers.

RandSeed 1147 ENTER Done

(Sets the random-number seed.)
\begin{tabular}{lr}
rand () ENTER & \(0.158 \ldots\) \\
\(r\) and \((6)\) ENTER & 5 \\
\(r\) and \((-100)\) ENTER & -49
\end{tabular}

\section*{randPoly() MATH/Probability menu}
randPoly(var, order) \(\Rightarrow\) expression
Returns a polynomial in var of the specified
\[
\begin{aligned}
& \text { RandSeed } 1147 \text { ENTER } \\
& \text { randPoly }(x, 5) \frac{\text { ENTER }}{-2 \cdot x^{5}+3 \cdot x^{4}-6 \cdot x^{3}+4 \cdot x-6}
\end{aligned}
\] order. The coefficients are random integers in the range -9 through 9 . The leading coefficient will not be zero.
order must be 0-99.

\section*{RandSeed MATH/Probability menu}

\section*{RandSeed number}

RandSeed 1147 ENTER
Done
rand () ENTER
0.158...

If number \(=0\), sets the seeds to the factory defaults for the random-number generator. If number \(\neq 0\), it is used to generate two seeds, which are stored in system variables seed1 and seed2.
\begin{tabular}{cc}
RcIGDB CATALOG & \\
RcIGDB \(G D B v a r\) & RclGDB GDBvar ENTER
\end{tabular}

Restores all the settings stored in the Graph database variable GDBvar.

For a listing of the settings, see StoGDB on page 444.

\section*{RelPic catalog}

RcIPic picVar [, row, column]
Displays the Graph screen and adds the picture stored in picVar at the upper left-hand corner pixel coordinates (row, column) using OR logic.
picVar must be a picture data type.
Default coordinates are \((0,0)\).

\section*{real() MATH/Complex menu}
real(expression1) \(\Rightarrow\) expression
Returns the real part of the argument.
real \((2+3 i)\) ENTER 2

Note: All undefined variables are treated as real (\(x+i y\)) ENTER \(x\) real variables. See also imag() page (407).
\(\operatorname{real}(\) list 1\() \Rightarrow\) list \(\quad \operatorname{real}(\{a+i * \mathrm{~b}, 3, i\})\) ENTER \(\quad\left\{\begin{array}{ccc}\left\{\begin{array}{c}2\end{array}\right. & 3 & 0\end{array}\right\}\)
Returns the real parts of all elements.
\(\overline{\operatorname{real}(\text { matrix } 1)} \Rightarrow\) matrix \(\quad\) real \(([a+i * b, 3 ; c, i])\) ENTER \(\quad\left[\begin{array}{ll}a & 3 \\ c & 0\end{array}\right]\)

Returns the real parts of all elements.

\section*{Return CATALOG}

Return [expression]
```

Define factoral(nn)=Func
:local answer,count:1->answer

```
\[
\begin{aligned}
& \text { :local answer, count: } 1 \rightarrow \text { answer } \\
& \text { :For count,1,nn } \\
& \text { :answer*count } \rightarrow \text { answer:EndFor } \\
& \text { : Return answer:EndFunc ENTER Done }
\end{aligned}
\]
\[
\text { factoral (3) ENTER } 6
\]

Returns expression as the result of the function. Use within a Func:EndFunc block, or Prgm...EndPrgm block.

Note: Use Return without an argument to exit a program.

MATH/List menu
\(\operatorname{right}(\) list \(1[\), num \(]) \Rightarrow\) list
right \((\{1,3,-2,4\}, 3)\) ENTER \(\quad\{3-24\}\)
Returns the rightmost num elements contained in list1.

If you omit num, returns all of list1.
\(\overline{\text { right(sourceString[, num }])} \Rightarrow\) string \(\quad\) right("He110",2) ENTER \(\quad " 10 "\)

Returns the rightmost num characters
contained in character string sourceString.
If you omit num, returns all of sourceString.
\(\overline{\text { right }(\text { comparison })} \Rightarrow\) expression \(\quad\) right \((x<3)\) ENTER \(\quad 3\)
Returns the right side of an equation or inequality.

\section*{round() MATH/Number menu}
round(expression 1 , digits \(]) \Rightarrow\) expression
Returns the argument rounded to the specified number of digits after the decimal point.
digits must be an integer in the range \(0-12\). If digits is not included, returns the argument rounded to 12 significant digits.

Note: Display digits mode may still affect how this is displayed.
```

round(list1[, digits]) }=>\mathrm{ list

```

```

                                    {3.1416 1.4142 . 6931}
    ```
round \((\{\pi, \sqrt{ }(2), \ln (2)\}, 4)\) ENTER
\(\{3.14161 .4142\). 6931\}

Returns a list of the elements rounded to the specified number of digits.
round(matrix1[, digits]) \(\Rightarrow\) matrix
Returns a matrix of the elements rounded to the specified number of digits.
round ([1n(5), \(\left.\left.\ln (3) ; \pi, e^{\wedge}(1)\right], 1\right)\) ENTER
\(\left[\begin{array}{ll}1.6 & 1.1 \\ 3.1 & 2.7\end{array}\right]\)

\section*{rowAdd() MATH/Matrix/Row ops menu}

Returns a copy of matrix1 with row rIndex2
rowAdd([3,4;-3,-2],1,2) ENTER
 replaced by the sum of rows rIndex 1 and rIndex2.

\section*{rowAdd(matrix1, rIndex1, rIndex2) \(\Rightarrow\) matrix}

\section*{rowDim() MATH/Matrix/Dimensions menu}
rowDim(matrix) \(\Rightarrow\) expression
Returns the number of rows in matrix.
\[
\begin{aligned}
& {[1,2 ; 3,4 ; 5,6] \rightarrow \text { M1 ENTER }} \\
& \text { rowdim(M1) ENTER }
\end{aligned}
\]

Note: See also colDim() (page 382).

\section*{rowNorm() MATH/Matrix/Norms menu}
rowNorm(matrix) \(\Rightarrow\) expression
```

rowNorm([-5,6,-7;3,4,9;9,-9,-7])
ENTER25

```

Returns the maximum of the sums of the absolute values of the elements in the rows in matrix.

Note: All matrix elements must simplify to numbers. See also colNorm() (page 382).

\section*{rowSwap() MATH/Matrix/Row ops menu}
rowSwap(matrix1, rIndex1, rIndex2) \(\Rightarrow\) matrix
\([1,2 ; 3,4 ; 5,6] \rightarrow\) Mat ENTER
Returns matrix1 with rows rIndex1 and rIndex2 exchanged.
rowSwap (Mat, 1, 3) ENTER \(\quad\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]\)

\section*{RplcPic catalog}

RplcPic picVar[, row][, column]
Clears the Graph screen and places picture picVar at pixel coordinates (row, column). If you do not want to clear the screen, use RcIPic.
picVar must be a picture data type variable. row and column, if included, specify the pixel coordinates of the upper left corner of the picture. Default coordinates are \((0,0)\).

Note: For less than full-screen pictures, only the area affected by the new picture is cleared.
rref() MATH/Matrix menu
\(\operatorname{rref}(\) matrix1 \() \Rightarrow\) matrix
Returns the reduced row echelon form of the matrix.

Note: See also ref() (page 433).
rref([-2,-2,0,-6;1,-1, 9,-9;
\(-5,2,4,-4]\)) ENTER
\(\left[\begin{array}{rrrr}1 & 0 & 0 & 66 / 71 \\ 0 & 1 & 0 & \frac{147}{71} \\ 0 & 0 & 1 & -62 / 71\end{array}\right]\)
rref([a,b,x;c,d,y]) ENTER
\[
\left[\begin{array}{ccc}
1 & 0 & \frac{d \cdot x-b \cdot y}{a \cdot d-b \cdot c} \\
0 & 1 & \frac{-(c \cdot x-a \cdot y)}{a \cdot d-b \cdot c}
\end{array}\right]
\]

\section*{Send list}

CBL 2/CBL (Calculator-Based Laboratory) or CBR (Calculator-Based Ranger) instruction. Sends list to the link port.

Program segment:
: Send \(\{1,0\}\)
:Send \(\{1,2,1\}\)

\section*{SendCalc catalog}

\section*{SendCalc var}

Sends variable var to the link port. This is for unit-to-unit linking.

Program segment:
```

\vdots
:a+b}->
:SendCalc x

```
seq() MATH/List menu
 \(\mathbf{s e q}(\) expression, var, low, high \([\), step \(]) \Rightarrow\) list

Increments var from low through high by an increment of step, evaluates expression, and returns the results as a list. The original contents of var are still there after seq() is completed.
var cannot be a system variable.
The default value for step \(=1\).

\section*{setFold() CATALOG}
setFold(newfolderName) \(\Rightarrow\) oldfolderString
Returns the name of the current folder as a string and sets newfolderName as the current folder.

The folder newfolderName must exist.

setFold(main) ENTER "chris"
setFold(chris) \(\rightarrow 01 \mathrm{dfoldr}\) ENTER "main"
\(1 \rightarrow a\) ENTER
1
setFold(非oldfoldr) ENTER "chris"
a ENTER a
chris \(\backslash\) E ENTER 1
setGraph (modeNameString, settingString) \(\Rightarrow\) string
Sets the Graph mode modeNameString to settingString, and returns the previous setting of the mode. Storing the previous setting lets you restore it later.
modeNameString is a character string that specifies which mode you want to set. It must be one of the mode names from the table below.
settingString is a character string that specifies the new setting for the mode. It must be one of the settings listed below for the specific mode you are setting.
```

setGraph("Graph Order","Seq")
EENTER "SEQ"

```
setGraph("Coordinates", "Off")
ENTER

Note: Capitalization and blank spaces are optional when entering mode names.
\begin{tabular}{lll}
\hline Mode Name & Settings \\
\hline "Coordinates" & "Rect", "Polar", "Off" & \\
\hline "Graph Order" & "Seq", "Simul" \({ }^{1}\) & \\
\hline "Grid" & "Off", "On" \({ }^{2}\) & \\
\hline "Axes" & "Off", "On" & (not 3D graph mode) \\
& "Box", "Axes", "Off" & (3D graph mode)
\end{tabular}
\({ }^{1}\) Not available in Sequence or 3D graph mode.
\({ }^{2}\) Not available in 3D graph mode.
\({ }^{3}\) Applies only to 3D graph mode.
\({ }^{4}\) Applies only to Sequence graph mode.

\section*{setMode(modeNameString, settingString) \(\quad \Rightarrow \quad\) string} setMode(list) \(\Rightarrow\) stringList

Sets mode modeNameString to the new setting settingString, and returns the current setting of that mode.
modeNameString is a character string that specifies which mode you want to set. It must be one of the mode names from the table below.
settingString is a character string that specifies the new setting for the mode. It must be one of the settings listed below for the specific mode you are setting.
list contains pairs of keyword strings and will set them all at once. This is recommended for multiple-mode changes. The example shown may not work if each of the pairs is entered with a separate setMode() in the order shown.
Use setMode(var) to restore settings saved with getMode("ALL") \(\rightarrow\) var.
Note: See getMode (page 404).

Note: Capitalization and blank spaces are optional when entering mode names. Also, the results in these examples may be different on your TI-92.
\begin{tabular}{ll}
\hline Mode Name & Settings \\
\hline "Graph" & "Function", "Parametric", "Polar", "Sequence", "3D" \\
\hline "Display Digits" & "Fix 0", "Fix 1", .., "Fix 12", "Float", "Float 1", .., "Float 12" \\
\hline "Angle" & "Radian", "Degree" \\
\hline "Exponential Format" & "Normal", "Scientific", "Engineering" \\
\hline "Complex Format" & "Real", "Rectangular", "Polar" \\
\hline "Vector Format" & "Rectangular", "Cylindrical", "Spherical" \\
\hline \hline "Pretty Print" & "Off", "On" \\
\hline "Split Screen" & "Full", "Top-Bottom", "Left-Right" \\
\hline "Split 1 App" & "Home", "Y = Editor", "Window Editor", "Graph", "Table", \\
& "Data/Matrix Editor", "Program Editor", "Geometry", "Text \\
\hline ESplit 2 App" & "Home", "Y= Editor", "Window Editor", "Graph", "Table", \\
& "Data/Matrix Editor", "Program Editor", "Geometry", "Text \\
\hline Editor" \\
\hline "Number of Graphs" & "1", "2" \\
\hline "Graph2" & "Function", "Parametric", "Polar", "Sequence", "3D" \\
\hline "Exact/Approx" Screen Ratio" & "1:1", "1:2", "2:1" \\
\hline
\end{tabular}
setTable(modenameString, settingString) \(\Rightarrow\) string
Sets the table parameter modeNameString to settingString, and returns the previous setting of the parameter. Storing the previous setting lets you restore it later.
modeNameString is a character string that specifies which parameter you want to set. It must be one of the parameters from the table below.
settingString is a character string that specifies the new setting for the parameter. It must be one of the settings listed below for the specific parameter you are setting.
```

setTable("Graph <-> Table","ON")
EENTER "OFF"

```
setTable("Independent", "AUTO" \()\) "ASK"
(ENTER
- [TblSet]

Note: Capitalization and blank spaces are optional when entering parameters.
\begin{tabular}{ll}
\hline Parameter Name & Settings \\
\hline "Graph <-> Table" & "Off", On" \\
\hline "Independent" & "Auto", "Ask" \\
\hline
\end{tabular}

\section*{Shade CATALOG}

Shade expr1, expr2, [xlow], [xhigh], [pattern], [patRes]
Displays the Graph screen, graphs expr1 and expr2, and shades areas in which expr1 is less than expr2. (expr1 and expr2 must be expressions that use x as the independent variable.)
xlow and xhigh, if included, specify left and right boundaries for the shading. Valid inputs are between xmin and xmax. Defaults are xmin and xmax.
pattern specifies one of four shading patterns:
\(1=\) vertical (default)
2 = horizontal
\(3=\) negative-slope \(45^{\circ}\)
\(4=\) positive-slope \(45^{\circ}\)
patRes specifies the resolution of the shading patterns:
1= solid shading
\(2=1\) pixel spacing (default)
\(3=2\) pixels spacing
:
\(10=9\) pixels spacing
Note: Interactive shading is available on the Graph screen through the Shade instruction. Automatic shading of a specific function is available through the Style instruction (page 445). Shade is not valid in 3D graphing mode.

In the ZoomTrig viewing window:
Shade \(\cos (x), \sin (x)\) ENTER

- [HOME]

C1rDraw ENTER Done
Shade \(\cos (x), \sin (x), 0,5,2,1\) ENTER

shift(list1[, integer]) \(\Rightarrow\) list
Returns a copy of list 1 shifted right or left by integer elements. Does not alter list1.
shift(\(\{1,2,3,4\}, 1)\) ENTER
\(\{234\) undef\}
shift (\{ \(1,2,3,4\}, 2)\) ENTER
undef undef\}

If integer is positive, the shift is to the left. If integer is negative, the shift is to the right. The default for integer is -1 (shift right one element).

Elements introduced at the beginning or end of list by the shift are set to the symbol "undef."

\section*{ShowStat catalog}

\section*{ShowStat}

Displays a dialog box containing the last computed statistics results if they are still valid. Statistics results are cleared automatically if the data to compute them has changed.

Use this instruction after a statistics calculation, such as LinReg.
\(\{1,2,3,4,5\} \rightarrow\) L1 ENTER \(\quad\left\{\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right\}\)
\(\{0,2,6,10,25\} \rightarrow\) L2 ENTER \(\{0261025\}\)
TwoVar L1, L2 ENTER
ShowStat ENTER

\section*{sign() MATH/Number menu}
\(\boldsymbol{\operatorname { s i g n }}(\) expression 1\() \Rightarrow\) expression
\(\boldsymbol{\operatorname { s i g }}(\) list 1\() \Rightarrow\) list
\(\boldsymbol{\operatorname { s i g n }}\) (matrix1) \(\Rightarrow\) matrix
For real and complex expression1, returns expression \(1 / \mathbf{a b s}(\) expression 1\()\) when expression \(1 \neq 0\).
\(\operatorname{sign}(-3.2)\) ENTER -1.
\(\operatorname{sign}(\{2,3,4,-5\})\) ENTER \(\quad\left\{\begin{array}{llll}1 & 1 & 1 & -1\end{array}\right\}\)
\(\operatorname{sign}([-3,0,3])\) ENTER \(\quad[-1 \operatorname{sign}(0) 1]\)
\(\operatorname{sign}(1+a b s(x))\) ENTER 1

Returns 1 if expression 1 is positive.
Returns - 1 if expression 1 is negative. sign(0) returns itself as the result. \(\boldsymbol{\operatorname { s i g }}(0)\) represents \(\pm 1\) in the real domain. \(\boldsymbol{s i g n}(0)\) represents the unit circle in the complex domain.

For a list or matrix, returns the signs of all the elements.

\section*{simult() MATH/Matrix menu}
\(\operatorname{simult}(\) matrixExpr, vectorExpr \() \Rightarrow\) matrix
Returns a column vector that contains the solutions to a system of linear equations.
matrixExpr must be a square matrix and consists of the coefficients of the equation.
vectorExpr must have the same number of rows (same dimension) as matrixExpr and contain the constants.
simult([1,2;3,4],[1;-1]) ENTER
\[
\left[\begin{array}{c}
-3 \\
2
\end{array}\right]
\]
\([a, b ; c, d] \rightarrow \operatorname{matx} 1\) ENTER \(\quad\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\)
simult(matx1,[1;2]) ENTER
\(\left[\begin{array}{c}\frac{-(2 \cdot b-d)}{a \cdot d-b \cdot c} \\ \frac{2 \cdot a-c}{a \cdot d-b \cdot c}\end{array}\right]\)

solve(equation, var) \(\Rightarrow\) Boolean expression
solve(inequality, var) \(\Rightarrow\) Boolean expression
Returns candidate real solutions of an equation or an inequality for var. The goal is to return candidates for all solutions. However, there might be equations or inequalities for which the number of solutions is infinite.

Solution candidates might not be real finite solutions for some combinations of values for undefined variables.

For the AUTO setting of the Exact/Approx mode, the goal is to produce exact solutions when they are concise, and supplemented by iterative searches with approximate arithmetic when exact solutions are impractical.

Due to default cancellation of the greatest common divisor from the numerator and denominator of ratios, solutions might be solutions only in the limit from one or both sides.

For inequalities of types \(\geq, \leq,<\), or \(>\), explicit solutions are unlikely unless the inequality is linear and contains only var.

For the EXACT setting of the Exact/Approx mode, portions that cannot be solved are returned as an implicit equation or inequality.

Use the "l" operator to restrict the solution interval and/or other variables that occur in the equation or inequality. When you find a solution in one interval, you can use the inequality operators to exclude that interval from subsequent searches.
false is returned when no real solutions are found. true is returned if solve() can determine that any finite real value of var satisfies the equation or inequality.

Since solve() always returns a Boolean result, you can use "and," "or," and "not" to combine results from solve() with each other or with other Boolean expressions.

Solutions might contain a unique new undefined variable of the form @nj with j being an integer in the interval \(1-255\). Such variables designate an arbitrary integer.

In real mode, fractional powers having odd denominators denote only the real branch. Otherwise, multiple branched expressions such as fractional powers, logarithms, and inverse trigonometric functions denote only the principal branch. Consequently, solve() produces only solutions corresponding to that one real or principal branch.
Note: See also cSolve() (page 385), cZeros() (page 387), nSolve() (page 422), and zeros() (page 453).
```

solve(a*x^2+b*x+c=0,x) ENTER

```
\[
\begin{array}{r}
x=\frac{\sqrt{-\left(4 \cdot a \cdot c-b^{2}\right)}-b}{2 \cdot a} \\
\text { or } x=\frac{-\left(\sqrt{-\left(4 \cdot a \cdot c-b^{2}\right)}+b\right)}{2 \cdot a} \\
\text { ans(1)| a=1 and } b=1 \text { and } c=1 \text { ENTER } \\
\text { Error: Non-real result }
\end{array}
\]
\[
\begin{array}{r}
\text { solve(} \left.(x-a) e^{\wedge}(x)=-x *(x-a), x\right) \text { ENTER } \\
x=a \text { or } x=-.567 \ldots
\end{array}
\]
```

