Graphics calculator instructions

Contents:
A Basic calculations
B Basic functions
C Secondary function and alpha keys
D Memory
E Lists
F Statistical graphs
G Working with functions

In this course it is assumed that you have a graphics calculator. If you learn how to operate your calculator successfully, you should experience little difficulty with future arithmetic calculations.

There are many different brands (and types) of calculators. Different calculators do not have exactly the same keys. It is therefore important that you have an instruction booklet for your calculator, and use it whenever you need to.

However, to help get you started, we have included here some basic instructions for the Texas Instruments TI-83 and the Casio fx-9860G calculators. Note that instructions given may need to be modified slightly for other models.

GETTING STARTED

Texas Instruments TI-83

The screen which appears when the calculator is turned on is the home screen. This is where most basic calculations are performed.

You can return to this screen from any menu by pressing 2nd MODE.
When you are on this screen you can type in an expression and evaluate it using the ENTER key.

Casio fx-9860g

Press MENU to access the Main Menu, and select RUN•MAT.
This is where most of the basic calculations are performed.
When you are on this screen you can type in an expression and evaluate it using the EXE key.

BASIC CALCULATIONS

Most modern calculators have the rules for Order of Operations built into them. This order is sometimes referred to as BEDMAS.

This section explains how to enter different types of numbers such as negative numbers and fractions, and how to perform calculations using grouping symbols (brackets), powers, and square roots. It also explains how to round off using your calculator.

NEGATIVE NUMBERS

To enter negative numbers we use the sign change key. On both the TI-83 and Casio this looks like (-).

Simply press the sign change key and then type in the number.
For example, to enter -7 , press $(-) 7$.

FRACTIONS

On most scientific calculators and also the Casio graphics calculator there is a special key for entering fractions. No such key exists for the TI-83, so we use a different method.

Texas Instruments TI-83

To enter common fractions, we enter the fraction as a division.
For example, we enter $\frac{3}{4}$ by typing $3 \boxed{\ddots} 4$. If the fraction is part of a larger calculation, it is generally wise to place this division in brackets, i.e., $(1) \div \square$.

To enter mixed numbers, either convert the mixed number to an improper fraction and enter as a common fraction or enter the fraction as a sum.
For example, we can enter $2 \frac{3}{4}$ as $\left.\square 11 \boxed{\ddots} 4 \square\right)$ or $\square(2 \boxed{\square} 3 \square 4 \square$.

Casio fx-9860g

To enter fractions we use the fraction key ab/c.
For example, we enter $\frac{3}{4}$ by typing 3 ab/c 4 and $2 \frac{3}{4}$ by typing 2 ab/c $3 a^{\mathrm{b} / \mathrm{c}} 4$. Press SHIFT $\mathrm{ab} / \mathrm{c}\left(a \frac{b}{c} \leftrightarrow \frac{d}{c}\right)$ to convert between mixed numbers and improper fractions.

SIMPLIFYING FRACTIONS \& RATIOS

Graphics calculators can sometimes be used to express fractions and ratios in simplest form.

Texas Instruments TI-83

To express the fraction $\frac{35}{56}$ in simplest form, press $35 \fallingdotseq 56$ MATH 1 ENTER. The result is $\frac{5}{8}$.

To express the ratio $\frac{2}{3}: 1 \frac{1}{4}$ in simplest form, press $\square 1$

The ratio is $8: 15$.

Casio fx-9860g

To express the fraction $\frac{35}{56}$ in simplest form, press 35 ab/c 56 EXE. The result is $\frac{5}{8}$.

To express the ratio $\frac{2}{3}: 1 \frac{1}{4}$ in simplest form, press $2 \mathrm{ab} / \mathrm{c}$

$3 \div 1 \times \mathrm{ab} / \mathrm{a} 1 \mathrm{ab} 4$ EXE. The ratio is $8: 15$.

