USER GUIDE

P 5l N

USER GUIDE

Mjabout

NOTE: If magnetic materials are placed close
to the underside of the Workabout they may be
affected by the speaker magnet. For this
reason it is best not to keep your Workabout in
the same pocket as credit cards and/or travel
passes with magnetic strips.

WARNING: This equipment has been certified to comply with the
limits for a Class B computing device, pursuant to Subpart J of Part 15
of FCC Rules. See the instructions overleaf if interference to Radio or
Television is suspected.

© Copyright Psion PLC 1995

All rights reserved. This manual and the programs referred to herein are
copyrighted works of Psion PLC, London, England. Reproduction in whole or
in part, including utilisation in machines capable of reproduction or retrieval,
without the express written permission of Psion PLC is prohibited. Reverse
engineering is also prohibited.

The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks, and Psion Workabout,
3Link, SSD and Solid State Disk are trademarks of Psion PLC.

Some names referred to arc registered trademarks.

Psion reserves the right to change the designs and specifications of its
products at any time without prior notice.

v1.0 February 95
English
Part no. 6104-0001-01

FCC Information for the USA

Radio and Television Interference

This equipment generates and uses radio frequency energy and if not used
properly — that is, in strict accordance with the instructions in this manual —
may cause interference to Radio and Television reception.

It has been tested and found to comply with the limits for a Class B computing
device in accordance with the specifications in Subpart J of Part 15 of FCC
Rules. These are designed to provide reasonable protection against such
interference in a residential installation. However, there is no guarantee that
interference will not occur in a particular installation. If this equipment does
cause interference to Radio or Television reception, which can be determined
by turning the equipment off and on, try to correct the interference by one or
more of the following measures:

» Reposition the Radio or TV antenna.
= Relocate the Workabout computer with respect to the Radio or TV.
v Move the Workabout computer farther away from the Radio or TV.

« If you are powering the Workabout by the mains supply, plug it into an
outiet which is on a different circuit from that of the Radio or TV.

If necessary, consuit an authorised Psion dealer or an expertenced
radio/television technician for additional suggestions.

Important

This equipment was tested for FCC compliance under conditions that included
the use of shielded cables and connectors between the Workabout and any
peripherals that are attached. It is important that you use shielded cables and
connectors to reduce the possibility of causing Radio and Television
interference. Shielded cables, suitable for the Workabout, can be obtained from
an authorised Psion dealer.

If the user modifies the Workabout computer in any way, and these
modifications are not approved by Psion, the FCC may withdraw the user’s
right to operate the equipment.

The following booklet prepared by the Federal Communications Commission
may be of help: "How to Identify and Resolve Radio-TV Interference
Problems". This booklet is available from the US Government Printing Office,
Washington, DC 20402 Stock No 004-000-00345-4.

Emissions Information for Canada

This Class B digital apparatus meets all requirements of the Canadian
Interference-Causing Equipment Regulations.

Cet apparetl numérique de la classe B respecte toutes les exigences du
Reéglement sur le matériel brouilleur du Canada.

Table of Contents

1 Infroduction.......................... 1
About the Workabout 2
Where things are 2
Powering the Workabout 3
The Workabout components 8
The LCD screen 8
The Keyboard 9
The Solid State Disk drives 12
The Buzzer 13
The LIF-PES socket 13
The Internal Expansion ports 14
The Fuse 14

2 Basicuse............. .. i, 15
Turning on and off 16
Troubleshooting 17
Resetting the Workabout 20

3 Advanceduse....................... 21

Setting up a new Workabout 22
Switching on for the first time 22
Changing the system-wide settings 23
Creating a Startup (AUTOEXEC.*) file 25
Develaping applicatians for the Workabout 26
Downloading applications from a PC 27
Setting up the Internal Expansion ports 28
Running applications 28

The Command processor 29
The Workabout commands 30
Error messages 34

Peripheral products for the Workabout 33

4 The built-in applications. 37
Introduction 38
The System screen 38
Menus and dialogs 40
Display features 43
Data - the database 44

Calc - the scientific calculator 46

Sheet - the spreadsheet 49

The Program editor 51

Comms - the communications software 52
Sending commands to a modem 56
File transfer to another computer 56

Creating and running programs

Creating a new module 60

An example procedure to type in 61
Type in and edit the procedure 61

Translating a module 62

File management 63

More about running modules 64

Menu options while editing 65

SUMMARY 65

Variables and constants

Declaring variables 68
Choosing the variable 68
Examples 70

Giving values to variables 70
Displaying variables 73
Values from the keyboard 74

Loops andbranches................

Repeating instructions (loops) 78
Choosing between instructions 79
Arguments to functions 81

‘True’ and ‘False’ 81

Jumping to a different line 82

Callingprocedures

Using more than one procedure 86
Parameters 88
GLOBAL variables 90

Datafile handling

Files, records and fields 94
Creating a data file 95

Opening a file 96

Saving records 97

Moving from record to record 98

10

11

12
13
14

15

Finding arecord 99
Changing/closing the current file 100
Data files and the Database 102

Graphics

Simple graphics 104
Screen positions 104
Drawing in grey 106
Overwriting pixels 107
Graphical text 109

Windows 113

Advanced graphics 117

Friendlier interaction

Menus 122
Ialogs 125
Lines you can use in dialogs 126
Other dialog information 130
Giving information 131

OPL and Solid State Disks
Example programs
Errorhandling

Syntax errors 152

Errors in running procedures 153
TRAP 154
ERR and ERR$ 154
ONERR ... ONERR OFF 156
RAISE 157

Error messages 158

Advancedtopics

Programs, modules, procedures 162
Where files are kept 164

Safe pointer arithmetic 166

OPL applications (OPAs) 166
Tricks 173

Cacheing procedures 174

Sprite handling 178

Scanning the keyboard directly 182
I/0 functions and commands 184

OPL database information 193
Example 193

DYL handling 194

Dynamic memory allocation 196
Using the heap allocator 199
Example using the allocator 200

16 Overview. e, 203
17 Alphabetic listing. 213
Appendices
A Character set and character codes 271
B Specification................c...o.... 277
C Summary for experienced OPL users 281
D Operators and logical expressions 291
E Serial/parallel ports and printing. 297

Index

Introduction

You should read this chapter first; it contains basic information
that you need to know before you read the other chapters in this
manual. In this chapter you will find details about:

e The various Workabout components.

e Fitting the the Workabout’s batteries and connecting it to the
mains.

The notational conventions used in this manual are as follows:

¢ Wherever there are things for you to do, the instructions
appear as a numbered list.

¢ Extra notes, which you may find useful, are preceded by a 1=
symbol.

¢ Important information is indicated by the word Important:, or
is printed in bold type.

e Technical or jargon terms appear in italic type the first time
that they are referred to in the text.

To move quickly to information about a specific subject, look in the
index for an appropriate entry. Index entries are grouped
according to topics; for example, to find out about batteries, look
for an appropriate entry under the major entry "Batteries'.

1: Introduction 1

About the Workabout

The Workabout is a robust handheld computer which uses the same Solid State
Disks (SSDs) as the Psion HC and Series 3 ranges. Its advanced windowing
and multi-tasking software system makes it simple to use and easy to integrate
with existing computer systerns.

Package conlents

In the Workabout box you will find:
= The Workabout

« This User Guide

« A lithium backup battcry

Care of the Workabout

The Workabout is dust proof and splash proof. Should you ever need to clean
it, first turn it off and then gently wipe the keyboard and screen with a soft,
clean, dry cloth.

Where things are

The following diagram shows where the main components of the Workabout
are:

Backup battery cover

SSD/Baitery drawer SSD/Battery drawer
releage button

On key
Off key

~~~ "\ 88D in drive A:

oy 88D in drive B:
: Main battery compartment

\5 LCI) screen
3 External power LED
)

LIF-PFS socket

L4

2 1: Introduction



Powering the Workabout

The Workabout can be powered in four ways:

» by two AA batteries (not supplied). You should use alkaline batteries for
best results.

» by aPsion Ni-Cd (Nickel-Cadmium) rechargeable battery pack, supplied
scparatcly from thc Workabout (Part no. 2802-0005). You can also use 2
standard Ni-Cd rechargeable batteries, however, you cannot recharge these
batteries while they are fitted in the Workabout and so they are not
recommended for use.

» by the AC (mains) supply via a LIF converter (Part no. 2802-0011) and
Workabout mains adaptor (Part no. 2502-0010 for use in the U.K. Part no.
2502-0011 for use in the rest of Europe). Neither the LIF converter nor the
mains adaptor are supplied with the Workabout, they must be purchased
separately; see your Psion distributor for more informatton.

= by placing it in a Workabout Docking Station.

A small lithium battery is supplied as a backup battery (battery type: 3V
Lithium R16 battery - CR1620). When there is no other power supply, it will
preserve information in the Workabout’s internal memory (RAM) for
approximately five days.

Important: When the main batteries and backup battery are removed, all the
information in the internal memory (RAM) is lost. Before removing both
batteries, you should therefore copy any important information in the internal
memory to an SSD or PC.

If you plan not to use the Workahout for long periods of time, it is best to copy
all the data on the internal disk (M) to an SSD and then remove both the main
and backup batteries.

Fitting / changing the backup battery

When the backup battery supplied with the Workabout becomes discharged,
you must replace it with the same or an equivalent type of battery as

recommended by Psion. You can purchase them from your Psion distributor
(Part no. 4900-0018, description BAT LITH. 3V 60mAH 2x16D) or from other
battery stockists (Battery type: 3V Lithium R16 [CR1620]).

The backup battery is located in a slot in the SSD/Battery drawer that slides
out of the centre of the Workabour. To fit it:

1. Turn the Workabout off.

2. Press down the SSD/Battery drawer release button (on the left hand side of
the screen) to release the drawer and pull it out until the backup battery
cover is revealed.

3. Slide open the backup battery cover in the direction indicated by the arrow,
then fit the backup battery into its slot as shown in the following diagram:

1: Introduction 3



®/ Backup battery

Backup battery cover

Important: Make sure that the positive terminal of the backup battery (the
flatter of the two sides and marked with a + symbol) faces towards the outer
edge of the Workabout as you insert it. There is a risk of explosion if you
incorrectly replace lithium batteries.

4. Shde the backup battery cover back into its original position to secure the
battery in place. -

5. Close the SSD/Battery drawer.

5> Warning: You should tape, or otherwise protect the terminals of discharged
lithium batteries before you dispose of them. Do not incinerate or crush them,
or attempt to recharge them.

Fitting / changing the main batteries

Rechargeable Ni-Cd battery packs are normally not charged when new. So if
you are fitting a new one, you will probably need to charge it first. See the
‘Recharging a Ni-Cd battery pack’ section for details of how to do this.

When the main batteries become discharged and need to be replaced, you
should leave them in the Workabout until you are ready to fit charged batteries;
this will prolong the life of the backup battery. The backup battery preserves
the contents of the internal memory while the main batteries are being
changed; however, you should net rcly upon it as a permanent source of
power.

The main batteries (or rechargable Ni-Cd battery pack) fit in a recess in the
SSD/Battery drawer that slides out of the centre of the Workabout.

To fit or change the main batteries:

1. Turn the Workabout off, then press down the SSD/Battery drawer release
button to open the SSD/Battery drawer and pull it out until the main battery
compartment is visible.

- 4 1 Introduction



2. Remove any discharged batteries that are present.

3. Insert two AA batteries (alkaline ones are recommended) or a freshly charged
Ni-Cd battery pack as shown in the diagram betow:

Main bhatteries

SSD/Battery drawer
release bufton

Main battery compartment

4. Close the SSD/Battery drawer.
You can now turn the Workabout back on.

Important: Ni-Cd rechargeable battery packs contain Cadmium, a toxic
substance that is harmful to the environment. You should only recharge them
by the recommended methods. Do not short circuit, dismantle or incinerate
them — dispose of a spent or damaged Ni-Cd battery pack safely.

Recharging a Ni-Cd battery pack
A Ni-Cd rechargeable battery pack can be recharged in three ways:

= by placing the Workabout in which it is fitted in a Workabout Docking
Station. You can insert a second, spare Ni-Cd battery pack in the Docking
Station for charging at the same time. The battery pack will be fast or trickle
charged according to the type of Docking Station used (see ‘About the
Workabout Docking Station’ later for more details).

= by placing the Ni-Cd battery pack directly in a Workabout Docking Station.
Again, the battery pack will be fast or trickle charged according to the type
of Docking Station used.

« by connecting the Workabout in which it is fitted to the mains with a LIF
converter and the Workabout mains adaptor. This method only trickle
charges the Ni-Cd battery pack.

Fast charging a discharged battery pack takes about an hour. With trickle
charging it takes approximately 14 hours to fully recharge a discharged battery
pack, although it will be 90% charged within 12 hours.

1: Introduction S



Detatled instructions on inserting a Workabour and battery pack in the
Workabout Docking Station are given in the manual supplied with the Docking
Station.

Connecting the Workabout to mains power

You cannot plug a mains adaptor directly into the Workabout; you must
connect a LIF converter to the Workabout’s LIF-PFS (Low Insertion Force
Power & Fast Serial) socket and plug the mains adaptor into the LIF converter.
See “The LIF-PFES socket’ section later in this chapter for more information.

When the Workabout is connected to mains power, the External power LED
becomes green,

About the Workabout Docking Station

The Workabout Docking Station provides mains power to the Workabout and
recharges its Ni-Cd battery pack (if fitted) at the same time. Two models of the
Docking Station are available: one for fast charging and one for trickle
charging.

Detailed instructions on inserting a Workabout are given in the manual
supplied with the Docking Station.

When a Workabout is placed in a Docking Station, its External power LED
becomes green to indicate that it is being powered by the Docking Station.

What happens when the power is low

When the main batteries become low, a "Main battery is low"” message is
displayed. With low main batteries, the Workabout may have enough power to
display information on the screen and accept data that you type on the
keyboard; however, it may not have enough to save information to an SSD or
to transfer information to other devices, e.g. a printer, via its Internal
Expansion ports.

If you try to do something for which the Workabout does not have enough
power, it will antomatically switch off. You should fit a new set of AA
batteries, recharge the Ni-Cd battery pack, or connect the Workabour to an AC
(mains) power supply (using a LIF converter and Psion mains adaptor) before
trying the operation again.

p=r When the power in the main batteries gets very low, the Workabout will
automatically turn itself off and you will not be able to use it until you fit
charged batteries. However, no information will be lost; the backup battery will
maintain the information in the internal memory for several days.

1==> Applications running on the Workabout may allow you to check the power in
the batteries;see your application developer for details.

Power consumption

The Workabout’s power consumption depends on the applications that you are
ruining and the type of peripherals that are attached to the Workabonut. Using
the Backlight or printing via an Internal Expansion port, for example,

6 1: Introduction



dramatically reduces the life of the main batteries. For more information on
battery life, contact your application developer.

In order o conserve its batteries, the Workabour automatically switches off
when you are not using it. The default switch off time is 5 minutes, however
this time limit is under application control; you should contact your application
developer for more details about the automatic switch off time on your
Workabout.

33 No information is lost when the Warkabout antomatically turns off; when you
turn it back on, you can continue from where you were,

1: Introduction

7



The Workabout components

The following Workabout components are described in this section:
e the L.LCD screen

» the alphanumeric keyboard

= the Solid State Disk (SSD) drives

» the Buzzer

= the LIF-PFS socket

» the Internal Expansion ports

The LCD screen

The text displayed

Your application(s) may allow you ta change the size of the characters
displayed on the screen. If they do, you will be able to press a certain
combination of keys to "zoom in" and "zoom out" to increase and reduce the
font size.

In the built-in applications, press Psion-Z to zoom in; to zoom out again, press
Shift-Psion-Z.

Zooming out (moving from a larger to a smaller font) will fc-display some of
the information that scrolls off the screen in a larger font size.

Screen contrast

The screen contrast setting controls how light or dark the Workabout screen
appears. There are 16 contrast settings, so you can "fine-tune” the appearance

of the screen to suit your needs.

. 4
To adjust the contrast, simply press the Contrast key until the screen
reaches the desired appearance. Press the Shift and Contrast keys at the same
time to reverse the direction of the change in contrast.

Backlight

The Workabout can be fitted with a light behind the screen to help you view
information in poor lighting conditions.

N Vs
-
Y

To turn the Backlight on simply press the Backlight key and to turn it off

press the Backlight key again.

As you would expect, the Backlight switches off when you turn the Workabour
off. However, when you turn the Workabout on again, the Backlight does not
come on automatically; this is to prevent you from using it unintentionally and
wasting battery power. Applications can change this behaviour, though.

8 1: Introduction



Important: The Backlight is not designed to be used continuously. It switches
off automatically when the Workabout has been idle for a certain time to
preserve battery power; the length of time that it remains on is under
application control. See your application developer for more information about
control of the Backlight.

The Keyboard

The Workahout can use two different keyboards - you may have the UK
version or the Western European one (see your application developer for
details). Each has a set of 57 keys as shown below:

ENGLISH KEYBOARD WESTERN EUROPEAN KEYBOARD

() [ (0 & @8
HEOEE @HEOO®

l==B

@@@I

) () () E=)
nisislniEa
slsiainials
W
slsialsialn
Con) (1 )

Caps

(y o] b

The main navigation keys - the On, Arrow and Enter keys - are yellow; they
are positioned so that you can reach them with your thumb when you are
holding the Workabout, making one-handed operation easy. The accented
characters indicated on the Western European keyboard surround are entered
by pressing the Psion key and the appropriate letter key at the same time. For
capital accented letters, press Shift-Psion and the appropriate letter key.

1: Introduction 9



The Special function keys are not indicated on the machine; the lists that
follow explain the uses of some of these special keys.

For information ahout other customised keyboards, you should contact your

Psion distributor.
KEY FUNCTION
>
Esc
off l OFF
@ CONTRAST
% BACKLIGHT
P | *»
on/ ESC
Esc
ENTER
Sa DELETE
Tab TAB
Menu‘ MENU
spac I SPACE
s
@ CONTROL
PSION (SPECIAL
= FUNCTION)

10 1: Introduction

USAGE

Turns the Workabout on when the
machine is off.

Turns the Workabout off when the
machine is on.

Controls the contrast of the LCD
screen.

Switches the Workabout’s screen
Backlight on and off.

Under application control; see your
application developer for details. In
text editors it typically clears a line of
text input when the machine is on.

Under application control; see your
application developer for details. In
command processors it typically
terminates a line of text input and in
text editors it starts a new line of text.

Under application control; see your
application developer for details. In
command processors and text editors it
is usually vsed to edit typing.

Under application control. In text
editors it typically moves the cursor on
the screen to the next tab position.

Under application control; see your
application developer for details.

Inserts a space in a line of text input.

Gives access to upper case letters; press
Shift and a letter key to type its capital.

Under application control; see your
application developer for details.

Acts as an accelerator key in
combination with other keys.



KEY FUNCTION

ARROWS
=)

Combination keypresses

The following list shows the combination keypresses that give you access to
the in-buill special functions on the Workabout. They are not indicated on the

keyboard.
KEYPRESS

(v =y

Caps

=
EXRE

[ Shift J[°‘.’;’,c

Shift B
i

FUNCTION
TASK

CAPS LOCK

HELP

HELP INDEX

BATTERY
INFO

USAGE

Move the cursor around the screen. On
command lines the T and ! keys recall
previous commands so that you can
re-enter them without having to type
them a second time.

USAGE

Press Psion and Tab at the same
time to Task (cycle) through all the
running applications and tasks on
the Workabout. The keypress does
nothing until at least two visible
tasks are running.

Press Psion and Space at the same
time to switch the keyboard to
upper case letters.

Press Shift and On/Esc at the same
time for this function. It is under
application control and typically
displays help text for the current
application. See your application
developer for more details.

Press Shift, On/Esc and Ctrl at the
same time for this function. It is
under application control and
typically displays the index of
hetp for the current application.
See your application developer for
more details.

Displays a dialog that gives you
information about the current
condition of the Workabout’s
batteries.

1: Introduction 11



The Solid State Disk drives

The Workabout has two Solid State Disk drives (SSD drives) which allow you
to extend its data storage capacity with Solid State Disks (SSDs). SSDs are a
highly secure and compact form of data storage. The speed of data transfer to
and from them is much faster than with PC floppy disks and comparable to
that with many PC hard disks.

The Workabout’s SSD drives are located in the SSD/Battery drawer that slides
out of the centre of the machine, as shown in the diagram below:

SSD/Battery drawer eject
button

SSD/Battery drawer

85D in drive B:

SSDin drive A

The uppermost SSD drive is called drive A: and the lower one drive B: .
To insert an SSD:

1. Press the SSD/Battery drawer release button to open the SSD drive drawer
and pull it out until the SSD drives appear.

2. Slide the SSD into the slot — the arrow on its front edge should point towards
the slot. 'Then close the drawer.

Removing an SSD is just the reverse of inserting it: press the SSD/Battery
drawer release button to open the drawer, then pull the SSD out of its slot and
close the drawer.

Important: It is best not to open the Solid State Disk (SSD) drive drawer
while the Workabout is accessing an SSD. However, most applications are
designed to prevent you from losing data unwittingly and will prompt you to
replace an SSD that you have removed while the Workabout is reading
information from or writing information to it.

12  1: Introduction



The Buzzer

The Workabout has a built-in buzzer for producing sounds which is under
application control. See your application developer for more details.

The LIF-PFS socket

The Workabout is supplied with a LIF-PFS (I.ow Insertion Force — Power &
Fast Serial) socket at the base of the unit. This can be used to connect the
Workabout to:

a mains adaptor, via a LIF converter so that the Workabout can be powered
from the mains.

a Workabout Docking Station, so that a Ni-Cd battery pack in the
Workabout can be recharged without removing it from the machine.

other computers and devices, for example printers, that can be connected
and communicate via a serial port. In order to utilise the LIF-PFES socket for
this purpose you need to attach a Psion 3Link lead to a LIF converter and
then plug the LIF converter into the Workabout’s LIF-PES socket. The
3Link lead thus becomes the Workabout’s serial port C.

other computers and devices, for example printers, that can be connected
and communicate via a parallel port. To use the LIF socket for parallel
printing, you need a LIF converter and a Psion Parallel 3Link; see your
Psion distributor for more information.

The LIF converter

A LIF converter is supplied with every Workabout mains adaptor; they can
also be obtained separately from your Psion distributor.

Connect this end to
LIF converter / Workabout LIT* socket

Mains adaptor connector

1: Introduction 13



The Internal Expansion ports

The Workabout supports Internal Expansion ports at each end of the machine
which allow it to be connected to other computers and devices via Expansion
modules. It can be supplied with the following Expansion modules
factory-fitted and ready for use:

= RS-232 AT interface module in the bottom port A.

= RS-232 AT & RS-232 TTL interface module (suitable for connecting it to a
number of computers and devices, for example industry standard barcode
scanners and printers) in the top ports A and B.

= Barcode & RS-232 AT interface module in the top ports A and B.
A Barcode & RS-232 TTL interface module is not available.
Labels on the Workabout indicate which Expansion modules are fitted (if any).

Important: The current drawn by a peripheral attached to the Workabout must
not exceed 200mA.

The Fuse

The Workabout is protected against damage due to problems with its battery
power supply by a main fuse. This is fitted beneath the main batterics in the
SSD/Battery drawer. Under normal circumstances, you should never need to-
replace it; however the following situations can cause the fuse to blow:

= Batteries fitted the wrong way round if mechanical failure stops the normal
mechanisms preventing them making contact.

» A short circuit across the main batteries.

= A fault with the Workabour that causes an excessive current flow from the
main batteries.

If the fuse does blow, the Workabout will lose battery power and you will not
be able to use it with battery power until a new fuse has been fitted. Youn
should not replace the fuse yourself. Instead, you should send your
Workabout along with your name and address details by registered or recorded
delivery to the Psion Production and Service Centre at the following address:

Psion Production and Scrvice Centre
17-19 Bristol Road

Greenford

Middlesex UB6 8UP

where it will be tested for faults and the fuse replaced. You will be sent a return
note to confirm receipt of your Workabout and it will be returned to you as
soon as possible.

14 1: Introduction



Basic use

This chapter describes how to operate a Workabout that is using
the default settings. If the setup on your Workabout differs from
the standard one, some aspects of the keyboard and screen display
may not match the descriptions that are given in this section. If you
are in any doubt, contact your application developer.

This chapter tells you how to:
e switch the Workabout on and off.
e use a Startup file to run applications.

e reset the Workabout, should it ever be necessary for you to do
so.

It also contains "Troubleshooting" information which you can
refer to if anything ever goes wrong with the Workabout.

2:Basicuse 15



Turning on and off

You can turn the Workabout on as soon as you have fitted charged batteries or
connected it to a mains power supply.

To turn on: press the On key, The Workabout will switch on and continue
from where it was when it was last turned off,

To turn off: press the Off key.

05" When you i the Workabout off, no information is lost, but neither is any
information saved; the Workabout gets switched to a “stand-by" state in which
the screen, Internal Bxpansion ports and processor are de-activated. If you
remove both sets of batteries when the Workabout is in this state you will lose
all the information currently stored in the internal memory and on the internal
disk M:,

The Workabout switches off automatically when the machine has been idle for
a certain time. The default antomatic switch off time is 5 minutes, however this
time limit is under application control; see your application developer for
details.

Turning on for the first time

When you switch the Workabout on for the first time, the Copyright screen is
displayed for a short time. Meanwhile, the Workabout searches all its disk
drives (internal disk and both SSD drives) for a Startup file.

1 A Startup file is a batch file that nurmally contains commands o set various
system settings, for example the auto switch off time, and run applications. For
more information, see the ‘Advanced use’ chapter later in this manual.

If a Startup file is found, the Workabout runs it automatically. You will then
see the screen prompts or application screen that your Startup file is set to
display.

If the Workabout doesn’t find a Startup file, you will sec a message on the
screen that tells you what to do, it will typically say:

Insert Startup {autoexec) SSD and press Enter

You should, 1n the latter case, insert the SSD that contains your Startup file and
press Enter.

16 2: Basic use



Troubleshooting

If your Workabout seems to be malfunctioning, read the relevant section below
and carry out the recommended checks and corrective actions. If they do not
solve your problem, you should seek assistance from your application
developer; alternatively, you may wish to contact your Psion distributor.

Important: There are no user-serviceable parts within the Workabour.

The Workabout won’t turn on

When you first switch on the Workabout, there may be a delay of a few
seconds before any information is displayed. If the screen continues to remain
blank, try pressing the Contrast key to adjust the screen contrast.

If this doesn’t work, you will need to check that the Workabout 1s receiving
power: make sure that charged batteries are fitted and that the main fuse is not
blown, If the fuse has blown you will need to return your Workabout to a Psion
Service Centre. See the ‘Introduction’ chapter earlier in this manual for more
information about the fuse.

If the Workabout has power and adjusting the contrast does not solve the
problem, it may be that an application running on the Workabout has disabled
or wrongly set the contrast control; see your application developer for
assistance.

Screen too dark, or insufficient contrast
Press the Contrast key to adjust the screen contrast.

Beeping
The Workabout will beep if you try to type in too many characters in a

particular place — for example, when typing filenames in a dialog. The volume
of these beeps is controlled by the ‘Sound’ option in the in-built System screen.

The Workabout switches off

Make sure that the batteries are charged, or check that the LIF converter and
mains adaptor are securely fitted if you are using mains power. If the
Workabout has power, it could be that the Workabout’s auto switch off time is
set to an unsuitably short interval.

Some keys do not work

There are a number of reasons why this may happen, most of them concern the
applications running on the Workabout. For example, an application may
disable the use of certain keys, or it may not recognise your local country and
keyboard layout.

2:Basicuse 17



The Workabout does not "auto switch off"

The most likely explanation for this problem is that an application running on
the Workabout has disabled this function. Contact your application developer
for more information.

Important: You should ensure that the automatic switch off function is left
active; otherwise, if you leave the Workabour on for a long period of time by
mistake, you could discharge both the main and backup batteries completely.
You would then lose data and not be able to use the Workabout again until the
batteries have been recharged or replaced.

‘Memory full’, ‘No system memory’ or ‘Disk full’

A ‘Memory full’, ‘No system memory’ or ‘Disk full’ message is shown when
you have almost filled the internal memory with information on the internal
disk. Many of the things you do on the Workabout need just a little free
memory in order to work — displaying dialogs, menus, or Help information; so
when you get an out of memory message you will often be unable to enter
more information or change any settings until you have freed some memory.

Don’t worry if you fill up the internal memory - your information on the
internal disk is still safe. Just try the following to frce some memory:

* Open any Database files that you have stored on the internal disk and use
the Database’s ‘Compress’ option, then exit each file. This will reclaim any
space taken up by deleted or edited information.

= Internal memory is used to keep each file or application open, so close down
open files and applications that you don’t need right now. To do this, press
Psion-Tab to cycle through all the running applications and use their exit
options to close them down; if an application doesn’t have an exit option,
just press Psion-Esc.

= Delete any unwanted files on the internal disk.
= Copy files to an SSD, then delete them from the internal disk.

= Sometimes you can free (temporarily) a certain amount of memory by
moving to an open application, for example the in-built Database, and using
its ‘Copy text’ option on as small an amount of information as possible. This
places the small amount of text on the clipboard, deleting any previously
stored text.

g If you edit a large file, then open a small file, the Program editor may under
some circumstances still take up more internal memory than necessary for the
new file. Exit the file, then open it again.

If you want to keep an eye on the amount of internal memory which is still
free, use the ‘Memory info’ option on the ‘Info’ menu in the in-built System
screen. This will show you the amount of internal memory used and the
amount free. If you press the « and — keys, more details are given of what is
using up the memory — the internal disk, each open Database file, and so on.
Memory is measured in K (short for kilobyte) — 1K can hold just over a
thousand characters.

18 2: Basic use



Problems with menus
You cannot use the Menu key to display a menu in these situations:

= While a dialog is being shown on the screen.
= While you are using Help on the screen.

« While full screen messages, such as alarms and disk error messages, are
displayed.

The Workabout "locks up”

If an application “crashes"” (i.e. you get no response when you type things on
the keyboard, etc.), you need to reset the Workabout. See the instructions given
under ‘Resetting the Workabout’ later in this chapter. However, if you are not
able to save the information on your internal disk to an SSD, you should see
your application developer for help before attempting to reset the Workabout.

Problems with 8SDs

It’s best not to remove an SSD while information is being written to it, for
example when you have chosen to copy or save a file on an SSD drive, or
when you have exited a file, to look at a new file.

If you do remove an SSD while it is being written to, a message is usually
displayed asking vou to replace it. If the disk’s volume name is backup , for
example, the message will typically say something like ‘Please replace volume

1r?

"backup"’.

You must either reinsert the disk and choose to retry, or opt to abandon the
operation; you cannot use the Workabout until you do so.

Important: If a file was being saved or written to in any way, and you choose
to abandon, the file will almost certainly be corrupted and become unusable.
You should then delete the file.

A ‘Media is corrupt’ message means that the Workabout cannot read the
structure of a disk. You may see it when trying to access an unformatted SSD.
If the SSD is formatted, remove it, then re-tnsert it and try again. If you still
can't get the Workabout to access it, there may be a hardware problem with the
SSD. Contact Psion Technical Support for information.

Problems with the LIF-PFS socket and LINK software

If you cannot access Port C, or the LINK software refuses to run, you shouid
try the following:

1. Turn the Workabout off and on again.

2. Type STOP LINK on the command line in the Command processor to stop
the LINK software.

3. Disconnect the LIF converter and 3Link lead from the Workabout.

4. Plug the 3Link lead into the LIF converter and then connect the LIF
converter to the Workabout.

2:Basicuse 19



5. Finally, type LINK on the command line in the Command processor to run
the LINK software again,

Password-protected files

If you have given a password to a Spreadsheet file, and then forgotten it, that
file 1s no longer available to you.

If it is the only Spreadsheet file (perhaps still called ‘Sheet’), you will need to
create a new file in order to use Sheet again, and use that instead. Position the
highlight under the Word or Sheet icon in the System screen, and use the ‘New
file’ option on the ‘File’ menu. Enter a different name for the new file.
However, you will still be unable to access the password-protected file, until
you remember the password.

Resetting the Workabout

You should never normally need to reset your Workabout, Mest applications
are designed in such a way that they exit automatically when anything goes
wrong, without affecting any of the information you have stored in the internal
memory (RAM) or on the internal disk M:. However, in the unlikely event of
an application going wrong to the extent that it stops the Workabout -
responding to things that you type on the keyboard, you will need to perform a
reset.

When an application "crashes" (fails) you should first try a soft reset, as
follows:

= Press the Psion-Cirl-Del keys at the same time.

When you turn the Workabout on again, it will beep, briefly display the
Copyright screen and then perform the normal startup routine, 1.¢. it will [ook
for a Startup file and display a prompt if it doesn’t find one. All the
information that you had saved in the internal memory and on the mternal
disk M: should still be there.

If the soft reset doesn’t work, you will need to perform a hard reset:
» Press the Shift-Psion-Cirl-Del keys at the same time.

This action resets the Workabout completely - you will lose all the information
that you had previously stored in the internal memory and on the internal disk.
For this reason, you should only use a hard reset when a soft reset fails.

If a hard reset doesn’t work, you will need to "reboot" the Workabout:

» Remove all power from the Workabout, t.e. disconnect it from any mains
supply and remove both the main batteries and backup battery for a few
minutes.

Rebooting also removes all the information currently held in the internal
memory and on the internal disk.

20 2: Basic use



Advanced use

This chapter is intended for experienced computer users and
developers. It gives information about:

setting up a new Workabout.
the Workabout’s system-wide settings.
creating a Startup batch file.

developing applications for the Workabout and downloading
them from a PC.

the Command processor, the command line editor and the
commands available on the Workabout.

peripheral products for the Workabout that cxtend its
capabilities.

3: Advanced use 21



Setting up a new Workabout

Setting up a new Workabout can involve one or more of the tollowing
procedures, depending on what the machine is going to be used for and by
whom:

= Setting the system-wide settings, for example the system date and time and
the automatic switch off settings.

» Creating a Startup batch file (AUTOEXEC . BTF) that will be automatically
run by the Workabout whenever it is switched on. The Startup batch file can
set system-wide settings and load applications and files so that the user does
not have to do it manually.

= Developing applications for the Workabout.

= Downloading applications from a PC to the Workabout’s internal disk or to
an SSD and installing them.

= Setting up the Internal Expansion ports for printing.
» Running applications.

Switching on for the first time

The first time you switch the Workabout on you will briefly see a Copyright
screen and then the following message will be displayed:

Insert Startup (autoexec) SSD and press Enter
or press Menu for System Interface

This screen is referred to as the Startup Shell throughout this manual.

Pressing Menu displays a menu of options that allow you to move to the
Command processor and the System screen. There is also an option to ‘Restart
shell’, 1.e. restart the Workabout and display the initial Copyright screen.

* You can use the Command processor in a similar way to a DOS command
processor; unlike a DOS command processor, however, it also has a number
of menu options for setting various system-wide settings.

» The System screen is a built-in application that provides a "front-end” to the
other butlt-in applications on the Workabout, it also has menu options for a
number of file management and system settings. The System screen is
described in “The built-in applications’ chapter later in this manual.

22 3: Advanced use



Changing the system-wide setiings

You can change the Workabout's system-wide settings via the menu options
provided in the Command processor. If it is not already displayed, press Menu
in the Startup Shell and then select the ‘Command processor’ option. You can
also set some of the system-wide settings with the Workabout’s SETDEF
command on the command line or in a batch file.

It is a good idea to set at least the current date and time for a new Workabout
since these settings are likely to be utilised by other applications.

The date and time

To enter the current date and time, use the “Time and date’ option on the ‘Time
menu in the Command processor. The formats in which the date and time are
displayed are those specified with the ‘Formats’ option described below.

1]

g5 If you enter incorrect or unsuitable numbers for the date, the day and month
numbers are corrected to the largest values allowed. For example, if you typed
88888888 for the date, the numbers would be corrected to 31/12/2049 (the last
date allowed by the Workabou?).

When setting the time, you can press A or P to change between "am" and

pm".

g3 In "am-pm” format, midnight is wnitten with a 12 , and not 00 . For example,
half past midnightis 12 : 30am.

The Workabout 1s accurate to within a few seconds a week. You can use the
‘Time and date’ option again if you ever need to reset the system time.

The date and time formats

The ‘Formats’ option on the “Time’ menu in the Command processor allows
you to change the date and time formats, for example from a 12 hour to a 24
hour format, and the characters that are used for the date and time separators.
By default the Workabout is set to use the DMY date format with / as the
date separator, and a 24 hour time format with : as the time separator.

Summer time settings

Most countries set their clocks forwards by an hour during their summer. The
timing of these “summer times" in different countries is not something that can
be calculated precisely, so it is not something that can be done automatically
by the Workabout. Consequently you need to set summer time on or off
manually with the ‘Summer time’ option on the ‘Time’ menu in the Command
processor; by default summer time is off.

The sound settings

The Workabout can make two sounds: beeps and key clicks. The defauit
setting is for both sound options to be turned on with beeps set to ‘Quiet’ and
keyclicks to ‘Loud’. However, if you wish to you can use the ‘Sound’ option

3: Advanced use 23



on the “Control’ menu in the Command processor to turn one or both of them
off, or change the volume of the sounds that are produced.

The auto switch off settings

To conserve power the Workabout is able to automatically switch off the
screen Backlight after a specifiable period of time (the default switch off time
being 10 minutes). It is also able to switch itself off when it has been idle for a
certain time, the default setting is after 5 minutes. To change either of these
automatic switch off settings, select the ‘Auto switch off” option on the
‘Control’ menu in the Command processor.

Important: If you set the ‘Auto switch off machine’ line to ‘Off’, the
Workabout will only turn off when you press the Off key. You should not in
general disable ‘Auto switch off machine’ when using battery power - if you
were to leave the Workabout on by mistake, it would stay on until the batteries
failed. The Workabout would then turn itself off and you would not be abie to
turn 1t back on again until you replaced the batteries.

‘The Workabout does not automatically switch off when it is busy - for example
when it is printing or transferring a file to another computer.

 Keyboard settings

Every Workabout can be set to use a UK keyboard or a Western European one
(see “The keyboard® section earlier in this manual for keyboard Iayouts of both
types). However, Workabouts are supplied with keyboard surrounds that
indicate erther UK keypresses or Western European ones. So if you often need
write in French, for example, you can set a UK Workabout to use the special
keyboard so that you can type accented characters, though you will have to
know where these characters are as they will not be indicated on the keyboard
surround.

To change the keyboard in use select the ‘Special keyboard’ option on the
‘Control’ menu in the Command proccssor.

5> When the special keyboard is selected, you will not be able to use all the
hot-keys, for example Psion-X to exit the built-in applications; you will need to
use the menu options provided in the application.

By default the Backlight key is enabled for both the UK and Western European
versions of the keyboard. If you wish (o disable it, select the ‘Auto switch off”
option on the ‘Control’ menu in the Command processor and change its setting.

Text wrapping

By default, text is not wrapped to the Workabout’s screen width. You can use
the “Wrap on/off” option on the ‘Special’ menu in the Command processor to
alter text wrapping.

24  3: Advanced use



The SETDEF parameters

The following switches are used on the SETDEF command line to alter some
of the system settings — the default settings are marked with a hash (#), with
any numerical settings given in brackets:

SWITCH SETS

TS+ Summer time on
TS- # Summer time off
S+ # Sound on
S- Sound off

AMnn #(5) Auto switch off machine at nn minutes
ABnn #(10) Auto switch off Backlight at nn minutes
DDMY #  Set date format to DD/MM/YY

DMDY Set date format to MM/DD/YY

DYMD Set date format to YY/MM/DD

Dn #(0) Set start of week to n (where 0 is Monday etc.)
KO # Standard (UK} keyboard

K1 Special (West European) keybeard

You would normally only ever use the SETDEF command in a batch file to set
up a number of system-wide settings.

Creating a Startup (AUTOEXEC.") file

A Startup file can be used to set system-wide settings and run applications
automatically when the Workabout is first switched on so that the user does not
have to perform these actions manually. The Workabout automatically searches
all its drives for a Startup file and runs it when it s first switched on.

Startup files must have the filename AUTOEXEC and can have any one of the
following filename extensions: .IMG, .APP, OPO, .OPA.or .BTF.The
default filename extension is .BTF .

To create a Startup batch file from the Command processor:
1. Type EDIT AUTOEXEC.BTF

The file AUTOEXEC.BTF is then created in the \BTF directory on the
default disk and the Workabout's text editor is displayed.

2. Ty;on the commands for the actions that you want the Workabout to perform
on swartup in the order wi which you want them to occur; a list of all the
Workabout’s commands is given later in this chapter. For example, you
might have the following list of commands in your Startup file:

SETDErF AM10

REM sets auto switch off to 10 mins

SETDEF ABS

REM sets Backlight aulo switch off to 5 mins
SETDEF DMDY

REM sets date format to MMDDYY

3: Advanced use 25



SETDEF K1

REM sets special Western European keyboard

SETDEF T24

REM sets 24 hour time format

LINK

REM runs Remote Link software

START MYPROG CLIENTS

REM runs Myprog applicationand tells it to use the data
REM file CLIENTS

See the section on ‘The SETDEF parameters’ earlier in this chapter for details
of all the system settings that you can define with the SETDEF command.

If you want to use a number of different Startup files, it’s best to create them
on separate SSDs (saving them ina \BTF directory on each SSD). You can
then just insert the SSD that contains the Startup file for the setup and
applications that you wish to run when you need it; every time you wish to
change setup, simply turn the Workabout off, insert a different "Startup SSD"
and switch the machine back on again.

If you do not wish to use SETDEEF to change the system-wide settings when
the Workabout is first switched on and just wish to run an application, you can
crcate the following kinds of Startup file:

= for .IMG and .OPO applications (and all the built-in applcations) you
can simply rename the application filename to AUTQOEXEC .BTF to make
the Workabout run the application as its Startup file.

» for other application types, you can create a batch file called
AUTOEXEC.BTF that simply contains the command(s) to run the
application and load the required file(s). For example, to run an application
called MYPROG.APP using a data file called DATA2 , the
AUTOEXEC .BTF file would contain the following command:

START MYPROG DATAZ2

Developing applications for the Workabout

You can develop applications for the Workabout in two ways:

= By creating them on the Workabout in the in-built Program editor using the
Workabout’s OPL programming language. You can then translate and run
them. The Program editor is described in ‘The built-in applications’ chapter
later in this manual.

» Alternatively, you can base your development on the PC and create your
applications with OP'L, or ‘C’ if you prefer. IFor this method of development
you will need to obtain a copy of the relevant Psion Software Development
Kit (SDK).

For more detailed information about application development please refer to
the SIBO OPL SDK (Software Development Kit). If you intend to program in

26 3: Advanced use



‘C’, please refer to the latest version of the Psion SIBO *C’ SDK (currently
2.1). '

3y Application files must have a .IMG, .APP, .OPQ, or .OPA filename extension.

Downloading applications from a PC

You can link the Workabout to a PC using a Psion Serial 3Link lead and a LIF
converter.

Important: When connecting and disconnecting a LIF converter and 3Link
lead, you should not have the LINK software running on the Workabout. So
you should plug the LIF converter and 3Link lead into the Workabout before
running the LINK software, and exit the LINK software before disconnecting
the LIF converter and 3Link lead.

If you have an Internal Expansion module fitted, you can also connect Port A
(the nine-pin one beside the LIF-PFS socket) to a PC via an ordinary serial
cable and a null modem in the same way that you would connect two PCs.

When you have connected the Workabout and PC, you need to run suitable
communications software on both the computers. The Workabout has its own
built-in communications software; select the ‘Remote link’ option on the
‘Special’ menu in the Command processor or System screen, or type LINK
in the Command processor to run it. The Psion Serial 3Link lead may be
supplied with communications applications for Windows and DOS PCs. For
more information about communications software for linking the Workabout
to PCs, see your Psion distributor.

Once the communications softwarc is running on both computers you can
simply copy application files from the PC to the Workabout, either to the
internal disk M: ortoan SSDinthe A: or B: drives. Drives on the PC are
seen as REM: : (remote) drives by the Workabour, a PC’s C: drive for
example will be seen as REM: : C: . (For more information about the
Workabout’s filing system, see ‘Files and directories’ later in this chapter.)

See your Psion distributor for more information about the products available
for linking your Workabout to other computers.

3: Advanced use 27



Setting up the Internal Expansion ports

Two Internal Expansion ports suitable for printing may be fitted to a
Workabout: Port A, the 9-pin serial port, and Port C, the LIF-PFS socket; both
are situated at the base of the unit. Port A is a serial port, and Port C can be a
serial or parallel port, depending on what is connected to it (see “The LIF-PES
socket’ section earlier in this manual for more information).

The Startup Shell sets the following two environment variables:

PSPP=C
PSSP=C
When you press Psion-P to print, data is therefore sent to Port C by default. If
you wish to use Port A for serial printing, you must set the serial port variable

to Port A by typing SET P$SP=A on the command ling, or include this line
in any batch file that you have created for printing.

There are no plans at this time for any parallel port other than C.

Running applications

You can run an application synchronously from the Command processor by
simply typing its name, in the same way as you would at the DOS prompt on a
PC. For example, you would type JOBSHEET to run an application called
Jobsheet. The Command processor will be suspended by the operating system
until you exit the application when you run it in this way (synchronously).

To launch an application asynchronously (without suspending the Command
processor), use the START command. For example you might type START
JOBSHEET. The Command processor will continue to run concurrently with
the application and you will normally be able to press Psion-Tab to switch
between the application and the Command processor.

You can run the built-in applications synchronously from the Command
processor by typing their application names as follows:

Application Type

Database DATA
Calculator CALC

Sheet SH3 or SHEET
Program/script editorEDIT

Comms COMMS

To run them asynchronously, use the START command, for example you might
type START CALC

1=~ Although the Workabout’s multi-tasking operating system, EPOC, runs
vperations asynchronouslty by default, the Command processor is designed to
run them synchronousty (unless the START command is used) for the sake of
compatibility with MS-DOS.

28 3: Advanced use



The Command processor

You can enter Workabout commands at the Command processor prompt M>
in the same way that you would enter them at a DOS prompt. The Command
pracessor pauses automatically at the end of each screenful of information,
except when commands are executed from a batch file.

The Workabout can run batch files of commands from the Command
processor; they have a . BTF filename extension. These will usually look just
like DOS batch files - they may even be DOS batch files as the Workabout’s
commands are so similar to DOS commands. More information about batch
files 1s given later in this chapter.

Files and direclories

Just as under MS-DOS on PCs, files are stored on the Workabout disks in
directories and sub-directories. These are referred to in exactly the same way
as they are on a PC’s DOS command line. For example, a batch file called
BACKUP.BTF inthe BTF directory of the internal disk would be referred to
as M:\BTF\BACKUP.BTF . Files on disks on a remote computer that is
connected to the Workabour via the LIF-PFS socket are referred to in exacily
‘the same way, just add REM: : to the start of the file specification; for
example the file BACKUP.BTF inthe BTF directory of a remote PC’s C:
drive would be referred to as REM: :C: \BTF\BACKUP .BTF

Keys and keypresses in the Command processor

«— move the cursor.

T and | recall up to 31 previous commands as they do with DOSKEY.

Ctrl-« and Ctrl-- move the cursor a word at a time.

Psion-« and Psion-— go the the start and end of the command line respectively.
Del deletes the next character and any highlighted text.

Shift-Del deletes the next character.

Shift«— highlights text.

Esc deletes the entire line.

Psion-Del deletes from the cursor poamon to the start of the line.
Shift-Psion-Del deletes from the cursor position to the end of the line.

Exiting the Command processor

If no application has been launched from the Command processor, you can
press Pston-X (or select the ‘Exit’ option on the ‘Special’ menu) or type EXIT
to exit and return to the Startup Shell screen.

3: Advanced use 29



The Workabout commands

The Workabout has a number of DOS commands which perform similarly to
their DOS counterparts, for example COPY, DEL, MD, RD and CD, and a number
of other commands for which there are no DOS equivalents.

An alphabetical list of all the Workabout commands and their usage is given

below:

COMMAND

A
B:

ATTRIB filename

CALL filename
CDh, CHDIR
CLS

COPY
(source ]
[destination]

(/s8] 0/Y]

DATE

DEL, ERASE
filename{s)

[/S]1{/Y]

DIR [/S][/B]

ECHO
[text]
[ON/QFF]

USAGE
Changes the default disk.

Displays and alters file attributes such as read-only,
archive, etc.

Calls a batch file from another batch file.
Displays or alters the current directory.
Clears the Workabout screen.

Copies a file or files. The source and destinations can be
specified as a drive letter and colon, a directory name, a
filename or a complete path. If a destination filename is
not specified, the new file(s) will have the same
filename(s) as the source file(s). Use the /S switch on the
command [ine to include files in sub-directories and the
7Y switch to suppress a confirmation dialog.

Displays the current system date.

Deletes one or more files.

You can also delete files in subdirectories by using the
/S switch at the end of the DEL command lire. For
example, you would type:

DEL M:\DATA\*.* /S to delete all the files in the
DATA directory on the internal drive (M:), including
those in subdirectories. You can use the 7y switch to
suppress a confirmation dialog.

Lists the files and directories in the current directory.
You can use the /S switch on the command line to list the
files in sub-directories. The /B switch will display files in
bare format

Without parameters, ECHO displays the current ECHO
state.

ECHO [text] displays the given text on the screen.
ECHO [ON/OFF1 selects the ECHO mode for batch

files.

30 3: Advanced use



COMMAND

EDIT filename

ERRLEVEL
EXIT

FILES drive
FOR

FORMAT

drive
[label]

GOTO label
HELP

IF

KILL process

LAREIL
riame

drive

LLDEV
[devicename]

USAGE

Runs the Workabout’s plain text editor. This is intended
mainly for editing batch files

Displays the current errorlevel state.

Terminates the Command processor, returning you to the
process that launched it, usually the Startup Shell.

Lists open files on the specified drive.

Runs the given command for each file in a set of files.
The syntax is as follows:

FOR %var IN {(set) DO command ([params]
where %var specifics a replaccable paramcter, (sct)
specifies the set of files (wildcards can be used) and
[params] specifies the switches to use with the given
command. When using [FOR in a batch file, use $%var
instead of $var.

Formats a disk in the specified drive.

Jumps to the specified.a label in a batch file.

Provides Help information on the Workabout
commands. Type help for a full list and brief
description of the commands. Type help command
for detailed information about a specific command.

Runs a command conditionally. This is mainly for use in
batch files.

Kills (terminates) all processes that match the
specification; they do not need to have been launched
from the Command processor. Note that the process 1s
not sent a terminate message. This is intended for
emergency use only - under normal circumstances you
should usc the exit command provided in the application
or the STOP command to terminate processes.

Adds or alters the volume 1abel of a disk.

Lists all the logical device drivers that match a specified
device name, or lists all logical device drivers if a device
name is not specified.

3: Advanced use 31



COMMAND
LINK

LPDEV
[devicename]

LPROC
[process]

LSEG
[segment]

MD, MKDIR
directory

MEM
PAUSE
QUIT

RD, RMDIR
directory
[/Y]

REM LexL
REN filename

SET
variable
variable=

SETDEF

SHIFT

START process
[parameters]

USAGE

Starts the LINK software that is used when connecting
the Workabout directly to another computer. This
command is intended mainly for use in batch files. Note
that you need to enter the required port and Baud rate on