( }x+1)(x-1)/(x-1)+x-3 ENTER 2•x-2
solve(entry(1)=0,x) ENTER }\quadx=
entry(2)|ans(1) ENTER undef
limit(entry(3),x,1) ENTER 0
solve(5x-2 \geq2x,x) ENTER
exact(solve((x-a) e^(x)=-x*
(x-a),x)) ENTER
e

```

In Radian angle mode:
```

solve(tan(x)=1/x,x)|x>0 and x<1
ENTER x =.860···

```
\begin{tabular}{lr}
solve \((x=x+1, x)\) ENTER & false \\
solve \((x=x, x)\) ENTER & true
\end{tabular}
\(2 x-1 \leq 1\) and solve \(\left(x^{\wedge} 2 \neq 9, x\right)\) ENTER
 \(x \leq 1\) and \(x \neq-3\)

In Radian angle mode:
```

solve(sin(x)=0,x) ENTER

```
\begin{tabular}{ll}
solve \(\left(x^{\wedge}(1 / 3)=-1, x\right)\) ENTER & \(x=-1\) \\
solve \((\sqrt{ }(x)=-2, x)\) ENTER & false \\
solve \((-\sqrt{ }(x)=-2, x)\) ENTER & \(x=4\)
\end{tabular}

\section*{SortA MATH/List menu}

SortA listName1[, listName2] [, listName3] ...
SortA vectorName1[, vectorName2] [, vectorName3] ...
Sorts the elements of the first argument in ascending order.

If you include additional arguments, sorts the elements of each so that their new positions match the new positions of the elements in the first argument.

All arguments must be names of lists or vectors. All arguments must have equal dimensions.
\(\{2,1,4,3\} \rightarrow 1\) ist1 ENTER \(\quad\{2,1,4,3\}\)

Sorta list1 ENTER Done
list1 Enter
\(\left.\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right\}\)
\(\{4,3,2,1\} \rightarrow 1\) ist2 ENTER \(\quad\left\{\begin{array}{lll}4 & 3 & 2\end{array}\right\}\)
SortA list2,listl ENER
list2 ENTER
\(\left\{\begin{array}{lll}1 & 2 & 4\end{array}\right\}\)
list1 ENTER
\(\left\{\begin{array}{llll}4 & 3 & 2 & 1\end{array}\right\}\)

\section*{SortD MATH/List menu}

SortD listName1[, listName2] [, listName3] ...
SortD vectorName1[,vectorName 2] [,vectorName 3] ...
Identical to SortA, except SortD sorts the elements in descending order.
\(\left.\begin{array}{ll}\{2,1,4,3\} \rightarrow 1 \text { ist1 ENTER } & \left\{\begin{array}{llll}2 & 1 & 4 & 3\end{array}\right\} \\ \{1,2,3,4\} \rightarrow 1 \text { ist2 ENTER } & \left\{\begin{array}{lll}1 & 2 & 3\end{array} 4\right. \\ \text { SortD } 1 \text { ist1, list2 ENTER }\end{array}\right\}\)

\section*{Sphere MATH/Matrix/Vector ops menu}

\section*{vector Sphere}

Displays the row or column vector in spherical form [\(\rho \angle \theta \angle \phi\)].
vector must be of dimension 3 and can be either a row or a column vector.

Note: \(\mathbf{~ S p h e r e}\) is a display-format instruction, not a conversion function. You can use it only at the end of an entry line.
[1,2,3]Sphere
- EnTER [3.741... \(\angle 1.107 \ldots \angle .640 \ldots]\)
\([2, \angle \pi / 4,3]\) Sphere
[3.605... \(\angle .785 \ldots \angle .588 \ldots]\)
EENTEQ \(\quad\left[\begin{array}{lll}\sqrt{13} & \left.\angle \frac{\pi}{4} \quad \angle-\sin ^{-1}\left(\frac{3 \cdot \sqrt{13}}{13}\right)+\frac{\pi}{2}\right]\end{array}\right.\)

\section*{stdDev() MATH/Statistics menu}
\(\boldsymbol{s t d D e v}(\) list \() \Rightarrow\) expression
Returns the standard deviation of the elements in list.
Note: \(l\) ist must have at least two elements.
\(\boldsymbol{\operatorname { s t d } \operatorname { D e v } (\text { matrix } 1)} \quad \Rightarrow \quad\) matrix
\(\operatorname{stdDev}([1,2,5 ;-3,0,1 ; .5, .7,3])\) ENTER
Returns a row vector of the standard deviations of the columns in matrix1.

Note: matrix 1 must have at least two rows.

\section*{StoGDB CATALOG}

\section*{StoGDB GDBvar}

Creates a Graph database (GDB) variable that contains the current:
* Graphing mode
* Y= functions
* Window variables
* Graph format settings

1 - or 2-Graph setting (split screen and ratio settings if 2-Graph mode)
Angle mode Real/complex mode
* Initial conditions if Sequence mode
* Table flags
* tblStart, \(\Delta\) tbl, tblInput

You can use RcIGDB GDBvar to restore the graph environment.
*Note: These items are saved for both graphs in 2-Graph mode.

\section*{Stop CATALOG}

\section*{Stop}

Used as a program instruction to stop program execution.

Program segment:

For i \(, 1,10,1\)
If \(\mathrm{i}=5\)
Stop
EndFor

\section*{StoPic catalog}

StoPic picVar [, pxlRow, pxlCol] [, width, height]
Displays the graph screen and copies a rectangular area of the display to the variable picVar.
\(p x l R o w\) and \(p x l C o l\), if included, specify the upper-left corner of the area to copy (defaults are 0,0).
width and height, if included, specify the dimensions, in pixels, of the area. Defaults are the width and height, in pixels, of the current graph screen.

\section*{Store See \(\rightarrow\), page 469.}

\section*{string() MATH/String menu}
string(expression) \(\Rightarrow\) string
string (1.2345) ENTER " \(1.2345 "\)

Simplifies expression and returns the result as a character string.
string \((\cos (x)+\sqrt{ }(3))\) ENTER
\(" \cos (x)+\sqrt{ }(3) "\)

Style equanum, stylePropertyString
Sets the system graphing function equanum in the current graph mode to use the graphing property stylePropertyString.
equanum must be an integer from 1-99 and must already exist.
stylePropertyString must be one of: "Line," "Dot," "Square," "Thick," "Animate," "Path," "Above," or "Below."

Note that in parametric graphing, only the \(x t\) half of the pair contains the style information.

Valid style names vs. graphing mode:
Function: all styles
Parametric/Polar: line, dot, square, thick, animate, path
Sequence: line, dot, square, thick 3D: none

Note: Capitalization and blank spaces are optional when entering stylePropertyString names.

\section*{subMat() CATALOG}
subMat(matrix1[, startRow] [, startCol] [, endRow] \([\), endCol \(] \quad \Rightarrow\) matrix

Returns the specified submatrix of matrix1.
Defaults: startRow \(=1\), startCol=1, endRow=last row, endCol=last column.

Style 1,"thick" ENTER Done
Style 10,"path" ENTER Done
Note: In function graphing mode, these examples set the style of \(\mathrm{y} 1(\mathrm{x})\) to "Thick" and y10(x) to "Path."
\([1,2,3 ; 4,5,6 ; 7,8,9] \rightarrow \mathrm{m} 1\) ENTER
\(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\)
subMat(m1, 2, 1, 3, 2) ENTER
subMat(m1,2,2) ENTER

\section*{sum() MATH/List menu}
sum \((\) list \() \Rightarrow\) expression
\(\operatorname{sum}(\{1,2,3,4,5\})\) ENTER
15
Returns the sum of the elements in list.
\(\operatorname{sum}(\) matrix 1\() \Rightarrow\) matrix
Returns a row vector containing the sums of the elements in the columns in matrix1.
switch([integer1]) \(\Rightarrow\) integer
Returns the number of the active window. Also can set the active window.

Note: Window 1 is left or top; Window 2 is right or bottom.

If integer \(1=0\), returns the active window number.

If integer \(1=1\), activates window 1 and returns the previously active window number.

If integer \(1=2\), activates window 2 and returns the previously active window

switch ENTER
 number.

If integer 1 is omitted, switches windows and returns the previously active window number.
integer 1 is ignored if the TI-92 is not displaying a split screen.

\section*{T (transpose) MATH/Matrix menu}
matrix \(1^{\top} \Rightarrow\) matrix
Returns the complex conjugate transpose of matrix1.
\([1,2,3 ; 4,5,6 ; 7,8,9] \rightarrow\) mat1 ENTER
\(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\)
mat1 \({ }^{\top}\) ENTER
\(\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]\)
\([\mathrm{a}, \mathrm{b} ; \mathrm{c}, \mathrm{d}] \rightarrow\) mat2 ENTER \(\quad\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\)
mat2 \({ }^{\top}\) ENTER
\(\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]\)
\([1+i, 2+i ; 3+i, 4+i] \rightarrow \operatorname{mat} 3\) ENTER
\[
\left[\begin{array}{cc}
1+i & 2+i \\
3+i & 4+i
\end{array}\right]
\]
mat3 \({ }^{\top}\) ENTER
\(\left[\begin{array}{cc}1-i & 3-i \\ 2-i & 4-i\end{array}\right]\)

Table expression1[, expression2] [, var1]
Builds a table of the specified expressions or functions.

The expressions in the table can also be graphed. Expressions entered using the Table or Graph (page 406) commands are assigned increasing function numbers starting with 1. The expressions can be modified or individually deleted using the edit functions available when the table is displayed by pressing FF4 Header. The currently selected functions in the \(\mathrm{Y}=\) Editor are temporarily ignored.

To clear the functions created by Table or Graph, execute the CIrGraph command or display the Y= Editor.

If the var parameter is omitted, the current graph-mode independent variable is assumed. Some valid variations of this instruction are:

Function graphing: Table expr, \(x\)
Parametric graphing: Table \(x\) Expr, yExpr, \(t\) Polar graphing: Table expr, \(\theta\)
Note: The Table command is not valid for 3D or sequence graphing.
\(\tan () \quad\) TAN key
\(\boldsymbol{\operatorname { t a n }}\) (expression1) \(\Rightarrow\) expression \(\boldsymbol{\operatorname { t a n }}(\) list1 \() \Rightarrow\) list
\(\boldsymbol{t a n}(\) expression 1) returns the tangent of the argument as an expression.
\(\boldsymbol{\operatorname { t a n }}\) (list1) returns a list of the tangents of all elements in list1.

Note: The argument is interpreted as either a degree or radian angle, according to the current angle mode. You can use \({ }^{\circ}\) (page 467) or \({ }^{r}\) (page 467) to override the angle mode temporarily.

In function graphing mode.
Table \(1.25 x * \cos (x)\) ENTER

Table cos(time), time ENTER

In Degree angle mode:
\(\tan \left((\pi / 4)^{r}\right)\) ENTER 1
\(\tan (45)\) ENTER 1
\(\tan (\{0,60,90\})\) ENTER \(\quad\{0 \quad \sqrt{3}\) undef \(\}\)
In Radian angle mode:
\(\tan (\pi / 4)\) ENTER 1
\(\tan \left(45^{\circ}\right)\) ENTER 1
\(\tan (\{\pi, \pi / 3,-\pi, \pi / 4\})\) ENTER \(\{0 \sqrt{3} 01\}\)

In Degree angle mode:
\(\tan ^{-1}(1)\) ENTER
In Radian angle mode:
\(\tan ^{-1}(\{0, .2, .5\})\) ENTER
\{0.197... .463...\}
tanh() MATH/Hyperbolic menu
\(\tanh (\) expression 1\() \Rightarrow\) expression
\(\tanh (1.2)\) ENTER
. 833...
\(\boldsymbol{\operatorname { t a n h }}\) (list1) \(\Rightarrow\) list
\(\boldsymbol{t a n h}\) (expression1) returns the hyperbolic tangent of the argument as an expression.
\(\boldsymbol{\operatorname { t a n h }}\) (list) returns a list of the hyperbolic tangents of each element of list1.

\section*{tanh \(^{-1}\) () MATH/Hyperbolic menu}
\(\boldsymbol{t a n h}^{-1}\) (expression1) \(\Rightarrow\) expression \(\boldsymbol{t a n h}^{-1}\) (list1) \(\Rightarrow\) list
\(\boldsymbol{t a n h}^{-1}\) (expression1) returns the inverse hyperbolic tangent of the argument as an expression.
In rectangular complex format mode:
tanh-1(0) ENTER
tanh-1(0) ENTER
 0
 0
tanh-1({1,2.1,3}) ENTER
tanh-1({1,2.1,3}) ENTER
 {\infty .518...-1.570... }i i tanh-1(3)
 {\infty .518...-1.570... }i i tanh-1(3)
\(\boldsymbol{t a n h}^{-1}(\) list 1\()\) returns a list of the inverse hyperbolic tangents of each element of list1.

\section*{taylor() MATH/Calculus menu}
taylor(expression1, var, order[, point \(]\)) \(\Rightarrow\) expression
Returns the requested Taylor polynomial. The polynomial includes non-zero terms of integer degrees from zero through order in (var minus point). taylor() returns itself if there is no truncated power series of this order, or if it would require negative or fractional exponents. Use substitution and/or temporary multiplication by a power of (var minus point) to determine more general power series.
point defaults to zero and is the expansion point.
expand(taylor(x/(x*(x-1)), x,4)/x,x) ENTER

\section*{tCollect() MATH\AIgebralTrig menu}
tCollect(expression1) \(\Rightarrow\) expression
Returns an expression in which products and integer powers of sines and cosines are converted to a linear combination of sines and cosines of multiple angles, angle sums, and angle differences. The transformation converts trigonometric polynomials into a linear combination of their harmonics.

Sometimes tCollect() will accomplish your goals when the default trigonometric simplification does not. tCollect() tends to reverse transformations done by tExpand(). Sometimes applying tExpand() to a result from tCollect(), or vice versa, in two separate steps simplifies an expression.
tCollect \(\left((\cos (\alpha))^{\wedge} 2\right)\) ENTER
tCollect(sin(\(\alpha) \cos (\beta))\) ENTER
\[
\frac{\sin (\alpha-\beta)+\sin (\alpha+\beta)}{2}
\]

\section*{tExpand() MATHVAIgebralTrig menu}

\section*{tExpand(expression1) \(\Rightarrow\) expression}

Returns an expression in which sines and cosines of integer-multiple angles, angle sums, and angle differences are expanded. Because of the identity \((\sin (\mathrm{x}))^{2}+(\cos (\mathrm{x}))^{2}=1\), there are many possible equivalent results. Consequently, a result might differ from a result shown in other publications.

Sometimes tExpand() will accomplish your goals when the default trigonometric simplification does not. tExpand() tends to reverse transformations done by tCollect(). Sometimes applying tCollect() to a result from tExpand(), or vice versa, in two separate steps simplifies an expression.

Note: Degree-mode scaling by \(\pi / 180\) interferes with the ability of \(t\) Expand() to recognize expandable forms. For best results, tExpand() should be used in Radian mode.

Text CATALOG
Text promptString
Displays the character string promptString dialog box.

If used as part of a Dialog:...EndDlog block, promptString is displayed inside that dialog box. If used as a standalone instruction, Text creates a dialog box to display the string.
tExpand \((\sin (3 \phi))\) ENTER
\(4 \cdot \sin (\phi) \cdot(\cos (\phi))^{2}-\sin (\phi)\)
tExpand \((\cos (\alpha-\beta))\) ENTER \(\cos (\alpha) \cdot \cos (\beta)+\sin (\alpha) \cdot \sin (\beta)\)

Then See If, page 407.

\section*{Title CATALOG}

Title titleString, \([L b l]\)
Creates the title of a pull-down menu or dialog box when used inside a Toolbar or Custom construct, or a Dialog...EndDlog block.

Note: \(L b l\) is only valid in the Toolbar construct. When present, it allows the menu choice to branch to a specified label inside the program.

Program segment:

\section*{Toolbar CATALOG}

Toolbar
block

\section*{EndTBar}

Creates a toolbar menu.
block can be either a single statement or a sequence of statements separated with the ":" character. The statements can be either Title or Item.

Items must have labels. A Title must also have a label if it does not have an item.

Program segment:
```

:Toolbar
: Title "Examples"
: Item "Trig", t
: Item "Calc",, c
: Item "Stop", Pexit
: EndTbar
\vdots

```

Note: When run in a program, this segment creates a menu with three choices that branch to three places in the program.

\section*{Trace catalog}

\section*{Trace}

Draws a Smart Graph and places the trace cursor on the first defined \(Y=\) function at the previously defined cursor position, or at the reset position if regraphing was necessary.

Allows operation of the cursor and most keys when editing coordinate values. Several keys, such as the function keys, APPS, and MODE, are not activated during trace.

Note: Press ENTER to resume operation.
Try CATALOG

Try
block1
Else
block2
EndTry
Executes block1 unless an error occurs. Program execution transfers to block 2 if an error occurs in block1. Variable errornum contains the error number to allow the program to perform error recovery.
block1 and block2 can be either a single statement or a series of statements separated with the ":" character.

Program segment:
```

:Try
: NewFold(temp)
Else
@Already exists
ClrErr
: EndTry

```

Note: See CIrErr (page 381) and PassErr (page 424).

\section*{TwoVar MATH/Statistics menu \\ TwoVar list1, list2[, [list3] [, list4, list5]]}

Calculates the TwoVar statistics and updates all the system statistics variables.

All the lists must have equal dimensions except for list5.
list1 represents xlist
list2 represents ylist. list3 represents frequency. list 4 represents category codes. list5 represents category include list.

Note: list1 through list 4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.

\section*{unitV() MATH/Matrix/Vector ops menu}
unitV(vector1) \(\Rightarrow\) vector
Returns either a row- or column-unit vector, depending on the form of vector1.
vector 1 must be either a single-row matrix or a single-column matrix.
\(\left.\begin{array}{ll}\{0,1,2,3,4,5,6\} \rightarrow L 1 \text { ENTER } & \left\{\begin{array}{llll}0 & 1 & 2 & \ldots\end{array}\right\} \\ \{0,2,3,4,3,4,6\} \rightarrow L 2 \text { ENTER } & \left\{\begin{array}{ll}0 & 2\end{array} 3_{2} \ldots\right.\end{array}\right\}\)

TwoVar L1, L2 ENTER
Done

ShowStat ENTER

unitV([a,b,c]) ENTER
\(\left[\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}} \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}} \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}\right]\) unitV([1,2,1]) ENTER \(\left[\begin{array}{lll}\frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{6}\end{array}\right]\)

\section*{Unlock catalog}

Unlock var1[, var2][, var3]...
Unlocks the specified variables.
Note: The variables can be locked using the Lock command (page 414).

\section*{variance() MATH/Statistics menu}
variance(list) \(\Rightarrow\) expression
Returns the variance of list.
variance(\{a,b,c\}) ENTER
\[
\frac{a^{2}-a \cdot(b+c)+b^{2}-b \cdot c+c^{2}}{3}
\]

Note: list must contain at least two elements. variance (\{1,2,5,-6,3,-2\}) ENTER \(31 / 2\)
variance(matrix1) \(\Rightarrow\) matrix
variance(\([1,2,5 ;-3,0,1 ; .5, .7,3])\)
ENTER
\(\left[\begin{array}{lll}4.75 & 1.03 & 4\end{array}\right]\)
Returns a row vector containing the variance
of each column in matrix1.
Note: matrix1 must contain at least two rows.
when(condition, trueResult [, falseResult] [, unknownResult]) \(\Rightarrow\) expression

Returns trueResult, falseResult, or unknownResult, depending on whether condition is true, false, or unknown. Returns the input if there are too few arguments to specify the appropriate result.

Omit both falseResult and unknownResult to make an expression defined only in the region where condition is true.

Use an undef falseResult to define an expression that graphs only on an interval.

Omit only the unknownResult to define a two-
when \((x<0, x+3) \mid x=5\) ENTER when (\(x<0,3+x\))

Clrgraph Enter
Graph when (\(x \geq^{-\pi} \pi\) and \(x<0, x+3\), undef)
ENTER
 piece expression.

Graph when \(\left(x<0, x+3,5-x^{\wedge} 2\right)\) ENTER

Nest when() to define expressions that have more than two pieces.
when() is helpful for defining recursive functions.

\section*{While CATALOG}

While condition
block
EndWhile
Executes the statements in block as long as condition is true.
block can be either a single statement or a sequence of statements separated with the ":" character.

Program segment:
```