ENTERING TIMES

In questions involving time, it is often necessary to be able to express time in terms of hours, minutes and seconds.

Texas Instruments TI-83

To enter 2 hours 27 minutes, press 2 2nd MATRX (ANGLE) 1: ${ }^{\circ} 27$ 2nd MATRX 2:'. This is equivalent to 2.45 hours.
To express 8.17 hours in terms of hours, minutes and seconds, press 8.17 2nd MATRX 4: \triangleright DMS ENTER.
This is equivalent to 8 hours, 10 minutes and 12 seconds.

Casio fx-9860g

To enter 2 hours 27 minutes, press 2 OPTN F6 F5 (ANGL) F4 $\left({ }^{o \prime \prime \prime}\right) 27$ F4 ($\left.{ }^{(\prime \prime \prime \prime}\right)$ EXE. This is equivalent to 2.45 hours. To express 8.17 hours in terms of hours, minutes and seconds, press 8.17 OPTN F6 F5 (ANGL) F6 F3 (\triangle DMS) EXE.

$2^{\circ} 27^{\square}$	
8.17*DMS	2.45
8.170.	$8^{\circ} 10^{\prime} 12^{\prime \prime}$
Poil	b

B BASIC FUNCTIONS

GROUPING SYMBOLS (BRACKETS)

Both the TI-83 and Casio have bracket keys that look like (1) and).
Brackets are regularly used in mathematics to indicate an expression which needs to be evaluated before other operations are carried out.

For example, to enter $2 \times(4+1)$ we type $2 \boxed{x} 4 \square 1 \square)$.
We also use brackets to make sure the calculator understands the expression we are typing in. For example, to enter $\frac{2}{4+1}$ we type $2 \boxed{\ddots} \boxed{\square} 4 \boxed{\square} 1 \boxed{\square}$. If we typed $2 \boxed{\div} 4 \boxed{\square} 1$ the calculator would think we meant $\frac{2}{4}+1$.

In general, it is a good idea to place brackets around any complicated expressions which need to be evaluated separately.

POWER KEYS

Both the TI-83 and Casio also have power keys that look like \wedge. We type the base first, press the power key, then enter the index or exponent.
For example, to enter 25^{3} we type $25 \triangle \wedge$.
Note that there are special keys which allow us to quickly evaluate squares.
Numbers can be squared on both TI-83 and Casio using the special key x^{2}.
For example, to enter 25^{2} we type $25 x^{2}$.

SQUARE ROOTS

To enter square roots on either calculator we need to use a secondary function (see the Secondary Function and Alpha Keys).

Texas Instruments TI-83

The TI-83 uses a secondary function key 2nd.
To enter $\sqrt{36}$ we press 2nd $36 \boxed{1}$.
The end bracket is used to tell the calculator we have finished entering terms under the square root sign.

Casio fx-9860g

The Casio uses a shift key SHIFT to get to its second functions.
To enter $\sqrt{36}$ we press SHIFT $x^{2} 36$.
If there is a more complicated expression under the square root sign you should enter it in brackets.

For example, to enter $\sqrt{18 \div 2}$ we press SHIFT x^{2} ($18 \div \square$.

ROUNDING OFF

You can use your calculator to round off answers to a fixed number of decimal places.

Texas Instruments TI-83

To round to 2 decimal places, press MODE then $\boldsymbol{\nabla}$ to scroll down to Float.
Use the Δ button to move the cursor over the 2 and press ENTER . Press 2nd MODE to return to the home screen.

If you want to unfix the number of decimal places, press MODE
∇ ENTER to highlight Float.

Casio fx-9860g

To round to 2 decimal places, select RUN•MAT from the Main Menu, and press SHIFT MENU to enter the setup screen. Scroll down to Display, and press F1 (Fix). Press 2 EXE to select the number of decimal places. Press EXIT to return to the home
 screen.