the command line. STOP LINK exits the LINK
software,

Lists all the physical device drivers that match a
specified device name, or lists all physical device drivers
if a device name is not specified.

Lists all the running processes that match the specified
process name, or lists all running processes if a process
name is not specified.

Lists all memory segments that match the specified
segment, or lists all memory segments if a segment is
not specified.

Makes a directory.

Displays the current system memory.
Suspends batch file processing.
Exits the batch file in which it appears.

Removes a directory. You can use the /Y switch to
suppress a confirmation dialog.

_Marks a line of text in a batch file as a comment.
Renames a file or set of files.

SET variable displays the values for the variable.
SET wvar= deletes the values in the variable.
Note that variable names are case sensitive.

Alters system settings that are otherwise set by menu
options. This command is intended for use in batch files.
See ‘The SETDEF parameters’ section earlier in this
chapter for more information.

Shifts batch file parameters.

Launches the specified process asynchronously and
returns to the Command processor immediately. You can
press Psion-Tab to switch between running processes.

32 3: Advanced use



COMMAND USAGE

STOP process Terminates all processes that match the specification;

[/Y] processes do not need to have been launched from the
Command processor for STOP to work. Use the 7Y
switch on the command line to suppress a confirmation
dialog. Note that processes are sent a termination
message. It is better to use the exit command provided in
applications

TIME Displays the current system time.

TYPE filename Displays the contents of a text file.

VER Displays the Workabout’s version information.
VOL drive Displays the volume label of a disk.

WAIT process Waits for completion of the specified process which has
been started by the Command processor.

Typing help atthe M> prompt displays a full list and description of
available commands. For detailed information about a specific command, type
help followed by the command name, for example type help copy for
help on the COPY command. Unless you have already set “Wrap on’, you may
need to press Psion-W (or select the “Wrap on’ option on the Spema] menu)
in order to read all the help text. Alternatively, you can press Shlft Psion-Z to
zoom out and view the text in a smaller font.

= The Workabout records the return code from errorlevels after each command.
You can use the DOS-standard IF command (IF ERRORLEVEL...) to test the
success or otherwise of the previous command. You can also use
ERRORLEVEL to display this information. The errorlevels returned are TRUE
and FALSE.

Batch files of commands

You can create batch files for other purposes in the same way that you create a
Startup file, just type EDIT and then the name of the new batch file, for
example you might type EDIT BACKUP.BTF.

Batch files can have any filename (up to eight characters long), but must have
the filename exiension .BTF .

Running batch files

Startup batch files (AUTOEXEC.BTF) are run automatically when the
Workabout is first switched on. Other batch files can be run from the
Command processor by typing the name of the batch file, followed by any
required parameters.

Batch files are always run synchronously; if you enter the START command, it
is ignored.

3: Advanced use 33



Error messages

The Workabout displays the following messages in the Command processor

whenever an error has occuired:
ERROR MESSAGE

Remote link not connected

Bad command or file name

Invalid directory

MEANING

The remote link that connects the Workabout
o anuther computer is disconnected and you
have tried to perform an action that relies on
the existence of the link. You should
physically connect the two computers, run the
linking software on both machines, and then
try again.

You have mis-typed a command or file name,
or entered a command or filename that does
not exist. You can use the HELP command to
verify the command that you entered.

You have selected or entered the name of a

- directory that does not exist.

Invalid drive specification

Invalid parameters

Syntax error
Unknown process

xXx failed

34 3: Advanced use

You have selected or entered a drive that is
currently unavailable or does not exist.

You have used a command with a parameter
that is currently unavailable or does not exist.
Check the parameters available with the
HELP command.

You have entered a command using the
wrong syntax. Check the correct syntax using
the HELP command.

You have tried to STOP, WAIT OR KILL an
application that is not currently running on
the Workabout.

The operation xx has failed.



Peripheral products for the Workabout

A number of peripheral products that extend the Workabout’s capabilities are
briefly described below. For more information about any of these products,
please contact your Psion distributor.

Solid State Disks

Two types of SSD are available that provide extra data storage capacity: Flash
SSDs and RAM SSDs. Both types are supplied in a variety of capacities -
larger capacity SSDs are continually being developed.

» Flash SSDs are a highly secure medium as they do not require a battery or
other power supply to preserve data, Information on a Flash SSD should
remain intact for at least ten years. Flash SSDs are best suited to storing data
that is not frequently altered because they do not allow selective overwriting
of information. When they become full, you must format them to make
them blank again.

There is a special Psion utility to format a Flash SSD which is available
with version 2.1 of the Psion SIBO ‘C’ SDK (Software Development Kit).
For more information please contact your Psion distributor.

« RAM SSDs, unlike Flash SSDs, require a power source to keep the
information stored on them secure. When they are inside the Workabour
they use the computer’s power supply to keep the data secure. They also
contain a 3V lithium battery (the same as the Workabout’s backup battery)
which provides the power to keep the data safe when they are removed from
a computer. When there is no other power supply, a new battery will
preserve information on a RAM SSD for at least 3 months. Removing a
battery from a RAM SSD, or removing a RAM 88D from an SSD drive
when the battery is "flat”, results in the loss of all the information it
contained. Before changing the battery in a RAM SSD, you should copy all
the data it contains to another SSD or the Workabout’s internal disk.

RAM SSDs are ideal for storing data that is frequently altered since you can
overwrite information selectively.

If you wish to protect the data on an SSD, you can — B
write-protect it. To do this you simply use something like " Protect
the end of an opened paper clip to set the write-protect E—-I
switch on the edge of the SSD to the ‘Protect’ position. To Write

turn off writc-protection, just sct the write-protect switch
back to the ‘Write’ position.

Solid State Disk drives for PCs

Although you cannot directly use SSDs with PCs, a Solid

State Disk drive unit for PCs (and the software to control it) is available from
Psion. SSDs inserted in the unit can be accessed by the PC like any other PC
drive. For more information about SSD drives for the PC, please contact your
Psion distributor.

3: Advanceduse 35



The Holster

A rigid plastic Holster is available for storing the Workabout. You can screw it
to any convenient vertical surface, for example the side of a desk, or the
dashboard of a vehicle. Two models of the Holster are available: a simple
Holster and a Holster with a LIF converter.

The Docking Station

A Docking Station is available for the Workabout which can be used to
recharge the Workabout’s Ni-Cd battery pack and transfer data to other
peripherals, for example a printer. It is available in two models: one for fast
charging the battcry packs and another for trickle charging. Both models can
charge the battery pack inside a Workabout and a spare battery pack.

The leaflet supplied with the Docking Station explains how to use it.

The Mains adaptor

A mains adaptor suitable for connecting the Workabout to an AC mains power
supply is available. The mains adaptor cannot be plugged directly into the
Workabout — it is supplied with a LIF converter which plugs into the
Workabout’s LIF-PFS socket to which the mains adaptor can be connected.

The Accessory pack

The Accessory pack contains an elasticated strap which can be fitted to the
back of the Workabout. This allows you to wear the Workabout on your arm or
belt for easy carrying, leaving your hands free.

internal Expansion modules

A number of Internal Expansion modules can be fitted to the Workabout which
aliow it to communicate with other computers and devices. These are
described under ‘The Internal Expansion ports’ in the ‘Introduction’ chapter
earlier in this manual.

36 3: Advanced use



The built-in
applications

This chapter tells you about the following applications:

The System screen that acts as a "front-end" to the other
built-in applications.

Data, the database application which you can use like a card
index system for storing a variety of information, for example
names and addresses.

Calg, the scientific calculator which you can use in a similar
way to a pocket calculator. |

Sheet, the spreadsheet that you can use to create tables,
perform inter-related calculations and produce a graphical
representation of your data.

The Program editor which allows you to write and translate
your own programs for the Workabout.

Comms, the communications software that provides terminal

emulation, allowing you to connect the Workabout to other
computers or to other devices.

4: The built-in applications 37



Introduction

Although the applications that are built into the Workabout are fully
functioning, they are only really intended to demonstrate the sophistication and
flexibility of applications that can be developed for the Workabour. They are
included with the Workabout as an aid to application development and would
therefore only normally be used by application developers.

To display the built-in applications, press Menu in the Startup Shell and select
the ‘System screen’ option. A copyright information message will appear
briefly and then the System screen will be displayed, as described below.

The System screen

The System screen displays icons for all the built-in applications, some of
which are shown in the following screenshot:

Calc  Sheet »

N A

Menu options are provided for installing additional applications and removing
applications that you no longer wish to use. Press Menu to display the menu
bar and use the «— keys to move between the menus. (Menus and dialogs are
described in detail later in this chapter.) The System screen menus are as
follows:

‘File’ and ‘Disk’ menu options allow you to manage your files, directories
and disks. For more information, see the ‘File Management’ section later in
this chapter.

» “Apps’ (Applications) menu options which you can use to install, remove
and exit applications.

» ‘Info’ (Information) menu options display information about the
Workabout’s batteries, disks and memory.

= ‘Ctrl’ (Control) menu options allow you to change system settings as
described in the section that follows. '

» ‘Spec’ (Special) menu options determine the default display of information,
among other things; these are described later in this chapter.

System settings

The system settings are utilised in the built-in applications where appropriate.
They are as follows:

38 4: The built-in applications



The ‘Sound’ option settings determine the sounds that applications on the
Workabout are able to produce via the buzzer. The initial setting is for all
sounds to be on. However, you can turn some, or all of the sounds off, and
change their volume.

The ‘Auto switch off” option specifies whether the Workabout switches
itself off after a certain period of idleness. You can disable automatic switch
off, set the Workabout to switch off automatically if it has no external
power, and also alter the switch off time interval.

1< Important: You should not, in general, disable ‘Auto switch off” when using
battery power - if you were to leave the Workabout on by mistake, it would stay
on until the main and backup batteries hecame completely discharged. The
Workabout would then turn off and you would lose all the data stored on the
internal disk and not be able to furn it on again until you changed the batteries.

The ‘Set time and date’ option sets the current system time and date.

The ‘Time and date formats’ option sets the date and time formats and the
characters that are used for the date and time separators. See ‘Changing the
system-wide settings’ in the ‘Advanced use’ chapter earlier in this manual
for more information.

the ‘Default disk’ option sets the disk that is selected by detault in any
dialog where you specify the location of a file. The default disk is also the
disk on which applications may save files as and when they are required.

User preferences

Display preferences that cannot really be classed as system settings are
grouped together and alterable from the ‘Set preferences’ option on the
‘Special’ menu in the System screen, as follows:

Press Tab on the ‘Number formats’ line to set the currency symbol, decimal
point character, etc. that is used in the Calc and Sheet applications. These
settings may also be used by other applications that have been installed on
the Workabout.

Press Tab on the ‘"Evaluate" format’ line to set the format in which the

results of calculations peformed using the *Evaluate’ option in the Database

application are returned. You can set the number format, e.g. fixed or

scientific, number of decimal places, and trigonometry units. These settings

may also be used by other applications that have been installed on the
Workabout.

Select ‘Shift-Enter’ or ‘Enter’ on the ‘Open multiple files’ line to determine
the keypress that you should use to open an application file without closing
any previously opened application file from the built-in System screen.

The setting on the ‘Font’ line determines the font that is used for the
Workabout's built-in System screen display; you can choose between a
Swiss or Roman font.

Set the “Keyboard’ line to “‘Special” if you wish to use the special Western
European keypresses on the Workabout.

4: The built-in applications 39



General application features

The following section gives you information about the features that are
provided in all the Workabous’s built-in applications.

Menus and dialogs

All of the built-in applications on the Workabout, including the System screen
described earlier in this chapter, have menus and dialogs to give access to
commands. Each menu option also has a hot key that you can use to display its
dialog that consists of the Psion accelerator key and a letter key that is
appropriate to the option. If you press Menu to display the menu bar, you will
see a hot key listed to the right of each option.

As you will see, the organisation of the menus and options broadly conforms to
the standards used by many Windows-based applications. Since many
computer users are familiar with this type of layout, it makes sense to
implement it in the Workabout applications.

The «— keys allow you to move between menus and the 70 keys to move
between the options in a menu.

@ Auto switch off

Set time and date
Time and date format SINFE“F
Etatus vindouw Shift+ld
Default disk Shift=H

Disk npps Info

To select a menu option, simply position the highlight over it and press Enter.
For example, in the System screen, selecting ‘Sound’ from the ‘Ctr]” menu
displays the following dialog:

Al sound XA

Beeps

Within dialogs you can use the Tl keys to move between the lines. Where the
setting for a dialog line can be selected from a list of options, you can use the
«-» to cycle through the available options.

As is normal practice, Enter closes a dialog and Escape cancels it, leaving the
original settings.

Where a dialog line requires the user to select a file, pressing Tab displays the
File selector which allows them to navigate to the file. Pressing Enter then runs
the filc, if it is the type of file that can be run.

40 4: The built-in applications



Sub-dialogs

Where a further sub-dialog is required from a dialog line, three dots are
displayed at the end of the line and the uscr has to press Tab to move to the
sub-dialog. To see an example of the latter, select the ‘Set preferences’ option
on the ‘Special’ menu in the System screen; both the ‘Number formats’ and
“"Evaluate” format’ lines have “..." at the end to indicate a further dialog.

Special keys and keypresses

All the in-built applications support a number of special keys and keypresses,
as described below:

KEY/KEYPRESS ACTION

select a topic and press Enter.

| Shift " OTEUSG l Displays the index of help for the current application.
Ctrll

on/ Press this key to remove Help, a menu or a dialog from
Esc the screen.

( Shift J(OEIS c] Displays help for the current screen. Use the 10 keys to

This key does nothing on its own. It is a modifier key
that is used with other keys for extra characters and
functions. These keypresses are written Psion-X for
example.

|

ab Pressing Tab on lines in dialogs where you select or
type the name of a file, displays the File selector. This
allows you to navigate to your files and disks. Pressing
the ™ keys moves you up and down the directory
structure, while pressing the «- keys switches
between disk drives. When you have navigated to your
file, press Enter and its name is cntered in the dialog
for you.
Pressing Ctrl-Tab on a file name in the System screen
displays the ‘Specify filelist’ dialog which shows the
full path of the file. Press Enter and this dialog will
disappear, leaving the File selector on display.

vy

Help

All the built-in applications have their own help to which users can turn for
guidance. Press Shift-Esc and you will see the index of help for the application.
You can move the highlight to the required topic with the 7l keys and press
Enter to view the help text. Where there is more text than will tit on one

4: The built-in applications 41



screen, a small arrow is displayed in the bottom right hand corner of the screen
and you can press T to scroll the screen. Pressing Esc moves you back up
through the levels of help.

Opening and closing applications
You can run all the applications by highlighting the application icon on the

System screen and pressing Enter. To close one, you can use the ‘Exit’ option
in the application or highlight its icon in the System screen and press Delete.

You do not have to exit one application before opening another; the Workabout
is multi-tasking and can switch between applications without any need to close
them. You can press Psion-Tab to cycle through all the running applications.

Cut/Copy/Paste, and Delete/Undelete

If you’ve used commands like these in other personal computer software, note
that 1n the Workabout’s in-built applications the ‘delete’ and ‘cut’ concepts are
combined:

= When you copy highlighted information with ‘Copy..."” menu options (such
as ‘Copy text’), the information is copied to a clipboard. You can insert
(paste) this information, as many times as you like, with ‘Insert...’ menu
options. (This is usually called ‘Insert text’; in the Spreadsheet it 1s called
‘Paste’.)

= When you delete highlighted information with the Delete key, it is deleted
from the file, but is also put on the clipboard. (This also happens if you
delete part of a line with Psion-Delete or Shift-Psion-Delete. If you just
delete a single character with the Delete key, however, the clipboard is not
affected.)

So if you delete information by mistake, you can use the ‘Insert..." option 10
put it back (undelete it).

Each open application has its own clipboard, Whenever you copy, or Delete
informatton to any application clipboard, information previously on the
clipboard is lost. However, you can delete highlighted information without
replacing the clipboard, by pressing Shift-Delete. (You cannot do this in the
Spreadsheet, though.)

You can use the clipboard to copy and paste information between two files
from the same application; just copy the information, open the second file and
paste the information in. To copy information between files of a different type,
you have to use the ‘Bring’ options.

File management

You can perform basic filc management of most application files from the
System screen and from within the application itself, Applications
automatically save a file when an alternative file is opened.

» Many file management operations are available from options on the
application’s ‘File’ menu.

42 4: The built-in applications



» Where operations must be done outside the application, for example
copying, renaming and deleting files, as well as backing up and restoring
files, there are options on the ‘File’ menu in the System screen.

Display features

Text wrapping

By default, text is not wrapped to the Workabout’s screen width. A menu
option is provided in all the applications that require them, for example the
Command processor has a “Wrap on/off” option on the ‘Special’ menu.

Status windows

The built-in applications support the display of a Status window on the right
hand side of the screen. This contains text and graphical information, for
example, the system time and date, battery information and the presence of
SSDs:

Press Ctrl-Menu to turn the Status window on and off or to change its size in
any built-in application. The. ‘Status window’ option on the System screen’s
‘Ctrl” menu sets up Status windows in all the built-in applications (except the
Command processor).

You can display a Status window temporarily by pressing Psion-Menu in all
the built-in applications, including the Command processor.

‘Zoom’ settings
‘Zoom in’ and ‘“Zoom out’ options are provided in applications for switching
between the four different font (character) sizes supported by the Workabout.

As well as changing the size of text, this changes the amount of information
displayed on the screen.

The four different zoom settings give the following number of characters per
line and number of lines of text on the screen:

Zoom setting 1 2 3 4
No. characters 29 27 23 18
No. lines 9 7 6 5
Font size 8 11 13 16

You can see four of the font sizes by pressing Psion-Z and Shift-Psion-Z in the
System screen or Command processor - all but the smallest font size are
implemented. The text editor launched by the EDIT command also supports
zooming. The Command processor supports a fifth zoom setting that displays
39 characters on 12 lincs in a sizc 6 font.

4: The built-in applications 43



Data - the database

In the Workabout’s Database, each field in the entry is called a line and each
line has a label to indicate the information that should be entered on the line.
The ‘Edit labels’ option on the ‘Edit’ menu allows you to change the default
labels to reflect the information that is to be stored in the file, Labels can be

turned on and off with the ‘Hide/Show labels’ option.

Adding, updating and removing entries

The first time you use the Database the ‘Add’ screen is shown so that you can
type a new name and address entry straight away:

When you have finished adding entries, you can press Shift-Psion-F to switch
to the ‘Find’ screen. To change an entry, you simply have to find it and then
move to the ‘Update’ screen by pressing Shift-Psion-C.

As you have just seen, there is a different screen for each of the operations you
might want to perform: adding an entry, finding an entry and updating an entry.
Options on the ‘Entry’ menu allow you to switch between the screens. The text
at the hottom of the screen lets you know which screen you are viewing and
what you can do.

To completely remove an entry, you simply have to find it and Press Psion-D,
(or select the “Delete entry’ option on the *Edit’ menu) or press the Delete key.
As a security measure there is a confirmation prompt following the delete
command.

Searching

You can only scarch for an entry, or for information in any entry, from the
‘Find’ screen. The search clue that you enter can be on any line in any entry,
unless you have chosen to limit the search to particular lines with the ‘Find by
label’ uption on the ‘Search’ menu; in this case the text along the bottom of the
screen will change to reflect the label that you have chosen to search on, e.g.
"Name" rather than "Find":

Mame: Terry James _Data |
S Home: 081 222 2222

’@ B
) m

1713 mon 31

(Name:

If a match is found, the entry is displayed; if there is more than one matching
entry, you can press Enter to look at them in turn. If no match is found, or there

44 4: The built-in applications



are no more matching entries, a message is displayed such as ‘Not found’ or
‘No more found’.

Moving directly to an entry

Entries in the Database file are numbered. The current entry number, along
with the total number of entries, is displayed in the bottom right hand corner of
the screen as, for example, 1/13 (entry 1 of 13 entries) in the previous
screenshot.

If you know the number of an entry, you can move directly to it with the ‘Jump
to entry’ option on the ‘Search’ menu.

U=y When you update and save an entry, it is moved to the end of the Database file,
s0 its entry number changes to the last entry in the file.

Compressing a Database file

The space used by changed and deleted Database entries is not automatically
reclaimed. A menu option 1s therefore provided on the ‘File’ menu to allow you
to compress the Database file manually.

Important: You cannot compress Database files that are stored on Flash SSDs.
You need to copy them to the Workabout’s internal disk and compress themn
there, and format the Flash SSD before copying the file back again.
Alternatively, you can use the ‘Save as’ option to create a new, compressed
copy of the file on the Flash SSD. '

Other useful functions

= Options on the ‘Display’ menu allow you to change the way that
information is displayed, you can for example, hide all the labels.

» The ‘Merge in’ option on the ‘File’ menu lets you merge the entries and/or
display settings from another Database file. You might wish to do this to
create a single Database file from two separate files, or to copy the settings
from another Database file into the current one so that both files look the
same.

e The ‘Save as’ option on the ‘File’ menu allows you to save a Database file
as a file of plain text with line breaks, rather than separate entries. This can
be useful if you wish to utilise the information in a Database file in other

applications.

« The ‘Bring text’ option on the ‘Edit’ menu can be used to insert text that is
highlighted in other applications and other Database files at the cursor
position.

4: The built-in applications 45



Calc - the scientific calculator

Calc is a programmable scientific Calculator. It can handle positive and
negative numbers between 9.999999999999¢99 and 1e-99.

The Calc screen is divided into three arecas:

M1 = 89 Calc
178-2
“Bg 4156
a9+
....... 545 0 |BE
Calc:545/5 Mon 31

« the top line displays the contents of the current memory;
» the bottom line displays the calculations you type, and

= the central arca above the calculation line shows your previous calculations
and their results. '

New calculations

To perform a new calculation, you can just type it without any spaces between
the numbers and the operators, for example 34.5+23.6+89, and press
Enter. See ‘Precedence of operators’ below for the order in which calculations
are done. Pressing Esc clears a previous calculation.

You can utilise the "result" or answer of a calculation you have just performed
as part of a new calculation, just type the operator you want to use and then the
next number.

Precedence of operators

Calc performs calculations in a specific order, according to the precedence
(ranking) of the operators in the calculation;

First: ** (‘...tothe powerof...’) then
- (make negative, as in -45) then
*/ (multiplication and division)

Last: + - (addition and subtraction).
p Parts of calculations in brackets are worked out first.

For example, the result of the calculation 2+3*5 is 14 because the
multiplication is done first.

If two operators have equal precedence (such as addition and subtraction) the
calculatton is worked out from left to right. For example, 7-3+2 is 6 (not
2). Powers, however, are worked out from right to left, so 2**3**2 ig

512 ite. (2**9) not 64 (8**2). For more information, see the ‘Operators
and logical expressions’ appendix.

46 4: The built-in applications



Percentages
The percentage operator can be used like this:

60+5% = 60 plus 5% of 60 =63

60-5% = 60 minus 5% of 60 =757

60*5% = 5%of60=3 -

60/5% =  What number is 60 5% of? = 1200

210>5% =  What number, when increased by 5% becomes 210 = 200
210<5% =  How much of 210 was a 5% increase = 10

For more information, see the ‘Operators and logical expresstons’ appendix.

‘Syntax error’ messages

Typing errors produce a ‘Syntax error’ message at the bottom right hand side
of the screen. The cursor also moves to the first mistake. Calc holds the
previous "calculation” or sum in memory, so you can use the T keys to bring
back the old calculation, correct the mistake and then press Enter to
re-calculate.

Very large and very small numbers

» Calc does not support the use of commas when you enter large numbers,
you should enter 1000000 not 1,000,000.

= For very large or very small numbers, you should use e (upper or lower
case) as the exponent of the number. An e usually follows a number between
1 and 10 and is itself followed by another number; 3.435¢3 means 3.435
times ‘ten to the power of” 3 (1.e. 1000}, so 3.435¢3 means 3435.

Changing the number format

Calc supports a number of different number formats, including hexadecimal
numbers (or base 16) as used by some programmers. The ‘Format’ option on
the ‘Special’ menu allows you o switch between them. You can use
hexadecimal numbers in any calculation, regardless of the format used for the
result. For example, &F9*2 is the same as 249*2 and gives the same result:
498, or &1F2 in hexadecimal format.

Arithmetical operators used with hexadecimal calculations always give a
whole number as a result. Whereas 3/2 and &3/2 give 1.5 as the result, &3/&2
gives 1.

Calculator memories

Calc has ten memories (M0, M1, . ., M9) that can be used for saving the
results of calculations. The ‘Min’, ‘M+’, ‘M-’, ‘Mclear’ and ‘Mrecall’ options
on the ‘Memories’ menu all operate on the current memory. You can use the
‘Change memories’ option to change the current memory.

4: The built-in applications 47



Advanced calculations - functions, powers, and logs

There are two ways to perform calculations using mathematical functions,
powecrs and logs. Either:

» Select the appropriate option from the ‘Trig’, ‘Powers’, or ‘Logs’ menu and
then type the numerical value in the brackets. Or:

= Highlight the numerical value and then select the appropriate option from
“Trig’, ‘Powers’ or ‘Logs’ menu.

There are hot-keys listed beside each of the menu options to make entering
calculations easier. If you want to do ‘to the power of” calculations for which
there is no menu option, use the ** operator, For example, 2**3 is 2 cubed or
2x2x2,

OPL modules in Calc

You can load and use OPL modules in Calc. If you do so, the module must be
available for all future calculations. If you delete it, or remove the SSD which
contains it, a *“Modute does not exist’ message will be shown on every fufure
calculation. There are two ways to solve the problem:

» Reinsert or recreate the translated OPL module.

» Exit then reopen the Calculator.

48 4: The built-in applications



Sheet - the spreadsheét

Sheet works in a similar way to Lotus versions 1a and 2, but there are some
differences (see ‘Notes and tips for advanced users’ later in this chapter). Sheet
creates files called worksheets.

As with most other spreadsheets, each “box" in a worksheet is referred to as a
cell and each cell is referred to by its grid reference, 1.¢. Al, B2, etc.:

Balance

There are three types of information you can type into a ceil:

Numeric The first character is either 0123456789(.+- . The data is
treated like a number and you can therefore use it in
calculations

Formulae These are used to perform calculations. To tell Sheet that the

data in a cell is a formula type an = first. E.g. =SUM(D2:D7)

Text These cells start with any other character. To make Sheet
treat a number as text, type an apostrophe (*) before the
number.

You can start typing immediately to create a new entry in a cell. To change the
contents of a cell, you simply move the cursor onto it and press Enter. A cursor
appears on the editing line at the top of the screen along with the cell contents
and you can edit the text in the usual way. Enter confirms any changes made.

Performing calculations using formulae

All calculations in Sheet are specified with formulae that contain references 10
appropriate cells rather than numbers. Formulae always start with an =
character, not a +. For example you might have cells containing the following:

=A1+B1

=SUM(C1:C5)

=(A1+A2+A3)-(B1+B2+B3) or =SUM(A1:A3)-SUM(B1:B3)
=((A1+A2)*B1)/2

If the number in a cell referred to in the formula changes, the result of the
formula then changes automatically. Formulae cells display the result of the
calculation, not the formula itself.

Formulac can contain mathematical functions; see ‘Calc - the scientific
calculator’ earlier in this chapter or press Shift-Esc in Sheet for more
information.

4: The built-in applications 49



Altering the appearance of a worksheet

You can insert and delete cells, rows and columns with the ‘Open/close gap’
option on the ‘Edit’ menu.

Options on the ‘View” menu allow you to format cells in your worksheet, to
change the column widths and the alignment of text and numbers in cells.

Titles that you enter to label rows and columns can be "turned on” to lock
them in position when you move away from the top left hand of the table.
To switch ‘Titles on/off” you need to move to the cell immediately beneath
the column titles and next to the row titles (this will usually be cell B2) and
select “Titles on’ or ‘Titles off” from the ‘View’ menu.

g You cannot turn ‘Titles on’ if the cell painter is in Al.
> You cannot edit the data in title cells when the ‘Titles on’ option is set.

You can show or hide grid lines and labels with the ‘Show’ option on the
‘View’ menu. Set to “Yes’ the items you want to show and to ‘No’ those that
you wish to hide. To hide any cell containing the number zero, or a formula
returning zero set the ‘Zero values’ line to ‘No’.

Notes and tips for advanced users

An @ symbol is not needed at the start of function names.

Ranges of cells are referred to with colons: e.g. A1:C3 not A1..C3.
‘The power operator is ** not A,

To hide a column, set its width to zero.

Logical operators, such as AND and OR, do not need # symbols around
them. -

The Lotus @ function is called AT in the Spreadsheet.

Other useful functions

‘Find’ on the ‘Search’ menu allows you to find text or numbers in cells. You
can also jump directly to a cell reference with the ‘Jump to’ option on this
menu.

You can highlight a range of cells and press Psion-/ (or select ‘Graph’ on the
‘Special’ menu) to plot their data as a graph. To change the range of data
included in the graph, you must select a new range manually from within
the ‘Graph’ view (use the ‘Set ranges’ option on the ‘Ranges’ menu).

You can name ranges of cells with the ‘Name range’ option on the ‘Range’
menu. This allows you to jump directly to ranges, sort information and
apply password protection to areas of the worksheet.

Sheet has a database facility, available from the ‘Data’ option on the
‘Special’ menu. To use it, each column of your worksheet must have a field
name in the first row. Thereafter, each row is a record and each column is a
field. Each worksheet can have just one database; this becomes a named
range called "database".

50 4: The built-in applications



The Program editor

The Program editor lets you write your own programs for the Workabout in the
built-in OPL programming language and then translate and run them. It is the
text editor that is run for . OPI. files when you type EDIT in the Command
processor. You can type and edit in the Program editor in much the same way
as you would in a text editor, however, the text that you type does not
word-wrap - you must press Enter at the end of each line to start a new one.

OPL is a procedure-based language, that is to say, the procedure is the
building-block of OPL programs. Each specific task (or function) that you
want the Workabout to perform is defined by a procedure; this procedure can
contain a number of statements or commands which the Workabout acts upon.
Although a simple OPL program may have just one procedure, a number of
tasks or procedures can be grouped to form a module for sophisticated
programs.

When you first move into the Program editor you will see that PROC: has
already been entered on the first line, and ENDP on the third:

»[PROC
P
ENDP

These are the keywords that mark the start and end of procedures in OPL. You
enter the statements for your procedure in order between the PROC: and
ENDP. When you eventually run the program, the Workabout goes through
these statements, onc by onc.

When you have finished typing your program, you use the ‘Translate’ option to
convert your procedure into a program that you can run on the Workabout. To
run a translated program, use the ‘Run’ option on the ‘Prog’ menu, or type the
program name in the Command processor.

For more information about creating your own OPL programs in the Program
editor, see the ‘Creating and running programs’ chapter later in this manual.
Please contact your Psion distributor or refer to the SIBO OPL SDK (Software
Development Kit) for further help.

4: The built-in applications 51



Comms - the communications sofiware

Comms is an application that allows you to use the Workabout's RS-232 serial
port to communicate with:

= another computer directly. (Note that Comms would not normally be used to
directly connect the Workabout to another computer because there are a
number of Windows and DOS packages available that make this operation
seamless; please contact your Psion distributor for details.)

» other computers via a modem. .

» text peripherals like electronic mail systems and bulletin boards via a
modem.

It is the same application that you reach by typing COMMS in the Command
Processor.

What you need to use Comms

To link the Workabout to another computer you will need a Psion Serial 3Link
lead and a LIF converter, To connect it to a modem, you will need a Psion
Serial 3Link cable, a LIF converter and a Psion modem adaptor. If you have an
RS-232 Internal Expansion module, you could use a plain cable to connect Port
A (the nine-pin D-type connector beside the LIF-PFS socket) directly to your
modem in the same way that you would connect your PC to a modem. Please
contact your Psion distributor for more information about communications
products for the Workabout.

About Comms

If the other computer allows direct input via its serial port, you can run Comms
and use the Workabout as a terminal, typing commands to the other computer
and displaying its responses on the Workabout screen.

Much of the power of Comms lies in using its script language to automate
control of modems and remote systems. The Workabout has a built-in editor
for creating these files; see the ‘Advanced use’ chapter earlier in this manual
for more details. Further information about the creation and use of script files

is beyond the scope of this manual; see the manual supplied with the Psion
Serial 3Link lead, the SIBO OPL SDK (Software Development Kit) or the
latest version of the SIBO ‘C’ SDK (currently v2.1) for more information.

Setting up a link with Comms

There are three steps involved in setting up a direct or modem link to another
computer with Comms;

» Physically connecting your Workabout and the other computer or modem.
« Running Comms to display the Terminal Emulation screen.

= Setting up the serial port so that the Workabout and the other computer can
communicate with each other.

52  4: The built-in applications



Running Comms - the Terminal emulation screen

When you first start Comms, it will automatically search for a free port; it wiil
go through the ports that are fitted in alphabetical order. Unless you have
specified a particular port in a script file, it will open the first one that it finds.
It will then briefly display a message in the bottom right hand corner of the
screen showing the port that is being used, for example ‘Port TTY: A online...’;
when the screen clears, the Terminal emulation screen will be displayed:

If there is no free port, you will see the message ‘Failed to open a comms port.
No port currently available’. You should press Esc to exit Comms. Most
machines will only be fitted with one port, so if this happens it is likely that
LINK or some other application 1s using the port. If this is the case, you will
need to type STOP LINK in the Command processor to exit the LINK
software.

If Comms has opened a port other than the one that you want to use, you can
use the ‘Port’ option on the ‘Special’ menu to change it. If a message like the
following: ‘Cannot open comms port TTY:A’ is displayed, the port is either not
installed, not plugged in (in the case of TTY:C), or in use by another
application.

Ports D: to I: are TTL ports and are therefore not suitable for modems etc.

If you press the Menu key, you will see the various Comms menus. There are
options for, among other things, selecting and setting up the serial port, and for
transmitting and receiving files:

[[Fde\Edit Scrn Tran Nmes Gpec )
Execute soript’ =E
Save settings

Load names

Save names ¥

When you have finished using Comms you should exit the application to
save memory. You will return to the screen from which you launched Comms,
if it is still running, if not you will move to another running application, If
there are no running applications, you will return to the Startup Shell.

Port settings

The “Port’ option on the ‘Special’ menu sets up the serial port for
communication. The settings for Baud rate (speed), Parity, Data bits and Stop
bits must match those on the computer or modem with which you are
communicating. If they do not, data transmitted in either direction will almost
certainly be interpreted wrongly.

4: The built-in applications 53



Without handshaking, the Workabour can display received data at up to 4800
Baud, without losing data. (If you are saving received data as a file, you must
use slower speeds.)

ps If you set 7 data bits and ‘Even’ or ‘Odd’ parity, but set ‘Ignore parity’ to ‘Yes’,
any data received will be treated as 7-bit data, with the eigth bit set to zero. The
effect of this is that you can correctly receive data which is sent as 7-bit even
patity, 7-bit odd parity, or even 8-bit no parity (for character codes below 128).

When communicating via modems, bear in mind that modern modems can
sense the speed at which you are transmitting, and adjust to it. However, older
modems may require that you communicate with them at a particular speed.
See your modem manual for more information,

Handshaking settings

The "Handshaking™ option on the *Special’ menu can be used to alter the
handshaking settings. The Workabout is initially set to use XON/XOFF
handshaking. The XOFF character is Control-S (character 19) and the XON
character is Control-Q (character 17),

If the computer to which you are connected is set to use XON/XOFF
handshaking, you should ncver lose any characters. If it uses a different
method, change the handshaking settings on the Workabout to match.

Special codes for Enter and Delete keys

By default Comms sends a "Carriage Return” character (character 13) when
the Enter key is pressed and a "Backspace” (character 8) when the Delete key
(sometimes known as Backspace) is pressed. However, different computers
require different codes to be sent when these keys are pressed and you should
change the Comms character code settings to match those required by the
remote computer. To do this:

1. Select the “Translates’ option on the ‘Special’ menu,

2. Type the one or two character codes that you wish to be sent for each key
between angle brackets. For example, you might set the ‘Enter key’ line to
<13><10> (a "Carriage return" "Linefeed" pair) and the Delete line to
<127>.

The numbers are shown in the dialog in hexadecimal format, beginning with a
$ sign. You can use hexadecimal yourself, if you prefer - the above example
could be entered in hexadecimal as <$d><$a>, or <S0D><S$0A>

The type of terminal emulation

When you are using the Workabout as a terminal connected to the serial port of
another computer, Comms acts like a plain 80 by 25 character "teletype” - it
does not emulate any type of terminal, such as the "VT100".

54  4: The built-in applications



The display of information

Each character you type in the Terminal emulation screen is transmitted via the
Workabout's serial port to the attached computer or modem. When a character
is received via the serial port, it is displayed on the screen.

You can set the Workabout to display characters as you type them, if you need
this, by setting “Echo’ to *On’ from the ‘Translates’ option on the ‘Special’
nmenu.

The Woirkabout screen has a border around the outside. You can turn it on and
off with the ‘Border on/off’ option on the ‘Screen’ menu. Without the border,

there is slightly more room for text. The ‘Screen rows’ option on the ‘Screen’

menu controls the numbers of rows of text on the screen. The default number

of rows is 25, but you can set any number between 25 and 100.

g5 To see the 26th line with the 80x26 font, you must increase the ‘Screen rows’
setting.

When lines longer than the width of the screen are received, only the first part
of them is displayed. You can, however, review any part of the screen area by

using the « 1! - keys. The Workabour screen "moves" as if it were a window
on top of an 80 by 25 character screen.

If a character is received while you are using the arrow keys, or if you type a
character yourself, the display moves back to the most recently received data,
at the bottom of the 80 hy 25 area.

Pausing the display

You can use the ‘Paunse screen’ option on the ‘Edit’ menu to freeze the display
of received information to give yourself more time to read it. (The screen is
paused using whichever handshaking method is currently set.) You can then
use the arrow keys to move around the 80 by 25 area.

Important: If you have no handshaking set, or if the other computer is not
using your handshaking methud, and you pause the screen display using the
preceding method, you may soon begin to lose data.

To resume the display press a key, such as Enter or Space. The Workahnout will
tell the other computer (via handshaking) that it can send characters again.

155> The Conirol-S (XOFF) keypress has the same effect as ‘Pause screen’
{whichever handshaking method is in use). Press Control-Q (XON) to resume
the transmission.

4: The built-in applications 55



Sending commands to a modem

You can iype commands directly to an attached modem from the Terminal
emulation screen - for example, to tell it to dial a particular number. When the
modem successfully connects with the modem of a remote system, it usually
sends a CONNECT message via the serial port to the Workabout, and the
Workabout displays this on the screen. You can then proceed with togging on
to the remote system.

The commands for controlling modems are beyond the scope of this manual.
See your modem’s manual for more details.

File transfer to another computer

The Comms application on the Workabout is an updated version of the Comms
application that is supplied with the Psion 3Link lead. The 3Link manual gives
full details of transmitting and receiving files using the protocols supported by

Comms; this section merely provides a synopsis of that information.

Software on the other computer

To transfer files between the Workabout and another computer via a modem,
the other computer must have suitable communications software. This software
shouid support one or preferably both of the following services:

= terminal emulation with the ability to transmit and receive/capture ASCII
files.

» XMODEM or YMODEM file transfer.

These services may be provided by a specialised communications program or
may be part of an integrated software package. Bulletin board and Electronic
Mail systems usually have XMODEM and/or YMODEM capability.

0 Instead of using terminal emulation, you may be able to configure the serial
port and then copy to and from the other computer using its operating system
commands - if its operating system is sufficiently advanced.

Setting the file transfer protocols

To use file transfer commands, you must use the same file transfer protocol on
both computers. You can use the ‘Protocol’ option on the “Transfer’ menu to
set Comms to use any of the following protocols:

XMODEM 128-byte checksum
XMODEM 128-byte CRC
XMODEM 1K-byte CRC
YMODEM 128-byte
YMODEM/G 128-byte
YMODEM 1K-byte

56 4: The built-in applications



YMODEM/G [K-byte
ASCII (straight binary - no protocol)

It is best to use an XMODEM or YMODEM protocol, if possible, for file
transfer. Transmissions are then error-checked, and if any errors are detected
the information is sent again. If the other computer does not support the
XMODEM or YMODEM protocols, you can try using ASCII transfer (no
protocol) to transter plain text. With ASCII, no error-checking is done, and any
errors during transmission resuit in a corrupted file.

It you have a choice of Baud rates, use the highest supported by both
computers. The Workabout supports up to 19200 Baud. (You may have to
reduce the Baud rate for poor telephone lines.)

About the YMODEM protocols

Impeortant: The YMODEM protocols in Comms are YMODEM BATCH
protocols. These cannot be used with the original ‘plain® YMODEM. Many
computers have YMODEM options which are in fact YMODEM BATCH; if a
computer has options for both, you must set it to use a YMODEM BATCH
protocol. YMODEM BATCH protocols allow more than one file to be sent at a
time.

YMODEM/G is designed for use with error-correcting modems. You should
use it with RTS/CTS handshaking, whether you are connected via modems or
directly. If you do not, files may be received incompletely. (You could see this
by checking the file size at either end.) If you are in any doubt, usc a different
XMODEM or YMODEM protocol instead.

Filenames and directories

When you select a file “Transfer’ option, Comms initially offers files in the
root directory of the default disk. If you wish to transfer a file in a different
dircctory you can type its full file specification, or you can press Tab and
navigate to it with the File selector.

=3 If you wish to change the defauit disk, you should change it before you start
Comms in order 1o use the new default within Commes. (You can use the
"Detault disk” option in the System screen to alter the current default disk.)

Comms remembers the directory of the file last used by a “Transmit’ or
‘Receive’ option. The ‘Capture’ option will always fill in an incomplete file
specification with the root directory and the default disk.

£ The TRANSMIT and RECEIVE commands in the Script language can also affect the
directory or disk used.

Transmitting files
The general procedure that you need to follow to transmit files is as follows:

1. Set the other computer to a protocol that is supported by Comms and specify
the filename to use on that computer. You may need to give the other
computer a command to transmit or receive a file as well.

4: The built-in applications 57



2. Select the ‘Protocol’ option on the ‘Transfer’ menu to set the Workabout to
use the same protocol.

3. Select the “Transmit’ or ‘Receive’ option on the ‘Transfer’ menu, Enter the
filename or directory to use on the Workabout.

A message will show that the transfer is going ahead, like this:
Block nn
where nn indicates the number of blocks successfully received or transmitted.

If all goes well, the block count will steadily increase, until a Receive OK
or Send OK message is displayed.

If no connection is made: If you set the Workabout to receive a file, it will
“time out” if connection is not made within a certain time. When transmitting,
however, it will not "time out" and will continue waiting for a connection.

To abandon the transfer: Press Esc at any time during the transfer. If you are
receiving to the Workabout, the file being received is not saved.

More detailed information about transferring files is beyond the scope of this
manual. Please refer to your modem or PC application manuals for more
information.

58 4: The built-in applications



Creating and
running programs

There are 3 stages to producing a program using OPL, the
Workabout programming language:

e  Type in the program, using the Program editor described in
“The built-in applications’ chapter earlier in this manual.

® Translate the program. This makes a new version of your
program in a format which the Workabout can "run".

¢ Run the program. If it does not work as you had intended,
re-edit it, then translate and run it again.

This chapter guides you through these stages with a simple