\vdots
:1->i
:0->temp
:While i<=20
: temp+1/i->temp
: j+1->i
:EndWhile
:Disp "sum of reciprocals up to
20",temp

```
\begin{tabular}{|c|c|c|c|}
\hline xor & MATH/Test menu & & \\
\hline & Boolean expression1 xor Boolean expression2 \(\Rightarrow\) Boolean expression & true xor true ENTER (\(5>3\)) xor \((3>5)\) ENTER & \begin{tabular}{l}
false \\
true
\end{tabular} \\
\hline
\end{tabular}

Returns true if Boolean expression1 is true and Boolean expression2 is false, or vice versa. Returns false if Boolean expression1 and Boolean expression2 are both true or both false. Returns a simplified Boolean expression if either of the original Boolean expressions cannot be resolved to true or false.

Note: See or (page 423).

\section*{XorPic CATALOG}

XorPic picVar[, row] [, column]
Displays the picture stored in picVar on the current Graph screen.

Uses XOR logic for each pixel. Only those pixel positions that are exclusive to either the screen or the picture are turned on. This instruction turns off pixels that are turned on in both images.
picVar must contain a pic data type.
row and column, if included, specify the pixel coordinates for the upper left corner of the picture. Defaults are (0,0).

\section*{zeros() MATH/Algebra menu}
zeros(expression, var) \(\Rightarrow\) list
Returns a list of candidate real values of var that make expression \(=0\). zeros() does this by computing exp \(>\) list(solve(expression \(=0\), var)).

For some purposes, the result form for zeros() is more convenient than that of solve(). However, the result form of zeros() cannot express implicit solutions, solutions that require inequalities, or solutions that do not involve var.

Note: See also cSolve() (page 385), cZeros() (page 387), and solve() (page 442).
\(z \operatorname{ros}\left(a * x^{\wedge} 2+b * x+c, x\right)\) ENTER
\(\left\{\frac{-\left(\sqrt{-\left(4 \cdot a \cdot c-b^{2}\right)}+b\right)}{2 \cdot a} \frac{\sqrt{-\left(4 \cdot a \cdot c-b^{2}\right)}-b}{2 \cdot a}\right\}\) \(a * x^{\wedge} 2+b * x+c \mid x=a n s(1)[2]\) ENTER
exact(zeros(a* \(\left(e^{\wedge}(x)+x\right)(\operatorname{sign}\) \((x)-1), x))\) ENTER
exact(solve(a*(\(\left.e^{\wedge}(x)+x\right)(\operatorname{sign}\)
\((x)-1)=0, x))\) ENTER
\(e^{x}+x=0\) or \(x>0\) or \(a=0\)

\section*{ZoomBox}

Displays the Graph screen, lets you draw a box that defines a new viewing window, and updates the window.

In function graphing mode:
1. \(25 x * \cos (x) \rightarrow y 1(x)\) ENTER

Done
ZoomStd:ZoomBox ENTER

The display after defining ZoomBox by pressing ENTER the second time.

\section*{ZoomData catalog}

\section*{ZoomData}

Adjusts the window settings based on the currently defined plots (and data) so that all statistical data points will be sampled, and displays the Graph screen.

Note: Does not adjust ymin and ymax for histograms.

\section*{ZoomDec catalog}

\section*{ZoomDec}

Adjusts the viewing window so that \(\Delta x\) and
Adjusts the viewing window so that \(\Delta x\) and
\(\Delta y=0.1\) displays the Graph screen with the origin centered on the screen.

In function graphing mode:

In function graphing mode:
\(1.25 \mathrm{x} * \cos (\mathrm{x}) \rightarrow \mathrm{y} 1(\mathrm{x})\) ENTER Done
ZoomStd ENTER

- [HOME]

ZoomDec ENTER

\section*{ZoomFit}

Displays the Graph screen, and calculates the necessary window dimensions for the dependent variables to view all the picture for the current independent variable settings.

In function graphing mode:
\(1.25 \mathrm{x} * \cos (\mathrm{x}) \rightarrow \mathrm{y} 1(\mathrm{x})\) ENTER Done ZoomStd ENTER

- [HOME]

ZoomFit ENTER

\section*{Zoomin CATALOG}

\section*{ZoomIn}

Displays the Graph screen, lets you set a center point for a zoom in, and updates the viewing window.

The magnitude of the zoom is dependent on the Zoom factors xFact and yFact. In 3D Graph mode, the magnitude is dependent on \(x\) Fact, yFact, and zFact.

In function graphing mode:
1. \(25 x * \cos (x) \rightarrow y 1(x)\) ENTER

Done ZoomStd: ZoomIn ENTER

ENTER

\section*{Zoomint catalog}

\section*{ZoomInt}

Displays the Graph screen, lets you set a center point for the zoom, and adjusts the window settings so that each pixel is an integer in all directions.

In function graphing mode:
1.25x* \(\cos (x) \rightarrow y 1(x)\) ENTER

Done
ZoomStd:ZoomInt ENTER

ENTER

\section*{ZoomOut catalog}

\section*{ZoomOut}

Displays the Graph screen, lets you set a center point for a zoom out, and updates the viewing window.

The magnitude of the zoom is dependent on the Zoom factors xFact and yFact. In 3D Graph mode, the magnitude is dependent on \(x\) Fact, yFact, and zFact.

In function graphing mode:
\(1.25 x * \cos (x) \rightarrow y 1(x)\) ENTER Done
ZoomStd:ZoomOut ENTER
(,

ENTER

\section*{ZoomPrev catalog}

\section*{ZoomPrev}

Displays the Graph screen, and updates the viewing window with the settings in use before the last zoom.

\section*{ZoomRcl CATALOG}

\section*{ZoomRcl}

Displays the Graph screen, and updates the viewing window using the settings stored with the ZoomSto instruction.

\section*{ZoomSqr catalog}

\section*{ZoomSqr}

Displays the Graph screen, adjusts the x or y window settings so that each pixel represents an equal width and height in the coordinate system, and updates the viewing window.

In 3D Graph mode, ZoomSqr lengthens the shortest two axes to be the same as the longest axis.

In function graphing mode:
1. \(25 \mathrm{x} * \cos (\mathrm{x}) \rightarrow \mathrm{y} 1(\mathrm{x})\) ENTER

Done
ZoomStd ENTER

- [HOME]

ZoomSqr ENTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & & & \[
1
\] & & N & & & & & & & \\
\hline & & \[
1
\] & & \[
1
\] & & & & & & & & \\
\hline
\end{tabular}

\section*{ZoomStd catalog}

\section*{ZoomStd}

Sets the window variables to the following standard values, and then updates the viewing window.

Function graphing:
\(x:[-10,10,1], y:[-10,10,1]\) and \(\mathrm{xres}=2\)
Parametric graphing:
\(\mathrm{t}:[0,2 \pi, \pi / 24], \mathrm{x}:[-10,10,1], \mathrm{y}:[-10,10,1]\)

In function graphing mode:
\(1.25 \mathrm{x} * \cos (\mathrm{x}) \rightarrow \mathrm{y} 1(\mathrm{x})\) ENTER Done
ZoomStd ENTER

Polar graphing:
\(\theta:[0,2 \pi, \pi / 24], x:[-10,10,1], y:[-10,10,1]\)
Sequence graphing:
nmin=1, nmax=10, plotstrt=1, plotstep=1,
\(x:[-10,10,1], y:[-10,10,1]\)
3D graphing:
\(\mathrm{x}:[-10,10,14]\), \(\mathrm{y}:[-10,10,14]\),
z: \([-10,10,1]\), eye \(\theta^{\circ}=20\), eye \(\phi^{\circ}=70\)

\section*{ZoomSto CATALOG}

\section*{ZoomSto}

Stores the current Window settings in the Zoom memory. You can use ZoomRcl to restore the settings.

\section*{ZoomTrig catalog}

\section*{ZoomTrig}

Displays the Graph screen, sets \(\Delta x\) to \(\pi / 24\), and xscl to \(\pi / 2\), centers the origin, sets the \(y\) settings to [-4, 4, .5], and updates the viewing window.

In function graphing mode:
\(1.25 x * \cos (x) \rightarrow y 1(x)\) ENTER Done
ZoomStd ENTER

- [HOME]

ZoomTrig ENTER

expression \(1 *\) expression2 \(\Rightarrow\) expression \(2 * 3.45\) ENTER 6.9
Returns the product of expression 1 and \(x * y * x\) ENTER \(x^{2} \cdot y\) expression2.
list \(1 *\) list2 \(\Rightarrow\) list \(\quad\{1.0,2,3\} *\{4,5,6\}\) ENTER \(\quad\{4.1018\}\)

Returns a list containing the products of the corresponding elements in list1 and list2.
\(\{1.0,2,3\} *\{4,5,6\}\) ENTER \(\{4.1018\}\)
\(\{2 / a, 3 / 2\} *\left\{a^{2}, b / 3\right\}\) ENTER
\(\left\{2 \cdot a \quad \frac{b}{2}\right\}\)

Dimensions of the lists must be equal.
matrix1 * matrix2 \(\Rightarrow\) matrix \(\quad[1,2,3 ; 4,5,6] *[a, d ; b, e ; c, f]\) ENTER

Returns the matrix product of matrix1 and matrix2.

The number of rows in matrix1 must equal the number of columns in matrix2.
\begin{tabular}{|r|r|}
\hline\(-\left[\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6\end{array}\right] \cdot\left[\begin{array}{ll}a & d \\
b & e \\
6 & f\end{array}\right]\) \\
{\(\left[\begin{array}{ll}a+2 \cdot b+3 \cdot c & d+2 \cdot e+3 \cdot f \\
4 \cdot j+5 \cdot b+6 \cdot c & 4 \cdot d+2 \cdot e+6 \cdot f\end{array}\right]\)}
\end{tabular}
\begin{tabular}{llll}
expression \(*\) list 1 & \(\Rightarrow\) & list & \(\pi *\{4,5,6\}\) ENTER
\end{tabular}\(\quad\{4 \cdot \pi 5 \cdot \pi 6 \cdot \pi\}\)

Returns a list containing the products of expression and each element in list1.
\begin{tabular}{llllll}
expression \(*\) matrix1 & \(\Rightarrow\) matrix \\
matrix \(1 *\) expression
\end{tabular}\(\Rightarrow\) matrix \(\quad[1,2 ; 3,4] * .01\) ENTER \(\quad\left[\begin{array}{ll}.01 & .02 \\
.03 & .04\end{array}\right]\)

Returns a matrix containing the products of expression and each element in matrix1.
\(\lambda * i d e n t i t y(3)\) ENTER

Note: Use .* (dot multiply) to multiply an expression by each element.
\begin{tabular}{|c|c|}
\hline / (divide) \(\dagger\) key & \\
\hline \begin{tabular}{l}
expression1 / expression2 \(\Rightarrow\) expression \\
Returns the quotient of expression 1 divided by expression2.
\end{tabular} & \begin{tabular}{lr}
\(2 / 3.45\) ENTER & .57971 \\
\(x^{\wedge} 3 / x\) ENTER & \(x^{2}\)
\end{tabular} \\
\hline \begin{tabular}{l}
list1 / list2 \(\quad \Rightarrow \quad\) list \\
Returns a list containing the quotients of list1 divided by list2. \\
Dimensions of the lists must be equal.
\end{tabular} & \(\{1.0,2,3\} /\{4,5,6\}\) ENTER
\[
\{.25 \quad 2 / 5 \quad 1 / 2\}
\] \\
\hline \begin{tabular}{l}
expression / list1 \(\Rightarrow\) list \\
list1 / expression \(\Rightarrow\) list \\
Returns a list containing the quotients of expression divided by list1 or list 1 divided by expression.
\end{tabular} & \[
\begin{aligned}
& a /\{3, a, \sqrt{ }(a)\} \text { ENTER } \\
& \{a, b, c\} /(a * b * c) \text { ENTER } \\
& \left\{\frac{a}{3} 1 \sqrt{a}\right\} \\
& \\
& \left\{\frac{1}{b \cdot c} \quad \frac{1}{a \cdot c} \frac{1}{a \cdot b}\right\}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
matrix1 / expression \(\Rightarrow\) matrix \\
Returns a matrix containing the quotients of matrix1/expression.
\end{tabular} & \[
[\mathrm{a}, \mathrm{~b}, \mathrm{c}] /(\mathrm{a} * \mathrm{~b} * \mathrm{c}) \text { ENTER }\left[\begin{array}{lll}
\frac{1}{\mathrm{~b} \cdot \mathrm{c}} & \frac{1}{\mathrm{a} \cdot \mathrm{c}} & \frac{1}{\mathrm{a} \cdot \mathrm{~b}}
\end{array}\right]
\] \\
\hline
\end{tabular}

Note: Use . / (dot divide) to divide an expression by each element.
\begin{tabular}{|c|c|c|}
\hline & e) (-) key & \\
\hline & \begin{tabular}{l}
-expression1 \(\Rightarrow\) expression \\
\({ }^{-l i s t 1} \Rightarrow\) list \\
-matrix1 \(\Rightarrow\) matrix \\
Returns the negation of the argument. \\
For a list or matrix, returns all the elements negated.
\end{tabular} & \[
\begin{aligned}
& -2.43 \text { ENTER } \\
& -\{-1,0.4,1.2 \mathrm{E} 19\} \text { ENTER } \\
& \{1-2.43 \\
& -\mathrm{a} *-\mathrm{b} \text { ENTER }
\end{aligned}
\] \\
\hline \% & CHAR/Punctuation menu & \\
\hline & \begin{tabular}{l}
expression \(1 \% \Rightarrow\) expression \\
list1 \% \(\Rightarrow\) list \\
matrix1 \(\% \Rightarrow\) matrix \\
Returns \(\frac{\text { argument }}{100}\). \\
For a list or matrix, returns a list or matrix with each element divided by 100 .
\end{tabular} & \(13 \%-13\)
\(\{1,10,100\} \% \square\) ENTER \\
\hline = & \(\pm\) key & \\
\hline & \begin{tabular}{l}
expression1 \(=\) expression2 \(\Rightarrow\) Boolean expression \\
list1 \(=\) list2 \(\Rightarrow\) Boolean list \\
matrix1 \(=\) matrix \(2 \Rightarrow\) Boolean matrix \\
Returns true if expression 1 is determined to be equal to expression2. \\
Returns false if expression 1 is determined to not be equal to expression2. \\
Anything else returns a simplified form of the equation. \\
For lists and matrices, returns comparisons element by element.
\end{tabular} & Example function listing using math test symbols: \(=, \neq,<, \leq,>, \geq\)
```

:g(xx)
:Func
:If }xx\leq-5 The
Return 5
ElseIf xx>-5 and xx<0 Then
Return -xx
ElseIf xx\geq0 and }xx\not=10\mathrm{ Then
Return xx
ElseIf xx=10 Then
Return 3
:EndIf
: EndFunc

```
Graph \(g(x)\) ENTER \\
\hline & & \\
\hline \multicolumn{3}{|l|}{/= (not equal) 2nd [V] key or \(\dagger \bigcirc\) keys} \\
\hline & \[
\begin{aligned}
& \text { expression1 } /=\text { expression2 } \Rightarrow \text { Boolean expression } \\
& \text { list } 1 /=\text { list } \Rightarrow \text { Boolean list } \\
& \text { matrix } 1 /=\text { matrix2 } \Rightarrow \text { Boolean matrix }
\end{aligned}
\] & See "=" example above. \\
\hline & Returns true if expression 1 is determined to be not equal to expression2. & \\
\hline & Returns false if expression1 is determined to be equal to expression2. & \\
\hline & Anything else returns a simplified form of the equation. & \\
\hline & For lists and matrices, returns comparisons element by element. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{＜} & ［2nd［＜］key & \\
\hline & expression1＜expression2 \(\Rightarrow\) Boolean expression list1 \(<\) list2 \(\Rightarrow\) Boolean list matrix \(1<\) matrix2 \(\Rightarrow\) Boolean matrix & See＂＝＂example on previous page． \\
\hline & Returns true if expression 1 is determined to be less than expression2． & \\
\hline & Returns false if expression 1 is determined to be greater than or equal to expression2． & \\
\hline & Anything else returns a simplified form of the equation． & \\
\hline & For lists and matrices，returns comparisons element by element． & \\
\hline \multirow[t]{6}{*}{＜＝} & 2nd［＜］⿴囗才 keys & \\
\hline & \begin{tabular}{l}
expression \(1<=\) expression2 \(\Rightarrow\) Boolean expression \\
list \(1<=\) list2 \(\Rightarrow\) Boolean list \\
matrix \(1<=\) matrix2 \(\Rightarrow\) Boolean matrix
\end{tabular} & See＂＝＂example on previous page． \\
\hline & Returns true if expression 1 is determined to be less than or equal to expression2． & \\
\hline & Returns false if expression 1 is determined to be greater than expression2． & \\
\hline & Anything else returns a simplified form of the equation． & \\
\hline & For lists and matrices，returns comparisons element by element． & \\
\hline \multirow[t]{6}{*}{＞} & ［2nd［＞］key & \\
\hline & \begin{tabular}{l}
expression \(1>\) expression2 \(\Rightarrow\) Boolean expression \\
list1＞list2 \(\Rightarrow\) Boolean list \\
matrix \(1>\) matrix \(2 \Rightarrow\) Boolean matrix
\end{tabular} & See＂＝＂example on previous page． \\
\hline & Returns true if expression 1 is determined to be greater than expression2． & \\
\hline & Returns false if expression 1 is determined to be less than or equal to expression2． & \\
\hline & Anything else returns a simplified form of the equation． & \\
\hline & For lists and matrices，returns comparisons element by element． & \\
\hline
\end{tabular}
```

>=
2nd [>] \# keys
expression1 $>=$ expression2 $\Rightarrow$ Boolean expression list1 $>=$ list2 $\quad \Rightarrow \quad$ Boolean list matrix1 $>=$ matrix2 $\Rightarrow$ Boolean matrix

```

Returns true if expression 1 is determined to be greater than or equal to expression2.

Returns false if expression1 is determined to be less than expression2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

See "=" example on page 460.

\section*{母 keys}
```

matrix1.+ matrix\mathcal{L }}=>\mathrm{ matrix
expression .+ matrix1 }=>\mathrm{ matrix

```
matrix1 .+ matrix2 returns a matrix that is the sum of each pair of corresponding elements in matrix1 and matrix2.
\([a, 2 ; b, 3] .+[c, 4 ; 5, d]\) ENTER
x. \(+[\mathrm{c}, 4 ; 5, \mathrm{~d}]\) ENTER

expression .+ matrix 1 returns a matrix that is the sum of expression and each element in matrix1.
\[
\begin{aligned}
& \text { matrix1 .- matrix2 } \Rightarrow \text { matrix } \\
& \text { expression .- matrix1 } \Rightarrow \text { matrix }
\end{aligned}
\]
matrix1 .- matrix2 returns a matrix that is the difference between each pair of corresponding elements in matrix1 and matrix2.
expression .- matrix1 returns a matrix that is the difference of expression and each element in matrix1.
[a,2;b,3].-[c,4;d,5] ENTER
\(x .-[c, 4 ; d, 5]\) ENTER

\section*{(dot mult.) \(\boxed{\boxed{x} \text { keys }}\)}

\section*{matrix1.* matrix2 \(\Rightarrow\) matrix}
expression.* matrix1 \(\Rightarrow\) matrix
matrix \(1 . *\) matrix2 returns a matrix that is the product of each pair of corresponding elements in matrix1 and matrix2.
expression . * matrix1 returns a matrix containing the products of expression and each element in matrix1.
\([a, 2 ; b, 3] . *[c, 4 ; 5, d]\) ENTER
\(x . *[a, b ; c, d]\) ENTER
matrix1./matrix2 \(\Rightarrow\) matrix
[a,2;b,3]./[c,4;5,d] ENTER
x./[c,4;5,d] ENTER
 the quotient of expression and each element in matrix1.
matrix 1 ./ matrix2 returns a matrix that is the quotient of each pair of corresponding elements in matrix1 and matrix2.
expression ./ matrix 1 returns a matrix that is

\section*{-^ (dot power) \(\square \boxed{\wedge}\) keys}
matrix1.^ matrix2 \(\Rightarrow\) matrix
expression.^ matrix1 \(\Rightarrow\) matrix
matrix1 .^ matrix2 returns a matrix where each element in matrix2 is the exponent for the corresponding element in matrix1.
expression . ^ matrix 1 returns a matrix where each element in matrix 1 is the exponent for expression.
[a,2;b,3].^[c,4;5,d] ENTER
x.^[c,4;5,d] ENTER

! (factorial) 2nd [W] key
expression1! \(\Rightarrow\) expression list1! \(\Rightarrow\) list matrix 1! \(\Rightarrow\) matrix

Returns the factorial of the argument.

5! ENTER
\(\{5,4,3\}\) ! ENTER
\([1,2 ; 3,4]!\) ENTER
\{120
24 6\}
\(\left[\begin{array}{ll}1 & 2 \\ 6 & 24\end{array}\right]\)

For a list or matrix, returns a list or matrix of factorials of the elements.

The TI-92 computes a numeric value for only non-negative whole-number values.

\section*{\& (append) 2nd [H] key}
string \(1 \&\) string \(2 \Rightarrow\) string
"Hello " \& "Nick" ENTER "Hello Nick"
Returns a text string that is string2 appended to string1.
\(\int(\) expression 1, var \([\), lower \(][\),upper \(]) \Rightarrow\) expression
Returns the integral of expression 1 with respect to the variable var from lower to upper.

Returns an anti-derivative if lower and upper are omitted. A symbolic constant of integration such as \(C\) is omitted.

However, lower is added as a constant of integration if only upper is omitted.

Equally valid anti-derivatives might differ by a numeric constant. Such a constant might be disguised-particularly when an antiderivative contains logarithms or inverse trigonometric functions. Moreover, piecewise constant expressions are sometimes added to make an anti-derivative valid over a larger interval than the usual formula.
\(\int()\) returns itself for pieces of expression 1 that it cannot determine as an explicit finite combination of its built-in functions and operators.

When lower and upper are both present, an attempt is made to locate any discontinuities or discontinuous derivatives in the interval lower < var < upper and to subdivide the interval at those places.

For the AUTO setting of the Exact/Approx mode, numerical integration is used where applicable when an anti-derivative or a limit cannot be determined.

For the APPROX setting, numerical integration is tried first, if applicable. Antiderivatives are sought only where such numerical integration is inapplicable or fails.
\(\int()\) can be nested to do multiple integrals. Integration limits can depend on integration variables outside them.

Note: See also nint() (page 421).
\begin{tabular}{lll}
\(\sqrt{ }(\) expression1 \() \Rightarrow\) expression & \(\sqrt{ }(4)\) ENTER & 2 \\
\(\sqrt{ }(\) list \() \Rightarrow\) list & \(\sqrt{ }(\{9, a, 4\})\) ENTER & \(\{3\) \\
& \(\sqrt{a}\) & \(2\}\)
\end{tabular}

Returns the square root of the argument.
For a list, returns the square roots of all the elements in list1.

\section*{\(\Pi()\) (product) MATH/Calculus menu}
\begin{tabular}{|c|c|c|}
\hline \(\Pi\) (expression1, var, low, high) \(\Rightarrow\) expression & \(\Pi(1 / n, n, 1,5)\) ENTER & \(\frac{1}{120}\) \\
\hline \multirow[t]{2}{*}{Evaluates expression1 for each value of var from low to high, and returns the product of the results.} & \begin{tabular}{l}
\(\Pi(k \wedge 2, k, 1, n)\) ENTER \\
\(\Pi(\{1 / n, n, 2\}, n, 1,5)\) ENTER
\end{tabular} & \((n!)^{2}\) \\
\hline & \multicolumn{2}{|l|}{\(\left\{\begin{array}{llll}\frac{1}{120} & 120 & 32\end{array}\right\}\)} \\
\hline \(\Pi\) (expression1, var, low, low-1) \(\Rightarrow 1\) & \(\Pi(k, k, 4,3)\) ENTER & 1 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \Pi(\text { expression } 1, \text { var, low, high }) \Rightarrow 1 / \Pi(\text { expression } 1, \\
& \text { var, high }+1, \text { low }-1) \text { if } \text { high }<\text { low }-1
\end{aligned}
\]} & \(\Pi(1 / k, k, 4,1)\) ENTER & 6 \\
\hline & \(\Pi(1 / k, k, 4,1) * \Pi(1 / k, k, 2,4)\) ENTER & \(1 / 4\) \\
\hline
\end{tabular}
\(\Sigma()\) (sum) 2nd \([\Sigma]\) key
\(\Sigma(\) expression1, var, low, high \() \Rightarrow\) expression
Evaluates expression1 for each value of var
from low to high, and returns the sum of the
results.
\(\Sigma(\) expression 1, var, low, low -1\() \Rightarrow 0\)
\(\Sigma(\) expression1, var, low, high \() \Rightarrow-\Sigma(\) expression 1,
var, high +1, low-1) if high \(<l o w-1\)
\(\Sigma(1 / n, n, 1,5)\) ENTER \(\frac{137}{60}\)
\(\Sigma\left(k^{\wedge} 2, k, 1, n\right)\) ENTER \(\frac{n \cdot(n+1) \cdot(2 \cdot n+1)}{6}\)
\(\Sigma\left(1 / n^{\wedge} 2, n, 1, \infty\right)\) ENTER
\(\frac{\pi^{2}}{6}\)
\(\Sigma(k, k, 4,3)\) ENTER 0
\(\Sigma(k, k, 4,1)\) ENTER -5
\(\Sigma(k, k, 4,1)+\Sigma(k, k, 2,4)\) ENTER 4
\(\wedge\) (power) \(\triangle\) key

Returns the first argument raised to the power of the second argument.

For a list, returns the elements in list1 raised to the power of the corresponding elements in list2.

In the real domain, fractional powers that have reduced exponents with odd denominators use the real branch versus the principal branch for complex mode.
expression \(\wedge\) list \(1 \Rightarrow\) list \(\quad p^{\wedge}\{a, 2,-3\}\) ENTER \(\quad\left\{p^{a} \quad p^{2} \quad \frac{1}{p^{3}}\right\}\)

Returns expression raised to the power of the elements in list1.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{list \(1^{\wedge}\) expression \(\Rightarrow\) list} & \multicolumn{2}{|l|}{\(\{1,2,3,4\}^{\wedge}-2\) ENTER} \\
\hline & (& 1/16 \\
\hline
\end{tabular}
in list1 raised to the power of expression.
squareMatrix \(1^{\wedge}\) integer \(\Rightarrow\) matrix
Returns squareMatrix1 raised to the integer power.
squareMatrix 1 must be a square matrix.
If integer \(=-1\), computes the inverse matrix. If integer \(<-1\), computes the inverse matrix to an appropriate positive power.
\([1,2 ; 3,4]^{\wedge} 2\) ENTER
\([1,2 ; 3,4]^{\wedge-1}\) ENTER
[1,2;3,4]^-2 ENTER

\section*{10^() CATALOG}
\(\mathbf{1 0}^{\wedge}\) (expression 1\() \Rightarrow\) expression
10^1.5 ENTER
31.622...

10^ (list1) \(\Rightarrow\) list
Returns 10 raised to the power of the argument.

For a list, returns 10 raised to the power of the elements in list1.
\# (indirection) 2nd [T] key
\# varNameString
Refers to the variable whose name is varNameString. This lets you create and modify variables from a program using strings.

Program segment:
```