To unfix the number of decimal places, press SHIFT MENU to return to the setup screen, scroll down to Display, and press F3 (Norm).

INVERSE TRIGONOMETRIC FUNCTIONS

To enter inverse trigonometric functions, you will need to use a secondary function (see the Secondary Function and Alpha Keys).

Texas Instruments TI-83

The inverse trigonometric functions $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$ are the secondary functions of SIN, COS and TAN respectively. They are accessed by using the secondary function key 2nd.

For example, if $\cos x=\frac{3}{5}$, then $x=\cos ^{-1}\left(\frac{3}{5}\right)$.
To calculate this, press 2nd COS $3 \boxed{\ddots} 5 \square$ ENTER.

Casio fx-9860g

The inverse trigonometric functions $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$ are the secondary functions of \sin , \cos and tan respectively. They are accessed by using the secondary function key SHIFT.

For example, if $\cos x=\frac{3}{5}$, then $x=\cos ^{-1}\left(\frac{3}{5}\right)$.

To calculate this, press SHIFT Cos (1) $3 .$	EXE.

SCIENTIFIC NOTATION

If a number is too large or too small to be displayed neatly on the screen, it will be expressed in scientific notation, that is, in the form $a \times 10^{k}$ where $1 \leqslant a \leqslant 10$ and k is an integer.

Texas Instruments TI-83

To evaluate 2300^{3}, press $2300 \triangle \wedge$ ENTER. The answer displayed is 1.2167 E 10 , which means 1.2167×10^{10}.

To evaluate $\frac{3}{20000}$, press $3 \div 20000$ ENTER. The answer displayed is $1.5 \mathrm{E}-4$, which means 1.5×10^{-4}.

You can enter values in scientific notation using the EE function, which is accessed by pressing 2nd g.
For example, to evaluate $\frac{2.6 \times 10^{14}}{13}$, press 2.6 2nd $14 \div$ 13 ENTER. The answer is 2×10^{13}.

$\begin{aligned} & 2306 \times 3 \\ & 320160102167 \mathrm{E} 10 \end{aligned}$$1.5 \mathrm{E}-4$

$2.6 \mathrm{El} 4 / 13$ 2E1S

Casio fx-9860g

To evaluate 2300^{3}, press $2300 \triangle \wedge$ EXE. The answer displayed is $1.2167 \mathrm{E}+10$, which means 1.2167×10^{10}.

To evaluate $\frac{3}{20000}$, press $3 \boxed{\vdots} 20000$ EXE. The answer

2360^З	
	$1.2167 \mathrm{~F}+10$
$3 \div 20606$	1.5e-64
Win	

You can enter values in scientific notation using the EXP key. For example, to evaluate $\frac{2.6 \times 10^{14}}{13}$, press 2.6 EXP $14 \boxed{\div} 13$ EXE. The answer is 2×10^{13}.

C
 SECONDARY FUNCTION AND ALPHA KEYS

Texas Instruments TI-83

The secondary function of each key is displayed in yellow above the key. It is accessed by pressing the $2 n d$ key, followed by the key corresponding to the desired secondary function. For example, to calculate $\sqrt{36}$, press 2nd $36 \boxed{\text { ENTER }}$.

The alpha function of each key is displayed in green above the key. It is accessed by pressing the ALPHA key followed by the key corresponding to the desired letter. The main purpose of the alpha keys is to store values into memory which can be recalled later. Refer to the Memory section.

Casio fx-9860g

The shift function of each key is displayed in yellow above the key. It is accessed by pressing the SHIFT key followed by the key corresponding to the desired shift function.

For example, to calculate $\sqrt{36}$, press SHIFT $x^{2} 36$ EXE.
The alpha function of each key is displayed in red above the key. It is accessed by pressing the ALPHA key followed by the key corresponding to the desired letter. The main purpose of the alpha keys is to store values which can be recalled later. MEMORY

Utilising the memory features of your calculator allows you to recall calculations you have performed previously. This not only saves time, but also enables you to maintain accuracy in your calculations.