example. If you wish to follow the example, note that each
instruction for you to do something is numbered.

Note: The example programs in the next few chapters do not include full error
handling. This keeps the programs short and easy to understand. But it means
that when you run one of these programs and, for example, fail to type in the
kind of value which the program asks for, the program may fail — harmlessly
stopping betore it completed. As you develop your own programs, you should
usually add some error handling code to them. A later chapter gives a full
explanation of error handling.

5: Creating and running programs 959



Creating a new module

As well as the word program, you’ll often see the word modude used. The terms
program and module are used almost interchangeably to describe each OPL file — you
say "OPL module" like you might say "word processor document”.

Create a new module and give it a name:

From the System screen:

1. Move to the Program icon and select ‘New file’ from the ‘File’ menu.
2. Type test as the name to use for this OPL module and press Enter,
From the Command processor:

1. Type EDIT TEST.OPL.

You will move into the Program editor.

Module names can be up to 8 characters long, like other filenames on the Workabout.
The names can include numbers, but must start with a letter,

It’s always best to choose a name that describes what the module does. Then, when
you’ve written several modules, you can still recognise which is which.

Inside the Program editor

When you first move into the Program editor you will see that PROC : has already
been entered on the first line, and ENDP on the third.

PROC and ENDP are the keywords that are used to mark the start and end of a
procedure. Larger modules are broken up into procedures, each of which has one
specific function to perform. A simple OPL module, like the onc you arc going to
create, consists of only one procedure.

A procedure consists of a number of statements — instructions which the Workabout
acts upon. You type these statements, in order, between PROC : and ENDP. When you
come to run the program, the Workabout goes through the statements one by one.
When the last statement in the procedure has been acted upon and ENDP is reached, the
procedure ends.

You can type and edit in the Program editor in much the same way as in the Word
Processor, except that text you type does not word-wrap; you should press Enter at the
end of cach statement. Note alsv that the Programn editor does nut offer text layout
features such as styles and emphases.

g% You can use upper or lower case letters when entering OPL keywords,

60 5: Creating and running programs



An example procedure to type in

The next few pages work with this example procedure:

PROC test:
PRINT "This is my OPL program"
PAUSE 80
CLS
PRINT "Press a key to finish"
GET

ENDP

This procedure does nothing of any real use — it is just an example of how some
common OPL keywords { PRINT , PAUSE, CLS and GET ) are used. (The
procedure first displays This is my OPL program on the screen. After a few
seconds this is replaced by Press a key to finish.Then, when you press a
key, the program finishes.)

Type in and edit the procedure

Before you type the statements that constitute the procedure, you must type a name for
it, after the word PROC. The flashing cursor is automatically tn the correct place (before
the colon) for you to do this. You can choose any name you like (with the same
restrictions as when entering the filename earlier). For simple procedures which are the
only procedure in a module, you might use the same filename you gave the module,

1. Type test . The top line should now read PROC test: .
2. Press |. The cursor is already indented, as if the Tab key had been pressed.
You can now type the statements in this procedure:

3. Type PRINT "This is my OPL program".(Note the space after PRINT.)
Press Enter at the end of the line.

Each new line is automatically indented, so you don’t need to press the Tab key each
time. These indents are not obligatory, though as you'll see, they can make a procedure
easier to read. However, other spacing — such as the space between PAUSE and 80 ~
is essential for the procedure to work properly.

4. Type the other statements in the procedure. Press Enter at the end of each line. You
are now ready to translate the module and then run it.

When you are entering the statements in a procedure you can, if you want, combine
adjacent lincs by separating them with a space and colon. For example, the two lines:

PAUSE 80
CLS

could be combined as this one line:
PAUSE 80 :CLS

You can, of course, use the other applications on the Workabout at any time while you
are editing an OPL module. Press Psion-Tab to task through all the running applications
until the Program editor is displayed to continue editing your program,

5: Creating and running programs 61



What the keywords do when the program runs

PRINT ~ takes text you enter between quote marks, and displays it on the screen. The
text to be displayed, in the first statement, is This is my OPL program.

PAUSE — pauses the program, for a specified number of twentieths of a second.
PAUSE 80 waits for 4 seconds. (PAUSE 20 would wait for I second, and so on.)

CLS — clears the screen.
GET - waits for you to press a key on the keyboard.

Translating a module

The translation process makes a separate version of your program in a format which the
Workabout can run.

You’d usually try to translate a module as soon as you finish typing it in, to check for
any typing mistakes you’ve made, and then to see if the program runs as you intended.

1. Select the “Translate’ option from the ‘Prog’ menu.

o= The ‘Prog’ menu also has an ‘S3 translate’ option, for translating the current program
in a form which can run on a Psion Series 3 (as opposed to a Workabout or Series 3a).

What happens when you transiate a module?
First: the procedures in the module are checked for errors.

If the Workabout cannot understand a procedure, because of a typing error, a message
is shown, such as ‘Syntax error’. The cursor is positioned at the point where the error
was detected, so that you can correct it. For example, you might have typed

PRONT *This is...",or PAUSEB0 without the space.

When you think you’ ve corrected the mistake, select ‘Translate’ from the ‘Prog’ menu
again. If there is still a mistake, you are again taken back to where it was detected.

p5° If you’ve already used up almost all of the memory, the Workabour may be unable to
translate the program, and will report a ‘No system memory” message. You’ll need to
free some memory, as described in the ‘Troubleshooting’ section in the ‘Basic use’
chapter earlier in this manual.

When ‘Translate’ can find no more errors, the translation will succeed, producing a
separate version of your module in a format which the Workabout can run.

There may still be errors in your program at this point because there are some errors
which cannot be detected until you try to run the program.

Running after translating

When your module translates successfully, the ‘Run program’ dialog is displayed,
asking whether to run the translated module. You’d usually run it straight away in order
to test it.

13 Running a module does require some free memory, so again a ‘No systcm memory’
message is possible,

1. Press ‘Y’ to run the module; the screen is cleared, and the module runs.

62 5: Creating and running programs



When the module has finished running, you return to the Program editor, with the
cursor where it was before,

If an error occurs while the module is running, you will return 0 editing the module,
with the cursor at the point where the error occurred.

File management

New OPL modules
You can create new OPL modules in the following ways:
= Within the Program editor use the ‘New file’ option.

» From the System screen move to the Program icon and use the ‘New File’ option.
Your existing module names are listed below the Program icon. The word ‘Program’
is shown below the icon if there are no modules at all. The names under the RunOpt
icon are those modules which have been translated successfully.

« In the Command processor type EDIT and then the name for the new file including
the .OPL filename extension.

To re-edit an existing OPL program, use the ‘Open file’ option in the Program editor, or
move to the Program icon in the System screen and select the filename from the list, or
type EDIT and then the filename of the program in the Command processor.

Copying modules

You can copy existing modules (or translated modules) by:
= Using the ‘Copy file’ option in the System screen.

* Using the ‘Save as’ option in the Program editor itself.
» Using the corY command in the Command processor.

Deleting modules
You can delete an OPL. module (or a translated version) as you would any other file:

* (o to the System screen, move the highlight onto the file and use the ‘Delete file’
option.

p3 If you delete all of your translated modules, the RunOpl icon will remain on the
System screen, with the word ‘RunOpl’ beneath it.

= (o to the Command processor and use the DEL or ERASE command. See the
‘Advanced usc’ chapter carlicr in this manual for more details.

‘File or device in use’

If you see a ‘File or device in use’ error message when deleting or copying an OPL
module, the file is open - it is currently being edited in the Program editor. Exit the file,
eg with the Delete key in the System screen, then try again.

If it’s the translated file you’re trying to delete-or copy, ‘File or device in use’ means
that the translated file is currently running, Stop the running program by pressing
Psion-Tab (to task through all the running applications until you reach the mnning
program), then Psion-Esc (to stop it), and then you can try again.

5: Creating and running programs 63



More about running modules

Running from the Program editor

You can run a module at any time from within the Program editor, by selecting ‘Run’
from the "Prog’” menu. This runs the translated version of your program; if you’ve
made changes to the module and haven’t translated it again, you must translate the
module again, or the changes have no effect.

‘Run’ displays a dialog, letting you select the name of any transiated module which you
want to ran,

Running modules from the Command processor

To run a module synchronously from the Command processor, simply type its filename
- you don’t have to include the filename cxtension. To run one asynchronously, type
START and then the filename.

Running modules from the System screen

The names of any successfully translated programs automatically appear under a new
icon in the System screen. The icon is just the word OPL in a speech bubble, and is
called the "RunOpl” icon. It appears at the right-hand end of the list of icons (past the
Program icon), and is usually off the right-hand edge of the screen. Just move the
highlight onto the name of the translated program you want to run, and press Enter.

While you’re still editing and testing a module, it’s quicker to run it from inside the
Program editor. This also positions the cursor for you, if errors occur.

Stopping a program while it’s running

To stop a running program, press Psion-Esc. (If you’ve gone away from the running
program it will still bc running, and you must first return to it — perhaps by pressing
Psion-Tab to task to it or selecting it from under the RunOpl icon in the System

screen - before pressing Psion-Esc.)

To pause a running program, press Control-S. It will be paused as soon as it next
tries to display something on the screen. Press any other key to let the program resume
funning.

Displaying a status window

A temporary status window is always available while an OPI. program is minning_ Press
Psion-Menu to see it. As you’ll see, there are keywords for displaying a status window
yourself.

Looking at a running program

If you translate and run a module from the Program editor, the Psion-Tab keypress will
still task to the Program editor, even if the translated program has not finished running.
A “Busy’ message is shown — you can move the cursor around the program as normal,
but you can’t edit it.

To return to the running version, select it from beneath the RunOpl icon in the System
screen. It will be in bold, at the top of the list, to show that it is currently running.

64 5: Creating and running programs



Running more than one module

If a module is running, and vou select a second one from the System screen, the first
one is not replaced - both modules run together, and will be in bold on the file list.
Psion-Tab swaps between them.

Menu options while editing

While you’'re typing in the procedure, all the options on the ‘Edit” menu - such as
‘Copy text’ and ‘Insert text’ — are available and can be used.

The ‘Prog’ menu has options for translating and ninning the current program. It also
has a ‘Show errot’ option, to re-display an error which prevented successful translation,
and an ‘Indentation’ option, for setting the tab width and to turn auto-indentation on
and off in the Program editor.

The Program editor only ever uses one template for creating new files, called ‘default’.
If you wish to change the ‘default’ template, you can use the ‘Save as template’ option
to replace it with the current file. Do not try to swap templates between the Program
editor and any other text editor or word processor you have on the Workabou.

‘Set preferences’ allows you to choose between bold/normal and mono/proportional
text. It also has options for showing tabs, spaces, paragraph ends, soft hyphens and
forced line breaks.

There is no ‘Password’ option.

SUMMARY

Move to the Program icon in the System screen and select the ‘New file’ option or type
EDIT £ilename.opl inthe Command processor.

Type in your procedure.
Select ‘“Translate’ from the ‘Prog’ menu.

When a module translates correctly you are given the option to run it. You can run it
again at any time, either with ‘Run’ on the ‘Prog’ menu, or directly from the filename
under the RunOpl icon in the System screen, or by typing the filename in the Command
Processor.

5: Creating and running programs 65



66 s Creating and running programs



Variables and
constants

Programs can process data in a variety of ways. They may,
for example, perform calculations with numbers, or save and
recall strings of text (such as names and phone numbers in a
data file).

In all cases, your program must be able to handle values —
different types of numbers, strings, and so on.

In OPL, there are two ways of handling values: variables and
constants. Constants are fixed values, such as 1, 2, 3.
Variables are used to store values which may change - for
example, a variable called X may start with the value 3 but
later take the value 7.

6: Variables and constants 67



Declaring variables

Most procedures begin by declaring (creating) variables:
LOCAL %x,v,=z

LOCAL 1s the word telling the Workabout to create vanables, with the names which
follow — here x, v and z — separated by commas.

The statement LOCAL x, vy, z defines three variables called x, v and z. The
Workabour will recognise these names whenever you use them in this procedure. (If
you used them in another procedure, they wouldn’t be recognised; the variables are
‘local’ to the procedure in which they are declared.)

These variables are initially given the value 0.
Any variables you wish to use must be declared at the start of a procedure.

Choosing the variable

Befare declaring variables, decide what information they are going to contain. There
are different types of variables for different sorts of values. If you try to give the wrong
type of value to a variable, an error message will be displayed.

You specify the type of each variable when you declare it, by adding a symbol at the
end of its name.

Numbers

« For small whole numbers — for example 6 - use an infeger variable. Integer
variables have a % symbol on the end, for example number$.

Integer variables can handle numbers only in the range -32768 to +32767. If you try
to give an integer variable a whole number bigger than this, an error message will be
displayed.

» For larger whole numbers — for example 10000000 — use a long integer variable,
Long integer variables have an & symbol on the end, for example numberé&.

Long integer variables can handle whole numbers in the range -21474836438 to
- +2147483647. If a variable may have to handle numbers outside normal integer
range, make it a long integer variable.

= For non-whole numbers - for example 2.5 — use a floating-point variable.
Floating-point variables have no symbol on the end - price, for example.

If yous know that at some stage in your program your variable will have to
handle non-whole numbers, like 1.2, use a floating-point, not an integer
variable. Otherwise you may get unpredictable results. (There’s more about this
later in this chapter.)

* For very large numbers - outside long integer range ~ you should also use
floating-point variables. These can handle numbers as big as £9.99999999999e99
and %57 small as +1e-99. (Intermediate results in calculations may cven be up to about
107

68 6: variables and constants



Text

For text — Are you sure?, 54th, etc. - use a string variable. (Pieces of text are
called strings in OPL.) String variables have a $ symbol on the end - for example,
names.

To declare a string variable, you must follow the $ symbol with the maximum length
of string you want the variable to handle, in brackets. So if you want to store names up
to 15 characters long in the variable NAMES, declare it like this: LOCAL NAMES {(15).
Strings cannot be longer than 255 characters.

Array variables

You may want a group of variables, for example to store lists of values. Instead of
having to declare separate variables a, b, ¢, d and e, you can declare array variables
a{l) toa(5) in one go like this;

LOCAL a%(5) (array of integer variables)
LOCAL a(5) (array of floating-point variables)
LOCAL a$(5, 8} {array of string variables)

or

LOCAL a&{5) (array of long integers)

The number in brackets is the number of elements in the array, So LOCAL a% (5)
creates five integer variables: a% (1), a%(2),a%(3),a%(4) and a% (5).

With strings, the second number in the brackets specifies the maximum length of the
strings. All the elements in the string array have the same capacity - for example,
LOCAL ID$ (5,10) allocates memory space for five strings, each up to ten
characters in length.

(OPL does not support two-dimensional arrays.

Initial values

All numeric variables have zero as their initial value. String variables have a string with
no characters in it. Every element in an array variable is also initialised in the
appropriate way.

Choosing descriptive names

To make it easier to write your programs, and tnderstand them when you read through
them at a later date, give your main variables names which describe the values they
hold. For example, in a procedure which calculates fuel efficiency, you might use
variables named speed and distance.

All variable names:
» May be up to 8 characters long;

= Must start with a lerter, but after that may use any combination of numbers and
letiers;

» May be entered in any combination of upper and lower case. sPeeD and SpEEd
would be considered the same name.

Additionally, you must not use any of the names of keywords, as listed in the
‘Alphabetic listing’ chapter — if you use these you will see a ‘Declaration error’
message when you translate your module,

The $ & and % symbols are included in the 8 characters allowed in variable names —
g0 V23456/78% is too lang to be a valid variahle name, but V234567% is acceptable.

6: Varables and constants 69



Examples

» LOCAL clients$(12),z&(3) declares one string variable, clientss$, of
capacity twelve characters, and one long integer array variable containing three
elements, z& {1), z& (2) and z& {3)

» LOCAL AGE%,B55(10), i declares one integer variable, AGE%, one string
variable, B5$, of capacity ten characters, and one floating-point variable, i

= LOCAL profit93 declarcs one floating-point variable, pro£it93

* LOCAL x,MANG6S (4, 7) declares one floating-point variable, x, and one string
array variable, mané $, containing four elements, man6$ (1), mané$ (2),
manés (3) and manés (4), each of capacity 7 characters

For preference

= Integer variables use less memory than long integer variables, and both use less than
floating-point,

= Imteger vartables are processed faster than floating-point.

Giving values to variables

Assigning values
You can assign a value to a variable directly, like this:
x=5
y=10
This procedure adds two numbers together:
PROC add:

LOCAL x%,v%,z%

x%=569

y%=203

Z%=X%+v%

PRINT z%

GET
ENDP

add: is the procedure name.

The LocAL statement defines three variables x%, y% and 2%, all initially with the value
0. PRINT displays the value of z% on the screen. You can display the value of any
variable like this.

PROC and ENDP define the beginning and end of the procedure — as you saw in
Chapter 1.

Assigning values to string variables
String variables can be assigned text values like this:

asS="some text"

The text to use must be enclosed in double quote characters.

70 6: Variables and constants



Assigning values to an array variable

If you declare a%(4), assign values to each of the elements in the array like this:
a%(1)=56, a%(2)=345 and so on. Similarly for the other variable types:
af{l)=.0346, a&(3)=355440, as$(l0)="name".

Arithmetic operations
You can use these operators:.

+ plus

- minus or make negative
/ divide

* multiply

aon raise to a power

Do percentage

Operators have the same precedence as in the Calculator described in ‘The built-in
applications’ chapter earlier. For example, 3+51 .3 /8 is treated as 3+ (51.3/8), not
(3+51. 3} /8. For more information on operators and precedence, see the ‘Operators
and logical expressions’ appendix.

Values from functions
There are two kinds of keyword — commands and functions:

= A command is just a straightforward instruction to OPL to do some particular thing.
PRINT and PAUSE, for example, are commands.

* A function is just like a command but it also returns a value which you can then use.

GET is in fact a function; it waits for you to press a key on the keyboard, and then
returns a value which identifies the key which was pressed. (In previous example
programs, the value retummed by GET was ignored, as GET was being used to provide a
pause while you read the screen. This is a common use of the GET function.)

The number returned by GET will always be a small whole number, so you might store
it away in an integer variable, like this:

a%=GET

There is more about the GET function later in this chapter.

Expressions

You can assign a value to a variable with an expression - that is, a combination of
numbers, variables, and functions. For example:

z=x+Yy /2 gives the z the value of x plus the value of ¥,
z=x*y+34.78 gives z the value of x times y, plus 34.78.

Zz=x+CO8S (y)} gives z the value of x plus the cosine of y. COS is another OPL tunction.
Unlike the GET function, COS requires a value or variable to work with. As you can see,
you put this in brackets, after the function name, Values you give to functions in this
way are called arguments to the function. There is more information about arguments in
the next chapter.

All of the above are operations using the variables x and y — assigning the result to z
and not actuaily affecting the value of x or y.

The ways you can change the values of variables fall into these groups:

= Arithmetic operations, such as multiplication or addition — for example
z=sales+costs or z=y%* (4-x%)

6: Variables and constants 71



= Using one of the OPL functions, for example z=SIN{(PI/6)
or '

v« Using certain keywords like INPUT or EDIT which wait for you to type in values from
the keyboard.

Self reference
In expressions, variables can refer to themselves. For example:

z%=z%+1 (make the value of 2% one greater than its current value)
x%=y+x%/4 (make the value of x% a quarter of its current value, plus the value of v)

Constants

In an OPL program, numbers (and strings in quote marks) are sometimes called
constants. In practice, you will use constants without thinking about them. For example:

x=0.32
X%=569
X&=32768
x$="string"
x(1)=4.87

OPL can also represent hexadecimal constants. This is explained under the HEX$ entry
in the ‘Alphabetic listing’ chapter.

Exponential notation may be useful for very large or very small numbers. Use E (cathal
or lower case) to mean "times teg to the power of" — for example, 3.14E7 is 3.14*10
(31400000}, while 1E-9 is 1*107 (0.000000001).

Problems with integers

When calculating an expression, OPL uses the simplest arithmetic possible for the
numbers involved. If all of the numbers are integers, integer arithmetic is used; if one is
onfside integer range but within long integer range, then long integer arithmetic is used;
if any of the numbers are not whole numbers, or are outside long integer range,
floating-point arithmetic is used.

This has the benefit of maximising speed, but you must beware of calculations going
out of the range of the type of arithmetic used. For example, in X=200*300 both 200
and 300 are integers, so integer arithmetic is used for speed (even though Xis a
floating-point variable). However, the result, 60000, cannot he calculated because it is
outside integer range (32767 to -32768), so an ‘Integer Overflow’ error is produced.

You can get around this by using the INT function, which turns an integer into a long
integer, without changing its valuc. If you rewrite the previous cxample as

X=INT (200} *300, OPL has to use long integer arithmetic, and can therefore give the
correct result (60000). (If you understand hexadecimal numbers, you can instead write
one of the numbers as a hexadecimal long integer — eg 2 00 would become &C8.)

Integer arithmetic uses whole numbers only. For example, if v% is 7 and x% is 4,
¥%/x% gives 1. However, you can use the INTF function to convert an integer or long
integer into a floating-point number, forcing floating-point arithmectic to be usced — for
example, INTF (y%) /x% gives 1.75. This rule applies to each part of an
expression -e.g. 1. 0+2/4 worksout as 1. 0+0 (=1.0), while 1+2. 0/4 works out as
1+0.5 (=1.5).

If one of the integers in an all-integer calculation is a constant, you can instead write it
as a floating-point number. 7/4 gives 1, but 7/4.0 gives 1.75.

72 6: Variables and constants



Operations on strings

If a$ is "down" and b$ is "wind™", then the statement c$=a$+b$ means c$
becomes "downwind”.

Alternatively, you could give ¢$ the same value with the statement
cS="down"+"wind".

When adding strings together, the result must not be longer than the maximum length
you declared — eg if you declared LOCAL a$ (5) thena$="first"+"second”
would cause an error to be displayed.

Most operators do not work on strings. To cut up strings, use string functions like MIDS,
LEFT$ and RIGHTS, explained in a later chapter. You need them to extract even a single
character — you cannot, for example, refer to the 4th character in a% (7) as a$ (4).

Displaying variables

PRINT is one of the most usefu] OPL commands. Use it to display any combination of
text messages and the values of variables.

Where the cursor goes after a PRINT

In general, each PRINT statement ends by moving to a new line. For example:
A%=127 :PRINT "A% is* '
PRINT a%
would display as
A% 1is
127

You can stop a PRINT statement from moving to a new line by ending it with a
semicolon. For example:

A%=127 :;PRINT 'A% is";

PRINT a%
would display as

A% isl27

If you end a PRINT statement with a comma, it stays on the same line but displays an
extra space. For example:

A%=127 :PRINT "A% is",

PRINT a%
would display as

A% is 127

Displaying a list of things
You can use commas or semicolons to separate things to be displayed on one line,
instead of using one PRINT statement for each. They have the same effect as before:
A%=127 :PRINT "A% is",a$%
would dispiay as
A% is 127
while
uscr$="Frcd"
PRINT "Hello",userg;"!"
would display as
Hello Fred!

6: Variables and constants 73



Displaying the quote character

Each string you use with PRINT must start and end with a quote character. Inside the
string to display, you can represent the quote character itself by entering it twice. So
PRINT "Press "" key" displays as Press " key, while PRINT """ "
displays a single quote character.

Values from the keyboard

If you want a program to be reusable, it often needs to be able to accept different sets of
information each time you use it. You can do this with the INPUT command, which takes
numbers and text typed in at the keyboard and stores them in variables.

For example, this simple procedure converts from Pounds Sterling to Deutschmarks. It
asks you to type in two numbers — the number of Pounds Sterling, and (he current
exchange rate. You can edit as you type the numbers — the Delete key, for example,
deletes characters, and Esc clears everything you’ve typed. Press Enter when you' ve
finished each number. The values are assigned to the variables pounds and rate, and
the result of the conversion is then displayed: -

PROC exch:
LOCAL pounds,rate
AT 1,4
PRINT "How many Pounds Sterling?*®,
INPUT pounds :REM value from keyboard
PRINT *Exchange rate (DM to £1)72",
INPUT rate :REM value from keyboard
PRINT "=",pounds*rate, "Deutschmarks"
GET :

ENDP

Here PRINT is used to show messages (often called prompis) before the two INPUT
commands, to say what information needs to be typed in. [n both cases the PRINT
command ends in a comma, which displays a single space, and keeps the cursor
position on the same line. Without the commas, the numbers you type to the INPUT
commands would appear on the line below,

The value entered to an INPUT command must be of the appropriate kind for the
variable which INPUT is setting, If you enter the wrong type (for example, if you enter

the string three for the floating-point variable rate), INPUT will show a ? prompt,
and wait for yon to enter another value.

When using INPUT with a numeric variable (integer, long integer or floating-point), you
can enter any number within the range of that type of variable. Note that if you enter a
non-whole number as the value for an integer variablc, it will take only the whole
number part (so eg if you enter 12.75 for an integer variable, it will be set to 12).

Corunents

The REM command lets you add comments to a program to help explain how it works.
Begin the comment with the word REM (short for ‘remark’). Everything after the REM
command is ignored.

If you put a REM command on the end of a line, the colon you would normally put
before it is optional. For example, you could use either of these:

74  6: Variables and constants



CLS :REM Clears the screen
or

CLS REM Clears the screen

AT command
This positions the cursor or your message at the co-ordinates you specify. Use the
command like this:

AT column%, rowd

where column% and row$ give the character position to use.
AT 1, 1 positions the cursor to the top left corner.

Single keypresses

In addition to using INPUT to ask for values, your program can ask for single
keypresses. Use one of these functions:

= GET waits for a keypress and returns the key pressed.
« KEY returns a key if any was pressed, but doesn’t wait for one.

Every separate letter, number or symbol has a number which represents it, called 2
character code. The full list of character codes ~ the character set — is included in the
‘Character set and character codes’ appendix to this manual. GET and KEY return the
character code of the key pressed — for example, if A were pressed, these functions
would return the value 65. KEY returns 0 if no key was pressed.

KEYS$ and GET$ work in the same way as KEY and GET, except that they return the key
pressed as a string, not as a character code:

» GET$ waits for a keypress and returns the key pressed, as a string.

» KEYS returns a key if any was pressed, but doesn’t wait for one. KEY$ returns a null
string (") if no key was pressed.

Unlike INPUT, these functions do not display the key pressed on the screen, and do not
wait for you to press Enter.

Example using GET$

PRCC kchar:
LOCAL k$(1)
PRINT "Press a key, A-Z:"
k3=GETS
PRINT "You pressed",k$
PAUSE 60

ENDY

Single keypresses are often useful for making decisions. A program might, for example,
offer a set of choices which you choose from by typing the word’s first letter, like this:
Add (A} Erase (E} or Copy (C) ?

Or it might ask for confirmation of a decision, by displaying a YES or NO? message
and waiting until Y or N is pressed.

6: Variables and constants 79



Modifier keys

If vou need to check for the Shift, Control, Psion keys andfor Caps Lock being used,
see the description of the KMOD function, in the ‘Alphabetic listing’ chapter.

SUMMARY

Declare variables with one or more LOCAL statements in the line after PROC :
» [Infeger variables - for example year$%

» Floating-point variables - for example price

» String variables — for example name$ (12} where the maximum length is given in
the brackets

» Long integer variables — for example profita
Variables will be floating-point unless you add a symbol to the end of the variable name.

»  Array variables - for example prices% (4} orclients$ (5, 12) where the
first number inside the brackets specifies the number of elements, and the second
number in the brackets, in the case of string arrays, specifies the maximum length.

Assign values to variables:

+ Expressions — for example x=5.5/y , profit=x-y
= INPUT command — for example INPUT a3

= ‘Add’ strings - for example a$="MR" +names$

REM allows you to add comments to a program.

AT positions the cuarsor.

GET and KEY return the key pressed as a character code.
GETS$ and KEYS$ return the key pressed as a single-character string.
GET and GET$ wait until a key is pressed, KEY and KEY$ do not.

76 6: Variables and constants



Loops and
branches

The programs in the previous two chapters consist of a
number of instructions which are executed one by one, from
start to finish.

However, there are a number of other ways a program can
proceed:

¢ Repeating a set of instructions (called loops)

® Doing one set of instructions or another (called
IF statements)

¢ Jumping from one line of your program to another

7: Loops and branches 77



Repeating instructions (loops)

The DO..UNTIL and WHILE..ENDWH commands are structures — they don’t actually do
anything to your data, but control the order in which other commands are executed:

* DO..UNTIL repeats a set of instructions nntil a certain condition is true.
* WHILE.. ENDWH repeats a set of instructions se long as a certain condition is true.

There is a test condition at the end of the DO...UNTIL loop, and at the beginning of the
WHILE...ENDWH l[o0p.

DO...UNTIL

PROC test:
LOCAL a%
a%=10
Lo
PRINT "A=";a%
as=a%s-1
UNTIL a%=0
PRINT "Finished®
GET
ENDP

The instruction DO says to OPL:

"Execute all the following instructions unti! an UNTIL is reached. If the condition
following UNTIL is not met, repeat the same set of instructions until it is."

The first time through the loop, a%=10. 1 is subtracted from a%, so that a% is 9 when
the UNTIL statement is reached. Since a% isn’t zero yet, the program returns to DO and
the loop is repeated.

a% goes down to 8, and again it fails the UNTIL condition. The loop therefore repeats 10
times until a% does equal zero.

When a% equals zero, the program continues with the instructions after UNTIL.
'The statements in a DO...UNTIL loop are always executed at least once.

WHILE...ENDWH

PROC test2:
LOCAL a%
a%=10
WHILE a%>0
PRINT "&A=";a%
a%=a%-1
ENDWH
PRINT “Finished"
GET
ENDP

The instructions between the WHILE and ENDWH statements are executed only if the
condition following the WHILE is true — in this case if a% is greater than 0.

78 7: Loops and branches



Initially, a%=10 and so A=10 is displayed on the screen. a% is then reduced to 9. a% is
still greater than zero, so A=9 is displayed. This continues until A=1 is displayed. a% is
then reduced to zero, and so Finished is displayed.

Unlike DO..UNTIL, it’s possible for the instructions between WHILE and ENDWH not to be
executed at all.

Example using WHILE...ENDWH

PROC newkey:

WHILE KEY :ENDWH

PRINT "Press a new key."
ENDP

This procedure ignores any keys which may already have been typed, then waits for a
new keypress.

KEY returns the value of a key that was pressed, or 0 il no key has been pressed.
WHILE KEY :ENDWH reads any keys previously pressed, one by one, until they have all
been read and KEY returns zero. '

Choosing between instructions

In a program, you might have several possible cases (x% may be 1, or it may be 2, or
3...) and want to do something different for each one (if it’s 1, do this, but if it’s 2, do
that...). You can do this with the IF_ENDIF structure:

IF conditionl

do these statements
ELSEIF condition2

do these statements
ELSEIF condition3

do these statements

ELSE
do these statements
ENDIF
These lines would do either
= the statements following the 1F line (if condition! is met)
or

= the statements following one of the ELSEIF lines (if one of condition2, condition3... is
met)

or

» the statements following the ELSE line {(if none of conditionl, condition2,
condition3.., have been met).

and then continue with the statements after the ENDIE,

7: Loops and branches 79



You can cater for as many cases as you like with ELSEIF statements. You don’t have to
have any ELSEIFs. There may be either one ELSE statement or none; you do not specify
conditions for the ELSE statement,

Every IF in your program must be matched by an ENDIF - otherwise you’ll see an
error message when you try to translate the module. The structure must start with an IF
and end with an ENDIF.

“Nesting" loops — the ‘Too complex’ message

You can have up 10 8 DO...UNTIL, WHILE...ENDWH and/or IF.. ENDIF structures nested
within each other. If you nest them any deeper, a “Too complex’ error message will be
displayed.

Example using IF

PROC zende:
LOCAL g% )
PRINT "Are you going to press Z7?"
g%=GET
IF g%=%Z OR g%=%z
PRINT "Yesg!"®
ELSE
PRINT "No."
ENDIF
PAUSE 60
ENDP

% operator

The program checks character codes with the % operator. %a returns the code of a, $2
the code of Z and so on. Using %A is entirely equivalent to using 63, the actual code for
A, but it saves you having to look it up, and it makes your program easier to follow.

Be careful not to confuse character codes like these with integer variables.

OR operator :
OR lets you check for either of two conditions. OR is an example of a logical operator.
There is more about logical operators later in this chapter.

Example using DO...UNTIL and IF

PROC testny:
DO
gS=UPPERS (GETS)
UNTIL g$="N" OR g$="Y" REM wait for a Y or N

IF g$="N" REM was it an N7?
... REM ‘N’ pressed
ELSE REM must have been a Y
REM ‘Y’ pressed
ENDIF
ENDP

This procedure checks for a *Y’” or ‘N’ keypress. You’d put your own code in the IF
statement, where . . . has been used in the above example.

80 7: Loops and branches



Arguments to functions

Some functions, as with commands like PRINT and PAUSE, require you to give a value or
values. These values are called arguments. The UPPERS function needs you to specify a
string argument, and returns the same string but with all letters in upper case. For
example, UPPER (" 12.+aBcDeF"} retumns "12 . +ABCDEF".

Functions as arguments to other functions

Since GETS returns a string, you can use this as the argument for UPPERS.

UPPERS (GETS$) waits for you to press a key, because of the GETS; the UPPERS takes
the string returned and, if it’s a letter, returns it in upper case. This means that you can
check for "Y* without having to check for "v " as well.

‘True’ and ‘False’

The test condition used with DO..UNTIL, WHILE.. ENDWH and IF. ENDIF can be any
expression, and may include any valid combination of operators and functions.
Examples:

Condition Meaning

x=21 does the value of x equal 217 (Note — as this is a test
condition, it does not assign x the value 21)

a%<>b% is the value of a% not equal to the value of b%"

x%=(y%+2z%) is the value of x% equal to the value of y%+2%7

(does not asssign the value y%+2% to x%).

The expressions actually return a logical value — that is, a value meaning either “True’
or ‘False’. Any non-zero value is considered ‘True’ (to return a “True’ value, OPL uses
-1), while zero means ‘False’. So if a% is 6 and b$% is 7, the expression a%>b% will
return a zero value, since a% is not greater than b%.

These are the conditional operators:

< less than <= lcss than or cqual to

> greater than >= greater than or equal to
= equal to <> not equal to
Logical operators

The operators AND, OR and NOT allow you to combine or change test conditions. This
table shows their effects. (c1 and ¢2 represent conditions.)

Example Result Integer returned
¢l AND 2 Trueif both ¢l and ¢2 are true -1
False if either ¢1 or ¢2 are false 0
cl OR ¢2  Trueifeither c1 or ¢2 is true -1
False if both <1 and c2 are false 0
NOT ¢l True if ¢1 is false -1
False if ¢1 is true 0

However, AND. OR and NOT become bitwise operators — something very different from
logical operators — when used exclusively with integer or long integer values. If you
use IF A% AND BS%, the AND acts as a bitwise operator, and you may not get the
expected result. You would have to rewrite this as IF A%<>0 AND B%<>0.

7: Loops and branches 81



(Operators, including bitwise operators, are discussed further in the ‘Operators and
logical expressions’ Appendix.)

Jumping to a different line

Jumping out of a loop: BREAK

The BREAK command jumps out of a DO..UNTIL or WHILE..ENDWH structure. The line
after the UNTIL or ENDWH statement is executed, and the lines following are then
executed as normal. For example:

Do

ooooo

UNTIL a=b
x%=3

Jumping to the test condition: CONTINUE

The CONTINUE command jumps from the middle of a loop to its test condition. The test
condition is either the UNTIL line of a DO..UNTIL loup ur (he WHILE line of 4
WHILE...ENDWH loop. For example:

.....

Jumping to a ‘label’: GOTO
The GOoTO command jumps to a specified label. The label can be anywhere in the same
procedure (after any LOCAL or GLOBAL variable declarations). In this example, when the

program reaches the GOTO statement, it jumps to the label exit : :, and continues with
the statement after it.

GOTO exit

SS THIS LINE"
"AND THIS ONE"

82 7:Loops and branches



The two PRINT statements are missed out.

Labels themselves must end in a double colon. This is optional in the GOTO
statement — both GOTO exit:: and GOTO exit are OK.

The jump to the label always happens — it is not conditional.

Don’t use GOTOs instead of DO..UNTIL or WHILE..ENDWH, as they make procedures
difficult to understand.

Vectoring to a label: VECTOR/ENDV

VECTOR jumps to one of a list of labels, according to the value in an integer variable,
The list is terminated by the ENDV statement. For example:

VECTOR P%
FUNCA , FUNCX
FUNCR
ENDV
PRINT "P% was not 1/2/3" :GET :STOP
FUNCA: :
PRINT "P% was 1" :GET :8TOP
FUNCX.: : .
PRINT "P% was 2" :GET :STOP
FUNCR: : '

PRINT "P% was 3" :GET :STOP

Here, if P% is 1, VECTOR jumps to the label FUNCA : ;. If it is 2, it jumps to FUNCX: :,
and if 3, FUNCR: :. If P% is any other value, the program continues with the statement
after the ENDV statement.

The list of labels may spread over several lines, as in this example, with 4 comma
separating labels in any one line but no comma at the end of each line. Again, you can
write each label in the list with a double colon, if you like.

VECTOR... ENDV can sometimes save you from having to write very long IF. . . ENDIF
structures, with ELSETF used many times.

Stopping a running program

This example introduces the sTop command. This stops a running program completely,
just as if the end of the program had been reached. In a module with a single procedute,
STOP has the same effect as using GOTO to jump to a label above the final ENDP.

UNTIL 0, WHILE 1

Zero and non-zero are logical values meaning ‘Falsc’ and ‘True’ respectively.

UNTIL 0 and WHILE 1 therefore mean ‘do forever’, since the condition 0 is never
“True’ and the condition 1 is always “True’. Use loops with these conditions when you
need to check the real condition somewhere in the middie of the loop. When the real
condition is met, you can BREAK out of the loop, For example:

PROC test:
WHILE 1
REM some other lines here
IF KEY :BREAK :ENDIF
... REM some other lines here
ENDWH
ENDP

7: Loops and branches 83



This example uses the KEY command. KEY returns { if no key has been pressed. When a
key is pressed, KEY returns a non-zero value which counts as ‘True’, and the BREAK is
executed.

SUMMARY

DO
statements
UNTIL condition

WHILE condition
statements
ENDWH

IF condition
statements
(ELSEIF condition
statements)
(ELSE
statements)
ENDIF

VECTOR int%
labell, label2
labelld. ..

ENDV

GOTO label jumpsto label::

BREAK goes to the first line after the end of the loop — the line following the UNTIL or
ENDWII line.

CONTINUE goes to the test condition of the loop — the UNTIL or the WHILE line.

STOP stops a munning program completely.

84 7: Loops and branches



3

Calling procedures

8: Calling procedures 85



Using more than one procedure

It you wanted a singie procedure to perform a complex task, the procedure would
become long and complicated. It is more convenient to have a module containing a
number of procedures, each of which you can write and edit separaiely.

Many OPL. modules are in fact a set of linked procedures — each procedure doing just
one job (such as a certain calculation) and then passing its results on to other
procedures so they can do other operations:

Procedure asking for controlling procedure,
valuesidecisions pussing values, receiving
results back

" proc. \
P module
various procedures
proc. S performing calculations,

—_— ] accessing files, and returning
information to the first
procedure

OFL is designed tv encourage programs written in this way, since:

* You can store all the procedures which make up a program in the same module file
and

*  One procedure can call, that is run, another.

Modules containing more than one procedure

You can have as many procedures as you like in a module. Each must begin with ProC
and end with ENDP,

When you run a translated module it is always the first procedure, at the top of
the module, which is actually run. When this finishes, the module stops; any other
procedures in the file are only run if and when they are called.

Although you can use any name you want, it’s common to give the first procedure a
name like start.

Procedures which run on their own should be written and translated as separate
modules, otherwise you won'’t be able to run them.

Calling procedures

To run another procedure, simply give the name of the procedure (with the colon). For
example, this module contains two procedures:

86 s: Calling procedures



PROC one:
PRINT "Start"

PAUSE 40
two: REM calls procedure two:
PRINT "Finished"
PAUSE 40
ENDP
PROC two:
PRINT "Doing..."
PAUSE 40
ENDP

Running this module would run procedure one:, with this effect: Start is displayed;
after a PAUSE it calls two :, which displays Doing. . . after another PAUSE two:
returns to the one : procedure; one: displays Finished; and after a final PAUSE,
one: finishes,

Uses of calling procedures
Calling procedures can be used to:

» Structure your programs more clearly so they’re easier to adapt after you’ ve written
them, and

» Use the same procedure in different programs — say, to perform a certain common
calculation.

For example, when your program asks you "Do this or do that?", make two procedure
calls — either this: or that : procedure - depending on what you reply, for example:

PROC input:
LOCAL a$ (1)
PRINT "add [A] or Subtract [S8]?:",
a$=UPPERS (GETS)
IF as$="a"
add: REM first procedure
ELSEIF a$="S5"
subtract: REM second procedure
ENDTF
ENDP

To make full use of procedure calls, you must be able to communicate values between
one procedure and another. There are two ways of doing this: global variables and
parameters.

8: Calling procedures 87



Parameters

Values can be passed from one procedure to another by using parameters. They look,
and act, very much like arguments to functions.

In the cxarnple below, the procedure price: calls the procedure tax:. At the same
time as it calls it, it passes a value (in this case, the value which INPUT gave to the
variable x) to the parameter p named in the first line of tax:. The parameter p is
rather like a new local variable inside tax:, and it has the value passed when tax: is
called. (The tax: procedure is not changing the variable x.)

The tax: procedure displays the value of x plus 17.5% tax.

PROC price:
LOCAL X
PRINT "ENTER PRICE",
INPUT x
tax: (x) REM Passes the value of x to p
GET
ENDP

PROC tax: (p)
PRINT "PRICE INCLUDING TAX =",p*1.175
ENDP

* Inthe called procedure, follow the procedure name by the names to use for the
paramcters, in brackets and separated by commas - for example
proc2: (cost,profit).

The parameter type is specified as with variables — for example p for a floating-point
parameter, p% for an integer, p& for a long integer, p$ for a string. You can’t have array
parameters.

» Inthe calling procedure, the values for the parameters are given in brackets, in the
right order and scparated by commas, after the colon of the called procedure — for
example proc2: {60, 30).

The values passed as parameters may be the values of variables, strings in quotes, or
constants. So a call might be calc: (a$,x%,15.8) and the first line of the calied
procediure PROC calce: {(name$, age%, calary)

In the called procedure, you cannot assign values to parameters - for example, if p
is a parameter, you cannot use a statement like p=10.

You will see a “Type mismatch’ error displayed if you iry to pass the wrong type of
value to a parameter - for example, 45 to {a$).

Multiple parameters

in the following example, the sccond procedure tax2 : has two parameters:
= The value of the price variable x is passed to the parameter pl.

= The value of the tax rate variable x is passed to the parameter p2.

tax2: displays the price plus tax al the rate specified.

88 s Calling procedures



PROC price2:
LOCAL X,r
PRINT "ENTER PRICE",
INPUT x
PRINT "ENTER TaAX RATE",
INPUT 1
tax2: (x,r)
GET
ENDP

PROC tax2: (pl,p2}
PRINT pl+p2 %
ENDP

This uscs the % symbol as an operator —pl+p2 % means pl plus p2 percentof pl,
Note the space before the %; without it, p2% would be taken as representing an integer
variable.

Appendix B has more about the % operator.

Returning values

In the following example, the RETURN command is used to return the value of x plus tax
at r percent — to be displayed in price3:. This is very similar to the way functions
return a value.

The tax3 : procedure calculates, but doesn’t display the result. This means it can be
called by other procedures which need to perform this calculation but do not
necessarily need to display it.

PROC price3:
LOCAL x,r
PRINT "ENTER PRICE",
INPUT x
PRINT "ENTER TAX RATE",
INPUT r
PRINT "PRICE INCLUDING TAX =“,ta§3:(x,r)

GET P e

PROC tax3: (pl,p2)
RETURN pl+p2 %
ENDP

Only one value may be returned by the RETURN command.

The name of a procedure which returns a value must end with the correct identifier — $
for string, % for integer, or & for long integer. To return a floating-point number, it
should end with none of these symbols. For example, PROC abcd$ : can return a
string, while PROC counter$%: can return an integer. In this example, ref$:
returns a string;

8: Calling procedures 89



PROC refname:
LOCAL a$(30).bs({2)
PRINT "Enter reference and name:",
INPUT a$
bs=ref$: {ag)
PRINT "Ref is:",bS$
GET
ENDP

PROC ref$: (name$)

RETURN LEFTS (name$,2)

REM LEFTS takes first 2 letters of name$
ENDP

If you don’t use the RETURN command, a string procedure returns the null string (" *).
Other (numeric) types of procedure return zero.

GLOBAL variables

You can only return one value with the REFURN command. If you need to pass back
more than one value, use GLOBAL variables,

Instead of declaring LOCAL x%,name$ (5) declare GLOBAL x%,name$ {(5).The
difference is that:

«  Local variables are valid only in the procedure in which they are declared.

» Global variables can also be used in any procedures {including those in loaded
modules) called by the procedure in which they are declared.

So this module would run OK:

PROC one:
GLOBAL a%
PRINT a%
two:

GET

ENDP

PROC two:
a%=2 REM Sees a% declared in one:
PRINT a%

ENDP

When you run this, the value 0 is displayed ﬁrst, and then the value 2.

You would see an ‘Undefined externals’ error displayed if you used LOCAL instead of
GLOBAL to declare a%, since the procedure two : wouldn’t recognise the variable a%.
In general, though, it is good practice to use the LOCAL command unless you really need
t0 use GLOBAL.

Alocal declaration overrides a global declaration in that procedure. So if GLOBAL a%
was declared in a procedure, which called another procedure in which LOCAL a% was
declared, any modifications to the value of a% in this procedure would not effect the
value of the global variable a%.

90 s: calling procedures



Passing back values

You can effectively pass as many values as you like back from one procedure to another
by using global variables. Any modifications to the value of a variable in a called
procedure are automatically registered in the calling procedure.

For example:

PROC start:
GLOBAL wvarone,vartwo
varone=2.5
vartwo=2
op:
PRINT wvarone,vartwo
GET

ENDP

PROC op:
varone=varone*2
vartwosvartwo*4

ENDP

This would display 5 8

‘Undefined externals’ error

If, perhaps because of a typing error, you use a name which is not one of your
variables, no error occurs when you translate the module. This is because it could be the
name of a global variable, declared in a different procedure, which might be available
when the procedure in question was called. If no such global variable is available, an
‘Undefined externals’ error is shown. This also displays the variable name which
caused the error, together with the module and procedure names, in this format:

‘Error in MODULE\PROCEDURE VARIABLE’,

SUMMARY

Call a procedure by stating its name, including the colon.

Pass parameters to a procedure by following the procedure call with the values for the
parameters, eg calc2: (4.5, 32). In the called procedure, follow the procedure
name with the parameter names, eg PROC calc2: (mod, div$).

To make variables declared in one procedure accessible to called procedures, declare
the variables with GLOBAL instead of LoCAlL.

8: Calling procedures 91



92 = Calling procedures



Data file handling

You can use OPL to create data files (databases) like those
used by the in-built Database application described in ‘The
built-in applications’ chapter earlier in this manual. You can
store any kind of information in a data file, and retrieve it for
display, editing or calculations.

This chapter covers:

e (reating data files

e Adding and editing records
e Searching records

o Using a data file both in OPL and in the Database

9: Data file handling 93



Files, records and fields

Data files (or databases)

Simon Evarc 1| Br J Wood 11[ N
DATA l CLIENTS SURVEY
are made up of records
_ — =
L l

| DrJ Wood

i 0982 23456

divided into fields

|

44 Broughton Rd

Broughton

For example, in a data file of names and addresses, each record might have a name
field, a telephone number field, and separate fields for each line of the address.

In OPL you can:

« Create a new file with CREATE, or open an existing file with OPEN, and copy, delete
and rename files with COPY, DELETE and RENAME.

» Add a new record with APPEND, change an existing one with UPDATE, and remove a
record with ERASE,

» Fill in a field by assigning a value to a field variable.

94 o9: Data file handling



Creating a data file

Use the CREATE command like this:

CREATE filename$, logical name, fieldl, field2, ...
For example:

CREATE "clients",B,nm$,tel$,adls,ad2$,ad3s

creates a data file called clients.

The file name is a string, so remember to put quote marks around it. You can also
assign the name string to a string variable (for example £i1$="clients") and then
use the variable name as the argument —- CREATE £il$,A, fieldl, field2.

Logical names

You can have up to 4 data files open at a time. Each of these must have a logical name:
A, B, C or D. The logical name lets you refer to this file without having to keep using
the [ull file name.

A different logical name must be used for each data file opened — one called A, one
called B, one called € and one called D. A file does not have to be opened with the same
logical name as the last time it was opened. When a file is closed, its logical name is
freed for use by another file.

Fields

fieldl, field2,...are the ficld names — up to 32 in any record. These are like
variables, so use % & or & to make the appropriate types of fields for your data. You
cannot use arrays. Do not specify the maximum Iength of strings that the string fields
can handle, The length is automatically set at 255 characters.

Field names may be up to 8 characters long, including any qualifier like &.

When referring to fields, add the logical file name to the front of the field name, to
specify which opened file the fields belong to. Separate the two by a dot. For example,
A.name$ is the name$ field of the file with logical name A, and C . age% is the age$%
field of the file with logical name C.

The values of all the fields are 0 or null to start with. You can see this if you run this
example program:

PROC creatfil:
CREATE “example",A,int%, longk, float,strs
PRINT "integer=";a.int%
PRINT "long=";a.longk&
PRINT "float=";a.float
PRINT "string=";a.str$
CLOSE
GET
ENDP

9: Data file handling 95



Opening a file

‘When you first CREATE a data file it ts automatically open, but it closes again when the
program ends. If a file already exists, trying to CREATE it again will give an error- so
if you ran the procedure creatfil: asecond time you would get an error. To open
an existing file, use the OPEN command.

OPEN works in the same way as the CREATE command. For example:.
OPEN “clients”,B,a$,b$,c$,ds,es

= You must use the same filename as when you first created it.

= You must include in the OPEN command each of the fields you intend to alter or read.
You can omit fields from the end of the list; you cannot miss one out from the
middle of the list, for example £ieldl$, , name$ They must remain the same
type of field, but you can change their names. So a file created with fields
name$, age% could later be opened with the fields a$ , x%.

» Give the file a logical name. Up to 4 files may be open at any one time, with logical
names A, B, C and D. You can’t have two files open simultancously with thc samc
logical name, so when opening the files, remember which logical names you have
already used.

You might make a new module, and type these two procedures into it:

PROC openfile:
IF NOT EXIST({("example")}
CREATE "example",A,int%, lngk, fp,strs
ELSE
OPEN "example',A, int%, Ingk, fp.stré
ENDIF
PRINT "Current values:"
show: .
PRINT “Assigning values"
A.int%=1
A lng&=§&2**20 REM the lst & avoids integer overflow
A. fp=SIN(PI/6) :
PRINT "Give a value for the string:*
INPUT A.str$ '
PRINT "New valueg:"
show:
ENDP

PROC show:
PRINT "integer=";A.int%
PRINT "long=";a.lng
PRINT "float=";A.fp
PRINT "string=";A.str$
GET

ENDP

96 9: Data file handling



Notes

Opening/creating the file

The IF..ENDIF checks to see if the file already exists, using the EXIST function. If it does,
the file is opened; if it doesn’t, the file is created.

Giving values to the fields
The ficlds can be assigned values just like variables. The field name must be uscd with
the logical file name like this: A. £%=1 or INPUT A. f$5.

If you try to give the wrong type of value to a field (for example *Davis” to £%) an
error message will be displayed.

You can access the fields from other procedures, just like global variables. Here the
called procedure show: displays the values of the fields.

Field names
You must know the type of each field, and you must give each a separate name — you
cannot refer to the fields in any indexed way, eg as an array.

Opening a file for sharing

The OPENR command works in exactly the same way as OPEN, except that the file
cannot be written to (with UPDATE or APPEND), only read. However, more than one
running program can then look at the file at the same time.

Saving records

The last example procedure did not actually save the field values as a record to a file.
To do this you need to use the APPEND command. This program, for example, allows
you to add records to the example data file:

PROC count:
LOCAL reply%
OPEN "example" ,A,f£%, f&, £, 5
DO
CLS
AT 20,1 :PRINT "Record count=";COUNT
AT 9,5 :PRINT "(A)dd a record"
AT 9,7 :PRINT "{Q)uit"
reply%=GET
IF reply%=%qg OR reply%=%Q
BREAK
ELSEIF replv%=%A OR reply%=%a
add:
ELSE
BEEP 16,250
ENDIF
UNTIL O
ENDP

PROC add:
CLS
PRINT "Enter integer field:";
INPUT A.f%

9: Data file handling 97



PRINT "Enter long integer field:*;
INPUT A.f&
PRINT "Enter numeric field:*:
INPUT A.f
PRINT "Enter string field:*;
INPUT A.fS
APPEND
ENDP

BEEFP
The BEEP command makes a beep of varying pitch and length:

BEEP duration%,pitch%

The duration is measured in 1435 of a second, so duration%=32 would give abeep a
second long. Try pitch%=50 for a high beep, or 500 for a low beep.

The number of records

The COUNT function returns the number of records in the file. If you vse it just after
creating a database, it will return 0. As you add records the count increases.

How the values are saved

Use the APPEND command to save a new record. This has no arguments. The values
assigned to A, £%, A, £&,A. £ and A. £5 are added as a new record to the end of the
examp le data file. If you only give values to some of the fields, not all, you won’t see
any error message. If the fields happen to have values, these will be used; otherwise
null strings ("") will be given to string fields, and zero to numeric fields.

New field values are always added to the end of the current data file — as the last
record in the file (if the file is a new one, it will also be the first record).

At any time while a data fite is open, the field names currently in use can be nsed like
any other variable — for example, in a PRINT statement, or a string or numeric
expression,

APPEND and UPDATE

APPEND adds the current field values to the end of the file as a new record, whereas
UPDATE deletes the current record and adds the current field values to the end of the
file as a new record.

Moving from record to record

When you open or create a file, the first record in the file is current. To read, edit, or
erase another record, you must make that record current - that is, move to it. Only one
record is current at a time. To change the current record, use one of these commands:

POSITION ‘moves to’ a particular record, setting the field variables to the values in that
record. For example, the instruction POSITION 3 makes record 3 the current record.
The first record is record 1.

You can find the current record number by using the pos function, which returns the
number of the current record.

FIRST moves to the first record in a file.

98 9: Data file handling



NEXT moves to the following record in a file. If the end of the file is passed, NEXT does
not report an error, but the current record is a new, empty record. This case can be
tested for with the EOF function.

BACK moves to the previous record in the file. If the current record is the first record in
the file then that first record stays current.

LAST moves to the last record in the file.

Deleting a record
ERASE deletes the current record in the current file,

The next record is then current. If the erased record was the last record in a file, then
following this command the current record will be empty and EOF will return true.

Finding a record

FIND makes current the next record which has a field matching your search string.
Capitals and lower-case letters match. For example:

r$=FIND("Brown")

would select the first record containing a string field with the value "Brown", "brown"
or "BROWN", etc. The number of that record is returned, in this case to the variable
r%. If the number returned is zero, no matching field was found. Any other number
means that a match was found.

The search includes the current record. So after finding a matching record, you need to
use NEXT before you can continue searching through the following records.

FIND("Brown") would not find a field "Mr Brown". To find this, use wildcards, as
explamed below,

You can only search string fields, not number fields. For example, if you assigned
the value 71 to the field a%, you could not find this with FIND. But if you assigned the
value "71" to a$, you could find this.

Wildcards

r$=FIND (" *Brown* ") would make current the next record containing a string field
in which Brown occurred — for example, the fields MR BROWN, Brown A.R. and
Browns Plumbing would be matched. The wildcards you can use are:

? matches any one character
* matches any number of characters.

Once you’ ve found a matching record, you might display it on the screen, erase it or
edit it. For example, to display all the records containing "BROWN":

FIRST

WHILE FIND({" *BROWN*")}
PRINT a.name$, a.phone$
NEXT
GET

ENDWH

9: Data file handiing 99



More controlled finding

FINDFIELD , like FIND , finds a string, makes the record with this string the current
record, and returns the number of this record. Howcever you can also use it to do
case-dependent searching, to search backwards through the file, to search from the first
record (forwards) or from the last record (backwards), and to search in one or more
fields only.

You may experience some problems in using FINDFIELD with some verstons of OPL. To
ensure that problems are avoided use the line:

POKER {peekw($1c)+7).,0

immediately before each call to FINDFIELD.

The first argument to FINDFIELD is the string to look for, as for FIND. The second is the
number of the string field to start looking in (1 for the first string field), and the third is
the number of string fields to search in (starting from the string field specified by the
second argument). For example, FINDFIELD(a$, 1, 2, 0) will match with the 15ih
field, if that is the first string field. If you want to search in all fields, use 1 as the
second argument and for the third argument use the number of fields you used in the
OPEN/CREATE command.

The fourth argument adds together two values:

= 0 for a case independent match, where capitals and lower-case letters match, or 16
for a case dependent match.

= () to search backwards from the current record, 1 to search forwards from the current
record, 2 to search backwards from the end of the file, or 3 to search forwards from
the start of the file.

For a case-dependent search (16) forwards from the start of the file (3), use 1643, i.e.
19. If you wanted to search only in the second and third string fields, the full statement
might look like this.:FINDFIELD("brown",2,2,19)

£ If you understand kexadecimal arithmetic, as described under HEX$in the ‘Alphabetic
listing” chapter, note that you can combine the two values more easily using
hexadecimal numbers. Use a § symbol, then the digit for case-dependency (0/1),
then the digit for the start/direction (0/1/2/3). In the previous example the digits are 1
and 3, producing the hexadecimal number $13 (=19).

If you find a matching record and then want to search again from this record, you must
first use NEXT or BACK (according to the direction you are searching in), otherwise the
same match will be "found” in the current record again.

Changing/closing the current file

Immediately after a file has been created or opened, it is automatically current. This
means that the APPEND or UPDATE commands save records to this file, and the
record-position commands (explained below) move around this file. You can still use
the fields of other open files, forexample A. fieldl=B.field2

USE makes current one of the other opened files. For example USE B selects the file
with the logical name B (as specified in the OPEN or CREATE command which opcened it).

If you try to USE a file which has not yet been opened or created, an error is reported.

In this procedure, the EOF function checks whether you are at the end of the current data
file ~ that is, whether you’ve gone past the last record. You can use EOF in the test

100 o: Data file handling



condition of a loop - UNTIL EOF or WHILE NOT EOF in order to carry out a set of actions
on all the records in a file.

Example — copies selected records from one file to another

PROC copyrec:
OPEN "example",A,f%,f&, £, £¢
TRAP DELETE "temp"
REM If file doesn’'t exist, ignore error
CREATE "temp",B, %, f&,f,f$
PRINT "Copying EXAMPLE to TEMP"
USE A REM the EXAMPLE file
Do
IF a.£f%>30 and a.f<3.1415
b.f%=a.f%
b.f&=a.fx
b.f=a.f
b.f$="Selective copy"
USE B REM the TEMP file
APPEND
USE A
ENDIF
NEXT
UNTIL ECOF REM until End Of File
CLOSE REM closes A; B becomes current
CLOSE REM closes B
ENDP

This example uses the DELETE command to delete any temp file whch may exist,
before making it afresh. Normally, if there was no temp file and you tried to delete it,
an error would be generated. However, this cxamplc uscs TRAP with the DELETE
command. TRAP followed by a command means "if an error occurs in the command,
carry on regardless”. There are more details of TRAP in the chapter on ‘Error handling’.

Closing a data file

You should always ‘close’ a data file (with the CLOSE command) when you have
finished using it. Data files close automatically when programs end. You can only have
4 files open at a time ~ if you have 4 files open and you want to access another one,
close one of them. CLOSE closes the current file,

Keeping data files compressed

When you change or delete records in a data file, the space taken by the old information
is not automatically recovered. By default, the space is recovered when you close the
file, provided it is on ‘Internal drive’ or on a RAM SSD (ie it is not on a Flash SSD).

Closing a very lasge file which contains changed or deleted records can be slow when
compression is enabled, as the whole file beyond each old record needs copying down,
each time.

You can prevent data file compression if you wish, with these two lines:

P%=PEEKW(S1lc)+S1le
POKEW p%, PEEKW (p%) or 1

9: Data file handling 101



(Use any suitable integer variable for 1 %.) Files used by the current program will now
not compress when they close.

Use these two lines to re-enable auto-compression:

P%=PEEKW($1c)+$1le
POKEW p%, PEEKW(p%) and S$fffe

Warning: Be careful to enter these lines exactly as shown. These examples work by
setting a system configuration flag.

If you have closed a file without compression, you can recover the space by using the
COMPRESS command to create a new, compressed version of the file.

COMPRESS "dat" "new", for example, creates a file called new which is a
compressed version of dat, with the space which was taken up by old information now
recovered. (You have 1o use COMPRESS to compress data files which are kept on a Flash
SSD.)

Data files and the Database

The files you use with the Database (listed under the Data icon in the in-built System
screen) — often called databases or database files — are also just data files.

Data files created by the Database can be viewed in OPL, and vice versa,

In OPL: to open a data file made by the Database, begin its name with \DAT\, and
end it with . DBF. For example, to open the file called data which the Database
normally uses:;

OPEN “\dat\data.dbf",a,a$,bs$,c$,ds...

Restrictions:

» You can use up to 32 field variables, all strings. It is possible for records to contain
more than 32 fields, but these fields cannot be accessed by OPL. It’s safe to change
such a record and use UPDATE, though, as the extra fields will remain unchanged.

* The maximum record length in OPL is 1022 characters. You will see a
‘Record too large’ error (-43) if your program tries to open a file which contains a
record longer than this,

= The Database breaks up long records (over 255 characters) when storing them. They
would appear as separate records to OPL.

In the Database: to examine an OPL data file, press the Data button, select ‘Open’
from the “File” menu, and type the name with \OPD\ on the front and . CDB at the
end — for example:

\opdiexample. odb

Restrictions:
» Al of the fields must be string fields.

* You can have up to a maximum of 32 fields, as specified in the CREATE command. If
you view an OPL data file with the Database, and add more lines to records than the
number of fields specified in the original CREATE command, you will get an error if
you subsequently try to access these additional fields in OPL.

In both cases, you are using a more complete file specification. There is more about file
specifications in the ‘Advanced topics’ chapter.

102 9: Data file handling



10

Graphics

OPL graphics allow you, for example, to:

L

L

Draw lines and boxes.
Fill areas with patterns.

Display text in a variety of styles, at any position on the
screen.,

Scroll areas of the screen.
Manipulate windows and bit patterns.

Read data back from the screen.

You can draw using black, grey and white.

Graphics keywords begin a c. In this manual a lower case g is
used - for example, gROX — but you can type them using
upper or lower case letters.

IMPORTANT: Some graphics keywords are mentioned only
briefly in this chapter. For more details about them, see the
‘Alphabetic listing’ chapter.

10: Graphics 103



Simple graphics

The Workabout screen is made up of a regular pattemn of 240 points across by 100
down. These points are sometimes referred to as pixels.

Each pixel is identified by two numbers, giving its position across and down from the
top left corner of the screen. 0,0 denotes the pixel in the top left comer; 2,1 is the pixel
2 points across and one down, and so on. 239,99 is the pixel in the bottom right comer.

Note that these co-ordinates are very different to the cursor positions set by the AT
command.

OPL maintains a current position on the screen. Graphics commands which draw on the
screen generally take effect at this position. Initially, the current position is the top left
comer, 0,0.

You can draw using black, grey and white although grey is not accessible by default.
See the scction ‘Drawing in grey’ later in this chapter for further details.

Screen positions

Drawing lines
Here is a simple procedure to draw a horizontal line in the middle of the screen:

PROC lines:
gMOVE 90,40
gLIMERY 60,0
GET

ENDP

gMOVE moves the current position by the specified amount, In this case, it moves the
current position 90 pixels right and 40 down, from 0,0 to 90,40. It does not display
anything on the screen.

gLINEBY (g-Line-By) draws a line from the current position (just set to 90,40) to a point
at the distance you specify — in this case 60 to the right and 0 down, ie 150,40,

When drawing a horizontal line, as in the above example, the line that is drawn includes
the pixel with the lower X coordinate and excludes the pixel with the higher x
coordinate. Similarly, when drawing a vertical line, the line includes the pixel with the
lower y coordinate and excludes the pixel with the higher y coordinate.

B33 On the Workabout screen the y coordinate decreases as you move toward the top of
the screen.

When drawing a diagonal line, the coordinates of the end pixels are turned into a
rectangle. The top left pixel lies inside the boundary of this rectangle and the bottom
right pixel lies outside it. The line drawing algorithm then fills in those pixels that are
mtersected by a mathematical line between the comers of the recrangle. Thus the line
will be drawn minus one or both end points.

gLINEBY also has the effect of moving the current position to the end of the line it draws.

With both gMOVE and gLINEBY, you specify positions relative to the current position.
Most OPL graphics commands do likewise. gMOVE and gLINEBY, however, do have
corresponding commands which use absolute pixel positions. gAT moves to the pixel

| 104 10 Graphics



position you specify; gLINETO draws a line from the current position to an absolute
position. The horizontal line procedure could instead be written:

PROC lines:
gAT 90,40
gLINETO 150,40
GET

ENDP

gAT and gLINETO may be useful in very short graphics programs, and gAT is always the
obvious command for moving to a particular point on the screen, before you stast
drawing. But once you do start drawing, use gMOVE and gLINEBY. They make it much
easier to develop and change programs, and allow you to make useful graphics
procedures which can display things anywhere you set the current position. Almost all
graphics drawing commands use relative positioning for these reasons.

Drawing dots
You can set the pixel at the current position with gLINEBY 0, 0.

Right and down, left and up

gMOVE and gLINEBY find the position to use by adding the numbers you specify onto the
current position. If the numbers are positive, it moves to the right and down the screen,
If you use negative numbess, however, you can specify positions to the left of and/or

above the current position. For example, this procedure draws the same horizontal line
as before, then another one above it:

PROC lines2:
gMOVE 90,490
gLINEBY 60,0
gMOVE 0, -20
gLINEBY -60,0
GET

ENDP

The first two program lines are the same as before. gLINERY moves the current position
to the end of the line it draws, so after the first gLINEBY the current position is 150,40.
The second gMOVE moves the current position up by 20 pixels; the second gLINEBY
draws a line to a point 60 pixels to the left.

p=3 For horizontal and vertical lines, the right-hand/bottom pixel is not set. For diagonal
lines, the right-most and bottom-most pixels are not set; these may be the same pixel.

Going off the screen

No error is reported if you try to draw off the edge of the screen. It is quite possible to
leave the current position off the screen — for example, gLINETO 300, 40 will draw
a line from the current position to some point on the right-hand screen edge, but the
current position will finish as 300,40.

There’s no harm in the current position being off the screen. It allows you to write
procedures to display a certain pattern at the current position, and not have to worry
whether that position is too close to the screen edge for the whole pattern to fit on.

Clearing the screen
gCLS clears the screen.

10: Graphics 105



Drawing in grey

Initialising for the use of grey

To draw in grey you need to use DEFAULTWIN 1 at the start of your program. (Note
that this clears the screen.) Grey is not automatically available because it requires twice
the memory (and takes longer to scroll or move) compared to having just black. So
programs that do not need to use grey are not unnecessarily penalised.

DEFAULTWIN O disables the use of grey again, also clearing the screen.

g7 It is not possible to have a screen using grey only.

DRFAULTWIN 1 does not cause PRINT to print in grey — it applies only to graphics and
graphics text (see gPRINT later).

When you use DEFAULTWIN 1 the existing black-only screen is cleared and replaced
by one which contains a black plane and also a grey plane. The black plane is also
sometimes called the the normal plane. These are referred to as ‘planes’ because
intuitively it is simplest to think of there being a plane of black pixels in front of (or on
top of) a plane of grey pixels, with any grey only ever visible if the black pixel in front
of it is clear.

If you draw a pixel using both black and grey, it will appear black. If you then
clear the black plane only, the same pixel will appear grey. If you draw a pixel using
grey only it will appear grey unless it is already black, in which case it is effectively
hidden behind the black plane.

If you need to use grey, you arc recommended to usc DEFAULTWIN 1 once and for all
at the start of your program. One reason is because DEFAULTWIN can fail with a ‘No
system memory’ error and it is unlikely that you would want to continue without grey
after trying to enable it.

03> Note that gXBORDER, gBUTTON and gDRAWOBJIECTall use grey and therefore can only
be used when grey in enabled. If grey is not enabled, they raise a ‘General failure’
CITOr.

Using grey
Orice you have used DEFAULTWIN 1 you can use the gGREY command to set which
plane should be used for all subsequent graphics drawing (until the next use of gGREY).

gCREY 0 draws to the black plane only.
gGREY 1 draws to the grey plane only.
gGREY 2 draws to both planes.

gGREY 1 and gGREY 2 raise an error if the current window does not have a grey
plane.

As mentioned earlier, when you set a pixel using both black and grey, the pixel appears
black because the black plane is effectively in front of the grey plane. So drawing to
both planes is generally only used for clearing pixels. For example, if your screen has
both black and grey pixels, gCLs will clear the pixels only in the plane selected by
3GREY. To clear the whole screen with gCLS, you therefore need gGREY 2. '

To draw in grey when the pixels to which you are drawing are currently black, you first
need to clear the black.

A pixel will appear white only if it is clear in both planes.

106 10 Graphics



Example

The following procedure initialises the screen to allow grey, draws a horizontal line in
grey, another below it in black only and a third below it in both black and grey. Pressing
a key clears the black plane only, revealing the grey behind the black in the bottom line
and clearing the middie line altogether.

PROC exgrey:
DEFAULTWIN 1 REM enable grey
gAT 0,20 :gGREY 1 :gLINEBY 240,0 REM grey only
AT 0,21 :gLINEBY 240,0
gAT 0,40 :gGREY 0 :gLINEBY 240,0 REM black only
gAT 0,41 :gLINEBY 240,¢
gAT 0,60 :gGREY 2 :gLINEBY 240,00 REM both planes
gAT 0,61 :gLINEBY 240,0
GET
gGREY O REM black only
gCLS REM clear it
GET

ENDD

Overwriting pixels

Drawing rectangles

The gBoX command draws a box outline. For example, gBOX 100, 20 draws a box
from the current position to a point 100 pixels to the right and 20 down. If the current
position were 100,40, the four corers of this box would be at 100,40, 200,40, 200,60
and 100,60,

If you have used DEFAULTWIN 1 and gGREY as described earlier, the box is drawn to
the black and/or grey plane as selected.

gBOX does not change the current position.

gFILL draws a filled box in the same way as gBOX draws a box outline, but it has a third
argument to say which pixels to set. If set to 0, the pixels which make up the box would
be set. If set to 1, pixels are cleared; if set to 2, they are inverted, that is, pixcls already
set on the screen become cleared, and vice versa. The values | and 2 are used when
overwriting areas of the screen which already have pixels set.

If you have used DEFAULTWIN 1 and gGREY as described earlier, the filled box will
be set, cleared or inverted in the black and/or grey plane as selected. Once again, it
helps to think of the pixels being set or clear in each plane independently: so clearing
the pixel in the black plane reveals the grey planc behind it where the pixel may be set
or clear.

So with gGREY 1 set for drawing to the grey plane only, inverting the pixels in the
filled box will change the grey plane only — black pixels are left alone but clear or grey
pixels are inverted to grey and clear pixels respectively. Similarly, inverting the black
plane changes clear pixels to black, but "clearing” black pixels displays grey if the pixel
is set in the grey plane.

The following procedure displays a "robot” face, using gFILL to draw set and cieared
boxes:

10: Graphics 107



PROC face:
gFILL 60,60,0 REM set the entire face
gMOVE 5,10 :gFILL 15,10,1 REM left eye
gMOVE 35,0 :gFILL 15,10,1 REM right eve
gMOVE -15,15 :gFILL 10,15,1 REM nose
gMOVE ~10,20 :gFILL 30,10,1 REM mouth
GET

ENDP

Before calling such a procedure, you would set the current position to be where you
wanted the top left corner of the head.

You could make the robot wink with the following procedure, which inverts part of one
eye:

PROC wink:
gMOVE 5,10 REM move to left eye
gFILL 15,7,2 REM invert most of the eye
PAUSE 10
gFILL 15,7,2 REM invert it back again
GET

ENDP

Again, you would set the current position before calling this.

The gPATT command can be used to draw a shaded filled rectangle. To do this, use -1 as
its first argument, then the same three arguments as for gFILL ~ width, height, and
overwrite method. Overwrite methods 0, 1 and 2 apply only to the pixels which are ‘on’
in the shading pattern. Whatever was on the screen may still show through, as those
pixels which are ‘clear’ in the shading pattern are left as they were.

To completely overwrite what was on the screen with the shaded pattern, gpATT has an
extra overwrite method of 3. So, for example, gPATT ~1,120,120, 3 in the first
procedure would have displayed a shaded robot head, whatever may have been on the
screen.

Again, the shaded pattern will be drawn in grey if you have selected the grey plane only
using gGREY 1. And again, if you are writing to the black plane only, any pixels set in
the grey planc can be seen if the corresponding pixels in the black plane are clear,

Overwriting with any drawing command

By using the ¢GMODE commmnand, any drawing comnmand such as gLINEBY or gBOX can
be made to clear or invert pixels, instead of setting them. gGMODE determines the effect
of all subsequent drawing commands.

The values are the same as for gFILL: gGMODE 1 for clearing pixels, gGMODE 2 for
inverting pixels, and gGMODE 0 for setting pixels again. (0 is the initial setting.)

For cxamplc, some white lincs can give the robot a furrowed brow:

PROC brow:
gGMODE 1 REM gLINEBY will now clear pixels
gMOVE 5,4 :gLINEBY 50,0
gMOVE 0,2 :gLINEBY -50,0
gGMODE 0
GET
ENDP

108 1o Graphics



The setting for gGMODE applies to the planes selected by gGREY. With gGREY 1 for
instance, gGMODE 1 would cause gLINEBY to clear pixels in the grey plane and
gGMODE 0 to set pixels in the grey plane.

Other drawing keywords

= gBUTTON: draw a 3-D button (a picture of a key, not of an application button)
enclosing supplied text. The button can be raised, depressed or sunken.

« gBORDER, gXBORDER: draw 2-D/3-D borders.
» INVERT: invert a rectangular area, except for its four comer pixels.

= gCOPY: copy a rectangular area from one position on the screen to another. Both
black and grey planes are copicd.

« ¢SCROLL: move a rectangular area from one position on the screen to another, or
scroll the contents of the screen in any direction. Both black and grey planes are
moved.

= gPOLY: draw a sequence of lines.
= gDRAWOBJECT: draw a graphics object.

g5 Note that commands such as gSCROLL, which move existing pixels, affect both black
and grey planes. gGREYonly restricts drawing and clearing of pixels.

Graphical text

Displaying text with gPRINT

The PRINT command displays text in one font, in a screen area controlled by the FONT or
SCREEN commands. You can, however, display text in a variety of fonts and styles, at
any pixel position, with gPRINT. gPRINT also lets you draw text to the grey plane, if you
have used DEFAULTWIN and gGREY (discussed earlier).

BS5° You can (to a lesser degree) control the font and style used by OPL’s other
text-drawing keywords, such as PRINTand EDIT. See “The text and graphics windows’
section under ‘Advanced graphics’ at the end of this chapter.

gPRINT is a graphical version of PRINT, and displays a list of expressions in a similar
way. Some examples:

gPRINT "Hello",name$

gPRINT a$

gPRINT "Sin(PI/3) is",sin(pi/3)

Unlike PRINT, gPRINT does not end by moving to a new line. A comma between
expressions is still displayed as a space, bul a semi-volon has no effect. gPRINT used
on its own does nothing.

The first character displayed has its left side and baseline at the current position. The
baseline is like a line on lined notepaper ~ graphically, this is the horizontal line which
includes the lowest pixels of upper case characters. Some characters, such as °g’, 'j’,
‘p’, ‘q" and ‘y’, set pixels below the baseline,

After using gPRINT, the current position is at the end of the text so that you can print
something else immediately beyond it. As with other graphics keywords, no error is
reported if you try to display text off the edge of the screen.

10: Graphics 109



While CURSOR ON displays a flashing cursor for ordinary text displayed with PRINT,
CURSOR 1 switches on a cursor for graphical text which is displayed at the current
position. CURSOR OFF removes either cursor,

Fonts
The gFONT command sets the (ont to be used by subsequent grrivt commands.,

A large set of fonts which can be used with gFONT is provided in the Workabout ROM.
In the following list, Swiss fonts refer to fonts without serifs while Roman fonts either
have serifs (eg font 6) or are in a style designed for serifs but are too small to show
them (eg font 5). Mono-spaced fonts have characters which all have the same width
(and have their ‘pixel size’ listed as width x height); in proportional fonts each
character can have a different width.

Jont number Description pixel size
1 Series 3 normal 8

2 Series 3 bold 8

3 Series 3 digits 6x6
4 Mono 8x8
5 Roman 8

6 Roman 11
7 Roman 13
8 Roman 16
9 Swiss 8
10 Swiss 11
11 Swiss 13
12 Swiss 16
13 Mono 6x6

The special font number $9a is set aside to give a machine’s default graphics font; this
is the font used initially for graphics text. The actual font may vary from machine to
machine — eg it is font 1 on the Series 3 and font 11 on the Series 3a and Workabout. So
gFONT 11 or gFONT $9a both set the Workabout standard font, which gPRINT
normally uses.

55" Fonts 1,2 and 3 are the Series 3 fonts, used when running in compatibility mode.

See gINFO in the ‘Alphabetic listing’ chapter if you need to find out more information
about fonts.

The following program shows you examples of the fonts. ("111" is digplayed to
emphasise the mono-spaced fonts):

PROC fonts:
showlfont: (4,15, "Mono Bx8")
showfont: (5,25, "Roman 8")
showfont: (6,38, "Roman 11")
showfont: (7,53, "Roman 13")
showfont: (8,71, "Roman 16")
showfont: (9,81, "Swigs 8")
showfont: (10,94, "Swiss 11*)
showfont: (11,109, "Swiss 13"}
showfont: (12,127, "Swiss 16"}
showfont: (13,135, "Mono 6x6")
GET

ENDP

110 1o Graphics



PROC showfont:(font%,y%.str$)
gFONT font%
gAT 20,y% :gPRINT font%
gAT 50,y% :gPRINT su$
gAT 150,y% :gPRINT "1!1"
ENDP

Text style
The ¢STYLE command sets the text style to be used by subsequent gPRINT commands.

Choose from these styies:
gSTYLE 1  bold
gSTYLE 2  underlined
gSTYLE 4  inverse
gSTYLE 8  double height
gSTYLE 16 mono
gSTYLE 32 italic

The ‘mono’ style is not proportionally spaced — each character is displayed with the
same width, in the same way that PRINT displays characters. A proportional font can be
displayed as a mono-spaced font by setting the ‘mono’ style. See the previous section
for the list of mono-spaced and proportional fonts.

p= It is incfficient 1o use the ‘mono’ style to display a font which is already
mono-spaced.

You can combine these styles by adding the relevant numbers together. gSTYLE 12
sets the text style to inverse and double-height (4+8=12). Here's an example of this
style:

PROC style:
gAT 20,50 :gFONT 11
gSTYLE 12 :gPRINT "Attentien!"
GET

ENDP

Use gSTYLE 0 to reset to normal style.

The bold style provides a way to make any font appear in bold. Except for the smaller
fonts, most Workabout fonts look reasonably bold already. Note that using the bold
style sometimes causes a change of font; if you use gINFO you may see the font name
change.

Overwriting with gPRINT

gPRINT normally displays text as if writing it with a pen - the pixels that make up each
letter are set, and that is all, if you’re using areas of the screen which already have some
pixels set, or even have all the pixels set, use sTMODE to change the way ¢PRINT displays
the text.

¢TMODE controls the display of text in the same way as gGMODE controls the display of
lines and boxes. The values you use with gTMODE are similar to those for gGMODE:
gTMODE 1 for clearing pixels, gTMODE 2 for inverting pixels, and gTMODE O for
setting pixels again. There is also gTMODE 3 which sets the pixels of each character
while clearing the character’s background. This is very useful as it guarantees that the
text is readable (as far as the current plane is concerned).

10: Graphics 111



As for gGMODE, the setting for gTMODE applies to the planes selected by gGREY. With
gGREY 1 forinstance, gTMODE 1 would cause gLINEBY to clear pixels in the grey
plane and gTMODE 0 to set pixels in the grey plane.

This procedure shows the various effects possible via gTMODE:

PROC tmode:
DEFAULTWIN 1 REM enable grey
gFONT 11 :gSTYLE ©
gAT 160,0 :gFILL 160,80,0 REM Black box
gAT 220,0 :gFILL 40,80,1 REM White box

gAT 180,20 :gTMODE @ :gPRINT "ABCDEFGHIJK"
gAT 180,35 :gTMODE 1 :gPRINT "ABCDEFGHIJK"
gAT 180,350 :gTMODE 2 :gPRINT "ABCDEFGHIJK"
gAT 180,65 :gTMODE 3 :gPRINT "ABCDEFGHIJK®"
gGREY 1
gAT 160,80 :gFILL 160,80,0 REM Grey box
gAT 220,80 :gFILL 40,80,1 REM White box
gAT 180,100 :gTMODE (O :gPRINT "ABCDEFGHIJK"
gAT 180,115 :9gTMODE 1 :gPRINT "ABCDEFGHIJK"
gAT 180,130 :gTMODE 2 :gPRINT "ABCDEFGHIJK"
gAT 180,145 :gTMODE 3 :gPRINT "ABCDEFGHIJK"
GET

ENDP

Other graphical text keywords

= gPRINTB: Display text left aligned, right aligned or centred, in a cleared box. The
gTMODE selling s ignored, With gGREY 1, only grey background pixels in the box
are cleared and with gGREY 0, only black pixels; with gGREY 2 all background
pixels in the box are cleared.

» gXPRINT: Display text underlined/highlighted.
» gPRINTCLIP: Display text clipped to whole characters.
= gTWIDTIL Find width required by text.

All of these keywords take the current font and style into account, and work on a single
string. They display the text in black or grey according to the current setting of gGREY.

112 10 Graphics



Windows

So far, you’ve used the whole of the screen for displaying graphics. You can, however,
use windows — rectangular areas of the screen.

p=> Sprites (described in the *‘Advanced topics’ chapter) can display non-rectangular
shapes.

OPL allows a program to use up to eight windows at any one time.

Window IDs and the default window

Fach window has an 1 number, allowing you to specify which window you want to
work with at any time.

When a program first runs, it has one window called the default window. Iis D is 1, it is
the full size of the screen, and initially all graphics commands operate on it. (This is
why ‘0,0’ has so far referred to the top left of the screen: it is true for the default
window.}

Other windows you create will have 10s from 2 to 8. When you make another
window it becomes the current window, and all subsequent graphies commands
operate on it.

The first half of this chapter used only the defauit window. However, everything
actually applies to the current window. For example, if you make a small window
current and try to draw a very long line, the current position moves off past the window
edge, and only (hat part of the line which fits in the window is displayed.

Graphics keywords and windows

For OPL graphics keywords, positions apply to the window you are using at any
given time. The point 0,0 means the top left corner of the current window, net the top
left corner of the screen.

Each window can be created with a grey plane if required, in which case gGREY is used
to specify whether the black plane, the grey plane or both should be used for all
subsequent graphics commands until the next call to gGREY, exactly as described in the
first half of this chapter.

For the default window, the special command DEFAULTWIN is required to enable grey
because that window is automatically created for you with only a black plane;
DEFAULTWIN 1 closes the default window and creates a new one which has a grey
plane. All other windows must be created with a grey plane if grey is required.

Once a window has been created with a grey plane, grey is used in precisely the same
way as in the default window with grey enabled: gGREY 0 directs all drawing to the
black piane only, gGREY 1 to the grey plane only and gGREY 2 to both planes.
gGREY 1 and gGREY 2 raisc an crror if the current window does not have a grey
plane.

gGREY, pGMODE, gTMODE, gFONT and gSTYLE can all be used with created windows in
exactly the same way as with the default window, as desribed earlicr. They change the
settings for the current window only; all the settings are remembered for each
window.

Creating new windows

The ¢CREATE function sets up a new window on the screen. It returns an ID number for
the window. Whenever you want to change to this window, use gUSE with this ID.

10: Graphics 113



You can create a window with only a black plane or with both a black and a grey plane.
You cannot create a window with just a grey plane.

Here is an example using gCREATE and gUSE, contrasting the point 20,20 i in the created
window with 20,20 in the default window.

PROC windows:
LOCAL id$% _
1d%=gCREATE (30, 40,180,30,1,1)
gBORDER 0 :gAT 20,20 :gLINEBY 0,0
gPRINT " 20,20 {(new)"
GET
gUSE 1 :gAT 20,20 :gLINEBY 0,0
gPFRINT " 20,20 {(default)"
GET
gUSE id$%
gGREY 1 REM draw grey
gPRINT " Back"
gGREY 0
gPRINT " (with grey)"
GET

ENDP

The line 1d%=gCREATE (30,40,180,30,1, 1) creates a window with its top left
corner at 30,40 on the screen. The window is set to be 180 pixels wide and 30 pixels
deep. (You can use any integer values for these arguments, even if it creates the window
partially or even totally off the screen.) The fifth argument to gCREATE specifies whether
the window should immediately be visible or not; 0 means invisible, 1 (as here) means
visible. The sixth argument specifies whether the window should have a grey plane or
not; 0 means black only, 1 (as here) means black and grey. If the sixth argument is not
supplied at all (eg. 1d%=gCREATE(30,40,180, 30, 1)) the window will not have
a grey plane.

gCREATE automatically makes the created window the current window, and sets the
current position in it to 0,0, It returns an 1D number for this window, which in this
example is saved in the variable 1d%.

The gBORDER 0 command draws a border one pixel wide around the current window.
Here this helps show the position and size of the window. (zBORDER can draw a variety
of borders. You can even display the Workabout 3-D style borders seen in menus and
dialogs, with the gXBORDER keyword.)

The program then sets the pixel at 20,20 in this new window, using gL INEBY 0, 0.

gUSE 1 goes back 1o using the default window. The program then shows 20,20 in this
window.

Finally, gUSE 1id% goes back to the created window again, and a final message is
displayed, in grey and black.

Note that each window has its own current position. The current position in the
created window is remembered while the program goes back to the default window. All
the other settings, such as the font, style and grey setting are also remembered.

114  10: Graphics



Closing windows

When you’ ve finished with a particular window, close it with gC1.OSE followed by its
ID — for example, gCLOSE 2. You can create and close as many windows as you like,
as long as there are only eight or fewer open at any one time.

If you close the current window, the default window (1D=1) becomes current.
An error is raised if you try to close the defanit window.

When windows overlap

Windows can overlap on the screen, or even hide each other entirely. Use the gORDER
command to contro} the foreground/background positions of overlapping windows,

gORDER 3, 1 sets the window whose ID is 3 to be in the foreground. This guarantees
that it will be wholly visible. gORDER 3, 2 makes it second in the list; unless the
foreground window overlaps it, it too will be visible.

Any position greater than the number of windows you have is interpreted as the end of
the list. gORDER 3, 9 will therefore always force the window whose 1D is 3 to the
background. behind all others.

Note in particular that making a window the current window with gUSE does not
bring it to the foreground. You can make a background window current and draw ali
kinds of things to it, but nothing will happen on the screen until you bring it to the
foreground with gORDER.

When a window is first created with gCREATE it always becomes the foreground
window as well as the current window.

Hiding windows

If you are going to use several drawing commands on a particular window, you may
like to make it invisible while doing so. When you then make it visible again, having
completed the drawing commands, the whole pattern appears on the screen in one go,
instead of being built up piece by piece.

Use gVISIBLE ON and gVISIBLE OFF to perform this function on the current
window. You can also make new windows invisible as you create them, by using 0 as
the fifth argument to the gCREATE command, and you can hide windows behind other
windows.

The graphics cursor in windows

To make the graphics cursor appear in a particular window, use the CURSOR command
with the 1D of the window. It will appear flashing at the current position in that window,
provided it is not obscured by some other window.

The window you specify does not have to be the current window, and does not become
current; you can have the cursor in one window while displaying graphicat text in
another. If you want to move to a different window and put the graphics cursor in it,
you must use both gUSE and CURSOR.

Since the default window always has an ID of |, CURSOR 1 will, as mentioned earlier,
put the graphics cursor in it.

CURSOR OFF turns off the cursor, wherever it is.

10: Graphics 115



Information about your windows

You don’t have to keep a complete copy of all the information pertaining to each
window you use. These functiens return information about the current window;

» o[DENTITY returns its 1D number,

= gRANK returns its foregraund/background position, from 1 to 8.
= gWIDTH and gHEIGHT return its size.

* gORIGINX and gORIGINY return ifs screen position.

= gINFO returns information about the font, style, grey setting, overwrite modes and
cursor in use.

= gX and gY return the current position.

Other window keywords
» gSETWIN changes the position, and optionally the size, of the current window.
B You can use this command on the default window, if you wish, but you must also
use the SCREEN command to ensure that the text window — the area for pRINT

commands to use ~ is wholly contained within the default window. See “The text and
graphics windows’ in the ‘Advanced graphics’ section later in this chapter.

= gSCROLL scrolls all or part of both black and grey planes of the current window.

= gPATT fills an area in the current window with repetitions of another window, or with
a shaded pattern.

» gCOPY copies an area from another window into the current window, or from one
position in the current window to another.

= gSAVEBIT saves part or all of a window as a bitmap file. If a window has a grey plane,
the planes are saved as two bitmaps to the same file with the black plane saved first
and the grey plane saved next. gLOADBIT, described later, can be used to load bitmap
files.

= PEEKLINE rcads back a horizontal line of data from either the black or grey plane of
a specified window.

Copying grey between windows

The commands gCOPY and gPATT can use two windows and therefore special rules are
needed for the cases when one window has a grey plane and the other does not.

With gGREY 0 in the destination window, only the black plane of the source is copied.

With gGREY 1 in the destination window, only the grey plane of the source is copied,
unless the source has only one plane in which case that plane is used as the source.

With gGREY 2 in the destination window, if the source has both planes, they are
copied to the appropriate planes in the destination window (black to black, grey to
grey); if the source has only one plane, it is copied to both planes of the destination.

116  10: Graphics



Advanced graphics

This section should provide a taste of some of the more sophisticated things you can do
with OPL graphics.

Bitmaps
A bitmap is an area in memory which acts just like an off-screen window, except that it

does not have two planes so that gGREY cannot be used. You can create bitmaps with
gCREATERIT. They have the following uses;

» You can manipulate an image in a bitmap before copying it with gPATT or gCOPY to a
window on the screen. This is generally faster than manipulating an image in a
hidden window.

« You can load bitmap files into bitmaps in memory using gLOADBIT, then copy them
to on-screen windows nsing gCOPY or gPATT. (If a black and grey window was saved
to file as two bitmaps using gSAVEBIT, you must load them separately into two
bitmaps in memory, and copy them one at a time to the respective planes of a
window. }

OPL treats a bitmap as the equivalent of a window in most cases:

« Both are identified by ID numbers. Only one window or bitmap is current at any one
time, sct by gUsE.

» If you use bitmaps as well as windows, the total number must be eight or fewer.

» The top left corner of the current bitmap is still referred to as 0.0, even though it is
not on the screen at all.

Together, windows and bitmaps are known as drawables — places you can draw to.

Most graphics keywords can be used with bitmaps in the same way as with windows,
but remember that a bitmap corresponds to only one plane in a window. Once you have
drawn to it, you might copy it to the appropriate plane of a window.

The keywords that can be used with bitmaps include: gUSE, gBORDER, gCLOSE, gCLS,
Y P g g g

gCOPY, gGMODE, gFONT, gIDENTITY, gPATT, gPEEKLINE, gSAVEBIT, gSCROLL, gTMODE,

gWIDTH, gHEIGHT and gINFO. These keywords are described earlier in this chapter.

Speed improvements

The Workabour screen is usually updated whenever you display anything on it.
gUPDATE OFF switches off this feature. The screen will be updated as few times as
possible, although you can force an update by using the gUPDATE command on its own.
{An update is also forced by GET, KEY and by all graphics keywords which return a
value, other than gX, gY, gWIDTH and gHEIGHT).

This can result in a considerable speed improvement in some cases. You might, for
cxample, use gUPDATE OFF, then a sequence of graphics commands, followed by
gUPDATE. You should certainly use gUPDATE OFF if you are about to write
exclusively to bitmaps.

gUPDATE ON returns (o nurmal screen updating,

As mentioned previously, a window with both black and grey planes takes longer to
move or scroll than a window with only a black plane. So avoid creating windows with
unnecessary grey planes.

Also, remember that scrolling and moving windows require every pixel in a window to
be redrawn.

10: Graphics 117



The gPOLY command draws a sequence of lines, as if by gLINEBY and gMOVE commands.
If you have to draw a lot of lines (or dots, with gLINEBY 0, 0), gPOLY can greatly