:Request "Enter Your Name",str1
:NewFold 非strl
For i,1,5,1
: ClrGraph
:Graph i*x
: StoPic 非("pic" \& string(i))
: EndFor

```
 EndF

\section*{\(r\) (radian) MATH/Angle menu}
expression \(1^{r} \Rightarrow\) expression
list1 \({ }^{r} \Rightarrow\) list
matrix \(1^{r} \Rightarrow\) matrix
In Degree angle mode, multiplies expression1 by \(180 / \pi\). In Radian angle mode, returns expression 1 unchanged.

This function gives you a way to use a radian angle while in Degree mode. (In Degree angle mode, \(\boldsymbol{\operatorname { s i n }}(), \boldsymbol{\operatorname { c o s }}(), \boldsymbol{\operatorname { t a n }}()\), and polar-torectangular conversions expect the angle argument to be in degrees.)

Hint: Use \({ }^{r}\) if you want to force radians in a function or program definition regardless of the mode that prevails when the function or program is used.

In Degree or Radian angle mode:
\[
\cos \left((\pi / 4)^{r}\right) \text { ENTER } \quad \frac{\sqrt{2}}{2}
\]
\(\cos \left(\left\{0^{r},(\pi / 12)^{r},-\pi^{r}\right\}\right)\) ENTER
\[
\left\{1 \frac{(\sqrt{3}+1) \cdot \sqrt{2}}{4}-1\right\}
\]

In Radian angle mode:
\(\cos \left(45^{\circ}\right)\) ENTER

\(\cos \left(\left\{0, \pi / 4,90^{\circ}, 30.12^{\circ}\right\}\right)\) ENTER
\{1 .707... 0 .864...\}

Returns \(d d+(m m / 60)+(s s . s s / 3600)\).
This base-60 entry format lets you:
- Enter an angle in degrees/minutes/seconds without regard to the current angle mode.
- Enter time as hours/minutes/seconds.
expression \(1 \mathbf{x}^{-1} \Rightarrow\) expression
list1 \(\mathbf{x}^{-1} \Rightarrow\) list
Returns the reciprocal of the argument.
For a list, returns the reciprocals of the elements in list1.
squareMatrix1 \(\mathbf{x}^{-1} \Rightarrow\) squareMatrix
Returns the inverse of squareMatrix1. squareMatrix1 must be a non-singular square matrix.
3. \(1^{\wedge-1}\) ENTER
. 322581
\(\{a, 4,-.1, x-2\}^{\wedge-1}\) ENTER
\(\left\{\begin{array}{llll}\frac{1}{a} & \frac{1}{4} & -10 & \frac{1}{x-2}\end{array}\right\}\)
\([1,2 ; 3,4]^{\wedge-1}\) ENTER
[1,2;a,4]^-1ENTER

| ("with") 2nd [K] key
expression | Boolean expression1 [and Boolean expression2]...[and Boolean expressionN]

The "with" (I) symbol serves as a binary operator. The operand to the left of \(\mid\) is an expression. The operand to the right of । specifies one or more relations that are intended to affect the simplification of the expression. Multiple relations after I must be joined by a logical "and".

The "with" operator provides three basic types of functionality: substitutions, interval constraints, and exclusions.

Substitutions are in the form of an equality, such as \(x=3\) or \(y=\sin (x)\). To be most effective, the left side should be a simple variable. expression \(\mid\) variable \(=\) value will substitute value for every occurrence of variable in expression.

Interval constraints take the form of one or more inequalities joined by logical "and" operators. Interval constraints also permit simplification that otherwise might be invalid or not computable.

Exclusions use the "not equals" (/= or \(\neq\)) relational operator to exclude a specific value from consideration. They are used primarily to exclude an exact solution when using cSolve(), cZeros(), fMax(), fMin(), solve(), zeros(), etc.
\(x+1 \mid x=3\) ENTER
4
\(x+y \mid x=\sin (y)\) ENTER \(\sin (y)+y\)
\(x+y \mid \sin (y)=x\) ENTER \(\quad x+y\)
\begin{tabular}{lr}
\(x x^{\wedge} 3-2 x x+7 \rightarrow f(x x)\) ENTER & Done \\
\(f(x) \mid x=\sqrt{ }(3)\) ENTER & \(3^{3 / 2}-2 \cdot \sqrt{3}+7\) \\
\((\sin (x))^{\wedge} 2+2 \sin (x)-6 \mid\) & \(\sin (x)=d\) ENTER \\
\(d^{2}+2 d-6\)
\end{tabular}
solve \(\left(x^{\wedge} 2-1=0, x\right) \mid x>0\) and \(x<2 \begin{aligned} & \text { ENTER } \\ & x=1\end{aligned}\)
\(\sqrt{ }(x) * \sqrt{ }(1 / x) \mid x>0\) ENTER
1
\(\sqrt{ }(x) * \sqrt{ }(1 / x)\) ENTER
\(\sqrt{\frac{1}{x}} \cdot \sqrt{x}\)
solve \(\left(x^{\wedge} 2-1=0, x\right) \mid x \neq 1\) ENTER \(\quad x=-1\)

\section*{\(\rightarrow\) (store) STOD key}
expression \(\rightarrow\) var
list \(\rightarrow\) var
matrix \(\rightarrow\) var
expression \(\rightarrow\) fun_name(parameter \(1, \ldots\))
list \(\rightarrow\) fun_name(parameter \(1, \ldots\))
matrix \(\rightarrow\) fun_name(parameter1,...)
If variable var does not exist, creates var and initializes it to expression, list, or matrix.

If var already exists and if it is not locked or protected, replaces its contents with expression, list, or matrix.

Hint: If you plan to do symbolic computations using undefined variables, avoid storing anything into commonly used, one-letter variables such as \(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}\), etc.
\begin{tabular}{|c|c|}
\hline \(\pi / 4 \rightarrow\) myvar ENTER & \(\frac{\pi}{4}\) \\
\hline \(2 \cos (x) \rightarrow Y 1(x)\) ENTER & Done \\
\hline \(\{1,2,3,4\} \rightarrow\) Lst5 [ENTER & \(\left\{\begin{array}{llll}1 & 2 & 3\end{array}\right\}\) \\
\hline \([1,2,3 ; 4,5,6] \rightarrow M a t G\) ENTER & \(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\) \\
\hline "Hello" \(\rightarrow\) str 1 ENTER & "Hello" \\
\hline
\end{tabular} \(\frac{\pi}{4}\)
one
\(234\}\)
"Hello"
© processes text as a comment line, which can be used to annotate program instructions.
© can be at the beginning or anywhere in the line. Everything to the right of © , to the end of the line, is the comment.

Program segment:
```