SPECIFIC STORAGE TO MEMORY

Values can be stored into the variable letters A, B, ..., Z using either calculator. Storing a value in memory is useful if you need that value multiple times.

Texas Instruments TI-83

Suppose we wish to store the number 15.4829 for use in a number of calculations. Type in the number then press $\quad S T O$ ALPHA MATH (A) ENTER.

We can now add 10 to this value by pressing ALPHA MATH ± 10 ENTER, or cube this value by pressing ALPHA MATH $\wedge 3$ ENTER.

Casio fx-9860g

Suppose we wish to store the number 15.4829 for use in a number of calculations. Type in the number then press \rightarrow ALPHA X, θ, T (A) EXE .

We can now add 10 to this value by pressing ALPHA X, $\theta, \mathrm{T} \square$ 10 EXE, or cube this value by pressing ALPHA X, $\theta, \mathrm{T} \triangle \wedge$ EXE.

ANS VARIABLE

Texas Instruments TI-83

The variable Ans holds the most recent evaluated expression, and can be used in calculations by pressing 2nd (-).

For example, suppose you evaluate 3×4, and then wish to subtract this from 17 . This can be done by pressing $17 \square$ 2nd (-) ENTER.

If you start an expression with an operator such as \square, \square, etc, the previous answer Ans is automatically inserted ahead of the operator. For example, the previous answer can be halved simply by pressing $\because 2$ ENTER.

If you wish to view the answer in fractional form, press MATH

1 ENTER.

Casio fx-9860g

The variable Ans holds the most recent evaluated expression, and can be used in calculations by pressing SHIFT (-). For example, suppose you evaluate 3×4, and then wish to subtract this from 17. This can be done by pressing $17 \boxed{\square}$ SHIFT (-)

3×4	12
$17-$ Ans	5
BHiT	

EXE.

If you start an expression with an operator such as \square, \square, etc, the previous answer Ans is automatically inserted ahead of the operator. For example, the previous answer can be halved simply by pressing $\because 2$ EXE.

If you wish to view the answer in fractional form, press $F \leftrightarrow D$.

RECALLING PREVIOUS EXPRESSIONS

Texas Instruments TI-83

The ENTRY function recalls previously evaluated expressions, and is used by pressing 2nd ENTER.

This function is useful if you wish to repeat a calculation with a minor change, or if you have made an error in typing.

Suppose you have evaluated $100+\sqrt{132}$. If you now want to evaluate $100+\sqrt{142}$, instead of retyping the command, it can be recalled by pressing 2nd ENTER.

The change can then be made by moving the cursor over the 3 and changing it to a 4 , then pressing ENTER.

If you have made an error in your original calculation, and intended to calculate $1500+\sqrt{132}$, again you can recall the previous command by pressing 2nd ENTER.

Move the cursor to the first 0 .
You can insert the digit 5, rather than overwriting the 0, by pressing 2nd DEL 5 ENTER .

Casio fx-9860g

Pressing the left cursor key allows you to edit the most recently evaluated expression, and is useful if you wish to repeat a calculation with a minor change, or if you have made an error in typing.

Suppose you have evaluated $100+\sqrt{132}$.
If you now want to evaluate $100+\sqrt{142}$, instead of retyping the command, it can be recalled by pressing the left cursor key.

Move the cursor between the 3 and the 2 , then press DEL 4 to remove the 3 and change it to a 4 . Press EXE to re-evaluate the expression.

Lists are used for a number of purposes on the calculator. They enable us to enter sets of numbers, and we use them to generate number sequences using algebraic rules.

CREATING A LIST

Texas Instruments TI-83

Press STAT 1 to take you to the list editor screen.
To enter the data $\{2,5,1,6,0,8\}$ into List1, start by moving the cursor to the first entry of L1. Press 2 ENTER 5 ENTER and so on until all the data is entered.