reduce the time taken to do so.

Displaying a running clock

gCLOCK displays or removes a running clock showing the system time. The clock can be
digital or conventional, and can use many difterent formats.

User-defined fonts and cursors

If you have a user-defined font you can load it into memory with gLOADFONT. This
returns an ID for the font; use this with gFONT to make the font current. The
gUNT.OADFONT command removes a user-defined font from memory when you have
finished using it.

You can use four extra arguments with the CURSOR command. Three of these specify
the ascent, width and height of the cursor. The ascent is the number of pixels (-128 to
127) by which the top of the cursor should be above the baseline of the current font.
The height and width arguments should both be between 0 and 255. For example,
CURSOR 1,12, 4, 14 sets a cursor 4 pixels wide by 14 high in the default window
(=1}, with the cursor top at 12 pixels above the font baseline.

If you do not use these arguments, the cursor is 2 pixels wide, and has the same height
and ascent as the current font.

By default the cursor has square corners, is black and is flashing. Supply the fifth
argument as 1 for a rounded cursor, 2 for non-flashing or 4 for grey. You can add these
together — eg use 5 for a grey, rounded cursor. '

Note that the gINFO command returns information about the cursor and font.

The text and graphics windows

PRINT displays mono-spaced text in the text window. You can change the text window
font (ie that used by PRINT) using the FONT keyword. You can usc any of thosc listed
ecarlier in the chapter in the description of gFONT; initially font 4 is used.

The text window is in fact part of the default graphics window. If you have other
graphics windows in front of the default window, (hey may therefore hide any (ext you
display with PRINT,

Initially the text window is very slightly smaller than the default graphics window
which is full-screen size. They are not the same because the text window height and
width always fits a whole number of characters of the current text window font. If
you use the FONT command to change the font of the text window, this first sets the
default graphics window to the maximumn size that will fit in the screen (excluding any
status window) and then resizes the text window to be as large as possibie inside it,

You can also use the STYLE keyword to set the style for all characters subsequently
written (o the text window, This allows the mixing of different styles in the text
window. You can only use those styles which do not change the size of the characters -
ie inverse video and underline. (Any other styles will be ignored.) Use the same values
as listed for gSTYLE, earlier in the chapter.

To find out exactly where the text window is positioned, use

SCREENINFC info% (). This sets info% (1) /info% (2) to the number of pixels
from the left/top of the default window to the left/top of the text window. (These are
called the margins.) info% (7) and info% (8) are the text window’s character width
and height respectively.

118 10 Graphics



I3 The margins are fully determined by the font being used and therefore change from
their initial value only when FONTis used. You cannot choose your own margins.
eSETWINand SCREENdo not change the margins, so you can use FONT (o select a font
(also clearing the screen), followed by SCREENINFO to find out the size of the margins
with that font, and finally gsSETWINand SCREEN to change the sizes and positions of
the default window and text window taking the margins into account (see the
example that follows). The margins will be the same after cailing gSETWIN and
SCREEN as they were after FONT.

It is not generally recommended to use both the text and graphics windows. Graphics
commands provide much finer control over the screen display than is possible in the
text window, so it is not easy to mix the two.

If you do need to use the text window, for example to use keywords like EDIT, it’s easy
to use SCREEN to place it out of the way of your graphics windows. You can, however,
use it on top of a graphics window — for example, you might want to use EDIT to
simulate an edit box in the graphics window. Use gSETWIN to change the

default window to about the size and position of the desired edit box. The text window
moves with it — you must then make it the same size, or slightly smaller, with the
SCREEN command. Use 1,1 as the last two arguments to SCREEN, to keep its top left
corner fixed, gORDER 1, 1 will then bring the default window to the front, and with it
the text window. EDIT can then be used.

Here is an example program which uses this technigue — moving an ‘edit box’, hiding it
while you edit, then finally letting you move it around.

10: Graphics 119



PROC gsetwl:
LOCAL a$(100),w%,h%,gs {1}, factors,info%(10)
LOCAL margx%,margy%, chrws, chrh%, defw%, defh%
SCREENINFO info%() REM get text window information
margx%=info% (1) :margyv%=info%(2)
chrw$=info%(7) :chrh%=info%(8)
defw¥=23*chrw%+2*margx% REM new default window width
defh%=chrh%+2*margy% REM ... and height
w$=gWIDTH :h$%$=gHEIGHT
gSETWIN w%/4+margx%,h%/4+margy%, defws,defhs
SCREEN 23,1,1,1 REM text window
PRINT "Text win:"; :GET
gCREATE (w%* .1, h%* .1, w%*.8,h%*.8,1) REM new window
gPATT -1,gWIDTH, gHEIGHT,0 REM shade it
gAT 2,h%*.7 :gTMODE 4
gPRINT *Graphics window 2"
gORDER 1,0 REM back to default+text window

EDIT a$ REM you c¢an see this edit
gORDER 1,9 REM to background

CLS

as= " H

PRINT "Hidden:"; :
GIPRINT "Edit in hidden edit box"
EDIT a% REM YOU CAN'T SEE THIS EDIT
GIPRINT "
gORDER 1,0 :GET REM now here it is
gUSE 1 REM graphice go to default window
DO REM move default/text window around
CLS
PRINT "U,D,L,R,Quit";
g$=UPPERS (GETS)
IF kmod=2 REM Shift key moves quickly
factors=10
ELSE
factorg=1
ENDIF
IF g$="U"
gSETWIN gCRIGINX, gORIGINY-factor%
ELSELF g$="D"
gSETWIN gORIGINX, gORIGINY+factork
ELSEIF g$="L"
gSETWIN gORIGINX-factoeord,gORIGINY
ELSEIF g§="R"
gSETWIN gORIGINX+factor$, gORIGINY
ENDIF
UNTIL g$="Q" OR g$=CHRS$ (27)
ENDP

120 1o Graphics



Friendlier
interaction

Everyday OPL programs can use the same graphical
interface seen throughout the Workabout’s in-buiit
applications described earlier in this manual:

e Menus offer lists of options for you to choose from. You
can also select these options with kot-keys like Psion-A,
Psion-B etc.

¢ Dialogs let a program ask for all kinds of information -
numbers, filenames, dates and times etc — in one go.

e The status window, and screen messages such as ‘Busy’ are
also available,

Menu keywords begin with an M, and dialog keywords with a
D. In this manual a lower case is used for these letters — for
example, nINIT and dEDIT - but you can type them using
upper or lower case letters.

11: Friendlier interaction 121



Menus

Menus provide a simple way for any reasonably complex OPL program to let you
choose from its various options.

To display menus in OPL takes three steps:

« Use the mINIT command. This prepares OPL for new menus.
» Use the mCARD command to define each menu.

» Use the MENU function to display the menus.

You use the displayed menus like any others on the Workabout. Use the arrow keys to
move around the menus. Press Enter (or an option’s hot-key) to select an option, or
press Esc to cancel the menus without making a choice. In either case, the menus are
removed, the screen redrawn as it was, and MENU returns a value to indicate the
selection made.

Defining the menus

The first argument to mCARD is the name of the menu. This will appear at the top of the
menu; the names of all of the menus form a bar across the top of the screen.

From one to six options on the menu may be defined, each specified by two arguments.
The first is the option name, and the second the keycode for a hot-key. This specifies a
key which, when pressed together with the Psion key, should select the option. (Your
program must still handle hot-keys which are pressed without using the menu.) It is
eagiest to specify the hot-key with % -- eg %a gives the value for a.

If an upper case character is used for the hot-key keycode, the Shift key must be
pressed as well to select the option. If you supply a keycode for a lower case character,
the option is selected only without the Shift key pressed. Both upper and lower case
keycodes for the same character can be used in the same menu (or set of menus). This
feature may be used to increase the total number of hot-keys available, and is also
commonly used for related menu options — eg. %z might be used for zooming to a
larger font and %2 for zooming to a smaller font (as in the built-in applications).

For example,

nCARD "Comms", "Setup", %s, "Transfer", %t

defines a menu with the title Comms. When you move to this menu using « -, you’l
see it has the two options Setup and Transfer, with hot-keys Psion-S and Psion-T
respectively (and no Shift key required). On the other hand,

mCARD "Comms*, "Setup",%S, "Transfer", &T

would give these options the hot-keys Shift-Psion-S and Shift-Psion-T.

The options on a large menu may be divided into logical groups (as seen in many of the
menus for the built-in applications) by displaying a grey line under the final option in a
group. To do this, you must pass the negative value corresponding to the hot-key
keycode for the final option in the group. For example, - %A specifies hot-key
Shift-Psion-A and displays a grey line under the associated option in the menu.

Each subsequent mCARD defines the next menu to the right. A large OPL application
might use mCARD like this:

mCARD "File"', "New", %n, "Open", %0, "Save", %s

mCARD "Edit", "Copy", %c, "Insert”,-%1, "Eval", %$e

mCARD “Search","First",%f, "Next", %g, "Previous”, %p

122 11: Friendlier interaction



Displaying the menus

The MENU function displays the menus defined by mINIT and mCARD, and waits for you
to select an option, It returns the hot-key keycode of the option selected, in the case
supplied by you, whether you used Enter or the hot-key itself to select it. If you
supplied a negative hot-key keycode for an underlined option, it is converted to its
positive equivalent.

If you cancel the menus by pressing Esc, MENU returns 0.

When a set of menus is displayed, the cursor is positioned to the menu and option that
the user selected previously (or, if no menus have previousty been displayed., to the first
option in the first menu).

This works only if your program has only one set of menus. If you have another set of
menus, the cursor is still set to the position of the menu and option selected in the first
set of menus (if that position exists in the new menus). To get around this, use
n%=menu (init%) and set init$% to zero the first time a set of menus is displayed.
The cursor will in this case be positioned to the first option in the first menu. init% is
set to a value which specifies the menu and option selected, and should be passed to
MENU the next time that same set of menus is called — If your program has more than
one set of menus, you should have a different init$ variable for each set of menus.

Problems with menus

When choosing hot-keys, do not use those such as the number keys which produce
different characters when used with the Psion key. Unless you have a good reason not
to, stick witha to z and Ato Z.

You must ensure that you do not use the same hot-key twice when defining the menus,
as OPL does not check for this.

Each menu definition uses some memory, so ‘No system memory’ errors are possible.
Don’t forget to use miNIT before you begin defining the menus.

If the menu titles defined by mCARD are too wide in total to fit on the screen, MENU will
Taise an €rmur.

A menu example

This procedure allows you to press the Menu key and see a menu. You might instead be
typing a number or some text into the program, or moving around in some way with the
arrow Keys, and this procedure returns any sitch keypresses. You could use this
procedure instead of a simple GET whenever you want to allow a menu to be shown,
and its hot-keys to work.

Each option in the menus has a corresponding procedure named proc plus the hot-key
letter — so for example, the option with hot-key Psion-N is handled by the procedure
procn.

This procedure uses the technique of calling procedures by strings, as described in the
‘Advanced topics’ chapter.

11: Friendlier interaction 123



PROC kget%:
LOCAL k%,h$(9),as$(5)
h$="nosciefgd" REM our hot-keys
WHILE 1
k%=GET
IF k%=5122 REM Menu key?
mINIT
mCARD "File", "New",b%n, "Open", %o, "Save",%s
mCARD "Edit", "Copy",%c¢,"Insert",-%i, "Eval’, %e
mCARD "Search", "Firet", %f, "Next", %g, "Previous", %d
k%=MENU
IF k% AND (LOC(h$,CHRS (k%) }<>0D) REEM MENU CHECK
a$="proc"+CHRS (k%)
@(asS): REM procn:, proco:, .
ENDIF REM END OF MENU CHECK

ELSEIF k% AND $200 REM hot-key pressed directly?
k%=k%-5200 REM remove Psion key code
IF LOC(h$,CHRS (k%)) REM DIRECT HOT-KEY CHECK

a3="proc"+CHRS (k%)
@(a$): REM procn:, proco:, ...

ENDIF REM END OF DIRECT HCT-KEY CHECK
ELSE REM some other key
RETURN k%
ENDIF
ENDWH

ENDP

PROC procn:
ENDP
PROC proco:
ENDFE

. .

Note: this procedure allows you to press a hot-key with or without the Shift key. So
Shift-Psion-N would be treated the same as Psion-N.

Neither LOC nor the @ operator (for calling procedures by strings) differentiate between
upper and lower case. If you have Shifted hot-keys you will need to compare against
two sets of hot-key lists. For example, with hot-keys %A, %C, $a and %4, you would
have upper/lowercase hot-key lists like hu$="AC" and h1¢="ad", and the "MENU
CHECK" section becomes:

IF k%<=%2 REM if upper case hot-key
1F LOC(hu$,CHRS (k%))
a$="procu®+CHRS (k%)
@(a$}): REM procua:, procuc:, ...
ENDIF
ELSE REM else lower case hot-key
IF LOC{hl%,CHRS (k%))

124 11: Friendlier interaction



aS="procl"+CHRS (k%)
@({a8): REM procla:, procld:,
ENDIF
ENDIF

(This calls procedures procua:, procuc:, procla: and procld:). If a hot-key
was pressed directly you cannot tell from k% whether Shift was used; so make the same
change to the "DIRECT HOT-KEY CHECK" section, but use IF KMOD AND 2
instead of IF k%<=%Z.

Dialogs
In OPL, dialogs are constructed in a similar way to menus:

« Use the dINTF or dINITS command to prepare OPL for a new dialog. (dINIT creates a
dialog using the standard font, while dINITS creates one using a small font.) If you
give a string argument to dINIT or dINITS it will be displayed as a title tor the dialog,
separated from the rest of the dialog by a horizontal line.

» Define each line of the dialog, from top to bottom. There are separate commands for
each type of item you can use in a dialog — for example, deDIT for editing a string,
dDATE for typing in a date, and so on. If you used JINIT you can define a maximum of
five dialog lines; using JINITS you can define np to eight dialog lines.

Note that if you use JINITS and define eight dialog lines, the top and bottom border
of the dialog is severely clipped. To preserve the integrity of the dialog border, you
must limit yourself to seven dialog lines.

« Use the DIALOG function to display the dialog. In general it returns a number
indicating the line you were on when you pressed Enter (counting any title line as
line 1), or 0 if you pressed Esc.

Use T4 to move from line to line, and enter the refevant information, as in any other
Workabout dialog. You can even press Tab to produce vertical lists of options.

Each of the commands like dEDIT and dDATE specifies a variable to take the information
you type in. If you press Enter to complete the dialog, the information is saved in those
variables. The dialog is then removed, and the screen redrawn as it was.

You can press Esc to abandon the dialog without making any changes to the variables.

If you enter information which is not valid for the particular line of the dialog, you will
be asked to re-enter different information.

Here is a simple example. [t assumes a global variable name$ exists:

PROC getname:
QINIT "Who are you?"
dEDIT name$, "Name:"
DIALOG

ENDP

This procedure displays a dialog with Who are you? as its top-line title, and an edit
box for typing in your name. If you end by pressing Enter, the name you have typed
will be saved in names$; if you press Esc, name$ is not changed.

When the dialog is first displayed, the existing contents of name$ are used as the string
to edit.

11: Friendlier interaction 125



Note that the dialog is automatically created with a width suitable for the item(s) you
defined, and is centred in the screen.

Lines you can use in dialogs

This section describes the varions commands that can define a line of a dialog. In all
cases:

* prompt$ is the string which will appear on the left side of the line.

* var denotes an argument which must be a LOCAL or GLOBAL variable, because it
takes the value you enter. Single elements of arrays may also be used, but not field
variables or procedure parameters. (‘vax’ is just to show you where you must use a
suitable variable — you don’t actually type ‘var’.)

Where appropriate, this variable provides the initial value shown in the dialog.

Although examples are given using each group of commands, you can mix commands
of any type 1o make up your dialog.

More details of the commands may be found in the ‘Alphabetic listing’ chapter.

Strings, secret strings and filenames

dEDIT var strg,prompts,len%
defines a string edit box.

len% is an optional argument. If supplied, it gives the width of the edit box (allowing
for the widest possible character in the font). The string will scroll inside the edit box, if
necessary. If 1en% is not supplied, the edit box is made wide enough for the maximum
width stx$ could be. (You may wish to set a suitably small 1en% to stop some dialogs
being drawn all the way across the screen)

dXINPUT var str$,prompts
defines a secret string edit box, such as for a password. A special symbol will be
displayed for each character you type, to preserve the secrecy of the string.

dFILE var str$,prompts, %
defines a filename edit box.

Here is an example dialog using these three commands:

PROC info:
dINIT "Your personal info"
dEDIT n$, "Name:", 15
dXINPUT pw$, "Password:"
dFILE f5,"Log file:",0
RETURN DIALOG

ENDP

This returns “True’ if Enter was used, indicating that the GLOBAL variables n$, pw$ and
£$ have been updated,

dFILE automatically has a ‘Disk’ selector on the line below it. The third argument to
dFILE controls the type of file editor you see, and the kind of input allowed. See the
‘Alphabetic listing’ chapter for more details of dFILE.

126 11: Friendlier interaction



Choosing one of a list

dCHOICE var choice%,prompt$,lists

defines a choice list. 1ist$ should contain the possible choices, separated by
commas — for example, *Yes,No". The choice% variable specifies which choice
should initially be shown - 1 for the first choice, 2 for the second, and so on.

For example, here is a simple "choice” dialog:

PRCC dcheck:
LOCAL c%

c%=2 REM default to *Internal"
dINIT *Disk Check"
dCHOICE c¢%,"Disk:", "A, Internal,B"

IF DIALOG REM returns 0 if cancelled
... REM disk-check code
ENDIF
ENDP

Numbers, dates and times

dLONG var longé&, prompt$s,mink, max&

and

dFLOAT var fp,prompt$,min,max

define edit boxes for long integers and floating-point numbers respectively. Use dFLOAT
to allow fractions, and dLONG to disallow them. min (&) and max (&) give the
minimum and maximum values which are to be allowed. There is no separate command
for ordinary integers — use dLONG with suitable miné& and maxé vatues.

dDATE var longé&,prompt$,mink, maxé&

and

dTIME var long&,prompt$, type$,ming, maxé

define edit boxes for dates and times. min& and max& give the minimum and
maximum values which are to be allowed.

For dDATE, Longé&, min and max& are specified in "days since 1/1/1900". The DAYS
function is useful for converting to "days since 1/1/1900".

For 4TIME, 1ong&, min& and max& are in "seconds since 00:00". The DATETOSECS and
SECSTODATE functions are useful for converting to and from "seconds since midnight"
(they actually use "seconds since 00:00 on 1/1/1970"),

dTIME also has a type% argument. This specifies the type of display required:

tyvpe% time display

0 absolute time without seconds
1 absolute time with seconds

2 duration without seconds

3 duration with seconds

For example, 03 : 45 is an absolute time while 3 hours 45 minutes is a duration.
This procedure creates a dialog, using these commands:

PROC delivery:
LOCAL d&, t&, num&,wt
d&=DAYS {DAY, MONTH, YEAR)
DO
t&=secsk:
UNTIL t&=secsk:

11: Friendlier interaction 127



num&=1 :wt=10
dINIT "Delivery"
ALONG numé&, "Boxes™,1,1000
dFLOAT wt, "Weight (kg)",0,10000
dDATE d&, "Date”,d&,DAYS(31,12,1999)
dTIME t&, "Time",0,0,DATETOSECS(1970,1,1,23,59,59)
IF DIALOG REM returns 0 if cancelled
. REM rest of code
ENDIF
ENDP

PROC secs&:
RETURN HOUR*INT(3600)+MINUTE*60
ENDP

The secs&: procedure uses the HOUR and MINUTE functions, which return the time as
kept by the Workabou:. It is called twice to guard against an incorrect result, in the
(albeit rare) case where the time ticks past the hour between calling HOUR and calling
MINUTE.

The INT function is used in secs&: to force OPL to use long integer arithmetic,
avoiding the danger of an ‘Integer overflow’ error.

dé& and t& are set up to give the current date and time when the dialog is first
displayed. The value in d& is also used as the minimum value for dDATE, so that in this
example you cannot set a date before the current date,

DATETOSECS is used to give the number of seconds representing the time 23:59. The
first three arguments, 1970, 1 and 1, represent the first day from which DATETOSECS
begins calculating.

Results from dDATE

dDATF returns a value as a number of days. To convert this to a date:

= If you are dealing only with days on or after 1/1/1970, you can subtract 25567
(DAYS (1,1, 1970} ), multiply by 864060 (the number of seconds in a day), and use
SECSTODATE.

* To handle days before 1/1/1970 as well, you can call the Operating System to
perform the conversion. This procedure is passed one parameter, the number of
days, and from it sets four global variables — day %, month%, year$ and yrdy%.
It calls the Operating System with the 0s function:

PROC daytodat: (days)
LOCAL dyscent&(2),dateent%{4)
LOCAL flags%,ax%,bx%,cx%,dx%,s51i%,di%
dyscent&{(l)=days&
si1%=ADDR{dyscent&({}) :di%=ADDR{dateent%()}
ax%=$0600 REM TimDaySecondsToDate fn.
flags%=0S5($89,ADDR(ax%)) REM TimManager int.
IF flags$ AND 1
RAISE (ax% OR S$ff00)
ELSE
year$=PEEKB (di%)+1900 :month%=PEEKB (UADD{di%,1))+1
day%=PEEKB(UADD{di%,2) }+1 :yvrdy%=PEEKW(UADD(di%,6)}+1

128 11: Friendlier interaction



ENDIF
ENDP

If you do use this procedure, be careful to type it exactly as shown here.

Displaying text

ATEXT prompt$s,body$, types

defines prompt$ to be displayed on the left side of the line, and body$ on the right,
There is no variable associated with dTEXT. If you use a null string (* *) for
prompt$, body$ is displayed across the whole width of the dialog.

type% is an optional argument. If specified, it controls the alignment of body$:

tvype% effect

0 left align body$
1 right align body$
2 centre body S

In addition, you can add any or all of the following three values to type$%, for these
effects:

type% effect

$100 use bold text for body$.

$200 draw a line below this item.

$400 make this line selectable. (It will also be

bulleted if prompt$ isnot * *.)

dTEXT 18 not just for displaying information. Since DIALOG returns a number indicating
the line you were on when you pressed Enter (or O if you pressed Esc), you can use
dTEXT to offer a choice of options, rather like a menu:

PROC selact:
dINIT "Select action*
ATEXT "","Add", $402
dTEXT "', *Copy"®, $402
dTEXT "", "Review", $402
ATEXT ", "Delete",$402
RETURN DIALOG

ENDP

In each case type% is $402 (§400+2). The 5400 makes each text string selectable,
allowing you to move the cursor onto it, while 2 makes each string centred.

Displaying exit keys
Most dialogs are completed by pressing Enter to confirm the information typed, or Esc
to cancel the dialog. These keys are not usually displayed as part of the dialog.

However, some Workabout dialogs offer you a stmple choice, by showing pictures of
the keys you can press. A simple "Are you sure?" dialog might, for example, show the
two keys 'Y’ and ‘N’, and indicate the one you press.

If you want to display a message and offer Enter, Esc and/or Space as the exit keys, you
can display the entire dialog with the ALERT function.

If you want to use other keys, such as Y and N. or display the keys below other dialog
items such as dEDIT, create the dialog as normal and use the dBUTTONS command to
define the keys.

ALERT and dBUTTONS are explained in detail in the ‘Alphabetic listing’ chapter.

11: Friendlier interaction 129



Other dialog information

Positioning dialogs
If a dialog overwrites important information on the screen, you can position it with the
dPOSITION command. Use dPOSIITON at any time between dINIT or dINITS and DIALOG.

dPOSITION uses two integer values. The first specifies the horizontal position, and the
second, the vertical. APOSITION -1, -1 positions to the top left of the screen;
dPOSITION 1,1 to the bottom right; dPOSITION 0, 0 to the centre, the usual

position for dialogs.

dPOSITION 1, 0. for example, positions to the right-hand edge of the screen, and
cenires the dialog half way up the screen.

Restrictions on dialogs
The following general restrictions apply to all dialogs:
» Only one dialog may be in use at a time.

» A dialog must be initialised {dINIT or AINITS), defined (JEDIT etc) and displayed
{DIALOG) in the same procedure.

= A dialog may consist of up w seven lines, including any title if you used dINIT or
nine if you used dINITS. Filename editors count as two lines, and exit keys count as
three. A ‘Too many items’ error is raised if this limit is exceeded.

» If the width of any line wonld make the dialog too wide, a “Too wide’ error is raised
when DIALOG is called.

130 11: Friendiier interaction



Giving information

Status window - temporary and permanent

Pressing Psion-Menu when an OPL program is running will always display a tcmporary
status window. This status window is in front of all the OPL windows, so your program
can’t write over it.

Use STATUSWIN ON or STATUSWIN ON, type% to display a permanent status
window. It will be displayed until you use STATUSWIN OFF. type% specifies the
status window type. The small status window is displayed for type%=1 and the large
status window either when type$% is not supplied or when type%=2. '

You might use STATUSWIN ON when Control-Menu is pressed, for consistency with
the rest of the Workabout.

The status window is displayed on the right-hand side of the screen.

The rank of the status window

Important: The permanent status window is behind all other OPL windows. In order
to see it, you must use either FONT or both SCREEN and gSETWIN, to reduce the size of
the text window and the default graphlcs window. You should ensure that your program
does not create windows over the top of it.

FONT automatically resizes these windows to the maximum size excluding any status
window. It should be called after creating the status window because the new size of the
text and graphics windows depends on the size of the status window. Note that

FONT -$3ff£, 0 leaves the current font and style R it just changes the window sizes
and clears them.

If you use SCREEN and gSETWIN instead of FONT, you should use the STATWININFO
keyword (described next) to find out the size of the status window.

Finding the position and size of a status window

curtype%$=STATWININFO{type%, extent% () ) sets the four element array
extent? () as follows:

extent% (1) = pixels from left of screen to status window

extent% (2) = pixels from top of screen to status window

‘Aextent$ (3}’ chapter = status window width in pixels

extent% (4) = status window height in pixels for status window type%.

type%=3 specifies the compatibility mode status window and type%=-1 specifies
whichever type of status window is currently shown. Otherwise, use the same values of
type% as for STATUSWIN, '

STATWININFO returns the type of the current status window. The values are as for
type$, or zero if there is no current status window.

1= If type%=-1 for the current status window and there is none, STATWININFOreturns
consistent information in externt$ () corresponding to a status window of width
zero and full screen height positioned one pixel to the right of the physical screen.

So to set a graphics window to have height h% and to use the full screen width up to the
current status window (if any), but leaving a one pixel gap between the graphics
window and the status window, you could use:

STATWININFO({-1,extent%{)) :gSETWIN 0,0,extent%(1l), h%

11: Friendlier interaction 131



Alternatively you could simply use FONT -$3fff, 0 as described under STATUSWIN
above, which also sets the height to full screen height and sets the text window size to
fit inside it.

What the status window does

The status window always displays the OPL program name and a clock. In addition, the
settings selected in the ‘Status window’ menu option of the System screen are
automatically used in OPL status windows. The status window will therefore also
display all the indicators required, and a digital or analog clock as selected there.

The status window is inaccessible to, and does not affect, the OPL keywords gORDER
and gRANK.

You can set or change the name displayed in the stats window with SETNAME — for
example, SETNAME "ABCD" or SETNAME a$.

Information messages

GIPRINT displays an information message for 2 seconds, in the bottom right corner of
the screen. For example, GIPRINT "Not Found* displays Not Found. The
string you specify can be up to 63 characters. If a string is too long for the screen, it will
be clipped.

You can add an integer argument to control the comer in which the message appears:

value corner

0 top left

1 bottom left
2 top right

3 bottom right

For example, GIPRINT "Who? ", 0 prints Who? in the top left corner.

Only one message can be shown at a time. You can make the message go away — for
example, if a key has been pressed — with GIPRINT ",

‘Busy’ messages

Messages which say a program is temporarily busy, or cannot respond for some reason,
are by convention shown in the bottom ieft comer. The BUSY command lets you display
your own messages of this sort. Use BUSY OFF to remove it.

BUSY "Paused... ", for example, displays "Paused. . . * in the bottom left
corner. This remains shown until BUSY OFF is used.

You can control the corner used in the same way as for GIPRINT. You can also add a
third argument, to specify a delay time (in half seconds) before the message should be
shown. Use this to prevent ‘busy’ messages from continually appearing very briefly on
the screen.

For example, BUSY “Wait:", 1,4 will display Wait : in the bottom left corner
after a delay of 2 seconds. As soon as your program becomes responsive to the
keyboard, it should use BUSY OFF. If this occurs within two seconds of the original
BUSY, RO message is seen.

Only one message can be shown at a time. The string to display can be up to 19
characters long.

132 11: Friendlier interaction



12

OPL and Solid
State Disks

12: OPL and Solid State Disks 133



Types of Solid State Disk

Solid State Disks (SSDs) are explained in detail in the ‘Advanced use’ chapter earlier in
this manual. There are two main reasons for using them:

» To provide more roomn for storing information.

» To make backup copies of important information, in case you accidentally change or
delete it (or even lose your Workabout).

There are two types — Ram SSDs and Flash SSDs. They fit into the S$D drives in the
SSD/Battery drawer that slides out of the centre of the Workabout. (For more
information, see the ‘Introduction’ chapter earlier in this manual.)

» Flash SSDs are for storing or backing up information which is infrequently changed.
This includes finished OPL programs.

= Ram SS8Ds are for storing or backing up information which changes frequently. This
includes OPL programs that you are still writing or testing.

You can, though, save programs and data files to either kind of SSD, as you see fit.

How to put programs on an SSD

To create a new OPL ‘module on an SSD, use the ‘New file” option in the System screen
as before, but set the Disk line of the dialog to A or B as required. Alternatively, type
EDTT filespec.OPT, inthe Command processor, where filesper gives the full file
specification {(drive, directory and filename) of the module you want to create. For
example, you might type EDIT A:\OPL\MYPROG.OPL to create a module called
MYPROG . OPL in the \OPL directory on an SSD in drive A.

To copy an OPL module onto an SSD from the System screen: move onto the
module name where it is listed under the Program icon, and use the ‘Copy file’ option
on the ‘File’ menu. Set the “To file: Disk’ line to A or B. If you want this copy to have a
different name to the original, type the name to use on the “To file; Name’ line. The new
copy will appear in the list under the Program icon, but with {A] or {B] after its name.

To copy an OPL modulc to an SSD from the Command proccessor: type COPY
sourcefile destination . For example to copy the file OPLPROG.OPL from
the \OPL directory on the internal disk to the \OPL directory on an SSD in the A: drive
you would type COPY M:\QPL\QOPLPROG.OQPL A:\OQOPL\OPLPROG.OPL.

To copy the translated version of an OPL module from the System screen, move onto
the name in the list under the RunOpl icon (to the right of the Program icon), then
proceed as before. If you wish to copy them from the Command processor, you will
find your translated OPL modules in the \OPO directory on the internal disk.

SSDs from inside OPL

Your OPL programs can create or use data files on SSDs. To do so, begin the name of
the data file with A: or B: - for example:

CREATE *B:JKQ",A,X1$,X2$
tries to create a data file "JKQ" on an SSD in B, while
DELETE "a:X300"

tries to delete a data file "X300" on an SSD in A.

Don’t confuse the drive names A and B with the logical names A, B, C and D. Logical
names are unaffected by which drive a data file is on.

The internal memory can be referred to as M:, if required. For example:

134 12: OPL and Solid State Disks



PROC delx300:
LOCAL a$(3).,c%
aS$=*MAB" :c%=1 REM default to "Internal"
dINIT "Delete X300 data file"
dCHOICE c¢%, "Disk: ", "Internal,A,B"
IF DIALOG REM returne 0 if cancelled
DELETE MIDS$ (AS,c%,1)+":X300"
ENDIF
EMNDP

In this example, MIDS (&S, c%, 1) gives "M, "A* or “B", according to the choice
made in the dialog. This is added on the front of * : X300 to give the name of the file
to delete — "M:X300", "A:X300" or "B:X300".

When using data files with SSDs, follow the same guidelines as with OPL programs —
Flash SSDs are for one-off or "finished” information, while Ram SSDs are for
information which is still being changed.

Directories and DOS structure

The internal memory and SSDs use a DOS-compatible directory structure, the same as
that used by disks on business PCs. For more details, see the ‘Advanced topics’ chapter.

12: OPL and Solid State Disks 135



136 12: OPL and Solid State Disks



13

Example programs

13: Example programs 137



This chapter contains example programs written in OPL. The programs are not intended
to demeonstrate all the features of OPL, but they should give you a few hints. To find out
more about a particular command or function, refer to the ‘Alphabetic listing” chapter
later in this manual,

There are some other example programs in the ‘Advanced topics’ chapter.

When you’re typing in
« You can type procedures in all uppercase, all lowercase or any mixture of the two.
Be careful with character codes, though — %A is different (o %a.

= When there is more than one command or function on a line, separate each one with
a space and colon — for example:

CLS :PRINT "hello" :GET
However, the colon is optional before a REM statement — for example:
CLS REM Clears the screen

and
CLS :REM Clears the screen
are both OK.

» Put a space between a command and the arguments which follow it — for example
PRINT a$.Butdon’t put a space between a function and the arguments in
brackets — for example CHRS (16} .

* It doesn’t matter how many spaces or tabs you have at the beginning of a line.

Errors

The following programs do not include full error handling code. This means that they
are shorter and easier to understand, but may fail if, for example, you enter the wrong
type of input to a variable.

If you want to develop other programs from these example programs, it is
recommended that you add some error handling code to them. See the chapter on error
handling for further details.

138 13: Example programs



Countdown Timer

PROC timer:
LOCAL mink, seck,secs&, 1%
CACHE 2000,2000
seck=1
dINIT "Countdown timer*
AdALONG min&, "Minutes",0,E9
dLONG sec&, "Seconds",0,59
dBUTTONS "Cancel",-~27,"Start",13
IF DIALOG=13
STATUSWIN ON
FONT 11,16
secs&=seck+60*mink
WHILE secsé&
PAUSE -20
REM a key gets us out
IF KEY
RETURN
ENDIF
secak=secs&-1
AT 20,6 :PRINT NUMS (secs&/60,-2);"m"
AT 24,6 :PRINT NUMS$ (mod&: {secs&,int{(60}},~2);"s"
ENDWH
Do
BEEP 5,300
PAUSE 10
IF KEY :BREAK :ENDIF
i%=i%+1
UNTIL i%=10
ENDIF
ENDP

PROC modé&: (a&k, bé&)
REM mcodulo function
REM computesg (a&)mod{b&)
RETURN ak- (a&/b&) *b&
ENDP

13: Example programs 139



Dice

When the program is run, a message is displayed saying that the dice is rolling. You
then press a key to stop it. A random number from one to six is displayed and you
choose whether to roll again or not.

PROC dice:
LOCAL dice$%
DO
CLS :PRINT "DICE ROLLING:"
AT 1,3 :PRINT "Press a key to stop”
DO
dice%=(RND*6+1)
AT 1,2 :PRINT dice$%
UNTIL KEY
BEEP 5,300
AINIT *Roll again?”
dBUTTONS "No*,%N, "Yes",3Y
UNTIL DIALOG<>%Y
ENDP

Random numbers: in this example, the RND function returns a random floating-point
number, between 0 and 0.9999999... 1t is then multiplied by 6, and 1 is added, to give a
number from 1 to 6.9999999... This is rounded down to a whole number (from 1 to 6)
by assigning to the integer dice%.

Birthdays

This procedure finds out on which day of the week people were born.

PROC Birthday:
LOCAIL day&,monthé&, years, DayInwk$
DO
AINIT
dTEXT "", "Enter your date of birth",2
dTEXT "*, *Use numbers, eg 23 12 1963",$202
dLONG day&, "Day", 1,31
dLONG monthé&, "Month®*, 1,12
dLONG veark, "Year",1900,2155
IF DIALOG=0
BREAK
ENDIF
DayInWk%=DOW (day&, month&, yeark)
CLS :PRINT DAYNAMES (DayInWk%),days&,monthé, years
dINIT "Again?"”
dBUTTONS "No", 3N, "Yes", %Y
UNTIL DIALOG<>%y
ENDP

140 13: Example programs



The pow function works out what day of the week, from 1 to 7, a date is. The
DAYNAMES function then converts this to Mon, Tue and so on. Mon is 1 and Sun is 7.

Data files

The following module works on a data file called DATA, containing names, addresses,
post codes and telephone numbers. It assumes this file has already been created with a
statement like this:

CREATE "DATA',A,nm$,adl$,ad2s,ad3s,adds, tels

To use the DATA file which the Database application uses, you need to open
"\DAT\DATA.DBF".

The first procedure is the controlling, calling procedure, offering you choices. The next
two let you add or edit records.

PROC files:
GLOBAL nm$ (255} ,adls (255),ad2$(255)
GLOBAL ad3$(255),ad4$(255),tels(255),titles(30)
LOCAL g%
CPEN "DATA",A,nm$,adls$,ad2$,ad3s,adds, tels
DO
CLS
dINIT "Select action*
ATEXT "*,"Add new recoxrd", $402
dATEXT "*,"Find and edit a record"*, $402
g%=DIALOG
IF g%=2
add:
ELSEIF g%=3
edit:
ENDIF
UNTIL g%=0
CLOSE
ENDP

PROC add:
nm$="" :adls="" :ad2s=""
ad3s="" :ad4s="" :tels=""
title$="Enter a new record"
IF showd%:

APPEND

ENDIF

ENDP

13: Example programs 141



PROC edit:
LOCAL search$(30),p%
dINIT "Find and edit a record"
dEDIT search$, "Search string",15
IF DIALOG
FIRST
IF FIND("*"+searchs$+"*")=0
ALERT ("No matching records")
RETIIRN
ENDIF
DO
nm$=A.nm$ :adl$=A.adls :ad28=A.ad2$
ad3s=A.ad3$ :adds=A.adds :telS=A.tel$
title$="Edit matching record*
IF showd%:
UPDATE :BREAK
ELSE
NEXT
ENDIF
FIND("*"+searchS+"*")
IF EOF
ALERT ("No more matching records")
BREAK
ENDIF
UNTIL O
ENDIF
ENDP

PROC showd%:
LOCAL ret%
dINITS titles$
dEDIT nm$, "Name*, 25
dEDIT adls$, "Street",25
dEDIT ad2$, "Town", 25
dEDIT ad3$, "County”, 25
dEDIT ad4s, "Postcode”, 25
dEDIT tel$, "Phone", 25
ret%=DIALOG
IF ret%
A.nm$=nm$ :A.adls$=adl$ :A.ad2%=ad?s
A.ad3%$=ad3$ :A.add4$=ad4$ :A.telé=tel$l
ENDIF
RETURN ret%
ENDP

142 13: Example programs



Re-order

When you use the Database application and enter or change an entry, it goes to the end
of the database file. However, if, in your address book, each entry begins with a
person’s second name — for example, Tate, Hazel - you can use this program to
re-order all of the entries, This doesn’t change the way you find an entry, but after
running it you can step through it like a paper address book, or print it out neatly
ordered.

This procedure can be used as required for any data file in internal memory or on Ram
SSDs. If used on a data file held on a Flash SSD it would use up disk space each time
you run it. The dialog it shows is set to show data files used by the Database.

You can adapt this procedure to sort other types of data files in other ways.

PROC reorder:
LOCAL last%,e$(255),e%,1lpos%,n${128),c%
n$=*\dat\*.dbft"
dINIT "Re-order Data file™
dFILE n$, "Filename",0
IF DIALOG REM returns 0 if cancelled
OPEN n$,a,a$s
LAST :last%=P0OS
IF COUNT=>0
WHILE last%<>(
POSITICN last% :e%=P0S
eS=UPPERS (a.a$)
DO
IF UPPERS {(a.a$)<es
e$=UPPERS (a.a$) :e%=P0OS
ENDIF
1pos%=POS :BACK
UNTIL pos=1 and lpos%=l
POSITION e%
PRINT e$
UPDATE :last%=last%-1
ENDWH
ENDIF
CLOSE
ENDIF
ENDP

If you try to reorder a file which is already open (ie shown in bold on the System
screen) you will see a ‘File or device in use’ error. Move the highlight onto the file’s
name in the System screen, use the Delete key to exit the file, then try again.
Alternatively, use the ‘Exit’ option in the Database.

13: Example programs 143



Stopwatch

Here is a simple stopwatch with lap times. Note thai the Workabout switches off
automatically after a time if no keys are pressed; you may want to disable this feature
(with the ‘Auto switch off’ option in the System screen) before running this program.

Each timing is only accurate to within one second, as the procedure is based on the
SECOND function,

PROC watch:
LOCAL k%,s%,se%,mi%
FONT 11,16
AT 20,1 :PRINT "Stopwatch"
AT 15,11 :PRINT "Press a key to start®

GET
DO
CLS :mi%=0:8e%=0:8%=8ECOND
AT 15,11 :PRINT * S=Stop, L=Lap "
loop::
k%=KEY AND $ffdf REM ensures upper case
IF k%=%S
GOTO pause::
ENDIF
IF k%=%L

AT 20,6 :PRINT "Lap: ";mi%;":":;
IF se%<10 :PRINT "0"; :ENDIF
PRINT se%;" *:

ENDIF

IF SECOND<>s%
2%=8ECOND :se%(=se%+1
IF se%=60 :8e%=0:mi%=mi%+1 :ENDIF
AT 17,8
PRINT "Mins",mi%, "Secs”,
IF se%<10 :PRINT "0"; :ENDIF
PRINT se%;:" *;

ENDIF

GOTO loop::

pause: :

mINIT

mCARD "Watch'", "Restart", %r, "Zero",%z, "Exit", %¥x

k%=MENU

IF k%=%r
GOTO loop::

ENDIF

UNTIL k%<>%z

ENDP

144  13: Example programs



Inserting a new line in a database

If you insert a new label in a database, the entries will no longer match up with the
labels. Rather than using the ‘Update’ option on every entry, to insert a suitable blank
line in each one, you can use this program to do this for the entire data file.

The Database allows you to use as many lines (fields) as you want in an entry (record);
however, OPL can only access 32 fields. This program only lets you insert a new field
in the first 16 fields, although you can adapt the program simply to check up to 31
fields.

If, in the Database, you enter a line longer than 255 characters, it is stored as two fields,
with a character of code 20 at the start of the second field. This program correctly
handles any such fields.

The program checks that the 17th field is blank, as it will be overwritten by what was
the 16th field. If 4 lung entry has a 17th field, and it contains text, the program skips
this entry. The rest of longer entries — even if there are more than 32 fields — will be
unchanged.

If you insert a new field at a position helow the last label, the Database will not
show it, even when using ‘Update’.

The maximum record length in OPL is 1022 characters. The OPEN command will
display a ‘Record too large’ error if the file contains a record longer than this.

PROC label:

LOCAL a%,b%,c%,d%,s8(128),5&,1i8(17,255)

s$="\dat\*.dbf"

dINIT *Insert new field"

dFTILE s§,"Data file",0

dLONG s&, "Break at line (1-16)",1,16

IF DIALOG

OPEN s$,A,a5,b$,c$,4d5,e5,£5,9%,h3,15,35,k$,1$,m3, 0%, 03,p%, g%
c%=COUNT :a%=1
WHILE a%<=c%

AT 1,1 :PRINT "Entry".,a%,"of",c%,

IF A.g$%="" REM Entry (hopefully) not too long
ig(l)=A.a$ :i$(2)=A.bS% :i8(3)=A.c$ :i$(4)=A.d4%
i${5)=A.e$ :ig(6)=A.f3% :i$(7)=A.g$ :15(8)=A.hS
1$(9)=A.1% :18$(10)=A.3% :i$(11)=A.%k$ :i$(12)=A.1%
i$(13)=A2.m$ :i5{(14)=A.n$§ :i${15)=A.0% :i$(16)=A.pS

A%=0 :b%=0
WHILE d%<s&+b% REM find field to break at
d%=d%+1

IF LEFTS${(i$(d%},1)=CHRS${20) REM line>255...
b%=b%+1 REM ...s0 it's 2 fields

ENDIF

ENDWH

b%=17

WHILE b%>d% REM copy the fields down
i5(b%)=15(b%-1) :b%=b%-1

ENDWH

is{(d%)="" REM and make an ampty field

13: Example programs 145



A.a5=1i5(1) :A.b$=13(2) :A.c$=1i3(3) :A.ds=i8(4)
A.e$=1$(5) :A.£5=1i5(6) :A.g$=i$(7) :A.h$=15(8)
A.i$=18(9) :A.j$=1i$(10) :A.kS$=i$(11) :A.18=1i%(12)
A.m$=1i8(13) :A.n$=135{14) :A.0$=1$(15) :A.p3$=1i3(16)
A.g$=is (17}
ELSE
PRINT "has too many fields"
PRINT "Press a key..." :GET
ENDIF :
UPDATE :FIRST
a%=a%+1
ENDWH :CLOSE
ENDIF
ENDP
Bouncing Ball

PROC bounce:
LOCAL posX%,posY%, changeX%, change¥Y%, k%
LOCAL scrx%,scrv%,info%(10)
SCREENINFO info%()
scrx%=info%(3) :scry%=info%(4)
posX%=1 :pos¥%=1
changeX%=1 :changevy%=1
DO
posX¥=posX%$+changeX%
posYi-pos¥%+change¥%
IF posX%=1 OR posX%=scrx%
changeX%=-changeX$%
REM at edge ball changes direction
BEEP 2, 600 REM low beep
ENDIF
IF posY3%=1 or pos¥Y¥=scry% REM same for y
change¥Y%=-changeY$%
BEEP 2, 200 REM high beep
ENDIF
AT posX%,pos¥% PRINT "0";
PAUSE 2 REM Try changing this

AT posX%,pos¥Y% :PRINT " *;:
REM removes old ‘0’ character
k%=KEY
UNTIL k%
ENDP

146 13: Example programs



Circles

Here are two example programs for drawing circles — the first hollow, the second filled:

PROC circle:
LOCAL a%{963),c&,d%,x&,v&,r&, h, v%,v1l%, c2%
dINIT "Draw a circle”
x&=120 :dLONG X&, "Centre x pos",0,239
v&=50 :dLONG y&, "Centre y pos*,0,99
r&=20 :dLONG r&, "Radius",1,120
h=1 :4dFLOAT h, *Relative height", 0,999
IF DIALOG
a%(l)=x&+rk :a%{2)=y& :a%(3)=4*r&
ck=1 :4%=2*xr& :v1%=0
WHILE c&<=d%
C2%=c&*2 :y%¥=-SQR(r&*c2%-c&**2)}*h
a%(2+c2%)=-2 :a%{3+c2%)=y%~yl%
Y1%=y% :c&=c&+1
ENDWH
c&k=1
WHILE c&<=4%
C2%=Cc&k*2 1 y¥$=SOR(r&*c2%-c&**2)*h
a% (2+a%(3)+c2%)=2 :a%{3+a%(3)+c2%)=y%-yl%
yv1%=y% :c&=ck+l
ENDWH
gPOLY a%(}
ENDIF
GET
ENDP

PROC circlef:
LOCAL c&,d%,x&,yv&, r& , h,v%
dINIT *Draw a filled circle"
x&=120 :dLONG x&, "Centre x pos",(,239
y&=50 :dLONG y&, "Centre y pos”,0,99
r&=20 :dLONG r&, "Radius",1,120 ,
h=1 :dFLOAT h, "Relative height”,(,999
IF DIALOG
c&k=1 :d%=2*r& :gAT X&-r&,y& :gLINEBY 0,0
WHILE c&<=d%
YE=-SQR{r&*c&*2-c&**2)*h
gAT x&k-r&+c&,y&-y% :gLINEBY 0,2*y%
c&k=c&+1
ENDWH
ENDIF
GET
ENDP

If you use gUPDATE OFF after the IF DIALOG line, and gUPDATE ON before the
ENDIF, the procedure will run a little faster. However, all but the smaller circles will be
drawn rather jerkily, piece by piece.

13: Example programs 147



Zooming

For each of the three types of status window, this program changes the font to
implement zooming.

Press Psion-Z to cycle between small, medium and large fonts, and Shift-Psion-Z to
cycle in the other direction. Esc changes to the next status window,

As well as changing the font and style for the text window (for PRINT etc.), the FONT
command automatically changes the default graphics window size (ID=1) and the text
window size to fit exactly in the space left by any status window. (A special feature not
used here is that FONT -$3££f, 0 just changes the window sizes without changing
font),

The procedure dispinfo: uses the command SCREENINFO to display the margin sizes
in pixels between the default window and the text window, the text screen size in
character units, and the text screen’s character width and line height in pixels.

PROC tzoom:
STATUSWIN OFF REM no status window
ZOOom; REM display with zoocming
STATUSWIN ON,2 REM large status window
ZQOoI: :
STATUSWIN ON,1 REM and small
ZOOm:

ENLP

PROC zoom:
LOCAL font%{3), font$(3,20) ,style%k(3)
LOCAL g%, km%, zoom%

zoom%=1
font%(1)=13 :font$(l)="(Mono 6x6)" :style%(1)=0
font%(2}=4 :font$(2)="(Monc Bx8)" :style%(2)=0
font%{3)=12 :font$(3)="(Swiss 16)" :style%(3)=16
g%=%2+$200
DG

IF g%=%z+$200

IF km% AND 2 REM Shift-PSICN-2

zoom¥=zoom%-1
IF zoom%<l :zoom%=3 :ENDIF
ELSE REM PSION-2Z
zoom¥=zoom%+1
IF zoom%>3 :zoom%=1 :ENDIF
ENDIF
FONT font%(zoom%),style%(zoom%)
PRINT “Font="; font%{zoom%), font$ (zoom%)
PRINT "Style=";style% (zoom%)
dispinfo:
gBORDER 0
ENDIF
g%=GET
kim%=KMOD

148 13: Example programs



UNTIL g%=27

ENDP

PROC dispinfo:
LOCAL scrInfo%{(l1l0)
SCREENINFO scrinfo%({)

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
ENDP

"Left margin=";scrInfo%(1l)
*Top margin=";scrinfo%(2)
*Sereen width=";scrInfo%(3)
"Sereen height=";scrIinfo%i4d)
*Char width=";:scrInfo%(7)
"Line height=";scrInfo%(8)

Animation example

This program requires five bitmap files — one.pic to five.pic. Each of these
would differ slightly — they might, for example, be five ‘snapshots’ of a running human
figurc, cach with the legs at a different point in their cycle.

The program copies each bitmap into a window of its own, then makes each window
visible in turn, each time slightly further across the screen.

To make bitmap files, first draw the pattern you want with any of the graphics drawing
commands. (Use gLINEBY 0, 0 to draw single dots.) When the pattern is complete,
use gSAVEBIT to make the bitmap file. For advanced animation, you could use a sprite as
described in the ‘Advanced topics’ chapter.

PROC animate:
LOCAL id%(5),i%,3%,e%(5,10}),w%,h%

w%=16 :h%=28 REM example width and height
s$(1l)="one" :85(2)="two" :85(3)="three"
s$(4)="four” :3$(b)="five" :j%=1

WHILE j%<6

i%=gLOADBIT (85 (j%})

id%{(j%) =gCREATE (0, 0,w%, h%, 0)
gCoPY 1%,0,0,w%,h%,3

gCLOSE i% :3%=7%+1

ENDWH

i%=0 :gORDER 1,9

DO

JE=(i%=-5*(1i%/5))1+1 REM (1% MOD 5}+1
gVISIBLE OFF REM previous window
gUSE id%{j%) REM new window
gSETWIN i%,20 REM position it
gORDER 1d%{j%),1 REM make foreground
gVISIBLE ON REM make visible
1%=1%+1 :PAUSE 2
UNTIL KEY OR (i%>(480-w%)} REM screen edge

ENDP

13: Example programs 149



150 13 Example programs



14

Error handling

14: Error handiing 151



Syntax errors

Syntax errors are those which are reported when translating a procedure, (Other errors
can occur while you're running a program.) The OPL translator will return you to the
line where the first syntax error is detected.

All programming languages are very particular about the way commands and functions
are used, especially in the way program statements are laid out. Below are a number of
errors which are easy to make in OPL. The incorrect statements are in bold and the
correct versions are on the right.

Punctuation errors
Omitting the colon between statements on a multi-statement line:

Incorrect Correct

af="text" PRINT a$ aS="text" :PRINT a$
Omitting the space before the colon between statements :

incorrect Correct

a$=b3$:;PRINT as as=bs :PRINT a$
Omitting the colon after a called procedure name:

Incorrect Correct

PROC procl: PROC procl:

GLOBAL a,b,c GLOBAL, a,b,c

ENDP ENDP

procz2 proc:

Using only 1 colon after a label in GOTO/ONERR/VECTOR (instead of 0 or 2):
Incorrect Correct

GOTO below: GOTO below

];;elow: ; Lelow::

Structure errors

The DO...UNTIL, WHILE.. ENDWH and IE.ENDIF structures can produce a *Structure fault’
error if used incorrectly:

= Attempting to nest any combination of these structures more than cight levels deep.
» Mixing up the three structures - eg by using DO.. WHILE instead of DO...UNTIL.

= Using BREAK or CONTINUE in the wrong place.

= Using ELSE IF with a space, instead of ELSEIF.

VECTOR...ENDV can also produce a ‘Structure fault’ error if used incorrectly.

152  14: Error handling



Errors in running procedures

OPL may display an error message and stop a running program if certain ‘error’
conditions occur. This may happen because:

» There is a mistake, or bug, in your program, which could not be detected during
translation — for example, a calculation has involved a division by zero.

» A problem has occurred which prevents a command or function from working — for
example, an APPEND comunand may fail because an SSD is full.

Unless you include statements which can handle such errors when they occur, OPL will
use its own error handling mechanism. The program will stop and an error message be
displayed. The first line gives the name of the procedure in which the error occurred,
and the module this procedure is in. The second line is the ‘error message’ — one of the
messages listed at the end of this chapter. If appropriate, you will also see a list of
variable names or procedure names causing the error.

If you were editing the module with the Program editor and you ran it from there, you
would also be taken back to editing the OPL module, with the cursor at the line where
the error occurred.

Error handling functions and commands

To prevent your program being stopped by OPL when an error occurs, include
statements in your program which anticipate possible errors and take appropriate
action. The following error handling facilities are available in OPL:

s TRAP temporarily suppresses OPL’s error processing.
» ERR and ERR$ find out what kind of error has occurred.

* ONERR establishes an error handier which can suppress OPL's error processing over
whole modules.

= RAISE can be used to simulate error conditions.
These facilities put you in control and must be used carefully.

Strategy

You should design the error handling of a program in the same way as the program
itself. OPL works best when programs are built up from procedures, and you should
design your error handling on the same basis. Each procedure should normally contain
its own local error handling:

PROC main: Main procedure

|
a —— PROC a’ \

Called procedures

Each i;ocethe has its
error handling
statements, shown as

R

14: Error handling 153



The error handling statements can then be appropriate 10 the procedure, For example, a
procedure which performs a calculation would have one type of error handling, but
another procedure which offers a set of choices would have another.

TRAP

TRAP can be used with any of these commands: APPEND, BACK, CACHE, CLOSE,
COMPRESS, COPY, CREATE, DELETE, ERASE, EDIT, FIRST, gCLOSE, gCOPY, gFONT, gPATT,
eSAVEBIT, gUNLOADFONT, gUSE, INPUT, LAST, LCLOSE, LOADM, LOPEN, MKDIR, NEXT, OPEN,
OPENR, POSITION, RENAME, RMDIR, UNLOADM, UPDATE and USE.

The TRAP command immediately precedes any of these commands, separated from it by
a space — for example:

TRAP INPUT a%

If an error occurs in the execution of the command, the program does not stop, and the
next line of the program executes as if there had been no error. Normally you would use
ERR on the line after the TRAP to find out what the error was.

Example

When INPUT is used without TRAP and a text string is entered when a number is
required, the display just scrolls up and a ? is shown, prompting for another entry. With
TRAP in front of INPUT, you can handle bad entries yourself:

PROC trapinp:
LOCAL profit$
DO
PRINT
PRINT "“"Enter profit",
TRAP INPUT profit%
" UNTIL ERR=0
PRINT "Valid number"
GET
ENDP

This example uses the ERR function, described next.

ERR and ERR$

When an error occurs in a program, check what number the error was, with the ERR
function:

e%=ERR

If ERR returns zero, there was no error. The value returned by ERR is the number of the
last error which occurred — it changes when a new error occurs. TRAP sets ERR 1o zero if
no error occurred. Check the number it returns against the error messages listed at the
end of this chapter.

The ERR$ function gives you the message tor error number e%:

154  14: Error handiing



e5=ERRS (%)
You can also use ERR and ERRS in conjunction:
e5=ERRS (ERR)

This returns the error message for the most recent error.

Example

The lines below anticipate that error number -101 (File already open) may occur. If it
does, an appropriate message is displayed.

TRAP OPEN *main",A,a$

e%=ERR
IF e% REM Checks for an error
IF e%=-~101
PRINT "File is already open!"
ELSE
PRINT ERRS (e%)
ENDIF
ENDIF

The inner IF. ENDIF structure displays either the message in quotes if the error was
number -101, or the standard error message for any other error.

TRAP INPUT/EDIT and the Esc key

If in response to a TRAP INPUT or TRAP EDIT statement, the Esc key is pressed
while no text is on the input/edit line, the ‘Escape key pressed’ error (number -114) will
be raised. (This error will only be raised if the INPUT or EDIT has been trapped.
Otherwise, the Esc key still leaves you editing.)

You can use this feature to enable someone to press the Esc key to escape from editing
or inputting a value, For example:

PROC trapiInp:
LOCAL a%.b%,c%
PRINT "Enter wvalues.®
PRINT "Press Esc to exit"

PRINT "a% =", :TRAP INPUT a% :PRINT
IF ERR=-114 :GOTO end :ENDIF
PRINT "b% =", :TRAP INPUT b% :PRINT

IF ERR=-114 :GOTO end :ENDIF
PRINT "a%*b% =",a%*b%
PAUSE -40
RETURN
end: :
PRINT :PRINT "OK, finishing..."
PAUSE -40
RETURN
ENDP

14: Evror handling 155



ONERR ... ONERR OFF

ONERR sets up an error handler. This means that, whenever an error occurs in the
procedure containing ONERR, the program will jump to a specified label instead of
stopping in the normal way. This error handler is active until an ONERR OFF statement,

You specify the label after the word ONERR.

The label itself can then occur anywhere in the same procedure — even above the ONERR
statement. After the label should come the statements handling whatever error may

have caused the program to jump there. For exampie, you could just have the statement
PRINT ERRS$ (ERR) to display the message for whatever error occurred.

All statcments after the ONERR command, including those in procedures called by the
procedure containing the ONERR, are protecied by the ONERR, until the ONERR OFF
instruction is given.

Example

PROC divO0:
ONERR errHand

dates et

errHand: :
ONERR ?F \ Statements
PRINT "Error:";err,err${err) protected by
IF ERR = —8 ONERR
REM divide by zero error = -8
PRINT "Division by zero is illegal™"
ENDIF
GET
ENDP

If an error occurs in the lines between ONERR errHand and ONERR QFF, the
program jumps to the label errHand: : where a message is displayed.

Always cancel ONERR with ONERR OFF immediately after the [abel.

When to use ONERR OFF

You could protect the whole of your program with a single ONERR. However, it’s often
easier to manage a set of procedures which each have their own ONERR...ONERR OFF
handlers, each covering their own procedure. Secondly, an endless loop may occur if all
errors feed back to the same single label.

For example, the diagram below shows how an error handler is left active by mistake,
Two completely different errors cause a jump to the same label, and cause an
inappropriate explanatory message to be displayed. In this example an endiess loop is
created because next : is called repeatedly:

156 14: Error handling



PROC first:
ONERR label
a=log(-1)

< label::
" PRINT "Log error"

next:
END

PROC neﬁz?““:;>
PRINT 2/0
ONERR OFF

ENDP

Multiple ONERRs

You can have more than one ONERR in a procedure, but only the most recent ONERR is
active. Any errors cause a jump to the label for the most recent ONERR.

ONERR OFF disables a/l ONERRs in the current procedure. But if there are other ONERRs
in procedures above this procedure (calling procedures) these ONERRs are not disabled.

TRAP and ONERR

TRAP has priority over ONERR, In other words, an error from a command used with
TRAP will not cause a jump to the error handler specified with ONERR.

RAISE

The RAISE command generates an error, in the same way that OPL raises errors
whenever it meets certain conditions which it recognises as unacceptable (for example,
when invalid arguments are passed to a function). Once an error has been raised, either
by OPL or by the RAISE command, the error-handling mechanism currently in use takes
effect — the program will stop and report a message, or if you’ve used ONERR the
program will jump to the ONERR label.

There are two reasons for using RAISE;

* You may want to mimic OPL’s error conditions in your own procedures. For
example, if you create a new procedure which performs a calculation and retums a
value, you may want to RAISE an “Overflow’ or ‘Divide by zero’ error if unsuitable
numbers are passed as parameters.

In this case, you would RAISE one of the standard error numbers. You couid handle
this yourself with ONERR, or let OPL handle it in the normal way.

= QFPL raises only a limited range of errors for general use, and you may want 1o raise
new kinds of error — error codes specific to your program or particular
circumstances,

In this case, you would RAISE a new error number. With ONERR on, RAISE would go
to the ONERR label, where you would have code to interpret your new error numbers.
You could then display appropriate messages.

14: Error handling 157



You can use any positive number (from O to 127) as a new error code. Do not use
any of the numbers in the ‘Erro messages’ list that follows,

You may also find RAISE useful for testing your error handling.
Example:

PROC main:

REM calling procedure

PRINT myfunc: {(0.0) REM will raise error -2
ENDP '

PROC myfunc: (x)
LOCAL s
REM returns 1l/sqr(x)
8=SQOR{x)
IF s=0
RAISE -2
REM ‘'Invalid arguments'’
REM avoids ‘divide by zero’
ENDIF
RETURN (1/s)
ENDP '

This uses RAISE to raise the ‘Invalid arguments’ error not the ‘Divide by zero’ error,
since the former is the more appropriate message.

Error messages

These are the numbers of the errors which OPL can raisc, and the message associated
with them:

Number Message:

-1 General failure

-2 Invalid arguments

-3 O/S error

-4 Service not supported

-5 Underflow (number too smal?)

-6 Overflow (number too large)

-7 Out of range

-8 Divide by zero

9 In use (eg serial port being used by another program)
-10 No system memory

-13 Process table full/Too many processes
-14 Resource already open

-15 Resource not open

-16 Invalid image/device file

-17 No recetver

-18 Device table full

-19 File system not found (eg if you unplug cable to pC)
-20 Failed to start

-21 Font not loaded

=22 Too wide (dialogs)

158 14: Error handling



-23 Too many items (dialogs)

-24 Batteries too low for digital audio (not applicable to standard Workabout)

-25 Batteries too low to write to Flash

File and device errors

-32 File aiready exists

-33 File does not exist

-34 Write failed

-35 Read failed

-36 End of file (when you try to read past end of file)

-37 Disk full

-38 Invalid name

-39 Access denied (eg to a protected file on PC)

-40 File or device in use

-41 Device does not exist

-42 Directory does not exist

-43 Record too large

-44 Read only file

-45 Invalid I/O request

-46 /O operation pending

-47 Invalid volume (corrupt disk)

-48 I/O cancelled

-50 Disconnected

-51 Connected

-52 Too many retries

-53 Line failure

-54 Inactivity timeout

-55 Incorrect parity

-56 Serial frame (usually because Baud setting is wrong)

-57 Serial overrun {usuaily because Handshaking is wrong)

-58 Cannot connect to remote modem

-59 Remote modem busy

-60 No answer from remote modem

-61 Number is black listed (you may try a number only a certain
number of times; wait a while and try again)

-62 Not ready

-63 Unknown media (corrupt SSD)

-64 Root directory full (on any device, the root directory
has a maximum amount of memory allocated to it)

-65 Write protected

-66 Media is corrupt

-67 User abandoned

-68 Erase pack failure

-69 Wrong file type

Translator errors

-70 Missing "

-71 String too long

-72 Unexpected name

73 Name too long

-74 Logical device must be A-D

-75 Bad field name

-76 Bad number

~17 Syntax error

-78 Llegal character

-79 Function argument crror

14: Error handling 159



-80

Type mismatch

-81 Missing label

-82 Duplicate name

-83 Declaration error

-84 Bad array size

-85 Structure fault

-86 Missing endp

-87 Syntax Error

-88 Mismatched ( or)

-89 Bad field list

-90 Too complex

-91 Missing ,

-92 Variables too large

-93 Bad assignment

-94 Bad array index

-95 Inconsisient procedure arguments

OPL specific errors

-96 [llegal Opcode (corrupt module ~ translate again)

-97 Wrong number of arguments (to a function or
parameters to a procedure)

-98 Undefined externals (a variable has been
encountered which hasn’t been declared)

-99 Procedure not found

-100 Field not found

-101 File already open

-102 File not open

-103 Record too big (data file contains record too big for OPL)

-104 Module already loaded (when trying to LOADM)

-105 Maximum modules loaded (when trying to LOADM)

-106 Module does not exist (when trying to LOADM)

-107 Incompatible translator version (OPL file needs
retranslation)

-108 Module not loaded (when trying to UNLOADM)

-109 Bad file type (data file header wrong or corrupt)

-110 Type violation (passing wrong type to parameter)

-111 Subscript or dimension error (out of range in array)

-112 String too long

-113 Device already open (when trying to LOPEN)

-114 Escape key pressed

-115 Incompatible runtime version

-116 oDB file(s) not closed

-117 Maximum drawables open (maxtmum 8 windows and/or
bitmaps allowed)

-118 Drawable not open

-119 Invalid Window (window operation attempted on a bitmap)

-120 Screen access denied {(when run from Calculator)

160

14: Error handling



Advanced topics

Many of the subjects covered in this chapter may provide
benefits for all levels of programmers.

The subjects become progressively more technical, however.
This manual cannot cover every OPL keyword in detail, as
some give access to the innermost workings of the
Workabout, however, some of these keywords are touched on
in this chapter.

15: Advanced topics 161



Programs, modules, procedures

Programs using more than one module

Program is the more general word for the "finished product” - a set of procedures
which can be run. A program may consist of one module containing one or more
procedures:

- MODULEL | module

procedure

It may also consist of a number of modules containing various procedures:

l first module

MODULEL

second module

procedures in the
first module

program

A procedure in one module can call procedures in another module, provided this
module has been loaded with the LOADM command, LOADM needs the filename of the
module to load.

For example, if an OPL module MAIN has these two procedures:

PROC main:
LOADM "library"
pthis: REM run pthis: in this module
pother: REM run pother: in "library”
PRINT “Finished"
PAUSE 40
UNLOADM "library"

ENDP

PROC pthis:
PRINT “Running pthis:"
PRINT "in this module"
PAUSE 40

ENDP

162 15: Advanced topics




and a module called LIBRARY has this one:

PROC pother:
PRINT “Running potherxr:”
PRINT "in module called LIBRARY"
PAUSE 40

ENDP

then running MAIN would display Running pthis: and in this mecdule;then
display Running potrher: and in module called LIBRARY; and then
display Finished.

You would usually only need to load other modules when developing large OPL
programs.

You can use LOADM up to three times, to load up to three modules. If you want to load a
fourth module, you must first unload one of those currently loaded, by using UNLOADM
with the filename. To keep your program tidy, you should UNLOADM a module as soon
as you have finished using it.

g5 If there is an error in the running program, you will only be positioned in the
Program editor to the place where the error occurred if you were editing the module
concerned (and you ran the program from there).

In spite of its name, LOADM does not “load" the whole of another madule into memory.
Instead, it just loads a block of data stored in the module which lists the names of the
procedures which it contains. If such a procedure is then called, the procedure will be
searched for, copied from file into memory and the procedure will then be run.

The modules are searched through in the order that they were loaded — the module
loaded last is searched through last. You may make considerable improvements in
speed if you have few modules loaded at a time (so avoiding a long search for each
procedure) and if you load the modules with the most commonly called procedures
first.

Cacheing procedures for speed

Without procedure cacheing, procedures are loaded from file whenever they are called,
and discarded when they return. This is true even when procedures are all in one
module. (With more than one module, LOADM simply loads a map listing procedure
names and their positions in the module file so that they can be loaded fairly efficiently.
It does not load procedures into memory.)

If a well-designed program calls procedures regularly, you can speed it up by cacheing
procedures - keeping the code for a procedure loaded in memory after it returns, so that
if it is called again there is no need to fetch it from file again. The CACHE command
takes two arguments — the initial size of the cache and the maximum size (both in
bytes). These can be up to 32,767 bytes. The minimum in both cases is 2000 bytes.

For a small program, you might use CACHE 2000, 2000 at the start of the program.
Up to 2000 bytes of procedure code will be cached. If the cache fills up, and a
procedure is called which is not in the cache, space will be made for it in the cache by
removing other procedures from it.

For a much larger program, you might use CACHE 10000, 10000, You may wish to
change the settings and find the smallest setting which produces the maximum speed
improvement.

Once a cache has been created, CACHE OFF prevents further cacheing, although the
cache is still searched when calling subsequent procedures. CACHE ON may then be
used to re-cnable cacheing.

15: Advanced topics 163



Calling procedures by strings

Procedures can be called using a string expression for the procedure name. Use an @
symbol, optionally followed by a character to show what type of value is returned — for
example, % for an integer. Follow this with the string expression in brackets. You can
use upper or lower case characters,

Here are examples showing the four types of value which can be returned:

i% = @%(name$): (parameters) forinteger
l& = @&(name$): (parameters) for long integer
8% = @$(name$): (parameters) for string
£ = @{(name$) : (parameters) for floating-point

So, for cxample, test$:(1.0,2) and @5 (“test"): (1.0,2) are eguivalent.
Note that the string expression does not itself include a symbol for the type (%, & or
$).

You may find this useful if, in a more complex program, you want 1o "work out” the
name of a procedure to call at a particular point. The chapter on ‘Friendlier interaction’
includes an example program which uses this method.

Where files are kept

The interpal memory and SSDs use a DOS-compatible directory structure, the same as
that used on disks on business PCs. However, in the built-in applications on the
Workabout the complexities of this are hidden. You have only to supply a filename, and
to say whereabouts a file is — internal, on an SSD, or on another computer to which the
Workabout is linked.

In fact, in order to completely specify a file, the Workabout uses a filing system, drive
(or device), directory and filenume:;

» The filing system usually specifies the computer, and is usually LOC: : (‘local’ - the
Workabout) or REM: : (‘remote’ — an attached computer). This is always three
letters and two colons,

» The drive ts the area on that computer where the file is kept. On the Workabout this
can be M: (internal disk), A: (left SSD drive) or B: (right SSD drive).

» Every drive has one root directory, usually written as a backslash (\). This can
"contain” files and/or other directories, each of which can contain more files and/or
more directories. When you have “directories in directories” like this, they’re often
called subdirectories. Their names show where they are. For example, the root
directory (\) could contain a directory called \ JO, which might in turn contain a
directory called \JO\BACKUP, which might contain some files.

« Filenames are composed of one to eight letters and/or numbers, optionally followed
by a file extension comprised of a dot and from one to three letters/numbers. File
extensions are by convention used to group different types of files. The Workabout
uses file extensions in this way, but hides this from you in the built-in applications.

To completely specify a file, you add the four parts together. The directory part must
end with a backslash. So an OPL module named TEST, in a dircctory called \J0 in the
Workabout internal memory can be specified as LOC: : M: \JO\TEST . OPL. If this
file were in the \JO\BACKUP directory, it would be completely specified as

LOC: : M: \JO\BACKUP\TEST . OPL. If it were in the root directory, you would
specify it as LOC: :M: \TEST. OPL.

164 15: Advanced topics



A full file specification may be up to 128 characters long.

In OPL, unless you say otherwise, files are kept on the Workabout (LOC: :), in the
internal memory (M:). The directorics and file extensions used are:

Type of file Directory File extension
OPL modules \OPL OPL
transiated modules \OPO .0PO

data files \OPD .ODB
bitmaps \OPD PIC

Using file specifications in OPL

OPL commands which specify a filename. such as OPEN, CREATE, gLCADBIT and so on,
can also use any or all of the other parts that make up a full file specification.
(Normally, the only other part you might use is the drive name, if the file were on an
SSD.) So for example, OPEN "REM: : C: \ADDR.TXT"... tries to open a data file
called ADDR . TXT on the root directory of a hard disk C: on an attached PC.

You can use the PARSES function if you need to build up complex filenames. See the
alphabetic listing for more details of PARSES.

Unless you have a good reason, though, it’s best not to change directories or file
extensions for files on the Workabouz. You can lose information this way, unless you're
careful.

Control of directories

Use the MKDIR command to make a new directory. For exampie,

MKDIR “M:\MINE\TEMP" creates a M: \MINE\TEMP directory, also creating
M: \MINE if it is not already there. An error is raised if the chosen directory exists
already — use TRAP MKDIR to avoid this,

SETPATH sets the current directory for file access — for example,
SETPATH "A:\DOCS*.LOADM continues to use the directory of the running
program, but all other file access will be to the new directory instead of \OPD.

Use RMDIR to remove a directory — for example, RMDIR "M:\MINE" removes the
MINE directory on M: \. An error is raised if the directory does not exist — use
TRAP RMDIR to avoid this.

You can only remove empty directories.

File specifications on REM::

You should not assume that remote file systems use DOS-like file specifications — for
example, an Apple Macintosh spectfication is disk: foldexr: folder: filename.
You can only assume that there will be four parts — disk/device, path, filename and
(possibly null) extension. PARSES, however, will always build up or break down REM: :
file specifications correctly.

15; Advanced topics 165



Safe pointer arithmetic

Whenever you wish to add or subtract something from an integer which is an address of
something (or a pointer to something) you should use UADD and USUB. If you do not,
you will risk an ‘Integer overflow’ error.

An address can be any value from 0 to 65535. An integer variable can hold the full
range of addresses, but treats those values from 32768 to 65535 as if they were -32768
to -1. If your addition or subtraction would convert an address in the 0-32767 range 10
one in the 32768-65535 range, or vice versa, this would cause an ‘Integer overflow’.

UADD and USUB treat integers as if they were unsigned, ie as if they really held a value
from 0 to 65535.

For example, to add 1 to the address of a text string (in order to skip over its leading
hyte count and point to the first character in the string), use
i%=UADD (ADDR{(&a3%),1), not i%=ADDR{a$) +1.

usuB works in a similar way, subtracting the second integer value from the first integer,
in unsigned fashion - for example, USUB (ADDR (c%) , 3).

23 USUB({x%,v%) bas the same effect as UADD {x% , -v%) .

OPL applications (OPAs)

You can make an OPL program appear as an icon in the System screen, and behave like
the other icons there, by converting it into an OPL application, or OPA. There are five
different types of OPA, called type O to type 4:

= TYPE { (like Calc): The OPA uses no files.

» TYPE 1:Only one file is used. A type 1 OPA will look the same as a type 0. The
only difference is that the type 1 is using a file, of the same name as the OPA.

= TYPE 2:You can have more than one file, but only one can be in use (bold) at any
time.

When you pick a new file to use, its name becomes bold, and the one that was
previously bold reverts to normal. What has actually happened is that the
running OPA has switched files - it has not closed down, and ne new copy of the
OPA is run,

» TYPE 3 (like the in-built Data and Sheet applications). You can have more than one
file, and any number may be open (boid) at a given time.

When you select a new file, one of the running OPAs normally switches to this file,
as with type 2 OFAs. You can, however, with Shift-Enter, start a new OPA running
just for this file, without a different file exiting.

= TYPE 4 (like RunOpl): Many files can be used, and any number may beinusc ata
given time. When you select a new file, a new version of the OPA is always run, to
use the new file,

Types 3 and 4 allow more than one file to be in use (ie have their names in bold). When
this happens a separate version of the OPA runs for each bold file. With types 0, 1
and 2, only one version of the OPA can be running at any time.

Initially, the OPA’s name appears beneath the icon. If you move onto this name and
press Enter, file-based OPAs (types 1 to 4) will use a file of this name. Types 2, 3 and 4

166 15: Advanced topics



allow you to create lists of files below the icon (with the ‘New file’ option). You use the
file lists in the same way as the lists under the other icons in the System screen.

You can stop a running OPA by moving the cursor onto its bold name and pressing
Delete. After a ‘Confirm’ dialog, the System screen tells the OPA to stop running.

Defining an OPA

To make an OPA, your OPL file should begin with the Arp keyword, followed by a
name for the OPA. The name should begin with a letter, and comprise of 1 to 8 letters
and/or numbers. (Note that it does not have quote marks.) The APP line may be
followed by any or all of the keywords PATH, EXT, ICON and TYPE. A Workabout OPA
should also add $1000 to the type if it has its own 48x48 pixel, black/grey icon (see the
discussion of ICON below for detatls). Finally, use ENDA, and then the first procedure
may begin as in a normal OPL file. Here is an example of how an OPA might start:

APP Expenses

TYPE $1003

PATH "\EXP"

EXT "EXP*

ICON "\OPD\EXPENSES.PIC"
ENDA

Here is another example:

APP Picture
TYPE 1
ENDA

TYPE takes an integer argument from 0 to 4. The various types of OPA are outlined
earlier. If you don’t specify the type, 0 is used.

PATH gives the directory to use for this OPA’s files. If you do not use this, the normal
\OPD directory will be used. The maximum length, including a final \, is 19
characters. Don’t include any drive name in this path.

EXT gives the file extension of files used by this OPA. If you do not specify this, . ODB
is used. Note that the files used by an OPA do not have to be data files, as the I/O
commands give access to files of all kinds. EXT does not define the file type, just the file
extension to use. However, for simplicity’s sake, examples in this section use data
files.

(pATH and EXT provide information for the System screen — they do not affect the
program itself, The System screen displays under the OPA icon all files with the
specified extension in the path you have requested.)

ICON gives the name of the bitmap file to use as the icon for this OPA. If no file
extension is given, PIC is used. If you do not use ICON, the OPA is shown on the System
screen with a standard OPA icon.

As mentioned above, you should add $1000 to the argument to TYPE for a Workabout
icon. This specifies that the icon has size 48x48 pixels (instead of 24x24 as it was on
the Series 3). If the first bitmap has size 24x24, it is ignored and the following two
bitmaps must be the 48x48 black and grey icons respectively. If the first bitmap is
48x48, it is assumed to be the black icon and the grey icon must follow. If $1000 is not
sef, a scaled np 24x24 icon will be used. The translator does not check the size of the
icons. If you want to design your own icon using an OPL program, see gSAVEBIT for
details on saving both black and grey planes to a bitmap file.

15: Advanced topics 167



03> The arguments to any of the keywords between APPand ENDA must be constants
and not expressions. So, for example, you must use TYPE $1003 instead of
TYPE 51000 OR 3.

Running the OPA

Once you’ve translated the OPL file, return to the System screen and use Install on the
App menu to install the OPA in the System screen. (You only need to do this once.)
Once 1nstalled, file-based OPAs are shown with the list of available files, it any are
found. Otherwise, the name used after the APP keyword appears below the icon.

(Note: the translated OPA is saved in a \APP directory. If you previously translated the
module without the APP..ENDA at the start, the old translated version will still be listed
under the RunOpl icon, and should be deleted.)

The first thing a file-based OPA should do is to get the name of the file to use, and
check whether it is meant to create it or open it. CMDS (2} returns the full name of the
file to use; CMDS (3) returns "C" for "Create” or "O" for “Open”. All file-based OPAs
(types 1 to 4) should handle both these cases; if a "Create™ fails because the file exists
already, or an "Open” fails because it does not, OPL raises the error, and the OPA
should take suitable action - perhaps even just exiting.

How the Warkabout talks to an OPA

When the Workabout wants an OPA to exit or to switch files, it sends it a
System message, in the form of an event. This would happen if you press Delete to stop
a running OPA,, or select a new file for a type 2 or 3 OPA.

TESTEVENT and GETEVENT check for certain events, including both keypresses and
System messages. All types of OPA must use these keywords to check for both
keypresses and System messages; keyboard commands such as GET, KEY and KEYA
cause other events to be discarded.

GETEVENT waits for an event whereas TESTEVENT simply checks whether an event has
occurred without getting it.

If TESTEVENT returns non-zero, an event has occurred, and can be read with GETEVENT.
This tdkes one argument, the name of an integer array — for example,

GETEVENT a% (). The array should be at least 6 integers long. (This is to allow for
future upgrades — you only need use the first two integers.)

If the event is a keypress:
a% (1) = keycode (as for GET)
a%{2) AND 500ff= modifier (as for KMOD)
a% (2) /256= auto-repeat count (ignored by GET; you can ignore it too)

For non-key events {a% (1) AND $400) will be non-zero. If the event is a System
message to change files or quit, a% (1) =$404. You should then use GETCMDS to find
the action required.

GETCMDS returns a string, whose first character is "C", "0" or "X", If it is "C" or "O",
the rest of the string is a filename.

You can only call GETCMDS$ once for each event. You should do so as soon as
possible after reading the event. Assign the value returned by GETCMDS to a string
variable so that you can extract its components.

If you have ¢$=GETCMDS, the first character, which you can extract with
LEFTS (c$, 1}, has the following meaning;

168 15: Advanced topics



"C" -~ close down the current file, and create the specified new file.
"O" — close down the current file, and open the specified existing file.
“X" — close down the current file (if any) and guit the OPA.

Again with c$=GETCMD$, MIDS (c$, 2,128) is the easiest way to extract the
filename.

Note: events are ignored while you are using keywords which pause the execution of
the program — GET, GETS, EDIT, INPUT, PAUSE, MENU and DIALOG. If you need to use
these keywords, use LOCK ON / LOCK OFF (described later) around them to
prevent the System screen from sending messages.

Example OPAs

Here is a type 0 OPA, which just prints the keys you press. The keyboard procedure
getk$ : returns the key pressed, as with GET, but jumps to a procedure endit: if a
Systcm message to close down is received. (Type O OPAs do not receive "change file"

messages. )

getk% : does not return events with values 256 ($100) or above, as they are not simple
keypresses. This includes the non-typing keys like Menu ($100-$1FF), hot-keys
($200-$3FF), and non-key events ($400 and above).

APP myappl
TYPE $1000
ICON "\opdime"
ENDA

PROC start:
GLCOBAL a%(6) .,k%
STATUSWIN ON :FONT 10,16
PRINT "Q to Quit®
PRINT " or press Del in"
PRINT " the System screen'
DO
k¥=getk%:
PRINT CHRS (k%) ;
UNTIL (k% AND S$ffdf)=%0 REM Quick way to do uppercase
ENDP

PROC getk%:
DO
GETEVENT a% ()
IF a%{1)=5404
IF LEFTS (GETCMDS,1l)="X"
endik:
ENDIF
ENDIF
UNTIL a%(1l)<256
RETURN a% (1)
ENDP

PROC endit:
STOP
ENDP

15: Advanced topics 169



Here is a similar type 3 OPA. It does the same as the previous example, but System
messages to change files cause the procedure £set : to be called. The relevant files are
opened or created; the name of the file in use is shown in the status window.

APP myapp3
TYPE $1003
ICON "\opdime"
ENDA

PROC start:
GLOBAL a%{(6},k%,w5(128)
STATUSWIN ON :FONT 10,16 :wS=CMDS$(2)
fset: (CMDS$(3)}
PRINT "Create/change files"
PRINT "in the System screen®
DO
k¥=getk%:
PRINT CHRS (k%) ;
UNTIL (k% AND $f£d4f)=%Q
ENDP

PROC getk%:
LOCAL t5(1)
DO

GETEVENT a% ()

IF as(i)=5404
WS=GETCMDS
tS=LEFPS (wS$, 1)
wS=MIDS (w$,2,128)

IF t§="xX"
endit:

ELSEIF t$="C" OR tS$="0O"
TRAP CLOSE
IF ERR

CLS :PRINT ERRS (ERR)
GET :CONTINUE
ENDIF
fset: (%)
ENDIF
ENDIF
UNTIL a%{1l)<256
RETURN a%{1l)
ENDP

PROC fset: {t$)

LOCAL p%(6)

IF t$="C*
TRAP DELETE w$ REM SYS.SCREEN DOES ANY "OVERWRITE?"
TRAP CREATE w$,A,AS$

ELSEIF t$="0O"
TRAP OPEN w$,A,AS$

ENDIF

170 15: Advanced topics



IF ERR
CLS :PRINT ERRS5 (ERR)
GET :STOP
ENDIF
SETNAME wS$
ENDP

PROC endit:
STOP
ENDP

You should, as in both these examples, be precise in checking for the System message;
if in future the GETCMD$ function were to use values other than "C", "0 or "X", these
procedures would ignore them.

If you need to check the modifier keys for the returned keypress, use
a%{(2) AND $00ff instead of KMOD.

SETNAME extracts the main part of the filename from any file specification (even one
that is not DOS-like), in the same way as PARSE$. Using SETNAME ensures that the
correct name will be used in the file list in the System screen. If an OPA lets you change
files with its own ‘Open file’ option, it should always use SETNAME to inform the
System screen of the new file in use.

To be strict, whenever creating a file, an OPA should first use PARSES to find the disk
and directory requested. It should then use TRAP MKDIR to ensure that the directory
exists.

When an OPA cannot respond

The LoCcK command marks an OPA as locked or unlocked. When an OPA is locked with
LOCK ON, the System will not send it events to change files or quit. If, for example,
you move onto the file list in the System screen and press Delete to try to stop that
running OPA, a message will appear, indicating that the OPA cannot close down at that
moment.

You should use LOCK ON if your OPA uses a keyword, such as EDIT, which pauses the
execution of the program. You might also use it when the OPA is about to go busy for a
considerable length of time, or at any other point where a clean exit is not possible. Do
not forget to use LOCK OFF as soon as possible afterwards.

An OPA is initially unlocked.

Designing an icon
As discussed earlier, an OPA icon is black and grey and has size 48 by 48 pixels. The

icon is stored as two 48x48 bitmaps, black followed by grey, in a bitmap file. Here is a
simple example program which creates a suitable bitmap:

15: Advanced topics 171



PROC myicon:
gCREATE(0,0,48,48,1,1)
gBORDER §$200
gAT b,28
gPRINT "met*
gSAVEBIT "me"

ENDP

Here the window is created with a grey plane (the sixth argument to gCREATE) sSAVEBIT
automatically saves a window with both black and grey plane to a file in the required

format.

In the OPA itself use the 1CON keyword, as explained previously, to give the name of the
bitmap file to use -- here, ICON "\opdime", _

OPAs and the status window |
If you use STATUSWIN ON, 2 to display the status window, it shows the name used
with the APF keyword. STATUSWIN ON, 1 displays the smaller status window.

Important: The permanent status window is behind all other OPL windows. In order
to see it, you must use FONT (or both SCREEN and gSETWIN) to reduce the size of the text
and graphics windows. You should ensure that your program does not create windows
over the top of it.

The name can be changed with the SETNAME command. In general, an OPA should use
SETNAME whenever it changes files, or creates a new file. :

Other TYPE options
You can add any of these numbers to the value you use with TYPE:

» $8000 (-32768) stops the System screen’s ‘New file’ option from working, as for the
RunOpl icon (translated OPL modules).

= $4000 (16384) stops the System screen from closing the OPA, as for the Time icon.
You should not use this without a very good reason.

= $100 (256) causes the System screen to terminate the OPA (when Delete is pressed
there) without sending a message to the OPA to quit {"X"), as for the RunOp! icon
again, This should be used only for OPAs which have no data that could be lost by
sudden termination.

For example, use TYPE $8001 for a type 1 OPA having the first of the features above.
(Note that TYPE $8000+1 would fail to translate as the translator cannot evaluate
expressions for any keywords between APP and ENDA).

172 15: Advanced topics



Tricks

The calculator memories

The calculator memories MO to M9 are available as floating-point variables in OPL.
You might use them to allow OPL access to results from the calculator, particularly if
you use OPL procedures from within the calculator.

It’s best not to use them as a substitute for declaring your own variables. Your OPL
program might go wrong if another ranning OPL program uses them, or if you use
them yourself in the calculator.

Running a program twice

Although you may never need to, you can run more than one copy of the same
translated OPL module at the same time. There are two ways:

s Use ‘Copy file’ in the System screen to make a new copy of the modute, with a
different filename. Then run both files.

» Run the file as normal. Then move the highlight to under the RunOpl icon, press Tab
to show the file selector, and pick the name of the translated module again.

Foreground and background
» CALL ($6c8d) tells the Workabout to send a "machine switch on” event to the

current program, whenever the Workabout switches on, cven if this program is in the
background. If required, use it just once at the start of your program.

» CALL{$198d, 0, 0) brings the current program to the foreground.
» CALL{$198d, 100, 0} sends it to the background again.
Each of these should be followed by gUPDATE to ensure they take effect immediately.

This example program comes to the foreground and beeps whenever you turn the
Workabout on. Be careful to enter the CALL and GETEVENT statements exactly as shown,

PROC beepon:
local a%(6)
print "Hello"
call($6¢B8d) :gupdate
while 1
do
getevent a% ()
if a%(1})=%404 :stop :endif :REM closedown
until a%{1l)=$403 :REM machine ON
call{$1984,0,0) :gupdate
beep 5,300 :pause 10 :beep 5,500
call{$1984,100,0) :gupdate
endwh
ENDP

Note that the beep sound is produced by a buzzer on the Workabout rather than a
loudspeaker and so it is not very loud.

Note; when a program runs in the background it can stop the "automatic turn off"
feature from working. However, as soon as the program waits for a keypress or an
event, with GET/GET$ or GETEVENT, auto-turn off can occur.

15: Advanced topics 173



Auto-turn off can also occur if the program does a PAUSE (of 2 or more 20ths of a
second), but only if the program has used CALL ($138b) ("unmark as active")

Cacheing procedures

Without procedure cacheing, procedures are loaded from file whenever they are called
and discarded when they return — LOADM simply loads a map listing procedure names
and their positions in the module file so that they can be loaded fairly efficiently. The
cache handling commands provide a method for keeping the code for a procedure
loaded after it returns — it remains loaded until a procedure called later requires the
space in the cache. The strategy is then to remove the least recently used procedures,
making it more likely that all the procedures called together in a loop, for example,
remain in the cache together, thus speeding up procedure calling significantly.

Cache handling keywords allow you to:

= create a cache of a specified initial and maximum size using
CACHE init%,max%. You can specify these up to 32,767 bytes.

g If you use hex, you can even exceed this figure, if you need to — eg
CACHE $9000, $9000. Howcever, you cannot exceed the 64k total memory limit
which each Workabour process has,

» prevent Joading and removal of procedures from the cache so that a given set of
procedures can be guaranieed to remain in the cache using CACHE OFF. Procedures
already in the cache are still used when cacheing is off. The loading and removal of
procedures can subsequently be resumed using CACHE ON.

= tidy the cache by removing procedures that are no longer in use (ie. procedures that
have returned) using CACHETIDY,

= for advanced use during program development, further keywords are provided for
inspecting the contents of the cache at any time (see CACHEHDR and CACHEREC).

Cache size

Cacheing procedures is not a cure all. Care should be taken that the cache size is
sufficient to load all procedures required for a fast loop otherwise, for example, a large
procedure may cause all the small ones in a loop to be removed and equally, a small vne
may require the large one (¢ be removed, so that the cache provides no benefit at all. In
fact, the overhead needed for cache management can then make your program less
efficient than having no cache at all. If the maximum cache size you can have is
limited, careful use of CACHE OFF should prevent such problems at the expense of not
fitting all the procedures in the loop in the cache. CACHE OFF is implemented very
efficiently and calling it frequently in a loop should not cause much concern.

To guarantee that there is enough memory for a given cache size, create the cache
passing that value as the initial size using TRAP CACHE init$%,max$%. TRAP ensures
that if the cache creation succeeds, ERR returns zero and otherwise the negative ‘Out of
memory’ error is raised. After creation, the cache will grow as required up to the
maximum size max$% or until there is not enough free memory to grow it. On failure 10
grow the cache, any procedures which will not fit into the existing cache, even when
unused procedures are removed, are simply loaded without using the cache and are
discarded when they return,

If you want to ensure a certain mihi mum cache size, say 10000 bytes, but do not care
how large it grows, you could use TRAP CACHE 10000, $££££ so that the cache

174 15: Advanced topics



just grows up to the limits of memory. For a relatively small program, you might want
to load the whole program into cache by making the cache size the same size as the
module. This will in fact be a little larger than required, unnecessarily including a
procedure name table and module file header which are not loaded into the cache. The
minimum cache size is 2000 bytes, which is used if any lower value is specified. If the
maximum size specified is less than the initial size, the maximum is set to the initial
size. The maximum cache size cannot be changed once the cache has been created and
an error is returned if you attempt to do so.

I3 The initial cache size should ideally be large enough to hold all procedures that are to
be cached simultaneously. There is no advantage in growing the cache from its initial
size when you know that a certain minimum size is needed.

Procedures in unloaded modules

When a module is unloaded, all procedures in it that are no longer in use are removed
from the cache. Any procedure that is still in usc, is hidden in the cache by changing its
first character to lower case; when it finally returns, a hidden procedure is removed in
the normal manner to make room for loading a new procedure when the cache is full.
Note that it considered bad practice to unload a module containing procedures that are
still running - eg. for a procedure to unload its own module.

Cache timings

Calling an empty procedure that simply returns is approximately 10 times faster with a
cache. This figure was obtained by calling such a procedure 10000 times in a loop, both
with cacheing off and on, and subtracting the time taken running an empty loop in each
case,

Clearly that case is one of the best for showing off the advantages of cacheing and there
is no general formuia for calculating the speed gain. The procedures that benefit most
will be those that need most module file access relative to their size in order to load
them into memory. The programmer cannot reasonably write code taking this into
account, so no further details are provided here.

The case described above does not require any procedures to be removed from the
cache to make room for new procedures when the cache is full, and removal of
procedures requires a fair amount of processing by the cache manager. If many
procedures in a time-critical section of your program are loaded into the cache and not
used often before removal, the speed gain may be less than expected — a larger cache
may be called for (0 prevent too many removals.

It should be noted however, that even with the worst case of procedures being loaded
into the cache for use just once before removal, having a cache is often superior to
having no cache. This is because the cache manager reads module file data (required for
loading the procedures into memory) in one block rather than a few bytes at a time and
it is the avoidance of excessive file access which provides the primary speed gains for
cacheing, '

Compatibility mode modules

Procedures in modules translated for the Series 3 cannot be loaded into the cache. On
encountering such a procedure, the cache manager simply loads it without using the
cache and discards it when it returns. The reason for this is that a few extra bytes of
data are stored in the Workabout modules which are needed by the cache manager.

15: Advanced topics 175



Potential problems in existing programs

It is possible that previously undiscovered bugs in existing OPL programs are brought
to light simply by adding code to use the cache.

Without cacheing, the variables in a procedure are followed immediately by the code
for the procedure. Writing beyond the variables (for example reading too many bytes
into the final variable using such keywords as gPEEKLINE or KEYA) would have written
over the code itself but would have gone unnoticed unless you happened to loop back
to the corrupted code. With a cached procedure, the code no longer follows your
variables, so the corruption occurs elsewhere in memory, resulting quite probably in the
program crashing,

Controlling procedure cacheing

TRAP CACHE initSize%,maxSize% creates a cache of a specified initial
number of bytes, which may grow up to the specified maximum. If the maximum is
less than the initial size, the initial size becomes the maximum., If growing the cache
fails, normal loading without the cache is used. The ‘In use’ error (-9) is raised if a
cache has been created previously or the ‘Out of memory’ error (-10) on failure to
create a cache of the specified initial size — use the TRAP command if required.
Procedure code and other information needed for setting up variables are loaded into
the cache when the procedure is called. If there is no space in the cache and enough
space can be regained. the least recently used procedures are removed. Otherwise the
procedure is loaded in the normal way without cacheing.

Once a cache has been created, CACHE OFF prevents further cacheing although the

cache is still searched when calling subsequent procedures. CACHE ON may then be
used to reenable cacheing. Note that CACHE ON or CACHE OFF are ignored if used
before CACHE initSize%,maxSize%.

Tidying the cache

CACHETIDY removes any procedures from the cache that have returned to their callers.
This might be called after performing a large, self-contained action in the program
which required many procedures. Using CACHETIDY will then result in speedier
searching for procedures called subsequently and, more importantly, will prevent the
procedures being unloaded one at a time when the need arises — it is very efficient o
remove a set of procedures that are contiguous in the cache as is likely to be the case in
this situation.

Note that a procedure which has returned is automatically removed from the cache if
you unload the module it is in, S0 CACHETIDY needn’t be used for such a procedure.

Getting cache index header information

The CACHEHDR command is provided for advanced use and is intended for use during
program development only.

CACHEHDR ADDR (hdr% () ) reads the current cache index header into the array
hdr% () which must have at least 11 integer elements. Note that any information
returned is liable to change whenever a procedure is called, so you cannot save these
values over a procedure call,

If no cache has yet been created, hdr% (10) =0 and the other data read is
meaningless. Otherwise, the data read is as follows:

hdr$ {1) current address of the cache itself
hdr%(2) number of procedures currently cached
hdr% (3) maximum size of the cache in bytes

176 15: Advanced topics



current size of the cache in bytes

hdr$% (4)

hdr% (5) number of free bytes in the cache

hdr% (6) total number of bytes in cached procedures which are
freeable (ie. not running)

hdr% (7) offset from the start of the cache index to the first free index record

hdr% (8) offset from start of cache index to most recently used
procedure’s record; zero if none

hdr%(9) offset from start of cache index to least recently used
procedure’s record; zero if none

hdr% {(10) address of the cache index, or zero if no cache created yet

hdr%(11)  non-zero if cacheing is on, and zero if it is off

The cache manager maintains an index for the cache consisting of an index header
containing overall information for the whole cache as well as one index record for each
procedure cached. All offsets mentioned above give the number of bytes from the start
of the index to the procedure record specified. The index records for cached procedures
form a doubly linked list, with one list beginning with the most recently used procedure
(MRU), with offset given by hdr$% (8), and the other with the least recently used
procedure (LRU) with offset given by hdr$ (9) . A further singly linked list gives the
offsets to free index records. The linkage mechanism is described in the discussion of
CACHEREC below.

Getlting a cache index record

The CACHEREC command is provided for advanced use and is intended for use during
program development only.

CACHEREC ADDR (rec%({)}),offset% reads the cache index record (see the
description of CACHEHDR above) at of fset$% into array rec% () which must have at
least 18 integer elements. o £ £set%=0 specifies the most recently used (MRU)
procedure’s record if uny and o££set %<0 the least recently used (LRU) procedure’s
record if any,

The data returned by CACHEREC is meaningless if no cache exists (in which case
rec% (17) =0) orif there are no procedures cached yet (when hdr% (8) =0 as
returned by CACHEHDR).

Each record gives the offset to both the more recently used and to the less recently used
procedure’s record in the linked lists, except for the MRU and the LRU procedures’
records themselves which each terminate one of the lists with a zero offset. The first
free index record (see CACHEHDR above) starts the free record list, in which each record
gives the offset of the next free record or zero offset to terminate the list. To "walk” the
cache index, you would always start by calling CACHEREC specifying either the MRU or

LRU record offset, and use the values returned to read the less or more recently used
procedure’s record respectively. Note that any information returned is liable to change
whenever a procedure is called, so you cannot save these values over a procedure call.

For the free cell list, only rec% (1) is significant, giving the offset of the next free
index record. For the records in the lisis starting with either the LRU or MRU record,
the data returned in rec% () is:

rec% (1) offset to less recently used procedure’s record or zero if on LRU
rec%(2) offset to more recently used procedure’s record or zero if on MRU
rec% (3) usage count - zero if not ranning

rec%(4) offset in cache itself to descriptor for building the procedure frame
rec%(5) offset in cache itself w translated code for the procedure

rec%(6) offset in cache itself to the end of the translated code for the procedure
rec%(7) number of bytes used by the procedure in the cache itself

rec% (8-15) leading byte counted procedure name, followed by some private data

177

15: Advanced topics



rec%(16) address of the procedure’s leading byte counted module name
rec% (17}  address of the cache index, or zero if no cache created yet
rec%$(18)  non-zero if cacheing is on, and zero if it is off

For example, to print the names of procedures and their sizes from MRU to LRU:

CACHEHDR ADDR {(hdr%())
IF hdr%(10)=0
PRINT "No cache created yet*
RETURN
ENDIF
IF hdr%(8)=0 rem MRU zero?
PRINT “*None cached currently"
RETURN
ENDIF
rec%(1)=0 rem MRU first
Do
CACHEREC ADDR(rec%()).,rec%{(l) rem less recently used
rem proc
PRINT PEEKS (BDDR(rec%(8}})),rec%{7) rem name and size
UNTIL rec%(1)=0

Sprite handling

How sprites work

OPL includes a set of keywords for handling a sprite — a user-defined black/grey/white
graphics object of variable size, displayed on the screen at a specified position.

The sprite can also be animated — you can specify up to 13 bitrap-sets which are
automatically presented in a cycle, with the duration for each bitmap-set specified by
you. Each bitmap-set may be displayed at a specifiable offset from the sprite’s notional
position.

The 13 bitmap-sets are each composed of up to six bitmaps. The set pixels in each