:© Get 10 points from the Graph
screen
:For i,1,10 © This loops 10 times

```

\section*{Reference Information}

TI-92 Error Messages 472
TI-92 Modes 479
TI-92 Character Codes 483
TI-92 Key Map 484
Complex Numbers 488
Accuracy Information 490
System Variables and Reserved Names 491
EOS \({ }^{\text {TM }}\) (Equation Operating System) Hierarchy. 492

This appendix contains reference information that includes a comprehensive list of error messages, TI-92 modes of operation, character codes, key maps, system variables and reserved names, and the EOS \({ }^{\text {TM }}\) hierarchy.

Relevant messages are displayed to help you find and correct errors in your entries.

\section*{TI-92 Error Messages}

The table below lists error messages that may be displayed when input or internal errors are encountered. The number to the left of each error message represents an internal error number that is not displayed. If the error occurs inside a Try...EndTry block, the error number is stored in system variable errornum. Many of the error messages are selfexplanatory and do not require descriptive information. However, additional information has been added for some error messages on a selective basis.

\section*{Error \\ Number Description}

10 A function did not return a value
20 A test did not resolve to TRUE or FALSE
Generally, undefined variables cannot be compared. For example, the test If \(a<b\) will cause this error if either \(a\) or \(b\) is undefined when the If statement is executed.

\section*{30 \\ Argument cannot be a folder name}

\section*{Argument error}

\section*{50 \\ Argument mismatch}

Two or more arguments must be of the same type. For example,
PtOn expression 1,expression2 and PtOn list1,list2 are both valid, but PtOn expression,list is a mismatch.

60 Argument must be a Boolean expression
70 Argument must be a decimal number
80 Argument must be a label name
90 Argument must be a list
100 Argument must be a matrix
110 Argument must be a Pic
120 Argument must be a Pic or string
130 Argument must be a string
140 Argument must be a variable name
For example, DelVar 12 is invalid because a number cannot be a variable name.

150 Argument must be an empty folder name

\section*{Description}

\section*{Argument must be an expression}

For example, zeros \((2 x+3=0, x)\) is invalid because the first argument is an equation.

\section*{Dimension mismatch}

Two or more arguments must be of the same dimension. For example, \([1,2]+[1,2,3]\) is a dimension mismatch because the matrices contain a
in L1, then L1[5] is a dimension
elements.
Two or more arguments must
[1,2]+[1,2,3] is a dimension mism
different number of elements.
Divide by zero

\section*{Domain error}

An argument must be in a specified domain. For example, ans(100) is not valid because the argument for ans() must be in the range 1-99.

\section*{Duplicate variable name}

\section*{Tl-92 Error Messages (Continued)}

Error
Number Description

280 Else and Elself invalid outside of If..Endlf block
290 EndTry is missing the matching Else statement
300 Expected 2 or 3-element list or matrix
310 First argument of nSolve must be a univariate equation
The first argument must be an equation, and the equation cannot contain a non-valued variable other than the variable of interest. For example, nSolve \(\left(3 x^{\wedge} 2-4=0, x\right)\) is a valid equation; however, nSolve \(\left(3 x^{\wedge} 2-4, x\right)\) is not an equation, and nSolve \(\left(3 x^{\wedge} 2-y=0, x\right)\) is not a univariate equation because \(y\) has no value in this example.

First argument of solve or cSolve must be an equation or inequality
For example, solve(\(\left.3 x^{\wedge} 2-4, x\right)\) is invalid because the first argument is not an equation.

330 Folder
An attempt was made in the VAR-LINK menu to store a variable in a folder that does not exist.

Incomplete initial object list
There are too few initial objects chosen to define the macro's final object.

Initial and final are same object
The initial and final objects chosen for the geometry macro are the same object.

380 Invalid ans()
390 Invalid assignment
400 Invalid assignment value
410 Invalid command
Index out of range
Indirection string is not a valid variable name

\section*{Invalid folder name}

Invalid for the current mode settings
Invalid implied multiply
For example, \(x(x+1)\) is invalid; whereas, \(x^{*}(x+1)\) is the correct syntax. This is to avoid confusion between implied multiplication and function calls.

\section*{Error}

Number Description

450 Invalid in a function or current expression
Only certain commands are valid in a user-defined function. Entries that are made in the Window Editor, Table Editor, Data/Matrix Editor, and Geometry, as well as system prompts such as Lower Bound cannot contain any commands or a colon (:). See also "Creating and Evaluating UserDefined Functions" in Chapter 10.

Invalid in Custom..EndCustm block

Invalid in Dialog..EndDlog block

Invalid in Toolbar..EndTBar block

Invalid in Try..EndTry block

Invalid label
Label names must follow the same rules used for naming variables.
Invalid list or matrix
For example, a list inside a list such as \(\{2,\{3,4\}\}\) is not valid.
Invalid outside Custom..EndCustm or ToolBar..EndTbar blocks
For example, an Item command is attempted outside a Custom or ToolBar structure.

Invalid outside Dialog..EndDlog, Custom..EndCustm, or ToolBar..EndTBar blocks For example, a Title command is attempted outside a Dialog, Custom, or ToolBar structure.

Invalid outside Dialog..EndDlog block
For example, the DropDown command is attempted outside a Dialog structure.

Invalid outside function or program
A number of commands are not valid outside a program or a function. For example, Local cannot be used unless it is in a program or function.

Invalid outside Loop..EndLoop, For..EndFor, or While..EndWhile blocks
For example, the Exit command is valid only inside these loop blocks.
Invalid pathname
For example, \lvar is invalid.

Invalid program reference
Programs cannot be referenced within functions or expressions such as \(1+p(x)\) where \(p\) is a program.

\section*{Tl-92 Error Messages (Continued)}

\section*{Error}

Number Description

590 Invalid syntax block
A Dialog..EndDlog block is empty or has more than one title. A Custom..EndCustm block cannot contain PIC variables, and items must be preceded by a title. A Toolbar..EndTBar block must have a second argument if no items follow; or items must have a second argument and must be preceded by a title.

600 Invalid table

610 Invalid variable name in a Local statement

620 Invalid variable or function name

630 Invalid variable reference

640 Invalid vector syntax
Link transmission
A transmission between two units was not completed. Verify that the connecting cable is connected firmly to both units.

Macro objects cannot be redefined
An object in Geometry that was created by a macro cannot be redefined with Redefine Point.

Memory
The calculation required more memory than was available at that time.

Missing (
Missing)
Missing "

Missing]

Missing \}

Missing start or end of block syntax
Missing Then in the If..Endlf block
Name is not a function or program
No final object
No final objects were selected for a macro definition in Geometry.
No initial object
No initial objects were selected for a macro definition in Geometry.

\section*{No solution}

Using the interactive math features (F5:Math) in the Graph application can give this error. For example, if you attempt to find an inflection point of the parabola \(\mathrm{y} 1(\mathrm{x})=\mathrm{x}^{2}\), which does not exist, this error will be displayed.

Non-algebraic variable in expression
If a is the name of a PIC, GDB, MAC, FIG, etc., \(a+1\) is invalid. Use a different variable name in the expression or delete the variable.

\section*{Non-real result}

For example, if the unit is in the REAL setting of the Complex Format mode, \(\ln (-2)\) is invalid.

Not enough memory to save current variable. Please delete unneeded variables on the Var-Link screen and re-open editor as current OR re-open editor and use F1 8 to clear editor.

This error message is caused by very low memory conditions inside the Data/Matrix Editor.

\section*{Objects are unrelated}

A macro cannot be defined because the initial and final objects selected are geometrically unrelated.

\section*{Overflow}

Plot setup

\section*{Program not found}

A program reference inside another program could not be found in the provided path during execution.

Recursion is limited to \(\mathbf{2 5 5}\) calls deep
Reserved name or system variable
Sequence setup
Singular matrix
Stat
Syntax
The structure of the entry is incorrect. For example, \(x+-y\) (\(x\) plus minus \(y\)) is invalid; whereas, \(x+-y\) (\(x\) plus negative \(y\)) is correct.

The point does not lie on a path

\section*{Tl-92 Error Messages (Continued)}

\section*{Error}

Number Description

\section*{930 Too few arguments}

The expression or equation is missing one or more arguments. For example, \(d(\mathrm{f}(\mathrm{x}))\) is invalid; whereas, \(d(\mathrm{f}(\mathrm{x}), \mathrm{x})\) is the correct syntax.

Too many arguments
The expression or equation contains an excessive number of arguments and cannot be evaluated.

950 Too many subscripts
960 Undefined variable
970 Variable in use so references or changes are not allowed
980 Variable is locked or protected
\(990 \quad\) Variable name is limited to 8 characters
1000 Window variables domain
1010 Zoom

Warning: \(\infty^{\wedge} 0\) or undef^\({ }^{\wedge} 0\) replaced by 1
Warning: 0^0 replaced by 1
Warning: \(1^{\wedge} \infty\) or \(1^{\wedge}\) undef replaced by 1
Warning: cSolve might specify more zeros
Warning: Differentiating an equation may produce a false equation
Warning: Expected finite real integrand
Warning: Memory full, simplification might be incomplete
Warning: Object already exists
Warning: Operation might introduce false solutions
Warning: Operation might lose solutions
Warning: Overflow replaced by \(\infty\) or \(-\infty\)
Warning: Questionable accuracy
Warning: Questionable solution
Warning: Solve might specify more zeros
Warning: Trig function argument too big for accurate reduction

This section describes the modes of the TI-92 and lists the possible settings of each mode. These mode settings are displayed when you press MODE.

\section*{Graph}

\section*{Current Folder}

Note: For detailed information about using folders, see Chapter 10.

Display Digits

Specifies the type of graphs you can plot.
\begin{tabular}{ll}
\hline 1:FUNCTION & \(y(x)\) functions (Chapter 3) \\
\hline 2:PARAMETRIC & \(x(t)\) and \(y(t)\) parametric equations (Chapter 11) \\
\hline 3:POLAR & \(r(\theta)\) polar equations (Chapter 12) \\
\hline 4:SEQUENCE & \(u(n)\) sequences (Chapter 13) \\
\hline 5:3D & \(z(x, y)\) 3D equations (Chapter 14) \\
\hline
\end{tabular}

Note: If you use a split screen with Number of Graphs = 2, Graph is for the top or left part of the screen and Graph 2 is for the bottom or right part.

Specifies the current folder. You can set up multiple folders with unique configurations of variables, graph databases, programs, etc.
\begin{tabular}{ll}
\hline \(1:\) main & Default folder included with the TI-92. \\
\hline \(2:-\) & Other folders are available only if they have been \\
(custom folders) & created by a user. \\
\hline
\end{tabular}

Selects the number of digits. These decimal settings affect only how results are displayed-you can enter a number in any format.

Internally, the TI-92 retains decimal numbers with 14 significant digits. For display purposes, such numbers are rounded to a maximum of 12 significant digits.
\begin{tabular}{ll}
1:FIX 0 & \begin{tabular}{l}
Results are always displayed with the selected \\
number of decimal places.
\end{tabular} \\
\(\ldots\) & \\
\hline D:FIX 1 & \\
\hline E:FLOAT & \begin{tabular}{l}
The number of decimal places varies, depending \\
on the result.
\end{tabular} \\
\hline F:FLOAT 1 & \begin{tabular}{l}
If the integer part has more than the selected \\
G:FLOAT 2
\end{tabular} \\
\begin{tabular}{l}
number of digits, the result is rounded and \\
displayed in scientific notation.
\end{tabular} \\
Q:FLOAT 12 & \begin{tabular}{l}
For example, in FLOAT 4: \\
12345. is shown as 1.235E4
\end{tabular} \\
\hline
\end{tabular}

\section*{TI-92 Modes (Continued)}

Angle

\section*{Exponential Format}

Specifies the units in which angle values are interpreted and displayed in trig functions and polar/rectangular conversions.
\begin{tabular}{l}
\hline 1:RADIAN \\
\hline 2:DEGREE \\
\hline
\end{tabular}

Specifies which notation format should be used. These formats affect only how an answer is displayed; you can enter a number in any format. Numeric answers can be displayed with up to 12 digits and a 3 -digit exponent.
\begin{tabular}{|c|c|}
\hline 1:NORMAL & Expresses numbers in standard format. For example, 12345.67 \\
\hline 2:SCIENTIFIC & \begin{tabular}{l}
Expresses numbers in two parts: \\
- The significant digits display with one digit to the left of the decimal. \\
- The power of 10 displays to the right of E . \\
For example, 1.234567 E4 means \(1.234567 \times 10^{4}\)
\end{tabular} \\
\hline 3:ENGINEERING & \begin{tabular}{l}
Similar to scientific notation. However: \\
- The number may have one, two, or three digits before the decimal. \\
- The power-of-10 exponent is a multiple of three.
\end{tabular} \\
\hline
\end{tabular}

For example, 12.34567E3 means \(12.34567 \times 10^{3}\)
Note: If you select NORMAL, but the answer cannot be displayed in the number of digits selected by Display Digits, the TI-92 displays the answer in SCIENTIFIC notation. If Display Digits = FLOAT, scientific notation will be used for exponents of 12 or more and exponents of -4 or less.

Specifies whether complex results are displayed and, if so, their format.
\begin{tabular}{ll}
\hline 1:REAL & \begin{tabular}{l}
Does not display complex results. (If a result is a \\
complex number and the input does not contain \\
the complex unit \(\boldsymbol{i}\), an error message is \\
displayed.)
\end{tabular} \\
\hline 2:RECTANGULAR & Displays complex numbers in the form: a+bi \\
\hline 3:POLAR & Displays complex numbers in the form: \(\mathrm{re} \boldsymbol{e}^{\boldsymbol{i} \theta}\) \\
\hline
\end{tabular}

\section*{Vector Format}

\section*{Pretty Print}

\section*{Split Screen}

Determines how 2-element and 3-element vectors are displayed. You can enter vectors in any of the coordinate systems.
\begin{tabular}{ll}
\hline 1:RECTANGULAR & \begin{tabular}{l}
Coordinates are in terms of \(x, y\), and \(z\). For \\
example, \([3,5,2]\) represents \(x=3, y=5\), and \(z=2\).
\end{tabular} \\
\hline 2:CYLINDRICAL & \begin{tabular}{l}
Coordinates are in terms of \(r, \theta\), and \(z\). For \\
example, \([3, \angle 45,2]\) represents \(r=3, \theta=45\), and
\end{tabular} \\
& \(z=2\).
\end{tabular}

Determines how results are displayed on the Home screen.
\begin{tabular}{ll}
\hline 1:OFF & \begin{tabular}{l}
Results are displayed in a linear, one- \\
dimensional form.
\end{tabular} \\
\hline For example, \(\pi^{\wedge} 2, \pi / 2\), or \(\sqrt{ }((x-3) / x)\) \\
\hline \(2:\) ON & \begin{tabular}{l}
Results are displayed in conventional \\
mathematical format.
\end{tabular} \\
& For example, \(\pi^{2}, \frac{\pi}{2}\), or \(\sqrt{\frac{x-3}{x}}\) \\
\hline
\end{tabular}

Note: For a complete description of these settings, refer to "Formats of Displayed Results" in Chapter 2.

Lets you split the screen into two parts. For example, you can display a graph and see the \(\mathrm{Y}=\) Editor at the same time (Chapter 5).
\begin{tabular}{ll}
\hline 1:FULL & The screen is not split. \\
\hline 2:TOP-BOTTOM & \begin{tabular}{l}
The applications are shown in two screens that \\
are above and below each other.
\end{tabular} \\
\hline 3:LEFT-RIGHT & \begin{tabular}{l}
The applications are shown in two screens that \\
are to the left and right of each other.
\end{tabular} \\
\hline
\end{tabular}

To determine what and how information is displayed on a split screen, use this mode in conjunction with other modes such as Split 1 App, Split 2 App, Number of Graphs, and Split Screen Ratio.

\section*{TI-92 Modes (Continued)}

\author{
Split 1 App \\ and \\ Split 2 App
}

\section*{Graph 2}

Split Screen Ratio

Specifies which application is displayed on the screen.
- For a full screen, only Split 1 App is active.
- For a split screen, Split 1 App is the top or left part of the screen and Split 2 App is the bottom or right part.

The available application choices are those listed when you press () from the Page 2 mode screen or when you press APPS. You must have different applications in each screen unless you are in 2-graph mode.

Specifies whether both parts of a split screen can display graphs at the same time.
\begin{tabular}{ll}
1 & Only one part can display graphs. \\
\hline 2 & \begin{tabular}{l}
Both parts can display an independent graph \\
screen (Graph or Graph 2 setting) with \\
independent settings.
\end{tabular} \\
\hline
\end{tabular}

Specifies the type of graphs that you can plot for the second graph on a two-graph split screen. This is active only when Number of Graphs \(=2\). In this two-graph setting, Graph sets the type of graph for the top or left part of the split screen, and Graph 2 sets the bottom or right part. The available choices are the same as for Graph.

Specifies the proportional sizes of the two parts of a split screen.
\begin{tabular}{ll}
\hline \(1: 1\) & The screen is split evenly. \\
\hline \(1: 2\) & \begin{tabular}{l}
The bottom or right part is approximately twice \\
the size of the top or left part.
\end{tabular} \\
\hline \(2: 1\) & \begin{tabular}{l}
The top or left part is approximately twice the \\
size of the bottom or right part.
\end{tabular} \\
\hline
\end{tabular}

Specifies how fractional and symbolic expressions are calculated and displayed. By retaining rational and symbolic forms in the EXACT setting, the TI-92 increases precision by eliminating most numeric rounding errors.
\begin{tabular}{ll}
\hline 1:AUTO & \begin{tabular}{l}
Uses EXACT setting in most cases. However, \\
uses APPROXIMATE if the entry contains a \\
decimal point.
\end{tabular} \\
\hline 2:EXACT & \begin{tabular}{l}
Displays non-whole-number results in their \\
rational or symbolic form.
\end{tabular} \\
\hline 3:APPROXIMATE & Displays numeric results in floating-point form. \\
\hline \begin{tabular}{l}
Note: For a complete description of these settings, refer to "Formats \\
of Displayed Results" in Chapter 2.
\end{tabular}
\end{tabular}

The char() function lets you refer to any TI-92 character by its numeric character code.
For example, to display on the Program I/O screen, use Disp char(127). You can use the ord() function to find the numeric code of a character. For example, ord ("A") returns the value 65 .

The getKey() function returns a number that corresponds to the last key pressed, according to the tables shown in this section. For example, if your program contains a getKey() function, pressing 2nd F1 will return a value of 268.

Table 1: Key Values for Primary Keys
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Key & \multicolumn{8}{|c|}{Modifier} \\
\hline & \multicolumn{2}{|c|}{None} & \multicolumn{2}{|c|}{t} & \multicolumn{2}{|c|}{2nd} & \multicolumn{2}{|c|}{\(\square\)} \\
\hline & Assoc. & Value & Assoc. & Value & Assoc. & Value & Assoc. & Value \\
\hline F1 & F1 & 268 & F1 & 268 & F1 & 268 & & 8460 \\
\hline F2 & F2 & 269 & F2 & 269 & F2 & 269 & & 8461 \\
\hline F3 & F3 & 270 & F3 & 270 & F3 & 270 & & 8462 \\
\hline F4 & F4 & 271 & F4 & 271 & F4 & 271 & & 8463 \\
\hline F5 & F5 & 272 & F5 & 272 & F5 & 272 & & 8464 \\
\hline F6 & F6 & 273 & F6 & 273 & F6 & 273 & & 8465 \\
\hline F7 & F7 & 274 & F7 & 274 & F7 & 274 & & 8466 \\
\hline F8 & F8 & 275 & F8 & 275 & F8 & 275 & & 8467 \\
\hline MODE & MODE & 266 & MODE & 266 & MODE & 266 & & 8458 \\
\hline CLEAR & CLEAR & 263 & CLEAR & 263 & CLEAR & 263 & & 8455 \\
\hline LN & LN & 262 & LN & 262 & \(\mathrm{e}^{\mathrm{x}}\) & 4358 & & 8454 \\
\hline ESC & ESC & 264 & ESC & 264 & QUIT & 4360 & & 8456 \\
\hline APPS & APPS & 265 & APPS & 265 & SWITCH & 4361 & & 8457 \\
\hline ENTER & CR & 13 & CR & 13 & ENTRY & 4109 & APPROX & 8205 \\
\hline SIN & SIN & 259 & SIN & 259 & \(\mathrm{SIN}^{-1}\) & 4355 & & 8451 \\
\hline COS & COS & 260 & COS & 260 & \(\mathrm{COS}^{-1}\) & 4356 & & 8452 \\
\hline TAN & TAN & 261 & TAN & 261 & TAN \({ }^{-1}\) & 4357 & & 8453 \\
\hline \(\wedge\) & \(\wedge\) & 94 & \(\wedge\) & 94 & \(\pi\) & 140 & & 8286 \\
\hline (& \((\) & 40 & \((\) & 40 & \{ & 123 & & 8232 \\
\hline) &) & 41 &) & 41 & \} & 125 & & 8233 \\
\hline , & , & 44 & , & 44 & [& 91 & & 8236 \\
\hline \(\div\) & 1 & 47 & 1 & 47 &] & 93 & & 8239 \\
\hline \(\times\) & * & 42 & * & 42 & \(\checkmark\) & 4138 & & 8234 \\
\hline - & - & 45 & - & 45 & VAR-LNK & 4141 & Contrast - & \\
\hline + & + & 43 & + & 43 & CHAR & 4139 & Contrast + & \\
\hline STO & STO & 258 & STO & 258 & RCL & 4354 & & 8450 \\
\hline SPACE & & 32 & & 32 & & 32 & & 8224 \\
\hline \(=\) & = & 61 & = & 61 & 1 & 92 & & 8253 \\
\hline \(\leftarrow\) & BS & 257 & BS & 257 & INS & 4353 & DEL & 8449 \\
\hline \(\theta\) & \(\theta\) & 136 & \(\theta\) & 136 & : & 58 & & 8328 \\
\hline (-) & - & 173 & - & 173 & ANS & 4372 & & 8365 \\
\hline . & . & 46 & . & 46 & \(>\) & 62 & & 8238 \\
\hline
\end{tabular}

Table 1: Key Values for Primary Keys (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Key & \multicolumn{8}{|c|}{Modifier} \\
\hline & \multicolumn{2}{|c|}{None} & \multicolumn{2}{|c|}{1} & \multicolumn{2}{|c|}{2nd} & \multicolumn{2}{|c|}{\(\square\)} \\
\hline & Assoc. & Value & Assoc. & Value & Assoc. & Value & Assoc. & Value \\
\hline 0 & 0 & 48 & 0 & 48 & < & 60 & & 8240 \\
\hline 1 & 1 & 49 & 1 & 49 & E & 149 & & 8241 \\
\hline 2 & 2 & 50 & 2 & 50 & CATLG & 4146 & & 8242 \\
\hline 3 & 3 & 51 & 3 & 51 & CUST & 4147 & & 8243 \\
\hline 4 & 4 & 52 & 4 & 52 & \(\Sigma\) & 4148 & & 8244 \\
\hline 5 & 5 & 53 & 5 & 53 & MATH & 4149 & & 8245 \\
\hline 6 & 6 & 54 & 6 & 54 & MEM & 4150 & & 8246 \\
\hline 7 & 7 & 55 & 7 & 55 & VAR-LNK & 4151 & & 8247 \\
\hline 8 & 8 & 56 & 8 & 56 & J & 4152 & & 8248 \\
\hline 9 & 9 & 57 & 9 & 57 & \(\delta\) & 4153 & & 8249 \\
\hline A & a & 97 & A & 65 & Table 3 & & & 8257 \\
\hline B & b & 98 & B & 66 & ، & 39 & & 8258 \\
\hline C & c & 99 & C & 67 & Table 4 & & COPY & 8259 \\
\hline D & d & 100 & D & 68 & - & 176 & & 8260 \\
\hline E & e & 101 & E & 69 & Table 5 & & WINDOW & 8261 \\
\hline F & f & 102 & F & 70 & \(\angle\) & 159 & FORMAT & 8262 \\
\hline G & g & 103 & G & 71 & Table 6 & & & 8263 \\
\hline H & h & 104 & H & 72 & \& & 38 & & 8264 \\
\hline 1 & i & 105 & 1 & 73 & i & 151 & & 8265 \\
\hline J & & 106 & \(J\) & 74 & \(\infty\) & 190 & & 8266 \\
\hline K & k & 107 & K & 75 & | & 124 & & 8267 \\
\hline L & 1 & 108 & L & 76 & " & 34 & & 8268 \\
\hline M & m & 109 & M & 77 & ; & 59 & & 8269 \\
\hline N & n & 110 & N & 78 & Table 7 & & NEW & 8270 \\
\hline O & 0 & 111 & 0 & 79 & Table 8 & & OPEN & 8271 \\
\hline P & p & 112 & P & 80 & - & 95 & & 8272 \\
\hline Q & q & 113 & Q & 81 & ? & 63 & HOME & 8273 \\
\hline R & r & 114 & R & 82 & @ & 64 & GRAPH & 8274 \\
\hline S & s & 115 & S & 83 & \(\beta\) & 223 & SAVE & 8275 \\
\hline T & t & 116 & T & 84 & \# & 35 & TbISet & 8276 \\
\hline U & u & 117 & U & 85 & Table 9 & & & 8277 \\
\hline V & v & 118 & V & 86 & \# & 157 & PASTE & 8278 \\