Casio fx-9860g

Selecting STAT from the Main Menu takes you to the list editor screen.

To enter the data $\{2,5,1,6,0,8\}$ into List $\mathbf{1}$, start by moving the cursor to the first entry of List 1. Press 2 EXE 5 EXE

LISTS

$$
\rightarrow
$$

 and so on until all the data is entered.

DELETING LIST DATA

Texas Instruments TI-83

Pressing STAT 1 takes you to the list editor screen.
Move the cursor to the heading of the list you want to delete then press CLEAR ENTER.

Casio fx-9860g

Selecting STAT from the Main Menu takes you to the list editor screen.
Move the cursor to anywhere on the list you wish to delete, then press F6 (\triangleright) F4 (DEL-A) F1 (Yes).

REFERENCING LISTS

Texas Instruments TI-83

Lists can be referenced by using the secondary functions of the keypad numbers 1-6.
For example, suppose you want to add 2 to each element of List1 and display the results in List2. To do this, move the cursor to the heading of \mathbf{L}_{2} and press 2 nd $1 \square 2$ ENTER.

Casio fx-9860g

Lists can be referenced using the List function, which is accessed by pressing SHIFT 1.
For example, if you want to add 2 to each element of List 1 and display the results in List 2, move the cursor to the heading of List 2 and press SHIFT 1 (List) $1+ \pm 2$ EXE.

Casio models without the List function can do this by pressing OPTN F1 (LIST) F1 (List) $1 \boxed{\square} 2$ EXE.

NUMBER SEQUENCES

Texas Instruments TI-83

You can create a sequence of numbers defined by a certain rule using the seq command.

This command is accessed by pressing 2nd STAT Δ to enter the OPS section of the List menu, then selecting 5:seq.

For example, to store the sequence of even numbers from 2 to 8 in List3, move the cursor to the heading of $\mathbf{L} 3$, then press $2 n d$ STAT $\triangle 5$ to enter the seq command, followed by 2 X,T, θ, n \rightarrow X,T, $\theta, n, 1, \quad 4$ ENTER.

Casio fx-9860g

You can create a sequence of numbers defined by a certain rule using the seq command.

This command is accessed by pressing OPTN F1 (LIST) F5 (Seq).

For example, to store the sequence of even numbers from 2 to 8 in List 3, move the cursor to the heading of List 3, then press OPTN F1 F5 to enter a sequence, followed by $2 \mathrm{X}, \theta, \mathrm{T} \quad$,
 X, $\theta, \mathrm{T}, \mathrm{g} 1 \mathrm{~g} 4 \mathrm{~g} 1$ D EXE.

This evaluates $2 x$ for every value of x from 1 to 4 with an increment of 1 .

STATISTICAL GRAPHS

STATISTICS

Your graphics calculator is a useful tool for analysing data and creating statistical graphs.
In this section we will produce descriptive statistics and graphs for the data set $\begin{aligned} & 5 \\ & 2\end{aligned} 336$ 4537571895.

Texas Instruments TI-83

Enter the data set into List1 using the instructions on page 18. To obtain descriptive statistics of the data set, press STAT 1:1-Var Stats 2nd $\mathbf{1}$ (L1) ENTER.

To obtain a boxplot of the data, press 2nd $Y=$ (STAT PLOT) 1 and set up Statplot1 as shown. Press ZOOM 9:ZoomStat to graph the boxplot with an appropriate window.

To obtain a vertical bar chart of the data, press 2nd $Y=1$, and change the type of graph to a vertical bar chart as shown. Press ZOOM 9:ZoomStat to draw the bar chart. Press WINDOW and set the Xscl to 1 , then GRAPH to redraw the bar chart.

We will now enter a second set of data, and compare it to the first.