\hline W & w & 119 & W & 87 & ! & 33 & \(Y=\) & 8279 \\
\hline X & x & 120 & X & 88 & © & 169 & CUT & 8280 \\
\hline Y & y & 121 & Y & 89 & - & 18 & TABLE & 8281 \\
\hline Z & z & 122 & Z & 90 & Caps Lock & & & 8282 \\
\hline
\end{tabular}

Table 2: Arrow Keys
\begin{tabular}{|c|c|c|c|c|c|}
\hline Arrow Keys & Normal & 1 & 2 nd & \(\square\) & (2) \\
\hline \(\bigcirc\) & 338 & 16722 & 4434 & 8530 & 33106 \\
\hline \(\bigcirc\) & 342 & 16726 & 4438 & 8534 & 33110 \\
\hline (& 340 & 16724 & 4436 & 8532 & 33108 \\
\hline © & 348 & 16732 & 4444 & 8540 & 33116 \\
\hline () & 344 & 16728 & 4440 & 8536 & 33112 \\
\hline (3) & 345 & 16729 & 4441 & 8537 & 33113 \\
\hline \(\bigcirc\) & 337 & 16721 & 4433 & 8529 & 33105 \\
\hline \(\bigcirc\) & 339 & 16723 & 4435 & 8531 & 33107 \\
\hline
\end{tabular}

Note: The Grab (图)modifier only affects the arrow keys.
Table 3: Grave Accent Prefix (\(2 n d\) A)
\begin{tabular}{|c|c|c|c|}
\hline Key & Assoc. & Normal & \(\boldsymbol{\uparrow}\) \\
\hline A & à & 224 & 192 \\
\hline E & è & 232 & 200 \\
\hline I & ̀̀ & 236 & 204 \\
\hline O & ò & 242 & 210 \\
\hline U & ù & 249 & 217 \\
\hline
\end{tabular}

Table 4: Cedilla Prefix (2 nd \(C\))
\begin{tabular}{|c|c|c|c|}
\hline Key & Assoc. & Normal & \(\uparrow\) \\
\hline C & ç & 231 & 199 \\
\hline
\end{tabular}

Table 5: Acute Accent Prefix (2ndE)
\begin{tabular}{|c|c|c|c|}
\hline Key & Assoc. & Normal & \(\boldsymbol{\uparrow}\) \\
\hline A & á & 225 & 193 \\
\hline E & é & 233 & 201 \\
\hline I & í & 237 & 205 \\
\hline O & ó & 243 & 211 \\
\hline U & ú & 250 & 218 \\
\hline Y & ý & 253 & 221 \\
\hline
\end{tabular}

Table 6: Greek Prefix (2 nd \(G\))
\begin{tabular}{|c|c|c|c|}
\hline Key & Assoc. & Normal & \(\boxed{\mid}\) \\
\hline A & \(\alpha\) & 128 & \\
\hline B & \(\beta\) & 129 & \\
\hline D & \(\delta\) & 133 & 132 \\
\hline E & \(\varepsilon\) & 134 & \\
\hline F & \(\phi\) & 145 & \\
\hline G & \(\gamma\) & 131 & 130 \\
\hline L & \(\lambda\) & 137 & \\
\hline P & \(\mu\) & 181 & 139 \\
\hline R & \(\pi\) & 140 & 142 \\
\hline S & \(\sigma\) & 141 & \\
\hline W & \(\tau\) & 143 & 147 \\
\hline X & \(\omega\) & 144 & \\
\hline Y & \(\psi\) & 148 & \\
\hline Z & \(\zeta\) & 138 & \\
\hline
\end{tabular}

Table 7: Tilde Prefix ([2nd \(N\))
\begin{tabular}{|c|c|c|c|}
\hline Key & Assoc. & Normal & \(\boldsymbol{1}\) \\
\hline N & \(\tilde{\mathrm{n}}\) & 241 & 209 \\
\hline O & \(\tilde{o}\) & 245 & \\
\hline
\end{tabular}

Table 8: Caret Prefix ([2nd O)
\begin{tabular}{|c|c|c|c|}
\hline Key & Assoc. & Normal & \(\boldsymbol{\uparrow}\) \\
\hline A & \(\hat{\mathrm{a}}\) & 226 & 194 \\
\hline E & \(\hat{\mathrm{e}}\) & 234 & 202 \\
\hline I & \(\hat{\imath}\) & 238 & 206 \\
\hline O & \(\hat{o}\) & 244 & 212 \\
\hline U & \(\hat{u}\) & 251 & 219 \\
\hline
\end{tabular}

Table 9: Umlaut Prefix ([2ndU)
\begin{tabular}{|c|c|c|c|}
\hline Key & Assoc. & Normal & \(\boldsymbol{\dagger}\) \\
\hline A & ä & 228 & 196 \\
\hline E & ë & 235 & 203 \\
\hline I & \(\ddot{ }\) & 239 & 207 \\
\hline O & ö & 246 & 214 \\
\hline U & \(\ddot{y}\) & 252 & 220 \\
\hline Y & ÿ & 255 & \\
\hline
\end{tabular}

\section*{Overview of Complex Numbers}

Important: To get the i symbol, press 2nd [i] (second function of I). Do not simply type an I.

Important: To get the \(e\) symbol, press 2nd [ex]. Do not simply type an \(E\).

Tip: To enter \(\theta\) in degrees, type a \({ }^{\circ}\) symbol (such as \(45^{\circ}\)). To get the \({ }^{\circ}\) symbol, type 2nd D or 2nd [MATH] 21.

This section describes how to enter complex numbers. It also describes how the Complex Format mode setting affects the way in which complex results are displayed.

A complex number has real and imaginary components that identify a point in the complex plane. These components are measured along the real and imaginary axes, which are similar to the x and y axes in the real plane.

Notice that the point can be expressed in rectangular or polar form.

The \(i\) symbol identifies a complex number.

\begin{tabular}{|c|c|}
\hline To enter the: & Use the key sequence: \\
\hline \multirow[t]{4}{*}{Rectangular form
\[
a+b \boldsymbol{i}
\]} & Substitute the applicable values or variable names for \(a\) and \(b\). \\
\hline & \(\mathrm{a} \oplus \mathrm{b}\) 2nd [i] \\
\hline & For example: \\
\hline & \[
\frac{2+5 i}{2+3 i}
\]
\[
2+3 \cdot i
\] \\
\hline
\end{tabular}

Polar form
\(r e^{i \theta}\)

Substitute the applicable values or variable names for \(r\) and \(\theta\).
\[
\mathrm{r} \text { 2nd }[\mathrm{e} x] \text { 2nd }[i] \theta
\]

For example:

\section*{Complex Format Mode}

To Use Complex
Variables in Symbolic Calculations

You can use MODE to set the Complex Format mode to one of three settings.

You can enter a complex number at any time, regardless of the Complex Format mode setting. However, the mode setting determines how results are displayed.
\begin{tabular}{ll}
\hline If Complex Format is: & The TI-92: \\
\hline REAL & \begin{tabular}{l}
Will not introduce complex results unless \\
you:
\end{tabular} \\
& \begin{tabular}{l}
Enter a complex number in a calculation. \\
- or - \\
Use a special complex function (cFactor, \\
cSolve, cZeros).
\end{tabular} \\
RECTANGULAR & \begin{tabular}{l}
Will introduce complex results in the \\
or
\end{tabular} \\
SOLAR & \begin{tabular}{l}
specified form. However, you can enter \\
complex numbers in any form (or a mixture \\
of both forms).
\end{tabular} \\
\hline
\end{tabular}

Regardless of the Complex Format mode setting, all undefined variables are treated as real numbers in symbolic calculations. To perform complex symbolic analysis, you must define a complex variable. For example:
\(x+y i \rightarrow z\)
Then you can use \(z\) as a complex variable.

Degree-mode scaling by \(\pi / 180\) applies only to the trigonometric and inverse trigonometric functions. This scaling does not apply to the related exponential, logarithmic, hyperbolic, or inverse-hyperbolic functions. Consequently, radian-mode identities between these functions are not generally true for degree mode when the inputs or results are non-real. For example, degree-mode scaling is applied to \(\cos (\theta)+i \sin (\theta)\) but not to the radian-equivalent expression \(e^{\wedge}(i \theta)\). Radian mode is recommended for complex number calculations.

\section*{Accuracy Information}

\section*{Computational Accuracy}

\section*{Graphing Accuracy}

Note: For a table that lists the number of pixels in a full screen or split screen, refer to "Setting and Exiting the Split Screen Mode" in Chapter 5.

To maximize accuracy, the TI-92 carries more digits internally than it displays.

Floating-point (decimal) values in memory are stored using up to 14 digits with a 3 -digit exponent.
- For min and max Window variables (xmin, xmax, ymin, ymax, etc.), you can store values using up to 12 digits. Other Window variables use 14 digits.
- When a floating-point value is displayed, the displayed value is rounded as specified by the applicable mode settings (Display Digits, Exponential Format, etc.), with a maximum of 12 digits and a 3-digit exponent.
- RegEQ displays up to 14 -digit coefficients.

Integer values in memory are stored using up to 614 digits.

The Window variable xmin is the center of the leftmost pixel used, and xmax is the center of the rightmost pixel used. \(\Delta x\) is the distance between the centers of two horizontally adjacent pixels.
- \(\Delta x\) is calculated as (\(\mathrm{xmax}-\mathrm{xmin}\)) / (\# of x pixels -1).
- If \(\Delta x\) is entered from the Home screen or a program, \(x m a x\) is calculated as \(\mathrm{xmin}+\Delta \mathrm{x} *\) (\# of x pixels -1).

The Window variable ymin is the center of the bottom pixel used, and ymax is the center of the top pixel used. \(\Delta y\) is the distance between the centers of two vertically adjacent pixels.
- \(\Delta y\) is calculated as (ymax - ymin) / (\# of y pixels - 1).
- If \(\Delta y\) is entered from the Home screen or a program, ymax is calculated as ymin \(+\Delta y *\) (\# of y pixels -1).

Cursor coordinates are displayed as eight characters (which may include a negative sign, decimal point, and exponent). The coordinate values (\(\mathrm{xc}, \mathrm{yc}, \mathrm{zc}\), etc.) are updated with a maximum of 12-digit accuracy.

\section*{System Variables and Reserved Names}

This section lists the names of system variables and reserved function names that are used by the TI-92. Only those system variables and reserved function names that are identified by an asterisk (*) can be deleted by using DelVar var on the entry line.
\begin{tabular}{|c|c|c|c|c|}
\hline Graph & \(\mathrm{y} 1(\mathrm{x})-\mathrm{y} 99(\mathrm{x})^{*}\) & r1(\(\theta\))-r99(\(\theta\) ** & \(\mathrm{xt} 1(\mathrm{t})-\mathrm{xt} 99(\mathrm{t})^{*}\) & yt1(t)- yt99(t)* \\
\hline & \(\mathrm{zl}(\mathrm{x}, \mathrm{y})-\mathrm{z99}(\mathrm{x}, \mathrm{y})^{*}\) & u1(n)-u99(n)* & ui1-ui99* & \\
\hline & yc & zc & tc & rc \\
\hline & \(\theta \mathrm{c}\) & nc & xfact & yfact \\
\hline & zfact & xmin & xmax & xscl \\
\hline & xgrid & ymin & ymax & yscl \\
\hline & ygrid & xres & \(\Delta \mathrm{x}\) & \(\Delta \mathrm{y}\) \\
\hline & zmin & zmax & zscl & eye \(\theta\) \\
\hline & еуeф & \(\theta\) min & \(\theta\) max & \(\theta\) step \\
\hline & tmin & tmax & tstep & nmin \\
\hline & \(n\) max & plotStrt & plotStep & sysMath \\
\hline Graph Zoom & zxmin & zxmax & zxscl & zxgrid \\
\hline & zymin & zymax & zyscl & zygrid \\
\hline & zxres & z \(\theta\) min & z \(\theta\) max & z 0 step \\
\hline & ztmin & ztmax & ztstep & zzmin \\
\hline & zzmax & zzscl & zeye \(\theta\) & zeye \(\phi\) \\
\hline & znmin & znmax & zpltstrt & zpltstep \\
\hline Statistics & \(\overline{\mathrm{x}}\) & \(\overline{\mathrm{y}}\) & \(\Sigma \mathrm{x}\) & \(\sigma \mathrm{x}\) \\
\hline & \(\Sigma \mathrm{x}^{2}\) & Exy & \(\Sigma \mathrm{y}\) & \\
\hline & \(\Sigma y^{2}\) & corr & maxX & maxY \\
\hline & medStat & medx1 & medx 2 & medx3 \\
\hline & medy1 & medy2 & medy3 & min X \\
\hline & \[
\operatorname{minY}
\] & nStat & q1 & q3 \\
\hline & regCoef* & \[
\operatorname{regEq}(\mathrm{x})^{*}
\] & seed1 & \\
\hline & Sx & Sy & \(\mathrm{R}^{2}\) & \\
\hline Table & tblStart & \(\Delta \mathrm{tbl}\) & tblinput & \\
\hline Data/Matrix & c1-c99 & sysData* & & \\
\hline Miscellaneous & main & ok & errornum & \\
\hline
\end{tabular}

\section*{EOS \({ }^{\text {TM }}\) (Equation Operating System) Hierarchy}

This section describes the Equation Operating System (EOS \({ }^{\text {TM }}\)) that is used by the TI-92. Numbers, variables, and functions are entered in a simple, straightforward sequence. EOS evaluates expressions and equations using parenthetical grouping and according to the priorities described below.

\section*{Order of Evaluation}
\begin{tabular}{|c|c|}
\hline Level & Operator \\
\hline 1 & Parentheses (), brackets [], braces \{ \} \\
\hline 2 & Indirection (\#) \\
\hline 3 & Function calls \\
\hline 4 & Post operators: degrees-minutes-seconds (\(\left.{ }^{\circ}, ', "\right)\), factorial (!), percentage (\%), radian (\({ }^{r}\)), subscript ([]), transpose (\({ }^{\top}\)) \\
\hline 5 & Exponentiation, power operator (^) \\
\hline 6 & Negation (\({ }^{-}\)) \\
\hline 7 & String concatenation (\&) \\
\hline 8 & Multiplication (*), division (/) \\
\hline 9 & Addition (+), subtraction (-) \\
\hline 10 & Equality relations: equal (\(=\)), not equal (\(\neq\) or \(/=\)), less than (<), less than or equal (\(\leq\) or \(<=\)), greater than (\(>\)), greater than or equal (\(\geq\) or \(>=\)) \\
\hline 11 & Logical not() \\
\hline 12 & Logical and \\
\hline 13 & Logical or, exclusive logical xor \\
\hline 14 & Constraint "with" operator (I) \\
\hline 15 & Store (\(\rightarrow\)) \\
\hline
\end{tabular}

Parentheses, Brackets, and Braces

All calculations inside a pair of parentheses, brackets, or braces are evaluated first. For example, in the expression 4(1+2), EOS first evaluates the portion of the expression inside the parentheses, \(1+2\), and then multiplies the result, 3 , by 4.

The number of opening and closing parentheses, brackets, and braces must be the same within an expression or equation. If not, an error message is displayed that indicates the missing element. For example, (1+2)/(3+4 will display the error message "Missing)."

Note: Because the TI-92 allows you to define your own functions, a variable name followed by an expression in parentheses is considered a "function call" instead of implied multiplication. For example \(a(b+c)\) is the function a evaluated by \(b+c\). To multiply the expression \(b+c\) by the variable a, use explicit multiplication: \(a *(b+c)\).
\begin{tabular}{|c|c|}
\hline Indirection & The indirection operator (\#) converts a string to a variable or function name. For example, \#("x"\&"y"\&"z") creates the variable name xyz. Indirection also allows the creation and modification of variables from inside a program. For example, if \(10 \rightarrow r\) and " \(r\) " \(\rightarrow s 1\), then \#s1=10. \\
\hline Post Operators & Post operators are operators that come directly after an argument, such as 5 !, \(25 \%\), or \(60^{\circ} 15^{\prime} 45^{\prime \prime}\). Arguments followed by a post operator are evaluated at the fourth priority level. For example, in the expression \(4 \wedge 3\) !, 3 ! is evaluated first. The result, 6 , then becomes the exponent of 4 to yield 4096. \\
\hline Exponentiation & Exponentiation \((\wedge)\) and element-by-element exponentiation \((. \wedge)\) are evaluated from right to left. For example, the expression \(2^{\wedge} 3^{\wedge} 2\) is evaluated the same as \(2^{\wedge}\left(3^{\wedge} 2\right)\) to produce 512 . This is different from \(\left(2^{\wedge} 3\right)^{\wedge} 2\), which is 64 . \\
\hline Negation & To enter a negative number, press \((--)\) followed by the number. Post operations and exponentiation are performed before negation. For example, the result of \(-x^{2}\) is a negative number, and \(-9^{2}=-81\). Use parentheses to square a negative number such as \((-9)^{2}\) to produce 81. Note also that negative \(5(-5)\) is different from minus \(5(-5)\), and -3 ! evaluates as -(3!). \\
\hline Constraint (|) & The argument following the "with" (I) operator provides a set of constraints that affect the evaluation of the argument preceding the "with" operator. \\
\hline
\end{tabular}

\section*{Service and Warranty Information}
Battery Information 496
In Case of Difficulty 498
Support and Service Information 499
Warranty Information 500

This appendix provides supplemental information that may be helpful as you use the TI-92. It includes procedures that may help you correct problems with the TI-92, and it describes the service and warranty provided by Texas Instruments.

When the BATT indicator appears in the status line, it is time to change the batteries.

\section*{Battery Information}

\author{
When to Replace the Batteries
}

The TI-92 uses two types of batteries: four AA alkaline batteries, and a lithium battery as a backup for retaining memory while you change the AA batteries.

As the AA batteries run down, the display will begin to dim (especially during calculations). To compensate for this, you will need to adjust the contrast to a higher setting. If you find it necessary to increase the contrast setting frequently, you will need to replace the AA batteries. To assist you, a BATT indicator (BATT) will display in the status line area when the batteries have drained down to the point when you should replace them soon. When the BATT indicator is displayed in reverse video ([苜TI), you must replace the AA batteries immediately. You should change the lithium backup battery about once every three years.

Note: To avoid loss of information stored in memory, the TI-92 must be off; also do not remove the AA batteries and the lithium battery at the same time.

\section*{Effects of Replacing the Batteries}

\author{
Replacing the AA Batteries
}

If you do not remove both types of batteries at the same time or allow them to run down completely, you can change either type of battery without losing anything in memory.
1. Turn the TI-92 off and place the TI-92 face down on a clean surface to avoid inadvertently turning the TI-92 on.
2. Holding the TI-92 unit upright, slide the latch on the top of the unit to the right unlocked position; slide the rear cover down about one-eighth inch and remove it from the main unit. (See the diagrams for installing AA batteries in Chapter 1: Getting Started, if necessary.)
3. To replace the AA alkaline batteries, remove all four discharged AA batteries and install new ones as shown on the polarity diagram located in the battery compartment. (See the opposite page for directions on replacing the lithium battery.)

CAUTION: Dispose of used batteries properly. Do not incinerate them or leave them within reach of small children.
4. Replace the rear cover, and slide the latch on the top of the TI-92 to the locked position to lock the cover back in place.
5. Turn the TI-92 on, and adjust the display contrast, if necessary.

\section*{Replacing the Lithium Battery}
1. Turn the TI-92 off and place the TI-92 face down on a clean surface to avoid inadvertently turning the TI-92 on.
2. Holding the TI-92 unit upright, slide the latch on the top of the unit to the right unlocked position; slide the rear cover down about one-eighth inch and remove it from the main unit. (See the diagrams for installing AA batteries in Chapter 1: Getting Started, if necessary.)
3. Loosen and remove the Phillips screw from the cover of the lithium battery compartment, and lift off the cover.

4. Depending on the model of the lithium battery that is in your TI-92, refer to the appropriate illustration below.
5. Loosen the screw and remove the metal clip that holds the lithium battery.

6. Remove the old battery and install the new battery, positive (+) side up. Then replace the metal clip and screw.

CAUTION: Dispose of used batteries properly. Do not incinerate them or leave them within reach of small children.
7. Replace the lithium battery compartment cover, and then replace the rear cover. Slide the latch on the top of the TI-92 to the locked position to lock the cover back in place.
8. Turn the TI-92 on, and adjust the display contrast, if necessary.

Note: If the lithium battery in your TI-92 resembles Figure B, please call 1-800-TI-CARES.

\section*{In Case of Difficulty}

If you have difficulty operating the TI-92, the following suggestions may help you correct the problem.

\section*{Suggestions}

Note: Correcting a "lock up" will reset your TI-92 and clear its memory.

\section*{Support and Service Information} products, please see below.

\section*{Product Support Customers in the U.S., Canada, Puerto Rico, and the Virgin Islands}

For general questions, contact Texas Instruments Customer Support:
phone: 1-800-TI-CARES (1-800-842-2737)
e-mail: ti-cares@ti.com
For technical questions, call the Programming Assistance Group of Customer Support:
phone: 1-972-917-8324

\section*{Customers outside the U.S., Canada, Puerto Rico, and the Virgin Islands}

Contact TI by e-mail or visit the TI Calculator home page on the World Wide Web.
e-mail: ti-cares@ti.com
Internet: education.ti.com

\section*{Customers in the U.S. and Canada Only}

Always contact Texas Instruments Customer Support before returning a product for service.

\section*{Customers outside the U.S. and Canada}

Refer to the leaflet enclosed with this product or contact your local Texas Instruments retailer/distributor.

Visit the TI Calculator home page on the World Wide Web. education.ti.com

See the information below concerning the warranty for your TI-92.

\author{
Customers in the U.S. and Canada Only
}

\section*{One-Year Limited Warranty for Commercial Electronic Product \\ This Texas Instruments electronic product warranty extends only to the original purchaser and user of the product.}

Warranty Duration. This Texas Instruments electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.
Warranty Coverage. This Texas Instruments electronic product is warranted against defective materials and construction. THIS WARRANTY IS VOID IF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT OR UNREASONABLE USE, NEGLECT, IMPROPER SERVICE, OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR CONSTRUCTION.
Warranty Disclaimers. ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE ONE-YEAR PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE PRODUCT OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER USER.
Some states/provinces do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.
Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from state to state or province to province.
Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a reconditioned model of an equivalent quality (at TI's option) when the product is returned, postage prepaid, to Texas Instruments Service Facility. The warranty of the repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than the postage requirement, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value prior to mailing.
Software. Software is licensed, not sold. TI and its licensors do not warrant that the software will be free from errors or meet your specific requirements. All software is provided "AS IS."

Copyright. The software and any documentation supplied with this product are protected by copyright.

\author{
Australia \& New Zealand Customers only
}

\section*{One-Year Limited Warranty for Commercial Electronic Product}

This Texas Instruments electronic product warranty extends only to the original purchaser and user of the product.
Warranty Duration. This Texas Instruments electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.
Warranty Coverage. This Texas Instruments electronic product is warranted against defective materials and construction. This warranty is void if the product has been damaged by accident or unreasonable use, neglect, improper service, or other causes not arising out of defects in materials or construction.
Warranty Disclaimers. Any implied warranties arising out of this sale, including but not limited to the implied warranties of merchantability and fitness for a particular purpose, are limited in duration to the above one-year period. Texas Instruments shall not be liable for loss of use of the product or other incidental or consequential costs, expenses, or damages incurred by the consumer or any other user.
Some jurisdictions do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.

Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from jurisdiction to jurisdiction.
Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a new or reconditioned model of an equivalent quality (at TT's option) when the product is returned to the original point of purchase. The repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than your cost to return the product, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value if you mail it.
Software. Software is licensed, not sold. TI and its licensors do not warrant that the software will be free from errors or meet your specific requirements. All software is provided "AS IS."
Copyright. The software and any documentation supplied with this product are protected by copyright.

For information about the length and terms of the warranty, refer to your package and/or to the warranty statement enclosed with this product, or contact your local Texas Instruments retailer/distributor.