Enter the data set $96 \begin{array}{lllllllll}9 & 2 & 5 & 5 & 5 & 6 & 7 & 6\end{array}$ 344584 into List2, press 2nd $Y=1$, and change the type of graph back to a boxplot as shown. Move the cursor to the top of the screen and select Plot2. Set up Statplot2 in the same manner, except set the XList to L2. Press ZOOM 9:ZoomStat to draw the side-by-side boxplots.

Casio fx-9860g

Enter the data into List 1 using the instructions on page 18. To obtain the descriptive statistics, press F6 (\triangleright) until the GRPH icon is in the bottom left corner of the screen, then press
 F2 (CALC) F1 (1VAR).

To obtain a boxplot of the data, press

EXIT

 EXIT F1 (GRPH) F6 (SET), and set upStatGraph 1 as shown. Press EXIT F1
(GPH1) to draw the boxplot.
To obtain a vertical bar chart of the data, press EXIT F6 (SET) F2 (GPH 2), and set up

StatGraph 2 as shown. Press EXIT F2 (GPH 2) to draw the bar chart (set Start to 0, and Width to 1).

We will now enter a second set of data, and compare it to the first.

Enter the data set 9623557567634 4584 into List 2, then press F6 (SET) F2 (GPH2) and set up StatGraph 2 to draw a boxplot of this data set as shown. Press EXIT F4 (SEL), and turn on both StatGraph 1 and

StatGraph 2. Press F6 (DRAW) to draw the side-by-side boxplots.

C WORKING WITH FUNCTIONS

GRAPHING FUNCTIONS

Texas Instruments TI-83

Pressing $\mathrm{Y}=$ selects the $\mathbf{Y}=$ editor, where you can store functions to graph. Delete any unwanted functions by scrolling down to the function and pressing CLEAR.

To graph the function $y=x^{2}-3 x-5$, move the cursor to \mathbf{Y}_{1}, and press X,T, $\theta, n \boxed{x^{2}} 3 \boxed{-1, T, \theta, n \boxed{ } 5 \text { ENTER. This }}$ stores the function into \mathbf{Y}_{1}. Press GRAPH to draw a graph of the function.

To view a table of values for the function, press 2nd GRAPH (TABLE). The starting point and interval of the table values can be adjusted by pressing 2nd WINDOW (TBLSET).

Casio fx-9860g

Selecting GRAPH from the Main Menu takes you to the Graph Function screen, where you can store functions to graph. Delete any unwanted functions by scrolling down to the function and pressing DEL F1 (Yes).

To graph the function $y=x^{2}-3 x-5$, move the cursor to Y1
 the function into Y1. Press F6 (DRAW) to draw a graph of the function.

To view a table of values for the function, press MENU and select TABLE. The function is stored in Y1, but not selected. Press F1 (SEL) to select the function, and F6 (TABL) to view the table. You can adjust the table settings by pressing EXIT and then F5 (SET) from the Table Function screen.

FINDING POINTS OF INTERSECTION

It is often useful to find the points of intersection of two graphs, for instance, when you are trying to solve simultaneous equations.

Texas Instruments TI-83

We can solve $y=11-3 x$ and $y=\frac{12-x}{2} \quad$ simultaneously by finding the point of intersection of these two lines. Press $\mathrm{Y}=$, then store $11-3 x$ into $\mathbf{Y}_{\mathbf{1}}$ and $\frac{12-x}{2}$ into Y2. Press GRAPH to draw a graph of the functions.

To find their point of intersection, press 2nd TRACE (CALC)
5, which selects 5:intersect. Press ENTER twice to specify the functions \mathbf{Y}_{1} and $\mathbf{Y}_{\mathbf{2}}$ as the functions you want to find the intersection of, then use the arrow keys to move the cursor close to the point of intersection and press ENTER once more.

The solution $x=2, y=5$ is given.