\section*{General Index}

This section contains an alphabetical index to help you find information in this guidebook. To help you distinguish items that refer to interactive geometry from the other Tl-92 applications, there is a separate Geometry index that begins on page 516.

\section*{A}
absolute value function, \(\operatorname{abs}(), 377\)
accent marks, typing, 287
accessing
a CBL 2/CBL or CBR from a TI-92, 323
another TI-92, 323
folders via instructions, 218
variables in different folders, 218
accuracy information, 490
adding features through functions to the TI-92,
303
adding polynomials, 98
addition operator, (+), 458
adjusting
display contrast, 2,15
viewing window using the Zoom menu, 59
Algebra menu and submenus, 96,97
algebraic operations, \(98-00\)
adding and dividing polynomials, \(98-00\)
common denominators, 100
factoring and expanding polynomials, \(98-100\)
partial expansions, \(98-100\)
prime factors of numbers, \(98-00\)
proper fractions, 100
solving equations step-by-step, 99
solving system of linear equations, 99
zeros of polynomials, 100
analyzing
data points using frequencies and categories, 204, |205,||354-56
functions using Math toolbar menu, 62--66
angle function, angle(), 378
angle input operator, (\(\angle\)), 467
Angle mode setting, 48, 480
animating series of graph pictures, 277
APD (Automatic Power Down), 14
applications, selecting TI-92, 33
approximate function, approx(), 378
Approximate mode setting, 88
approximate results, displaying, 26
arbitrary integer, 106
arc length function, arcLen(), 379
arc lengths, 64,65
argument names, user-defined functions, 213, 214, 263, 304
augment matrices function, augment(), 379
Auto mode results, 26
Auto mode setting, 89
auto-calculate from the Data/Matrix Editor, 183
automatic panning. See panning
automatic simplification, 90,91
automatic tables, displaying, 72-274
auto-pasting information on the Home screen, 211
auto-pasting previous entries and answers, 42
average rate-of-change function, avgRC(), 379
axes and style formats, 3D graphing, 257

\section*{B}
batteries
installing, 2
low voltage indicator, 15
replacing, 496, 497
type of, 14
Boolean tests in programs, 310
box plot description, 200
break, ON key. See stopping a calculation
busy indicator, 44

\section*{C}
cable, connecting, 336
Calc dialog box description, 193, 194
Calc(ulus) menu, 101
calculated variables. See statistical variables
calculating statistical data, 192
calculator configuration in programs, 316
calculus operations
differentiating, 102
finding a Taylor polynomial, 102
finding limits, 102
integrating, 102
limit, sum, product, fmin, fmax, arcLen, taylor, nDeriv, nInt, 101
minimum and maximum, 101
calling subroutines in programs. See inserting subroutines in programs
canceling
current menu, 32
tracing a graph plot, 58
transmission between two TI-92 units, 397
CATALOG, selecting commands, 37
category values in columns, 204, 205
CBL 2/CBL or CBR Systems and the TI-92
creating data variables, 206, 207
how CBL 2/CBL or CBR data is stored, 206
referring to CBL 2/CBL or CBR lists, 206
ceiling function, ceiling(), 379
centering the viewing window, 58
changing
format settings, 54
mode settings, 35
viewing window, 55
viewing window variables, 53
window format for statistical plots, 203
zoom factors, 61
character codes, numeric, 483
character strings. See data types of variables
checking
memory, 330
mode settings, 35
status line, 48
circle command, Circle, 381
circle pixel command, PxlCrcl, 428
circles, creating, 12
clear draw command, ClrDraw, 381
clear graph command, ClrGraph, 381
clear home command, ClrHome, 4382
clear Program Input/Output screen command, ClrIO, 382
clear table command, ClrTable, 382
clearing
all drawings, 271
columns in the Data/Matrix Editor, 179
functions, 50
header definitions in the Data/Matrix Editor, 182
statistical plot definitions, 199
the entry line, 28
the Graph screen, 263
the history area, 4
closing the VAR-LINK screen, 332
cobweb. See Web plots
collecting data points from a graph, 261
column dimension of a matrix function, colDim(), 382
column norm of a matrix function, colNorm(), 382
combinations function, nCr()\(, 419\)
commands
calculator configuration commands in programs, 316
graph database commands in programs, 319
graph picture commands in programs, 319
graphical user interface commands in programs, 318
program flow control, 311,312
program input commands, 317
program output commands, 318
string commands in programs, 308
variable-related commands in programs, 307
comment command, ©, 469
comment lines in programs, entering, 300
common denominator function, comDenom(), 383
common denominators, 100
Complex Format mode setting, 480
complex functions
conjugate function, conj(), 383
factor function, cFactor(), 380
imaginary part function, imag(), 407
real function, real(), 432
solve function, cSolve(), 385
zeros function, cZeros(), 387
complex numbers
overview, 488
Complex Format mode, 489
Degree mode, 489
using complex variables in symbolic calculations, 489
complex numbers, expanding, 4
complex roots of a cubic equation, 360,361
computational accuracy, 490
computations, symbolic vs. numeric, 4
concatenate command, 309
conditional tests in programs, 310
connecting two TI-92 units to exchange data, 336
constants, special, 106
constraints, order of evaluation, 493
continuing a calculation, 24
contrast, display. See adjusting
controlling program flow, 311, 312
convergence, graphing web plots, 242
conversions
decimal equivalent, \(>\) DD, 388
expression-to-list, explist(), 396
list-to-matrix, listmat(), 413
matrix-to-list, mat list(), 415
copy variable command, CopyVar, 383
copying
data column to a list in the Data/Matrix Editor, 186
functions from Home screen to Y= Editor, 262
information to the clipboard, 211
programs, 299
statistical plot definitions, 199
text editing sessions, 282
variables between folders, 334
correlation coefficients, 197
cosine function, \(\cos (), 384\)
cover, using to support the TI-92, 15
creating
circles, 12
command scripts from Home screen entries, 289
data, list, and matrix variables, 175
geometric objects, 9
intersection points, 11
lab reports in the Text Editor, 290, 291
new folders, 217, 334
perpendicular bisectors, 11
program blocks to display custom dialog boxes, 318
reflections and orthocenters, 362, 363
creating (continued)
tangent lines, 64
triangles, 10
trisection macros, 365,366
user-defined functions, 213
variables from the Data/Matrix Editor, 176
cross product function, crossP(), 385
cumulative sum function, cumSum(), 386
cursor coordinate variables, 56. See also system variables and reserved names
cursor pad description, 16
custom plots, sequence graphing, 244
custom toolbar command
Custom, 386
EndCustm, 395
cutting or copying to the clipboard, 211
cutting, copying, and pasting
information on the Home screen, 211
text in the Text Editor, 284
cycle command, Cycle, 387
cycle pictures command, CyclePic, 387
cylindrical coordinates command, Cylind, 387

\section*{D}
data points from a graph, collecting, 261
data types of variables, 38
data variables, overview, 173, 174
Data/Matrix Editor
auto-calculate, 183
automatically filling rows and columns, 178
changing cell width, 179
clearing columns, 179
copying data column to a list, 186
creating new variables, 176
defining column headers with expressions, 182, 183
entering and editing cell values, 177
inserting and deleting rows, columns, and cells, 180
opening variables, 176
saving variables, 186
screen description, 177
scrolling, 178
shift() and cumSum() functions, 184
sorting columns, 185
using existing lists as a column, 183
database commands in programs, 320
decomposing a rational function, 352,353
Define command
Define, 389
EndFunc, 395
EndPrgm, 395
Func, 403
Prgm, 426
defined and undefined variables, 85
defining
functions from program prompts. See expr(), 398
graphing functions, 49
new functions, 49
statistical plots, 198, 199
statistical plots from the Y= Editor, 202
user-defined functions, 213
viewing window, 53
viewing window for statistical plots, 203
degree operator, \(\left(^{\circ}\right.\)), 467
degree-mode scaling, complex numbers, 489
degrees, minutes, seconds
command, DMS, 392
operators, \(\left(^{\circ}, \quad, \quad "\right), 467\)
delayed simplification, 92
delete folder command, DelFold, 390
delete variable command, DelVar, 390
deleting
characters on the entry line, 28
command marks in the Text Editor, 288
defined variables, 8586
folders, 218
graph databases, 278
graph pictures, 276
multiple characters, 29
page break marks, 290
parts of drawing objects. See erasing parts of drawing objects
programs, 299
rows, columns, and cells in the Data/Matrix Editor, 181
text editing sessions, 282
text in the Text Editor, 283
variables or folders, 333
derivative at a point, 64
derivatives of functions, 6,103
deriving the quadratic formula, 344,345
deselecting
graphing functions, 51
statistical plots, 199
determinant of a matrix function, \(\operatorname{det}(), 390\)
diagonal of a matrix function, diag(), 390
dialog boxes
Dialog, 390
DropDown, 394
EndDlog, 395
Request, 433
text command, Text, 449
Title, 449
dialog boxes in menus, 31
differentiating and integrating functions, 102
differentiation (numeric) function, nDeriv(), 419
differentiation function, \(d(), 388\)
dimension function, \(\operatorname{dim}(), 391\)
Display Digits mode, 27
display graph command, DispG, 391
display result command, Disp, 391
display screen
adjusting contrast, 2, 15
setting split screen mode, 79
split screen sizes, 80
display table command, DispTbl, 391
displaying
automatic tables, \(72-74\)
axes and grids, 54
calculated results in programs, 301
coordinates on graph screens, 55
Exact, Approx, and Auto calculation result formats, 25, 26
function definitions, 215
graph screens, 55
Home screen, 19
long entries and answers, 219
manual tables, 75
QWERTY keyboard map, 286
TABLE SETUP dialog box, 70
variables, 39
VAR-LINK screen, 331
window variables, 53
Y = Editor, 7
distance between points, 64,65
divergence example, graphing web plots, 242, 243
dividing polynomials, 98
division operator, (/), 459
domain constraints, specifying, 95
dot product function, \(\operatorname{dot} \mathrm{P}(), 392\)
draw function command, DrawFunc, 392
draw inverse function, DrawInv, 392
draw line using a point and slope command, DrawSlp, 393
draw parametric command, DrawParm, 393
draw polar command, DrawPol, 393
drawing
circles on graphs, 272
expressions in programs, 322
functions and inverses on graphs, 270
horizontal lines on graphs, 273
lines and circles in programs, 322
lines based on points and slopes, 273
lines between two points on graphs, 272
objects on a graph, 271
points and freehand lines, 271
points and pixels in programs, 321
tangent lines, 6465
tangent lines on graphs, 273

\section*{\(E\)}
\(e\) (natural log base), 106
editing
cell values in the Data/Matrix Editor, 177
expressions on the entry line, 28, 29
function definitions, 215
functions from Table screen, 76
editing (continued)
graphing functions, 49
previous entries, 29
program lines, 300
eigenvalues with a defined function, example, 370
entering
cell values in the Data/Matrix Editor, 177
comment lines in programs, 300
complex numbers, 488, 489
expressions and instructions, 22-24
functions, 303, 304
header definitions in the Data/Matrix Editor, 182
multi-command lines in programs, 300
numbers, positive and negative, 21
numbers, scientific notation, 21
program lines, 300
single and multiple expressions, 23
uppercase letters on keyboard, 18
entry line
deleting characters, 28
on the Home screen, 3
EOS hierarchy, 492, 493
equal operator, \((=), 460\)
equations
solving, 5, 99
solving with domain constraints, 6
erasing
drawing objects in programs, 321
parts of drawing objects, 272
error handling commands, Try...EndTry, in programs, 324
error messages, displayed, \(472-478\)
error messages, transmitting between two TI-92 units, 337, 338
error trapping command
ClrErr, 381
EndTry, 395
PassErr, 424
Try, 450
errornum system variable. See system variables and reserved names. See also ClrErr, 381, PassErr, 424, Try, 450
evaluating functions, 214
evaluating functions using delayed simplification, 92
evaluation order of equations and expressions. See order of evaluation
exact function, exact(), 396
Exact mode results, displaying, 25
Exact mode setting, 87
Exact, Approximate, and Auto mode settings, \(87-89,482\)
examples
3D graphing axes settings, 257
styles, 258
examples (continued)
Applications
CBL 2/CBL prpgram, 357
complex roots of a cubic equation, 360,361
creating Geometry macros, \(364-66\)
decomposing a rational function, 352,353
deriving the quadratic formula, 344,345
eigenvalues, 370
Euclidean Geometry, 362,363
exploring matrix operations, 346
filtering data, \(354-56\)
future value of an annuity, 367
interest rate of an annuity, 367
monthly payments of a car loan, 368
parametric graphing, 358, 359
pole-corner problem, 342, 343
rational, real, and complex factors, 369
running a tutorial script, 350, 351
sampling without replacement, 371
solving a standard annuity, 367
surface area of a parallelepiped, 348,349
time-value-of-money, 368
Function Graphing
generating different views of 3D graphs, 277
simultaneous graphs with lists, 266
using the Graph command, 266
using the \(\mathrm{Y}=\) Editor, 266
Programming
alternative approaches, 325, 326
conditional tests, 310
displaying calculated results, 301
entering comments, 300
For...EndFor loops, 313
getting values, 301
If...Then...Else structures, 312
If...Then...ElseIf structures, 312
If...Then...EndIf structures, 311
indentation, 301
Lbl and Goto commands, 312
local variables, 307
Loop...EndLoop loops, 315
passing values to programs, 302
subroutines, 305
While...EndWhile loops, 314
Sequence Graphing
convergence, 242
divergence, 242,243
oscillations caused by initial values, 243
predator-prey model, 244
Statistics and Data Plots
category column, 204, 205
frequency column, 204
Text Editor
creating a script from Home screen entries, 289
printing a lab report, 291
exchanging data between two TI-92 units, 336
executing command scripts, 288
exit command, Exit, 396
exiting split screen mode, 80
expand function, expand(), 397
expanding
complex numbers, 4
expressions, 4
polynomials, 98
exploring
3D graph of a parallelepiped, 348
\(\cos (x)=\sin (x)\), graph plot vs. symbolic manipulation, 347
Euclidean Geometry, 362
matrix operations, 346
exponential format mode, 27
Exponential Format mode setting, 480
exponential function, \(e^{\wedge}(), 394\)
exponentiation, order of evaluation, 493
expression definition, 22
expressions. See also data types of variables
expanding, 4, 5
reducing, 5
eye, effect of changing in 3D graphing, 255, 256

\section*{\(F\)}
\(\mathrm{f}(\mathrm{x})\) at specified points, 63
factor function, factor(), 399
factorial operator, (!), 463
factorials of numbers, 4
factoring polynomials, \(5,98,369\)
false and true constants, examples, 106
family of curves, graphing, 266
Fibonacci sequence example, 245
fill command, Fill, 399
finding text in the Text Editor, 285
floor function, floor(), 400
flow control in programs, 311, 312
folder, set current function, setFold(), 436
folders
creating and setting, 217
deleting, 218
using to store variables, 218
folders and variables, 216, 334
For loop command
EndFor, 395
For, 402
format settings, 54
formats of displayed results, 25-27
fractional part function, fpart(), 402
freeing memory, 105, 330
frequency values in columns, 204
Frobenius norm of a matrix function, norm(), 421
function definition, 22
function definitions, displaying and editing, 215
function format, 213
function graphing, 59, 60
function off command, FnOff, 401
function on command, FnOn, 401
function vs. 3D graphing,, 250-252
function vs. parametric graphing, 224-226
function vs. sequence graphing, 236-239
function-naming rules, 213
functions
creating and entering, 304
examples, 304
returning values, 304
functions and instructions
alphabetical listing of operations, \(373-469\)
quick-find locator, 374-376
algebra, 374
calculus, 374
graphics, 374
lists, 374
math, 375
matrices, 375
programming, 376
statistics, 376
strings, 376
functions vs. programs, 303
functions, restricted and valid for use in arguments, 103
future value of an annuity, example, 367

\section*{G}
generating tables of values, 69
Geometry on the TI-92. See also Geometry Index, 516-518
getting started, \(9-12\)
Get and GetCalc link commands, 323
get commands and functions
datatype function, getType(), 405
denominator function, getDenom(), 404
folder function, getFold(), 404
keypress function, getKey (), 404
link command, Get, 403
link command, GetCalc, 403
mode function, getMode(), 404
numerator function, getNum(), 40.4
get keypress function, getKey(). See also
go to command, Goto, 405
Graph 2 mode setting, 482
graph command, Graph, 406
graph database elements, 278
graph database in programs, 319
graph formats function, setGraph ()\(, 437\)
graph mode setting options, 48
graph picture commands in programs, 320
graph style command, Style, 445
graphed plots of statistical data, 192
graphical user interface commands, creating in programs, 318
graphing
3D equations, 249
graphing (continued)
accuracy, 490
commands in programs, 319
defined statistical plots, 203
draw commands, 270
family of curves, 266
functions, 7,8
functions and inverses, 270
functions defined on Home screen, 262, 263
functions in programs, 319
Math menu items, 62
parametric equations, 223
pausing and canceling, 55
piecewise-defined functions, 264,265
polar equations, 229
selected functions, 55
sequences, 235
statistical plots and \(\mathrm{Y}=\) functions, 202
graphing functions
changing, 52
clearing, 50
defining and editing, 49
overview, 47
selecting, 51
graphing modes vs. native independent variables, 262
greater than operator, (>), 461
greater than or equal operator, \((>=), 461\)
greatest common divisor function, gcd(), 403
greatest integer function, int(), 408
Greek characters, typing, 287

\section*{H}
handling difficulties with the TI-92, 498
help information about function parameters, 37
histogram plot description, 201
history area on the Home screen, 3
history information on status line, 20
Home screen
description, 3, 19
history area, 19
toolbar, 3, 19
horizontal line command, LineHorz, 412
horizontal line pixel command, PxlHorz, 428
hyperbolic functions
cosine function, \(\cosh (), 384\)
sine function, \(\sinh (), 441\)
tangent function, \(\tanh (), 448\)

\section*{I}
identity matrix function, identity(), 406
If command
Else, 395
ElseIf, 395
EndIf, 395
If, 407
Then, 449
implied multiplication usage, 22
in case of difficulty with the TI-92, 498
indirection operator, (\#), 466
indirection operator, order of evaluation, 493
infinity (\(\infty\)), 106
inflection point, 64
input command, Input, 408
input string command, InputStr, 408
inserting
cells in the Data/Matrix Editor, 181
characters on the entry line, 29
command marks in the Text Editor, 288
page-break marks, 290
print-object marks, 290
rows and columns in the Data/Matrix Editor, 180
subroutines in programs, 305
installing batteries, 2. See also replacing batteries
instruction definition, 22
integer division function, intDiv(), 409
integer part function, iPart(), 409
integer, arbitrary, 106
integrals of functions, 6
integrating and differentiating functions, 102
integration (numeric) function, \(\operatorname{nInt}(), 421\)
integration function, \(\int(0,464\)
interest rate of an annuity, example, 367
interrupting the simplification process, 91
intersection of two functions, 63
intersection point of two lines, 11
inverse
cosine function, \(\cos ^{-1}(), 384\)
functions, drawing, 270
hyperbolic cosine function, \(\cosh ^{-1}(), 384\)
hyperbolic sine function, \(\sinh ^{-1}(),-441\)
hyperbolic tangent function, \(\tanh ^{-1}(), 448\)
sine function, \(\sin ^{-1}(), 441\)
tangent function, \(\tan ^{-1}(), 447\)
item command, Item, 409

\section*{\(K\)}
key maps using getKey() function, \(484-487\)
keyboard
2nd functions, 18
general layout and cursor pad, 16
layout description, \(16-18\)
modifier keys, 17
other keys of important interest, 17
shift and caps lock modes, 18
shortcut keys, 32
special characters, 18

\section*{L}
lab reports, creating in the Text Editor, 290
label command, Lbl, 409
last answer function, ans(), 378
last entry function, entry(), 396
least common multiple function, \(\operatorname{lcm}(), 410\)
left function, left(), 410
less than operator, (<), 461
less than or equal operator, \((<=), 461\)
limit function, limit(), 411
limits of functions, 102
line command, Line, 411
line pixel command, PxlLine, 428
linear equations, solving system of, 99
linking two TI-92 units to exchange data, 336
list of statistical plots in Y= Editor, 202
list arithmetic, 458, 459
list variables, overview, 173
listing specific folders and variable types, 332
lists. See data types of variables
local command, Local, 414
lock command, Lock, 414
locking/unlocking variables or folders, 334
logarithm (natural) function, \(\ln (), 413\)
logarithm function, \(\log (), 415\)
logical "and picture" operator, AndPic, 377
logical "and" operator, and, 377
logical "not" function, not(), 421
logical "or" operator, or, 423
logical "xor picture" operator, XorPic, 452
logical "xor" operator, xor, 452
Loop command, EndLoop, 395
loop command, Loop, 415

\section*{M}
manual tables, 75, 76
matrices. See data types of variables
matrix
accessing specific elements, 174
arithmetic, 458,459
transpose, т (transpose), 446
variables, overview, 174
matrix element-by-element operators
addition, (.+), 462
division, (./), 462
multiplication, (.*), 462
power, (.^), 462
subtraction, (.-), 462
matrix row operations
mRow(), 418
mRowAdd(), 418
rowAdd(), 434
rowSwap(), 435
matrix-submatrix function, subMat(), 445
maximum function, \(\max (), 415\)
maximum of a function, fMax(), 400
maximum point of functions, 7
mean function, mean(), 416
measuring
area of closed objects, 10
viewing angles, 3D graphing, 255
median function, median(), 416
memory
displaying MEMORY screen, 330
low memory error, 105
resetting options, 330
menu operations, \(30-32\)
mid function, mid(), 417
minimum function, \(\min (), 417\)
minimum of a function, fMin(), 401
minimum surface area of a parallelepiped, 348, 349
mode settings, \(479-482\)
Angle, 480
Approximate, 88
Auto, 89
Complex Format, 480, 489
Current Folder, 479
Display Digits, 479
Exact, 87
Exact/Approx, 482
Exponential Format, 480
Graph, 479
Graph 2. 482
Number of Graphs, 482
Pretty Print, 481
Split 1 App and Split 2 App, 482
Split Screen, 481
Split Screen Ratio, 482
Vector Format, 481
mode settings, checking and changing, 35
modes description, 36
modes setting function, setMode(), 438
modes, SetMode command, 316
modifying history area in Home screen, 20
modulo function, \(\bmod (), 418\)
monthly payments of a car loan, example, 368
move variable command, MoveVar, 418
moving
between functions, 58
between menus, 32
cursor in history area, 20
cursor within expressions, 28
variables between folders, 334
multiplication operator, (*), 459
multi-statement functions, creating, 214
multi-statement user-defined functions, 265

\section*{\(N\)}
naming variables, 38
native independent variables, 262
negation operator, (-), 460
negation, order of evaluation, 493
new data command, NewData, 419
new folder command, NewFold, 420
new folders, creating, 334
new list function, newList(), 420
new matrix function, newMat(), 420
new picture command, NewPic, 420
new plot command, NewPlot, 420
not equal operator, (/=), 460
numeric character codes, 483
numerical integral over an interval, 64

\section*{0}
ok system variable, 491. See also dialog boxes, Dialog
ON/OFF key, 2
one-variable statistics command, OneVar, 423
opening
graph databases, 278
pictures of graphs, 276
programs, 299
text editing sessions, 282
order of evaluation, equations and expressions, 492, 493
oscillations, effect on sequence graphing, 243
out-of-memory error, what to do, 105
out-of-memory indication, 219
output command, Output, 423
overriding variables, 86
overtyping characters on the entry line, 29
overview
complex numbers, 488
data, list, and matrix variables, 173, 174
entering functions, 303, 304
entering programs, 300-302
generating tables, 69
graphing 3D equations, 249
graphing functions, 47
graphing parametric equations, 223
graphing polar equations, 229
graphing sequences, 235
Math menu, 62
modes, 36
performing a statistical analysis, 192
Zoom menu, 59

\section*{\(\boldsymbol{P}\)}
page-break marks, deleting and inserting, 290
panning, 58
parametric equations
defining in Y= Editor, 224
graphing, 223
selecting display style, 225
setting graph mode, 224
setting window variables, 225
parametric graphing, exploring a graph, 226
parametric vs. function graphing, 224-226
parentheses, evaluation order in expressions, 23 492
partial expansions, 98
pasting. See also auto-pasting previous entries and answers
entries and last answers from history area, 42
information from the clipboard, 212
variable names to applications, 335
pause command, Pause, 424
pausing and resuming graphing, 55
percentage operator, (\%), 460
performing computations, getting started, 4-6
performing statistical calculations, 193
permutations function, \(n \operatorname{Pr}(), 422\)
perpendicular bisectors, creating, 11
phase planes. See custom plots, sequence graphing
pictures. See data types of variables
piecewise-defined functions, graphing, 264, 265
pixel change command, PxlChg, 428
pixel coordinates, 56, 321
pixel off command, PxlOff, 429
pixel on command, PxlOn, 429
pixel test function, pxlTest(), 429
pixel text command, PxlText, 429
plots off command, PlotsOff, 425
plots on command, PlotsOn, 425
plotting statistical data, 192
point change command, PtChg, 427
point coordinates, 321
point off command, PtOff, 427
point on command, \(\mathrm{PtOn}, 427\)
point test function, ptTest(), 427
point text command, PtText, 428
polar coordinates command, \(\\) Polar, 425
polar equations
defining in \(\mathrm{Y}=\) Editor, 230
graphing, 229
selecting display style, 230
setting graph mode, 230
setting window variables and format, 231
polar graphing, exploring, 232
polar to rectangular function
\(\mathrm{P}>\mathrm{Rx}(0,424\)
\(\mathrm{P}>\mathrm{Ry}(), 424\)
polynomial evaluation function, polyEval(), 425
polynomials, factoring, 5
pop-up menu command, PopUp, 425
post operators, order of evaluation, 493
power operator, (^), 466
preassigned variable names, 38
predator-prey model, sequence graphing example, 244
Pretty Print mode, 25481
preview
3D Graphing, 248
Additional Graphing Topics, 260
Data/Matrix Editor, 172
Basic Function Graphing, 45
Memory and Variable Management, 328, 329
Parametric Graphing, 222
preview (continued)
Polar Graphing, 228
Programming, 294, 295
Sequence Graphing, 234
Split Screens, 78
Statistics and Data Plots, \(188-91\)
Symbolic Manipulation, 84
Tables, 68
Text Editor operations, 280
prime factors of numbers, 98
prime factors of rational numbers, 4
printing lab reports, 291
product function, \(\Pi(), 465\)
product function, product(), 426
programming
calculator configuration commands, 316
Calculator-Based Laboratory (CBL 2/CBL) example, 357
calling internal subroutines, 305
calling other programs as subroutines, 305
concatenate command, 309
conditional tests, 310
controlling program flow, 301,311
copying programs, 299
database commands, 320
debugging programs, 324
deleting programs, 299
displaying calculated results, 301
drawing expressions, 322
drawing lines and circles,322
drawing on the graph screen, 321, 322
drawing points and pixels, 321
erasing drawing objects, 321
getting user input, 317, 318
getting values into programs, 301
graph picture and database commands, 319
graph picture commands, 320
graphing commands, 319
GUI commands, 318
handling errors, 324
I/O screen display, 297
If, Lbl, Goto to control program flow, 311
indenting nested structures, 301
input commands, using, 317
loops to repeat command groups, \(313-15\)
opening existing programs, 299
output commands, using, 318
output display, 297
passing values to programs, 302
repeating loops immediately, 315
resuming current programs, 299
running programs, 296
run-time errors description, 324
SetMode command to configure the TI-92, 316
starting new programs and functions, 298
starting new programs from the Program Editor, 299
programming (continued)
stopping and canceling programs, 296
string commands, 309
string operations, 308
subroutines in programs, 305
table commands, 319
Try...EndTry commands to handle program errors, 324
programs vs. functions differences, 303
prompt command, Prompt, 426
proper fraction function, propFrac(), 427
proper fractions, 100

\section*{Q}

QuickCenter, tracing functions, 58
QWERTY keyboard map, 286

\section*{R}
radian operator, (r), 467
random matrix function, randMat(), 431
random normal distribution number function, randNorm(), 431
random number generator function, rand(), 431
random number generator seed command, RandSeed, 432
random polynomial function, randPoly(), 432
rational, real, and complex factors, example, 369
recall graph database command, RclGDB, 432
recall picture command, RclPic, 432
recalling
previous entries and last answers, 41
variable values, 38,39
recalling viewing windows, 61
receiving variables from another TI-92, a
CBL 2/CBL, or a CBR, 323
reciprocal operator, \(\mathrm{x}^{-1}, 468\)
rectangular coordinates command, Rect, 433
rectangular to polar function
\(\mathrm{R} P \mathrm{P} \theta(), 431\)
\(\mathrm{R}>\operatorname{Pr}(), 431\)
reduced row echelon form of a matrix function, rref(), 435
reducing expressions, 5
regressions
cubic, CubicReg, 386
exponential, ExpReg, 398
linear, LinReg, 413
logarithmic, LnReg, 414
median-median line, MedMed, 416
power, PowerReg, 426
quadratic, QuadReg, 430
quartic polynomial, QuartReg, 430
relational tests in programs, 310
remainder function, remain(), 433
removing highlight from previous entries, 28
rename variable command, Rename, 433
renaming
folders, 334
variables, 334
replace picture command, RplcPic, 435
replacing
batteries, 496, 497
multiple characters, 29
reserved names and system variables, 491
resetting memory, 330
restoring
saved Home screens, 210
standard viewing window, 61
results formats
Exact, Approx, Auto, 25, 26
exponential, 27
return command, Return, 434
returning values from functions, 304
reusing previous entries and last answers, \(40-41\)
reusing the displayed entry, 40
right function, right(), 434
roots \(/ \mathrm{max} / \mathrm{min}\) within an interval, 63
round function, round(), 434
row dimensions of a matrix function, rowDim(), 434
row echelon form of a matrix function, ref(), 433
row norm of a matrix function, rowNorm(), 435
running programs, 296, 297
run-time errors in debugging programs, 324

\section*{\(S\)}
sampling without replacement, example, 371
saving
graph databases, 278
Home screen as a text variable, 210
pictures of graphs, 275
variables in the Data/Matrix Editor, 186
viewing windows, 61
scatter plot description, 200
scientific notation operator, (E), 394
scrolling long entries and answers, 219
selecting
applications from the keyboard, 34
commands from the CATALOG, 37
graphing functions, 51
menu items, 30, 32
sequences for graphing, 237
statistical calculation types, 195
statistical plots, 199
the current folder, 217
TI-92 applications from a menu, 33
variables from a list, 333
send list command, Send, 436
send variable command, SendCalc, 436
sending variables to another TI-92, a CBL 2/CBL, or a CBR, 323
sequence function, seq(), 436
sequence functions, TI-92 vs. TI-82, 246
sequence graphing
defining in Y= Editor, 236
displaying the axes, 240
exploring, 239
Fibonacci sequence, 245
oscillation effect of initial value, 243
setting graph mode, 236
using custom plots, 244
using web plots, 241
sequence vs. function graphing, \(236-239\)
service information, 499
setting
display contrast, 15
function display types, 52
graph mode for graphing functions, 48
modes, 35
order of displayed graphs, 54
split screen mode, 79
table parameters, 70 71
two-graph mode, 267
viewing window, 53
window display format, 54
setting window variables, 238
shade area command, Shade, 439
shading function areas, 66
shading graphs, above/below, 52
shift function, shift(), 440
showing variable contents, 333
Sigma function, \(\Sigma(), 465\)
sign function, sign(), 440
simplification default rules, 9091
simplifying problems before solving, 105
simultaneous equation solving function, simult(), 440
sine function, \(\sin (), 441\)
slope at a point, 64
Smart Graph, features, 55
snap-on cover, using to support the TI-92, 15
solve (numeric) function, nSolve(), 422
solve function, solve(), 442
solving
equations, 5
equations step-by-step, 99
equations with domain constraints, 6
system of linear equations, 99
sort ascending order command, SortA, 443
sort descending order command, SortD, 443
sorting columns in the Data/Matrix Editor, 185
special constants for symbolic manipulation, 106
spherical coordinates command, Sphere, 443
Split 1 and 2 App mode setting, 482
split screen mode
active application, 81
display sizes, 80
displaying the Home screen, 82
exiting, 80
split screen mode (continued)
opening different applications, 81
other modes that affect, 80
setting up, 79
switching between applications, 81
Text Editor, 289
top-bottom split, 82
Split Screen mode setting, 481
Split Screen Ratio mode setting, 482
split-screen viewing in function graphing, 268, 269
square root function, \(\sqrt{ }(), 465\)
standard deviation function, stdDev(), 443
standard viewing window, restoring, 61
starting new programs from the Program Editor, 299
statistical calculation types, 195, 196
statistical calculations, performing, 193, 194
statistical plots
description, 198, 199
from the Data/Matrix Editor, 198
from the Y= Editor, 202
graphing and tracing, 203
overview of performing an analysis, 192
types of, 200, 201
statistical variables, 197. See also system variables and reserved names
statistics display command, ShowStat, 440
status line
history information, 20
on Home screen, 19
on the Home Screen, 3
status line indicators, 43.44
stop command, Stop, 444
stopping a calculation, 24
stopping and canceling programs, 296
store graph database command, StoGDB, 444
store operator, \((\rightarrow), 469\)
store picture command, StoPic, 444
storing
values to matrix elements, 174
variable values, 38,39
variables in folders, 216
string commands in programs, 308, 309
string concatenation operator, (\&), 463
string execution function, expr(), 398
string format function, format(), 402
string functions
character codes function, char(), 380
InString(), 408
ord(), 423
string(), 444
strings. See data types of variables
style and axes formats, 3D graphing, 257
styles, displaying and changing, 52
submenus in menus, 31
subroutines in programs, using, 305
substituting
complex values, 93
values, limits of, 94
variables and simple expressions, 93
substituting values and setting constraints, \(93-95\)
substitutions vs. defining variables, 95
subtraction operator, (-), 458
sum function, sum(), 445
supporting the TI-92 using the snap-on cover, 15
switch split screen command, switch(), 446
switching between applications, split screen mode, 81
symbols, typing special, 286
sysData system variable, 153, 160, 261, 491
sysMath system variable, 62
system variables and reserved names, 491

\section*{\(T\)}

10-to-the-power function, \(\left(10^{\wedge}\right), 466\)
3D equations
defining in Y= Editor, 250
graphing, 249
selecting display style, 250
setting graph mode, 250
setting window variables, 250, 251
3D graphing
changing axes and style formats, 257
cursor on hidden surface, example, 254
exploring a graph, 252
moving the cursor, 253
off the curve cursor, example, 254
optical illusions, 258
rotating/elevating the viewing angle, 255, 256
3D vs. function graphing, 250-252
table command, Table, 447
table commands in programs, 319
table parameters, setting, 70, 71
Table screen features, 69
table setting function, setTable(), 439
TABLE SETUP dialog box, 70
tables of values
adding, deleting, clearing rows, 76
automatic, 72
changing cell widths, 76
editing functions from Table screen, 76
entering and editing values, 75
generating, 69
manual, 75, 76
scrolling, 72
tangent function, \(\tan (), 447\)
tangent line command, LineTan, 412
tangent lines, drawing, 6465
Taylor polynomials, 102, 103
taylor series function, taylor(), 448
tblinput system variable, \({ }^{7} 6\). See also system variables and reserved names
technical information and support, 499
Text Editor
copying and deleting sessions, 282
creating lab reports, 290, 291
entering and editing text, \(283-285\)
entering and executing a command script,288, 289
entering special characters, 286,287
opening previous sessions, 282
resuming current sessions, 282
running a tutorial script, 350,351
split screen mode, 289
starting new text sessions, 281
TI-92 modes, 479-482
TI- 92 vs. TI- 82 sequence functions, 246
time value of money, example, 368
toolbar command
EndTBar, 395
Toolbar, 449
toolbar on the Home Screen, 3
trace command, Trace, 450
tracing
automatic panning, 58
canceling a trace, 58
defined statistical plots, 203
functions, 7, 57, 58
transmitting
additional items, 337
canceling from sending or receiving unit, 337
error messages on receiving unit, 338
error messages on sending unit, 337
using multiple folders, 337
variables between two TI-92 units, \(336-338\)
triangles
creating, 10
modifying, 12
trig collect function, tCollect(), 448
trig expand function, tExpand \(), 449\)
trisecting the side of a polygon, 364,365
true and false constants, examples, 106
turning the TI-92 on and off, 2, 14
two-graph mode setting, 267
two-variable statistics command, TwoVar, 450
typing
accent marks, 287
Greek characters, 287
special symbols, 286
text in the Text Editor, 283
text labels on graphs, 274

\section*{\(u\)}
undef constant, examples, 106
undefined and defined variables, 8586
undefined functions, 103
unit vector function, unitV(), 450
unlock variable command, Unlock, 451
user-defined functions
benefits, 263, 303
creating, 103, 213, 214, 304
examples, 328, 342, 348, 350, 352, 360
multi-statement functions, 214
single-statement functions, 103
where to find, 103

\section*{\(v\)}
variable data types, 38
variable-naming rules, 38
variable-related commands in programs, 307
variables
creating data, list, and matrix types, 175
statistical, calculated, 197
type descriptions in programs, 306
using current variables, 176
using in programs, 306, 307
VAR-LINK screen, 331
variables in different folders, 218
variables in expressions, 39
variance function, variance(), 451
VAR-LINK screen
closing, 332
displaying, 331
variable types listed, 331
Vector Format mode setting, 481
vertical line command, LineVert, 412
vertical line pixel command, PxlVert, 429
viewing
long answers in the history area, 24
long entries and answers, 219
viewing angles, measuring in 3D graphing, 255
viewing window
changing, 55
defining window variables, 53
saving, recalling, or restoring, 61
using Zoom menu to adjust, 59
variables and boundaries, 53

\section*{W}
warranty information, 500
Web plots, sequence graphing, 241, 242
when function,
using to graph piecewise-defined functions, 264
when(), 452
While loop command, EndWhile, 395
While loop function, While, 452
window display format, setting, 54
window variables
3D equation graphing, 250, 251
displaying, 53
function graphing, 53
parametric equation graphing, 225
polar equation graphing, 231
sequence graphing, 237, 238
with operator, (I), 468

\section*{\(X\)}
xyline plot description, 200

\section*{\(Y\)}

Y= Editor
displaying, 7
statistical plots, 202
two-graph mode, 268

\section*{Z}
zeros function, zeros(), 452
zeros of polynomials, 100
zoom commands
ZoomBox, 453
ZoomData, 453
ZoomDec, 454
ZoomFit, 454
ZoomIn, 454
ZoomInt, 455
ZoomOut, 455
ZoomPrev, 455
ZoomRcl, 455
ZoomSqr, 456
ZoomStd, 456
ZoomSto, 456
ZoomTrig, 457
zoom factors, changing, 61
zoom memory variables, \(59,61,457,491\)
Zoom menu options, 59-61
zooming in and out, 60

This section contains an alphabetical index of only interactive geometry information.
Refer to the General Index for all other TI-92 applications.

\section*{A}

Angle Bisector tool, 134
angle measurement, 150
Angle tool, 150
animating objects, 156
Animation tool, 156
Arc tool, 128
Area tool, 149
arrow pointer, 169

\section*{B}
basic operations, 109-115
basic points, description, 112

\section*{c}

Calculate tool, 152
changing
axes rotation, 118
axes scale and tick marks, 118
numerical values, 162
outline pattern, 159
outline thickness, 158, 159
units for length, area, angles, 119
Check Properties menu, 154, 155
checking
collinearity, 154
parallelism, 154, 155
perpendicularity, 155
circle equation format, 119
Circle tool, 127
Clear All, 121
Clear Data View, 160
Collect Data tool, 153
Collinear tool, 154
Comment tool, 162
Compass tool, 127
constraining slope of a line, 124
Construction menu options, 167
construction-pencil pointer, 169
convex polygons, min/max sides, 131
coordinate axes and grid marks, 118
creating
angle bisectors, 134
arcs, 128
circles, 12, 127
comments, 162
compass circles, 127
convex polygons. See creating regular polygons
geometric objects, getting started, 9
intersection points, 11, 123
inverse points, 148
labeled points, 122
lines, 124
loci, 138
macros, \(164-166\)
measurement transfer point, 136, 137
midpoints, 135
numerical values, 162
parallel lines, 133
perpendicular bisectors, 11, 134
perpendicular lines, 132
point on an object, 123
points, 110, 122
polygons, 130
rays, 125
reflections, 146
regular polygons, 131
resultant vectors, 126
segments, 124
star polygons. See creating regular polygons
symmetrical images, 147
triangles, 10, 110, 129
vectors, 125
crossed-lines pointer, 169
cross-hair pointer, 169
Curves \& Polygons menu options, 167

\section*{D}

Data View command, 160
Delete command, 121
deleting objects, 112, 121
dependent objects, 112
deselecting objects, 120
Dilate tool, 143
dilating objects
by freehand, 143
using specified factors, 144
Dilation tool, 144
Display menu options, 168
Distance \& Length tool, 149
Dotted tool, 159
drag definition, 169
dragging objects, 113, 120
dragging-hand pointer, 169
drawing window, size of, 109

\section*{E}

Equation \& Coordinates tool, 151
equation format, circles and lines, 119
examples
angle bisectors, creating, 134
angles, measuring, 150
animating objects in geometry, 156
arcs, creating, 128
calculations, performing, 152
circles, creating, 127
collecting data, 153
collinearity, checking, 154
comments, creating, 162
deleting objects, 121
dilating objects, 143,144
distance and length, measuring, 149
equations and coordinates, checking, 151
hiding and showing objects, 158
intersection point, creating, 123
inverse points, creating, 148
labeling objects, 161
lines, creating, 124
locus, creating, 138
macros, creating, 165
measurement transfers, 136
measuring area, 149
midpoints, creating, 135
moving objects, 120
multi-step constructions, \(113-115\)
numerical values, creating and editing, 162
outline pattern, changing, 158, 159
outline thickness, changing, 158, 159
parallel lines, creating, 133
parallelism, checking, 154, 155
perpendicular bisectors, creating, 134
perpendicular lines, creating, 132
perpendicularity, checking, 155
point on object, creating, 123
points, creating, 110, 122
polygons, creating, 130, 131
rays, creating, 125
redefining an object, 139
reflections, creating, 146
rotating and dilating objects, 145
rotating objects, 141
segments, creating, 124
selecting/deselecting objects, 120
slope of lines, measuring, 150
symmetrical images, creating, 147
tracing objects, 157
translating objects, 140
triangles, creating, 110, 129
vector sum, creating, 126
vectors, creating, 125
viewing data and objects at same time, 160
viewing entire page, 159

\section*{\(F\)}

File menu options, 168
File operations, managing, 116
Format command, 117

\section*{H}
helpful shortcuts, 170
Hide/Show tool, 158
hiding and showing objects, 158

\section*{I}

I-beam pointer, 169
independent objects, 112
Intersection Point tool, 123
Inverse tool, 148

\section*{\(L\)}

Label tool, 161
labeling objects, 112, 122, 161
line equation format, 119
Line tool, 124
locus points
linking, 119
setting number of, 118
Locus tool, 138

\section*{M}

Macro Construction menu, 164
macros
example, 165, 166
introduction to creating, 164
marquee outline, 169
Measurement menu options, 168
Measurement Transfer tool, 136, 137
measuring
angles, 150
area of closed objects, 149
distance and length, 149
slope of a line, 150
memory requirements, 109
Midpoint tool, 135
modifying
circles, 127
dilations, 144
inverse points, 148
reflections, 146
rotations, 142
symmetrical images, 147
translations, 140
triangles, 129
moving
objects, 113
the cursor, 110
multi-step constructions, \(113-115\)

\section*{\(N\)}

New command, 116
Numerical Edit tool,162

\section*{0}

Open command, 116
open-hand pointer, 169
opening the Geometry application, 109

\section*{\(P\)}
page/plane definition, 169
paint brush pointer, 169
Parallel Line tool, 133
Parallel tool, 154, 155
perpendicular bisectors, creating, 11, 134
Perpendicular Bisector tool, 134
Perpendicular Line tool, 132
Perpendicular tool, 155
placing points, 110
Point on Object tool, 123
Point tool, 122
Pointer menu options, 167
Pointer tool, 120
points
basic, 112, 122
intersection, 114, 122, 123
inverse, 148
labeling, 112
locus, 118, 119, 138
measurement transfer, 136, 137
midpoints, 135
on an object, 122, 123
redefine, 139
Points and Lines menu options, 167
polar axis, 118
Polygon tool, 130
preferences, property checking, 118
preview of Geometry, 108

\section*{R}

Ray tool, 125
rectangular axis, 118
Redefine Object tool, 139
redefining a point, 139
Reflection tool, 146
Regular Polygon tool, 131
restrictions, minimum memory requirements, 109
Rotate \& Dilate tool, 145
Rotate tool, 141
rotating objects
by freehand, 141
using specified values, 142
Rotation tool, 141

\section*{\(S\)}

Save As command, 116
scrolling the drawing window, 113
Segment tool, 124
selecting
objects, 111, 120
tools from the toolbar, 109
selection-pencil pointer, 169
setting
angle measurements, 119
application preferences, 117
circle equation format, 119
line equation format, 119
unit measurements, 119
shortcut keys. See helpful shortcuts
Show Page command, 159
Slope tool, 150
split screen viewing, 160
star polygons, min/max values, 131
starting a new construction, 116
starting the Geometry application, 109
Symmetry tool, 147

\section*{\(T\)}

Thick tool, 158, 159
toolbar, description, 109
Trace On/Off tool, 157
tracing objects, 157
Transformation menu options, 168
translating objects, 140
Translation tool, 140
Triangle tool, 129
triangles
creating, \(10,110,129\)
modifying, 12, 129

\section*{\(\boldsymbol{U}\)}

Undo command, 115
unit measurements, setting, 119

\section*{V}

Vector Sum tool, 126
Vector tool, 125
viewing
collected data, 153
entire drawing page, 159
using split screen, 160```