Casio fx-9860g

We can solve $y=11-3 x$ and $y=\frac{12-x}{2} \quad$ simultaneously by finding the point of intersection of these two lines. Select GRAPH from the Main Menu, then store $11-3 x$ into Y1 and $\frac{12-x}{2}$ into Y2. Press F6 (DRAW) to draw a graph
 of the functions.

To find their point of intersection, press F5 (G-Solv) F5 (ISCT). The solution $x=2, y=5$ is given.

Note: If there is more than one point of intersection, the remaining points of intersection can be found by pressing \qquad

SOLVING $\quad f(x)=0$

In the special case when you wish to solve an equation of the form $f(x)=0$, this can be done by graphing $y=f(x)$ and then finding when this graph cuts the x-axis.

Texas Instruments TI-83

To solve $x^{3}-3 x^{2}+x+1=0$, press $Y=$ and store $x^{3}-3 x^{2}+x+1$ into Y1. Press GRAPH to draw the graph.

To find where this function first cuts the x-axis, press 2nd TRACE (CALC) 2, which selects 2:zero. Move the cursor to the left of the first zero and press ENTER, then move the cursor to the right of the first zero and press ENTER . Finally, move the cursor close to the first zero and press ENTER once more. The solution $x \approx-0.414$ is given.

Repeat this process to find the remaining solutions $x=1$ and $x \approx 2.41$.

Casio fx-9860g

To solve $x^{3}-3 x^{2}+x+1=0$, select GRAPH from the Main Menu and store $x^{3}-3 x^{2}+x+1$ into Y1. Press F6 (DRAW) to draw the graph.

To find where this function cuts the x-axis, press \quad F5 (G-Solv)

F1 (ROOT). The first solution $x \approx-0.414$ is given.
Press Δ to find the remaining solutions $x=1$ and $x \approx 2.41$.

TURNING POINTS

Texas Instruments TI-83

To find the turning point (vertex) of $y=-x^{2}+2 x+3$, press $Y=$ and store $-x^{2}+2 x+3$ into \mathbf{Y}_{1}. Press GRAPH to draw the graph.

From the graph, it is clear that the vertex is a maximum, so press 2nd TRACE (CALC) 4 to select 4:maximum.

Move the cursor to the left of the vertex and press ENTER，then move the cursor to the right of the vertex and press ENTER． Finally，move the cursor close to the vertex and press ENTER once more．The vertex is $(1,4)$ ．

Casio fx－9860g

To find the turning point（vertex）of $y=-x^{2}+2 x+3$ ，select GRAPH from the Main Menu and store $-x^{2}+2 x+3$ into Y1．Press F6（DRAW）to draw the graph．
From the graph，it is clear that the vertex is a maximum，so to find the vertex press F5（G－Solv）F2（MAX）．

The vertex is $(1,4)$ ．

ADJUSTING THE VIEWING WINDOW

When graphing functions it is important that you are able to view all the important features of the graph．As a general rule it is best to start with a large viewing window to make sure all the features of the graph are visible．You can then make the window smaller if necessary．

Texas Instruments TI－83

Some useful commands for adjusting the viewing window include：

ZOOM 0：ZoomFit ：This command scales the y－axis to fit the minimum and maximum values of the displayed graph within the current x－axis range．
ZOOM 6：ZStandard ：This command returns the viewing window to the default setting of $-10 \leqslant x \leqslant 10, \quad-10 \leqslant y \leqslant 10$.

If neither of these commands are helpful，the viewing window can be adjusted manually by pressing WINDOW and setting the minimum and maximum values for the x and y axes．

Casio fx－9860g

The viewing window can be adjusted by pressing SHIFT F3（V－Window）．You can manually set the minimum and maximum values of the x and y axes，or press F3（STD） to obtain the standard viewing window $-10 \leqslant x \leqslant 10$ ，

VTTOTT HEMORY
1： zBox
2：zoom In
3：Zoom Int．
4：zDecimョl

7Fマイrig
 $-10 \leqslant y \leqslant 10$ ．