bitmap specify one of the following six actions: black pixels to be drawn; black pixels
to be cleared; black pixels to be inverted; grey pixels to be drawn; grey pixels to be
cleared; or grey pixels to be inverted. The bitmaps in a set must have the same size.

All the bitrmaps in a set are drawn to the screen together and displayed for the specified
duration, followed by the next set, and so on.

If you do not specify that a pixel is to be drawn, cleared or inverted, the background
pixel is left unchanged.

Black pixels are drawn ""on top of"’ grey pixels, so if you clear/invert just the grey
pixels in the sprite they will be hidden under any pixels set black. So to clear/invert
pixels on a background which has both grey and black pixels set, you need to
clear/invert both black and grey pixels in the sprite.

g3 The pixels of one colour (black or grey) which are set in one bitmap of the
bitmap-set should not overlap with those of the same colour which are set in another
bitmap in the same bitmap-set. This is because the order in which the bitmaps are
applied 1s undefined. So, for example, do not specify that pixel (0,0) should have the
black pixel both drawn and cleared. '

178 15: Advanced topics



Why use sprites?

A sprite is useful for displaying something in foreground without having to worry about
restoring the background display. Also a sprite can have any shape, leaving the
background display all around it intact, and it can even be hollow - only the pixels
specified by you are drawn, cleared or inverted, Typically only one bitmap-set
containing twa hlack bitmaps would be used — one for setting and one for clearing
pixels,

You would not often use the sprite features in their full generality. In fact, more than
one bitmap-set is needed only for animation and it is also seldom necessary to use all

the available bitmaps in a single bitmap-set.

Crealing a sprite
sprId%=CREATESPRITE creates a sprite and returns the sprite ID.

Appending a bitmap-set to a sprite

APPENDSPRITE tenths%,bitmaps()

APPENDSPRITE tenths$%,bitmaps$(),dx%,dy%

append a single bitmap-set to a sprite. These may be called up to 13 times for each
sprite. APPENDSPRITE may be called only before the sprite is drawn, otherwise it
raises an error. tenths% gives the duration in tenths of seconds for the bitmap-set to
be displayed before going on to the next bitmap-set in the sequence. It is ignored if
there is only one bitmap-set.

bitmaps () contains the names of the six bitmap files in the set:

bitmap$ (1) for setting black pixels
bitmap$ (2) for clearing black pixels
bitmap$ (3} for inverting black pixels
bitmaps (4) for setting grey pixels
bitmap$ (5) for clearing grey pixels
bitmap$ (6) for inverting grey pixels

Use " * to specify no bitmap. If * " is used for all the bitmaps in the set, the sprite is left
blank for the specified duration.

The array must have at least 6 elements.

All the bitmaps in a single bitmap-set must be the same size, otherwise an ‘Invalid
arguments’ error is raised on attempting to draw the sprite. Bitmaps in different
bitmap-sets may differ in size. dx% and dy% are the (x,y) offsets from the sprite
position {see CREATESPRITE) to the top-left of the bitmap-set with positive for right and
down. The default value of each is zero.

Sprites may use considerable amounts of memory. A sprite should generally be created,
initialised and closed in the same procedure to prevent memory fragmentation. Care
should also be taken in error handling to close a sprite that is no longer in use.

Creating or changing a sprite consisting of many bitmaps requires a lot of file access
and should therefore be avoided if very fast sprite creation is required. Once the sprite
has heen drawn, no further file access is performed (even when it is animated) so the
number of bitmaps is no longer important.

Drawing a sprite

DRAWSPRITE x%, y% draws a sprifte in the current window with top-left at pixel
position (x%,v%). The sprite must previously have been initialised using
APPENDSFRITE or the ‘Resvurce not open’ error (-15) is raised. If any bitmap-set

15: Advanced topics 179



contains bitmaps with different sizes, DRAWSPRITE raises an ‘Invalid arguments’ error

(-2).

Changing a bitmap-set in a sprite

CHANGESPRITE index%,tenths$%,bitmap$ ()

CHANGESPRITE index%, tenths%,bitmaps$(),dx%,dy%

change the bitmap-set specified by index$% (1 for the first bitmap-set) in the sprite
using the supplied bitmap files, offsets and duration which are all used in the same way
as for APPENDSPRITE.

CHANGESPRITE can be called only after DRAWSPRITE.

0=y Note that if all or many bitmap-sets in the sprite need changing or if each hitmap-set
consists of many bitmaps, the time required to read the bitmaps from file may be
considerable, especially if fast animation is in progress. In such circumstances, you
should think about closing the sprite and creating a new one, which will often be
more efficient.

Positioning a sprite
POSSPRITE x%,v% sets the position of the sprite to (x%, v%).

Closing a sprite
CLOSESPRITE sprId% closes the sprite with ID sprIds.

Sprite example

The following code illustrates all the sprite handling keywords using a sprite consisting
of just two bitmap-sets each containing a single bitmap.

PROC sprite:
LOCAL bit$(6,6),sprid%

crBits: REM create bitmap files
gAT gWIDTH/2,0
gFILL gWIDTH/2,gHEIGHT,0 REM fill half of screen
sprId%=CREATESPRITE
bit${(l)="" :bitg${(2)="*
bit$(3)="cross®  REM black cross, pixels inverted
bit$(4)="" :bit$({5)="" :bit§(6)=""
APPENDSPRITE 5,bit${),0,0 REM cross for half a second
bit$(1l)="" :bit$(2)="" :bit§(3)=""
bit§(4}="" :bit§(5)="" :bitg(6)=""
APPENDSPRITE 5,bit5{(},0,0 REM blank for half a second
DRAWSPRITE gWIDTH/2-5,gHEIGHT/2-5

REM animate the sprite
BUSY "flash crouss, c*,3 REM no ofiset

REM ('c¢’ for central)

GET
bits(3)="box" REM black box, pixels inverted
CHANGESPRITE 2,5,bits(),0,0 REM in 2nd bitmap-set

BUSY "cross/box, c/¢",3 REM central/central
GET

180 15: Advanced topics



CHANGESPRITE 2,5,bits$(),40,0

REM offset by 40 pixels right
BUSY "cross/box, ¢/40%,3 REM central/40
GET
bits(3)="" REM Remove the cross in set 1
CHANGESPRITE 1,3,bit$(),0,0 REM display for 3/10 seconds
BUSY "flash box, 40",3 REM box at offset 40 still
GET
bits(3)="cross"
CEANGESPRITE 1,5,bits$({).0,0

REM cross centralised - set 1
bits(3)="box"
CHANGESPRITE 2,5,b1t$(),0,0

REM box centralised - set 2
BRUSY "Escape guits"
DO :

POSSPRITE RND* (gWIDTH-11l),RND* (gHEIGHT-11)
REM move sprite randomly
PAUSE -20 REM once a second
UNTIL XEY = 27
CLOSESPRITE sprId%

ENDP

PROC crBits:
REM create bitmap files if they don’'t exist
IF NOT EXIST{"cross.pic®) OR NOT EXIST("box.pic")
gCREATE(0,0,11,11,1,1)
gAT 5,0 :gLineBy 0,11
gAT 0,5 :gLineBy 11,0
gSAVEBIT "cross"
gCLSs
gAT 0,0
gBOX gWIDTH, gHEIGHT
gSAVERIT "box"
gCLOSE gIDENTITY
ENDIF
ENDP

18:. Advanced topics 181



Scanning the keyboard directly

It is sometimes useful to know which keys are being pressed at a given moment and
also when a key is released. For example, in a game, a certain key might start some
action and releasing the key might stop it.

CALL ($288e,ADDR (scan% () ) ) returns with the array scan$ (), which must
have at least 10 elements, containing a bit set for keys currently being pressed.

Every key on the keyboard is represented hy a unique hit, including the modifier keys
(Shift, Control etc).

A set bit simply signifies a pressed key — a key pressed on its own gives one bit set; that
same key with a modifier gives the same bit set with another bit for the modificr; the
modifier on its own gives the same modifier bit on its own.

The following table lists each key (according to the text printed on the physical key
itself), the scan® () array element for that key and the hexadecimal bit mask to be
ANDed with that array element to check whether the key is being pressed.

mask
$100
$02
$04
$40
$04
$08
$08
$40
$08
$10
$10
$08
$01
$04
$02
$20
$20
$02
$10
$08
$20
$04
$20
$20
$04
$01
$80
$04
$10
310
$02
$20
$40
$10
$02
$40

n
0
5
o
-

key
Esc

+ SOOI D LD —

)
&
(=3
A
a

Tab

300 b OO LA O =] =1 W = P M W 1 o — LA LR CR e ~) — 0D b B L L Js 00 Lh L O 00 00 00

FR=ZOTD

182 15: Advanced topics



$40

* 2

/ 2 $02
Left shift 2 $80
Z 7 $08
X 7 $40
C 6 $08
\% 6 $04
B 5 $40
N 1 $40
M 4 $08
) 8 $10
Up 8 $20
Right shift 4 $80
Psion 1 $80
Menu 6 $80
Space 5 $01
Help 4 $04
Left i $10
Down 1 $20
Right 1 $02

For example, pressing Tab sets bit 2 of scan% (1), pressing Control sets bit 7 of
scan% (3) amd pressing both together sets both these bits. So Tab is being pressed if
scan% (1) AND $04 is non-zero, and Control is being pressed if scan% (3) AND
$80 is non-zero.

A possible strategy for scanning the keys might be to wait for any key of interest using
GETEVENT or GET (allowing switch off and less intensive use of the battery); start the
required action which is to be continued only while the key is being pressed; scan the
keyboard as discussed above until the key is released and then stop the action; wait for
the next key and repeat.

p35° Note that the key returned by GETEVENTOr GET is not precisely synchronised with
those scanned, so once you have waited for a relevant key you should scan for all the
keys pressed, ignoring the keycode returned by GETEVENTOr GET.

15; Advanced topics 183



I/O functions and commands

OPL includes powertul facilities to handle input and output (‘I/O’). These functions and
commands can be used to access all types of files on the Workabout, as well as various
other parts of the low-level software.

This section describes how to open, close, read and write to files, and how to set the
position in a file. The data file handling commands and functions have been designed
for use specifically with data files. The I/O functions and commands are designed
for general file access. You don’t need to use them to handle data files.

These are powerful functions and commands and they must be used with care.
Before using them you must read this chapter closely and have a good grounding in
OPL in general.

Error handling
You should have a good understanding of error handling before using the I/O functions.

The functions in this section ncver raise an OPL error message. Instead they return a
value — if this is less than zero an error has occurred. It is the responsibility of the
programmer to check all return values, and handle errors appropriately. Any error
number returned will be one of those in the list given in the error handling chapter. You
can use ERR$ to display the error as usual,

Handles

Many of these functions use a handle, which must be an integer variable. IOOPEN
assigns this handle variable a value, which subsequent I/0 functions use to access that
particular file. Each file you I00PEN needs a different handle variable.

‘var’ variables

‘var’ denotes an argument which should normally be a LOCAL or GLOBAL variable.
(Single elements of arrays may also be used, but not field variables or procedure
parameters.) Where you see ‘var’ the address of the variable is passed, not the value in
it. (This happens automatically; don’t use ADDR yourself.)

In many cases the function you are calling passes information back by setting these
‘var’ variables.

‘var’ 1s just to show you where you must use a suitable variable — you don’t actually
type it.

For example:

ret%=I00PEN (var handle%,name$,mode®)

indicates that IOOPEN (h%, "abe®, 0) is OK while IOOPEN(100, "abc", () is
incoirect.

It is possible, though, that you already have the address of the variable to use. It might
be that this address is held in a field variable, or is even a constant value, but the most
common situation is when the address was passed as a paramneter to the current
procedure.

If you add a “#’ prefix to a ‘var’ argument, this tells OPL that the expression following
is the address to be used, not a vartable whose address is to be taken,

184  15: Advanced topics



Here is an example program:

PROC doopen: (phandle%, name$, mode%)
REM ICOQOPEN, handling errors
LOCAL error%
error%$ = IOOPEN (#phandle%, name$, mode%)
IF error% : RAISE error% : ENDIF
ENDP

The current value held in phandle% is passed to IOOPEN. You might call doopen:
like this:

local filhand%, ...

doopen: (addr {(filhand%), "log.txt", $23)

The doopen : procedure calls I00PEN with the address of £11hand%, and IOOPEN will
write the handle into £ilhand$.

g If you ever need to add or subtract numbers from the address of a variable, use the
UADD and USUB functions, ot you run the risk of ‘Integer overflow’ errors.

Opening a file with IOOPEN

ret¥%=I00PEN (var handle%,name$,mode%)

or

ret%=IC0PEN{var handle%, address%,mode%)
for unique file creation

Creates or opens a file (or device) called name$ and sets handle% to the handle to be
used by the other 1/0 functions.

mode% specifies how the file is to be opened. It is formed by ORing together values
which fall into the three following categories:

Mode Category 1 — Open mode
One and only one of the following values must be chosen from this category.

$0000 Open an existing file (or device). The initial current position is set to the
start of the file. :

$0001 Create a file which must not already exist.

$0002 Replace a file (truncate it to zero fength) or create it if it does not exist.

$0003 Open an existing file for appending. The initial current position is set to

the end of the file. For text format files (see $0020 below) this 1s the
only way to position to end of file.

$0004 Creates a file with a unique name. For this case, you must use the

address of a string instead of name$. This string specifies only the
path of the file to be created (any file name in the string is ignored). The
string at address% is then set by IOOPEN to the unique file name
generated (this will include the full path). The string must be large
enough to take 130 characters (the maximum length file specification).
For exampie:

s$="M:\home\ "

IQOPEN (handle% ,ADDR(s$) ,mode%)
This mode is typically used for temporary files which will later be
deleted or renamed.

15: Advanced topics 185



Mode Category 2 — File format

One and only one of the following values must be chosen from this category. When
creating a file, this value specifies the format of the new file. When opening an
existing file, make sure you use the format with which it was created.

$0000 The file is treated as a byte stream of binary data with no restriction on
the value of any byte and no structure imposed upon the data. Up to
16K can be read from or written to the file in a single operation.

30020 The file is treated as a sequence of variable length records. The records
are assumed to contain text terminated by any combination of the CR
and LF ($0D, $0A) characters. The maximum record length is 256 bytes
and Control-Z {$12) marks the end of the file.

Mode Categnry 3 — Access flags
Any combination of the following values may be chosen from this category.
$0100 Update flag. Allows the file to be written to as well as read. If not set,

the file is opened for reading only. You must use this flag when creating
or replacing a file.

$0200 Choose this value if you want the file to be open for random access (not
sequential accessy, using the 10SEEK function.

$0400 Specifies that the file is being opened for sharing — for example, with
other running programs. Use if you want to read, not write to the fite. If
the file is opened for writing ($0100 above), this flag is ignored, since
sharing is then not feasible. If not specified, the file is locked and may
only be used by this running program.

Closing a file with IOCLOSE

Files should be closed when no longer being accessed. This releases memory and other
resources back to the system.

ret%$=I0CLOSE (handle¥%)
Closes a file (or device) with the handle handle$% as set by IOOPEN.

Reading a file with IOREAD
ret%=TOREAD (handle$, address %, maxLen¥)

Reads up to maxLen% bytes from a file with the handle handle#% as sct by 100PEN.
address% is the address of a buffer into which the data is read. This buffer must be
large enough to hold a maximum of maxLen% bytes. The buffer could be an array or
even a single integer as required. No more than 16K bytes can be read at a time,

The value returned to ret% is the actual number of bytes read or, if negative, is an
error value.

Text files
If maxLen% exceeds the current record length, data only up to the end of the record is
read into the buffer; no error is returned and the file position is set to the next record.

If a record is longer than maxLen$%, the error value ‘Record too large’ (-43) is returned.
In this case the data read is valid but is truncated to length maxLen$%, and the file
position is set to the next record.

A string array buffer$ (255) could be used, but make sure that you pass the address
UADD (ADDR (buffers$), 1) to IDREAN. This leaves the leading byte free. You can

186 15: Advanced topics



then POKEB the leading byte with the count (returned to ret%) so that the string
conforms to normal string format. See the example program.

Binary files
If you request more bytes than are left in the file, the number of bytes actually read

(even zero) will be less than the number requested. So if ret%<maxLen%, end of file
has been reached. No error is returned by IOREAD in this case, but the next IOREAD
would return the error value ‘End of file’ (-36).

To read up to 16K bytes (8192 integers), you could declare an integer array
buffer%(8192).

Writing to a file
ret$=IOWRITE (handle%, address%, length¥)

Writes 1ength% bytes stored in a buffer at address% to a file with the handle
handle%.

When a file is opened as a binary file, the data written by IOWRITE overwrites data at the
current position.

When a file is opened as a text file, IOWRITE writes a single record; the closing CRALF is
automatically added.

Positioning within a file
‘ret¥—IOSEEK (handle%, moded, var offset&)

Seeks to a position in a file that has been opened for random access (see IOOPEN above).

mode% specifies how the argument of fset& is to be used. of fset& may be positive
to move forwards or negative to move backwards. The values you can use for mode$%
are;

1 Set position in a binary file to the absolute value specified

in of fset&, with 0 for the first byte in the file.

Set position in a binary file to o ££set& bytes from the end of the file.

Set position in a binary file t0 o f£set & bytes relative to the current position.
Rewind a text file to the first record. of £set& is not used, but you must

still pass it as a argument, for compatibility with the other cases.

L b3

IOSEEK sets the variable o £ fset& to the absolute position set.

Example - displaying a plain text file
This program opens a plain text file, such as one created with the ‘Save as’ option in the

in-buiit Database, and types it to the screen.
Press Esc to quit and any other key to pause the typing to the screen.

PROC ioType:
LOCAL ret%, fName${128),txt$(255),address%
LOCAL handle%,mode%, k%
PRINT “Filename?*, :INPUT fName$ : CLS
mode%= 50400 OR $0020
REM open=350000, text=50020, share-$0400
ret$=I00PEN (handle%, fName$, mode%)
IF ret%<0
showBrr: {ret%)

15: Advanced topics 187



RETURN

ENDIF
address%=ADDR(txtS}
WHILE 1
k%=KEY
IF k% REM if keypress
IF k%=27 REM Es¢ pressed

RETURN
REM otherwise wait for a key
ELSEIF GET=27
RETURN REM Es¢ pressed
ENDIF
ENDIF
ret%=I0OREAD{(handle%, address%+1, 255)
IF ret%<0
IF ret%$<>-36 REM NOT EOF
showErr: (ret%)
ENDIF
BREAK
ELSE
PCKEB address%.ret%
REM leading byte count

PRINT txt$

ENDIF
ENDWH
ret%=I0CLOSE (handle%)
IF ret%

showErr: (ret%)
ENDIF
PAUSE -100 :KEY

ENDP

PROC showErr: (val%)
PRINT “Error',val$%$,err$(vals)
GET

ENDP

/0 device handling

The following 1/O functions provide access to devices. A full description is not within
the scope of this manual, since these functions require extensive knowledge of the
Workabout operating system and related programming techniques. The syntax and
argument descriptions are provided here for completeness.

ret$=I0W{handle%, func%, var argl,var arg2)- The device driver
opened with hand1e% {as returned by 100PEN) performs the synchronous I/O
function func$% with the two further arguments. The size and structure of these two
arguments is specified by the particular device driver’s documentation.

ret%=10A(handle%, func%, var status$%,var argl,var arg2) - The
device driver opened with handle% (as returned by I00PEN) performs the

188 15: Advanced topics



asynchronous /O function func% with two further arguments. The size and structure
of these two arguments is specified by the particular device driver’s documentation.

Asynchronous means that the 10A returns immediately, and the OPL program can carry
on with other statements. status$% will usually be set to -46, which means that the
function is still pending.

When, at some later time, the function completes, status% is automatically changed.
(For this reason, status% should usually be global - if the program is still ronning,
status% must be available when the request completes, or the program will probably
crash.} If status% >=0, the function completed without error. If <0, the function
completed with error. The error number is specific to the device driver.

At the same time, a signeal is sent to the running OPL program.

In most cases, you cannot pecform another I/O read/write function to this device until
you first read the signal of this function’s completion. If this is the only I/0 device with
a function pending, wait for the signal with TOWAITSTAT status$. (If you have
other functions pending on other devices, you must use IOWAIT and 10SIGNAL. These
commands are described below.)

Alternatively, you can cancel the pending function with TOW (handle%, 4}. The
program will still receive a signal, which should be read with IOWAITSTAT or IOWAIT,

If an OPL program is ready to exit, it does not have to wait for any signals from
pending 10A calls.

IOWAIT - Wait for an asynchronous request {such as one requested by 10C or I0A) to
complete. IOWAIT returns when any asynchronous I/O function completes. Check
status$ to sece whether it was the function which you called with 10A. You musl keep
a count of the number of times IOWAIT returns due to other functions completing. When
status¥ finally shows that IowAIT has retumed because of this function completing,
you must then call 10SIGNAL once for each other function which completed, to replace
these other signals,

[f you have no other functions pending on different 1/0 handles, use JOWAITSTAT instead.
IOSIGNAL — Replace a signal of an /O function’s completion. See IOWAIT.

IOWAITSTAT var status$-— Wait for a particular asynchronous function, called
with 10A, to complete. This saves using IOWAIT, checking each time to see if it was the
desired function completing, and finally calling 10SIGNAL for each unexpected function
completion.

TIOYIELD - Ensure that any asynchronous function is given a chance to run. Some
devices are unable to perform an asynchronous request if an OPL program becomes
computationally intensive, using no /O (screen, keyboard etc}) at all. In such cases, the
OPL program should use 10YIELD before checking its status% variable. IOYIELD is the
equivaltent of 10SIGNAL followed by IOWATT — the JOWAIT returns immediately with the
signal from 10SIGNAL, but the IOWAIT causes any asynchronous handlers to run.

I0C (handle%, func%, var status%,var al,var az2)

IOC (handle%, func%, var status¥,var al)

IOC (handle%, func$, var status%) — Make an IO request with guaranteed
completion. This has the same form as 10A but it returns zero always (ie the return value
can be ignored). It is effectively the same as:

ret%=I0A (h%, £%, status%,...)
IF ret%<(
IF ret%=-46 :RAISE -1 :ENDIF
status%=ret% :TOSIGNAL
ENDIF

15: Advanced topics 189



10C allows you to assume that the request started successfully — any error is always
given in the status word status$. If there was an error, status$ contains the error
code and the 10SIGNAL causes the next IOWAIT to return immediately as if the error
occurred after completion. There is seldom a requirement to know whether an error
occurred on starting a function, and 10C should therefore be used in preference to 10A
nearly always.

ICCANCEL (handle$%)} — Cancels any outstanding asynchronous I/O request (10C or
10A) on the specified channel, causing them to complete with the completion status
word containing -48 ("I/O cancelled"). The return value is always zero and may be
ignored. Device drivers that support truly asynchronous services provide a cancel
service. The detailed effect of the cancel depends on the device driver. However, the
following general principles apply:

» The cancel precipitates the completion of the request (it does not stop the request
from completing).

* The cancel may or may not be effective (ie. the request may complete naturally
before the cancel is processed),

» After a cancel, you must still process the completion of the asynchronous request
(typically by immediately calling FOWAITSTAT to "use up" the signal).

The 10CANCEL function is harmless if no request is outstanding (eg if the function
completed just before cancellation requested).

err%=KEYA (var status$,6 key$(1}) - This is an asynchronous keyboard read
function. You must declare an integer array with two elements — here, key% (1) and
key% (2) - toreceive the keypress information. If a key is pressed, the information is
returned in this way:

* key% (1) is assigned the character code of the key.

= The least significant byte of key% (2) takes the key modifier, in the same way as
KMOD — 2 for Shift down, 4 for Control down and so on. KMOD cannot be used with
KEYA.

= The most significant byte of key% (2) takes the coumt of keys pressed (0 or 1).
KEYA needs an IOWAIT in the same way as I0A.

KEYA has been included in OPL because the handle of the keyboard driver is unknown
to the programmer. Otherwise it is equivalent to
IOA (kevhand%, 1l,status%,key$()).

crr%=KEYC {var status$%) — Canccls a KEYA.

Some useful IOW functions
1I0W has this specification:

ret¥=IO0W{handle%, func$,var argl,var arg2)
Here are some uses:

LOCAL a%(6)
a%(l)=x1% :a%{2)=yl%
a%(3)=x2% :a%(4)=y2%
IOW(-2,8,a%(),a%()) REM 2nd a% is ignored

reads the cursor position in the rectangle x1%, y1% (top left), x2%, y2% (bottom
right), writing the x and y positions to a% (5) and a% (6} respectively. This returns
0,0,not1, 1, as the top left.

190 15: Advanced topics



Set x1%,y1l%,x2%,y2% to the screen top left and bottom right (set by SCREEN), to
read the cursor position in the current screen.

LOCAL i%,a%{6)
1%=2
a%(l)=x1% :a%(2)=v1%
a% (3)=x2% :a%{4)=y2%
IOW(-2,7,1i%,a%(}))

clears a rectangle at x1%, y1% (top left), x2%, v2% (bottom right). If v2% is one
greater than y1%, this will clear part or all of a line.

Examplie of IOW screen functions

The final two procedures in this module call the two 10w screen functions described
beforehand. The rest of the module lets you select the function and values to use. It uses
the technique used in the ‘Friendlier interaction’ chapter of handling menus and
hot-keys by calling procedures with string expressions,

PROC iotest:
GLOBAL x1%,x2%,v1%,y2%
LOCAL i%,h$(2),a$(5)
x1%=2 :yv1%=2
x2%=25 :y2%=5 REM our test screensize
SCREEN x2%-x1%,v2%-v1%,x1%,.v1%
AT 1,1
PRINT "Text window IQO test"
PRINT *Psion-Esc quits®
h$="cr" REM our hot-keys
DO
1%=GET
IF i%=$122 REM Menu key
mINIT
mCARD "Set", "Rect”, %r
MCARD "Sense", "Cursor", %c
i%$=MENU
IF i% AND INTF(LOC(hS,CHRS(i%)))
as="proc +chr$ (i%)
e{a$}):
ENDIF
ELSEIF i% AND $200 REM hot-key
i%={1i%-5$200)
i%=L0C{(h%,CHRS (i%)) REM One of ours?
IF 1%
as="proc*+MIDS (h$, 1%, 1)
@(a$):
ENDIF REM ignore other weird kevpresses
ELSE REM some cother key, so return it
PRINT CHRS (i%);
ENDIF
UNTIL 0O
ENDP

15: Advanced topics 191



PROC procc:
LOCAL a&
ak=iocursé:
PRINT "x";l+(a& AND &ffff);
PRINT "y";1l+(a&/&10000};
ENDP

PROC procr:
LOCAL xx1%,vvyl%,xx2%,vv2a%
LOCAL xx1&,yyl&,xx2&,yy2&
dINIT "Clear rectangle®
dLONG xx1&, "Top left x",1,x2%-x1%
dLONG yyl&, "Top left yv~,1l,y2%-yl%
dLONG xx2&, "Bottom left x",2,x2%-x1%
dLONG yy2&, "Bottom left v*,2,y2%-v1%
IF DIALQOG
X21%=xx16&-1 :xx2%=xx2&-1
yy1%=yyl&-1 :yy2%=yy2&~1
iorect: (xx1%,vyl%, xx2%,yy2%)
ENDIF
ENDP

PROC iocursé:
LOCAL a%(4),a&
REM don’'t change the order of these!
a%(l)=x1% :a%(2)=v1%
a%${3)=x2% :a%(4)=y2%
IOW(-2,8,a%(),a%{)) REM 2nd a% is ignored
RETURN a&

ENDP

PROC iorect: (xx1%,yyl%,xx2%,vvy2%}
LOCAL i%,a%{6)
i%=2 :REM "clear rect" option
a%{l)=xx1% :a%(2)=yvl%
a%(3)=xx2% :a%(4)=yy2%
IoOW{-2,7,1%,a%())

ENDP

192 15: Advanced topics



OPL database information

ODBINFO var info% () is provided for advanced use only and allows you to use
08 and CALL to call DbfManager interrupt functions not accessible with other OPL
keywords.

The description given here will be meaningful only to those who have access to full
SDK documentation of the DbfManager services, which explains any new terms. Since
that documentation is essential for use of ODBINFO, no attempt is made here to explain
these terms.

ODBINFO returns info% ()}, which must have four elements containing pointers to four
biocks of data; the first corresponds to the file with logical name A, the second to B and
SO on.

Take extreme care not to corrupt these blocks of memory, as they are the actual
data structures used by the OPL runtime interpreter.

A data block which has no open file using it has zero in the first two bytes. Otherwise,
the block of data for each file has the following structure, giving the offset to each
component from the start of the block and with offset 0 for the 1s{ byte of the block:

Offset Bytes Description

0 2 DBF system’s file control block (handle)
or zero if file not open

offset in the record buffer to the current record
pointer to the field name buffer

number of fields

pointer to start of record buffer

length of a NULL record

non-zero if all fields are text

non-zero for read-only file

non-zero if record has been copied down
number of text fields

pointer to device name

[y
o
[ R e OV B o 2 NG I 8 T

Example

To copy the Descriptive Record of logical file B to logical file C:

PROC dbkiDesc:

LOCAL ax%,bx%,cx%,dx%,si%,di%
LOCAL info%(4),len%,psrc%,pdestt
ODBINFQ info%()
bx¥=PEEKW(info%(2)) REM handle of logical file B
ax%=51700 REM DbfDescRecordRead
IF 0S5 (5d8,ADDR{(ax%)} and 1

RETURN ax% OR $ff00 REM return the error
ENDIF
REM the descriptive record has length ax%
REM and is at address peekW{uadd{info%(2),8))
IF ax%=0

RETURN 0 REM no DescRecord

15: Advanced topics 193



ENDIF
len%=ax%+2 REM length of the descriptive
REM record read + 2-byte header
perc$=PEEKW (uadd{info%(2)},8))
pdest%=PEEKW (vadd{(info% (3),8))
CALL{(%al,0,len%, 0,psrck, pdest%)
REM copy to C’'s buffer

cx%=len%
bx%=PEEEW(info%(3)) REM handle of logical file C
ax%=51800 REM DbhfDescRecordWrite

IF 0S($d8,ADDR(ax%)) and 1
RETURN ax% OR S£f£00
ENDIF
RETURN O REM success
ENDP

DYL handling

This section contains a complete reference description of OPL’s support for accessing
previously created dynamic libraries (DYLs). These libraries have an object-oriented
programming (COP) uset-interface and several have been built into the Workabou:
ROM for use by the ROM applications. DYLs cannot be created using OPL.

Since a vast amount of documentation would need to be provided to describe the
essential concepts of OOP and the services available in existing DYLs, no attempt
is made to supply it here. This section simply introduces the syntax for all the OOP
keywords supported in OPL with a brief description of each. Also, OOP terminology is
used here without explanation, to cater for those who have previous experience of DY L
handling in the ‘C’ programming language.

‘var’ arguments

The use of ‘var’ and # for arguments was discussed earlier in this chapter in the section
‘1/() functions and commands’. The DYL handling keywords use ‘var’ and # in the
same way, for example:

ret%=SEND (pobj%, method%, var pl,var p2,var p3).

This is because many DYL methods need the address of a variable or of a structure to
be passed to them. '

When you use a LOCAL or GLOBAL variable as the ‘var’ argument, the address of the
variable is used. (You cannot use procedure parameters or field variables, for this
reason.) If you use a # before a ‘var’ argument, though, the argument/value is used
directly, instead of its address being used.

If, for example, you need to call a method with p1 the address of a long variable a&,
p2 the integer constant 3, and p3 the address of a zero terminated string “X", you could
call it as follows:

8$="X"+CHRS (0) REM zero terminate
p%=UADD (ADDR{s$), 1} REM skip leading count byte
ret%=SEND{pobj%,method%, a&, #3, #p%) :

194 15: Advanced topics



The address of a& is passed because there is no #. 3 and the value in p% are passed
directly {no address is taken) because they are preceded by #.

Loading a DYL

ret%=LOADLIB(var cathand%,name$, 1ink%) loads and optionally links a
DYL that is not in the ROM. Il successiul, writes the category handle to cathand®%
and returns zero. You would normally only set 1ink% to zero if the DYL uses another
DYL which you have yet to load — in which case LINKLIB would subsequently be used.
The DYL. is shared in memory if already loaded by another process.

Unloading a DYL

ret$=UNLOADLIB (cathand$%) unloads a DYL from memeory. Returns zero if
successful.

Linking a DYL

LINKLIB cathand% links any libraries that have been loaded using LOADLIB.
LINKLIB is not likely to be used much in OPL — pass 1ink% with a non-zcro valuc to
LOADLIB instead.

Finding a category handie given its name

ret$=FINDLIB(var cathand%,name$) finds DYL category name$ (including
* DYL" extension) in the ROM. On success returns zero and writes the category handle
to cathand$. To get the handle of a RAM-based DYL, use LOADLIB which guarantees
that the DYL remains loaded in RAM. FINDLIB will get the handle of a RAM-based
DYL but does not keep it in RAM.

Converting a category number to a handle

cathand$=GETLIBH (catnum%¥) convcrts a category number catnum® to a
handle. If catnum$ is zero, this gets the handle for OPL.DYL.

Creating an object by category number

pobj%$=NEWORJ {catnum%, clnum%) creates a new object by category number
catnum$ belonging to the class clnum$, retuming the object handle on success or
zero if out of memory. This keyword simply converts the category number supplied to a
category handle using GETLIBH and then calls NEWORJH.

Creating an object by category handle

pobj%=NEWOBJH {cathand%, clnum%) creates a new object by category handle
cathand% belonging to the class clnum$, returning the object handle on success or
zero if out of memory.

Sending a message to an object

ret%=SEND (pobi%,method%)

ret%=SEND (pobj%,method%, var pl)

ret%=SEND (pobij%, method%,var pl,var p2)
ret$=SEND{pobj%,method%,var pl,var p2,var p3)

send a message to the object pobj% to call the method number method$, passing
between zero and three arguments depending on the requirements of the method, and
returning the value returned by the selected method.

15: Advanced topics 195



Protected message sending

ret$=ENTERSEND (pobj%, method%)

ret¥$=ENTERSEND (pobij%,method%, var pl)
ret3¥=ENTERSEND (pobj%, method%$, var pl,var p2)
ret%=ENTERSEND (pobj%,method%, var pl,var p2,var p3)
send a message to an ohject with protection.

Methods which return errors by leaving must be called with protection.

ENTERSEND is the same as SEND except that, if the method leaves, the error code is
returned to the caller; otherwise the value returned is as returned by the method.

Use ENTERSENDO (described next) for methods which leave but do not return a value
explicitly on success.

Protected message sending (returns zero on success)

ret$=ENTERSENDO {pckj%, method%)

ret3$=ENTERSENDO {pobj%, method%,var pl)

ret$=ENTERSENDO (pobj%,method%, var pl,var p2)
ret%=ENTERSENDO (pobj%, method%, var pl,var p2,var p3)

send a message to an object with protection and guarantee that the known value zero is .
returned on success. Otherwise ENTERSENDO 1s the same as ENTERSEND,

Methods which return errors by leaving but return nothing (or NULL) on success must
use ENTERSENDO. Besides providing protection, ENTERSENDO also returns zero if the
method did not leave, or the negative error code if it did.

If ENTERSEND were incorrectly used instead and the method completed successfully (i.e.
without leaving), the retum value would be random and could therefore be in the range
of the error codes implying that the method failed.

Dynamic memory allocation

Overview of memory usage

For each running OPL program (or process) the operating system automatically
allocates memory which can grow up to a maximuim of 32 bytes less than 64K. The
actual memory used, up to this limit, depends on the requirements of the process and is
automatically grown or shrunk as necessary. This memory is called the process data
segment and contains all the data used by the process as well as some fixed length data
at low memory in the segment needed by the operating system to manage the process
and for other system data.

Although the data segment for an OPL process contains several components, the only
component of significant interest to the OPL programmer is the process heap. This
section describes several keywords for accessing the heap.

The heap is essentially a block of memory at the highest addresses in a process data
segment, so that the operating system can grow and shrink the heap simply by growing
and shrinking the data segment and without having to move other blocks of memory at
higher addresses in the data segment. The heaps of different processes are totally
independent — you need concern yourself only with the heap used in your own data
segment.

196 15: Advanced topics



The heap allocator

The heap allocator keywords are used to allocate, resize and free variable length
memory cells from the process heap. Cells typically range in size from tens of bytes to
a few kilobytes. Allocated cells are referenced directly by their address; they do not
move to compact free space left by freed celis.

Heap allocator keywords are:

* ALLOC allocates a cell of specified size, returning its address.

* FREEALLOC frees a previously allocated cell, which is returned to the heap.
* REALLOC changes the size of a cell, returning its new address.

* ADJUSTALLOC opens or closes a gap in the middle of a cell (useful for insertion or
deletion of cell content), changing the size of the cell as appropriate.

» LENALLOC returns the size of a cell.

The heap structure

Initially, the heap consists of a single free cell. After a number of calls to allocate and
tree cells, the heap typically consists of ranges of adjacent allocated cells separated by
single free cells (which are linked). If a cell being freed is next to another free cell the
two cells are automatically joined to make a single cell to prevent the free cell linked
list from growing unnccessarily.

Writing beyond the end of a cell will corrupt the heap’s integrity. Such errors are
difficult to debug because there is no immediate effect — the corruption is a "time
bomb™. It will eventually be detected ~ resulting in the process exiting prematurely - by
a subsequent allocator call such as FREEALLOC.,

Growing and shrinking the heap

The heap is not fixed in size. The operating system can grow the heap to satisfy
allocation requests or shrink it to release memory back to the system,

Allocation of cells is based on "walking" the free space list to find the first free cell that
is big enough to satisfy the request. If no free cell is big enough, the operating system
will attempt to grow the data segment to add more free space at the end of the heap.

If there is no memory in the system to accommodate growth or if the data segment has
reached its maximum size of (approximately) 64K, the allocate request fails. There are
few circumstances when an allocate request can be assumed to succeed and calls to
ALLOC, REALLOC and ADJUSTALLOC should have error recovery code 1o handle a failure
to allocate.

Lost ceils

There are cases in which programs allocate a sequence of cells which must either exist
as a whole or not at all. If during the allocate sequence one of the later allocations fails,
the previously allocated cells must be freed. If this is not done, the heap will contain
unreferenced cells that consume memory to no purpose.

When designing muiti-cell sequences of this kind, you should be mindful of the
recovery code that must be written to free partially built multi-cell structures. The fewer
the cells in such a structure, the simpler the recavery code is.

15: Advanced topics 197



Internal fragmentation

The free space in the heap is normally fragmented to some extent; the largest cell that
can be allocated is substantially smaller than the total free space. Excessive
fragmentation, where the free space is distributed over a large number of cells — and
where, by implication, many of the free cells are small — should be avoided because it
results in inefficient use of memory and reduces the speed with which cells are
allocated and freed.

Practical design hints for limiting internal fragmentation are:

= Avoid using the heap for small, highly transient data structures for which ordinary
variables are adequate. High frequency cycling through allocate and free pairs,
"churns” the heap and leads to a long free space list.

= When you have a large number of variable length data structures — particutarly when
they are frequently resized, "granularise” them (ie. round the allocation up to a
multiple of some reasonable value) so that you decrease the chance of leaving small,
unusable free space cells.

The OPL runtime interpreter and the heap

The OPL. runtime interpreter, which actually runs your program, uses the same data
segment and heap as your program and makes extensive use of the heap. It is very
important that you should understand the interpreter’s use of the heap - at least to a
limited extent — to avoid substantial internal fragmentation as described above.

Whenever an OPL procedure is called, a cell is allocated to store data required by the
interpreter to manage the procedure. The same cell contains all the variables that you
have declared in the procedure. When cacheing is not being used, the same cell also
contains the translated code for the procedure which is interpreted. When the procedure
returns {or implicitly returns due to an error) the cell is freed again back to the heap.
This use of the heap is very tidy — adjacent cells are allocated and freed with little
opportunity for leaving gaps in the heap.

Unfortunately various other keywords also canse cells to be allocated and these can
cause fragmentation, For example, LOADM, CREATE, OPEN etc. alf allocate cells;
UNLOADM, CLOSE etc. free those cells. If a procedure is called which uses CREATE to
create a data file, the procedure cell is allocated, followed by the CREATE ceil and the
procedure cell is then freed when the procedure returms. The heap structure therefore
contains a gap where the procedure cell was, which remains until all cells at higher
addresses are freed.

Although a small number of gaps are not too serious and should eventually disappear in
most cases anyway, the new heap allocating keywords provide ample opportunity to
fragment the heap. Provided that you create and free cells in a careful and structured
way, where any task needing the allocator frees them tidily on completion, there should
not be a problem.

Warning — peeking/poking the cell

Using the allocator is by no means simple in OPL since the data in an allocated cell
usually has to be read or written in OPL using the PEEK and POKE set of keywords
which are intrinsically subject to programming error. OPL does not provide good
support for handling pointers (variables containing addresses), which are basic to heap
usage, nor for complicated data stmctures, so that it is al} too easy to make simple
programming errors that have disastrous effects.

For these reasons, you are recommended to use the heap accessing keywords only when
strictly necessary (which should not be very often) and to take extreme care when you

198 15: Advanced topics



do use them. On the other hand, for programmers with previous experience of dynamic
memory allocation, the heap allocation keywords will often prove most useful.

Reasons for using the heap allocator
A few common instances where the allocator might be used are:

» when the amount of data to be stored is variable or cannot be determined at the time
of writing the program. Without using the allocator, you would have to declare a
large array to hold the data always even when it turns out that only a few bytes are
needed in a particular case. Using the allocator allows you to grow the cell
containing your data as and when required.

« the amount of data may be specified in a file or by the user of the program. Once
again, you would need to declare a possibly unnecessarily large array to cope with
all allowed cases.

= a system of library procedures might use a common celi, usually calted a control
block, to store common data. You could have one procedure creating the cell and
initialising data in it, other procedures in the system could be passed the address of
the cell, using and possibly updating the data in it, and finally a further procedure
conld free the cell.

This concept will be familiar to you if you have used handles for the /O keywords,
where the handle references a cell used internally by the I/O system.

If you did not use the allocator in this case, you would probably need to declare a
global array in the procedure calling the library procedures, with the disadvantages
that the name and size of the array would need to be fixed for all time — even when a
better alternative mechanism has been devised for the library code with different
data requirements.

« ADJUSTALLOC allows you to insert or remove data at the start or in the middie of data
that has previously been set up. With an array, you would need to copy each clement
to the next or previous element to make or close a gap.

Using the heap allocator

Allocating a cell

Use pcell%=ALLOC {size$%) to allocate cell on heap of specified size returning the
pointer to the cell or zero if there is not enough memory. The new cell is
uninitialised - you cannot assume that it is zeroed.

Freeing an allocated cell

Use FREEALLOC pcell% to free a previously allocated cell at pcell% as returned,
for example, by ALLOC. Does nothing if pcell$ is zero.

Changing a cell’s size

Use pcelln%$=REALLOC (pcell%, size%) to change the size of a previously
allocated cell at address pcell% to size%, returning the new cell address or zero if
there is not enough memory. If out of memory, the old cell at pcell% is left as it was.

15: Advanced topics 199



If successful, pcelln% will not be the same as pcell$ on return only if the size
increases and there is no free cell following the cell being grown which is large enough

to accomodate the extra amount.

Inserting or deleting data in cell

Use pcelln$=ADJUSTALLOC (pcell%, cffsetd, amount$) to open or close a
gap at of £set% within the atlocated cell pcell% returning the new cell address or
zero if there is not enough memory. of £set% is 0 for the first byte in the cell. Opens a
gap if amount% is positive and closes it if negative. The data in the cell is
automatically copied to the new position.

If successful, pcelln% will not be the same as pcell% on return only if amount% is
positive and there is no free cell following the cell being adjusted which is large enough

to accomodate the extra amount.

Finding out the cell length

Use len%=LENALLOC (pcell$%) to get the length of the previously allocated cell at

pcell%.

Example using the allocator

This example illustrates the careful error checking which is essential when using the
allocator. RAISE is used to jump to the error recovery code.

If you cannot understand this example it would be wise to avoid using the allocator

altogether.

local pcell% rem pointer

LOCAL pcelln% rerm
LOCAL p% rem
LOCAL n% rem
ONERR el
pcell%=ALLOC(2+2%8) rem
rem

IF pcell%=0

RAISE -~10 rem

ENDIF
POKEW pcells, 2 rem
rem

POKEF UADD{pcell%,2),2.72
POKEF UADD(pcell%,10),3.1

to cell

new pointer to cell
general pointer
general integer

holds an
2 B-byte

integer and
floats initially

out of memory; go to el::

store integer 2 at start of cell

ie. no,
rem
4 rem

pcelln%=REALLOC (pcell%,2+3*8) rem

IF pcelln%=0
RAISE -10
ENDIF
pcell%=pcelln%
n%=PEEKW (pcell%)
POKEF UADD{pcell%, 2+n%*8)
POKEW pcell%,n%+1

200 15: Advanced topics

rem

rem
rem
;1.0 rem
rem

of floats

store fleoat 2.72
store float 3.14

space for 3rd float
out of memory

use new cell address
no. of fleoats in cell

1.0 after 3.14
one more float in cell



pcelln%=ADJUSTALLOC (pcell%,2,8) rem open gap before 2.72
IF pcelln%=0

RAISE -10 rem cut of memory
ENDIF
pcell%=pcelln% rem use new cell address
POKEF UADD(pcell%,2),1.0 rem store 1.0 before 2.72
POKEW pcell%, 4 rem 4 floats in cell now

p%=UADD (pcell%, LENALLOC (pcell%)) rem byte after cell end

p%=USUB(p%, 8} rem address of final float
POKEF p%,90000.1 rem overwrite with 9%0000.1
RAISE 0 rem clear ERR value

el::

FREEALLOC pceall% rem free any cell created

IF err<>0

e rem display error message etc
ENDIF
RETURN ERR

15: Advanced topics 201



202 15: Advanced topics



16

Overview

Keywords can be subdivided into functions, which return a
value, and commands, which do not. In practice you use
functions and commands together, often using functions as if
they were commands, ignoring the values they return.

This chapter lists all the keywords, grouped according to
their purpose. Use this chapter if you know what you’d like to
do, but not which function or command will do it.

The chapter which follows this one lists the keywords
alphabetically, with explanations and full specifications.

16; Overview 203



Program control

Loops, branches, jumps

204 16: Overview

Repeat a set of instructions DO...UNTIL
WHILE.. ENDW

Do either one set of instructions or another set, or another, IF..ENDIF

or another...

Go..,

.-.to a specified label GOTO

...to one of a list of labels VECTOR/ENDV

...to the end/start of a repeating set of instructions BREAK, CONTINUE

...back to the calling procedure RETURN

End the program STOP

Error handling

Raise an etror RAISE

Put an explanatory comment in your program REM

Declare an error-handler ONERR

Let the program continue after an error TRAP

After an error, find out what the error was ERR, ERR$
Screen and keyboard control

Display a string to be edited and get a value from the EDIT

keyboard

Get a value from the keyboard INPUT

Display text, numbers etc. PRINT

Set screen update method gUPDATE

Pause...

...for a numbcr of seconds PAUSE

...until a key is pressed GET, GET$

Position or hide the cursor AT, CURSOR



Clear the text window

CLS

Search for those records which contain a certain string

Sound the buzzer BEEP
Set the size/position of the text window SCREEN
Get information on the text window SCREENINFO
Set text window font and style FONT, STYLE
Find out which key was pressed, if any KEY, KEY$, GET, GET$
Find out what combination of modifiers was pressed KMOD
Disable/enable stopping from a running program ESCATDE Off/On
Turn the Workabout off OFF
Files
General file management
Copy a file COPY
Delcte or rename a file DELETE, RENAME
Check to see if a certain file exists EXIST
Find out what files there are DIRS
OPL procedures and modules
Set up a procedure cache CACHE
Load an OPL module file so you can use the procedures in it LOADM
Remove a module from memory UNLOADM
Data files
Create a new data file CREATE
OPEN or CLOSE a data file OPEN, OPENR, CLOSE
Use a different data file that has been opened USE
Copy a data file, optionally appending to another data file, COMPRESS
and removing deleted records
Once a data file has been OPENed, you can:
Make a new record APPEND
Change a record UPDATE

FIND, FINDFIELD

16: Overview 205



Erase a record

Move to a different record

Count the records
Find whether you’re at the end of the file yet
Find the current record number

Find the number of bytes used by the current record

Managing directories
Create directory

Set current directory

Remove directory

{

ERASE

FIRST, LAST, NEXT,
BACK, POSITION

COUNT
EOF

POS
RECSIZE

MKDIR
SETPATH
RMDIR

Memory

Declare variables

Find how much free memory there is on a device

GLOBAL, LOCAL
SPACE

Printing

Specify a device or file to print to
Close the print device or file opened with LOPEN

Print to a device or file

LOPEN
LCLOSE
LPRINT

Numbers

Trigonometry
Trig functions

Convert between degrees and radians

Other functions
Raise ¢ to a power

206

16: Overview

{ COS, SIN, TAN,

ACOS, ASIN, ATAN
RAD. DEG

EXP



Logarithms LN, LOG

Pi as a constant FI

Square root SOR

Use random nimbers RND, RANDOMIZE
Unsigned integer/pointer arithmetic UADD, USUB

Lists of numbers

Find the greatest or smallest value in the list MAX, MIN
Average the list MEAN
Add up the list SUM

Find the standard deviation or variance STD, VAR

Changing the format of numbers

Knock the minus sign off a number ABS, IABS
Take whole number, removing any fractional part INT, INTF
Convert...
...an integer into floating-point FLT
...an integer into a hexadecimal string HEX$
...a number into a string FIX$, GEN$
SCI$, NUM$
...a string into a number EVAL, VAL
Strings
Copy characters from a string LEFTS, MID$, RIGHTS
Repeat a string REPTS
Make a string upper or lower case LOWERS, UPPER$
Find ouu...
..11ow long a string is LEN
...the character code of the first character of a string ASC
...where a certain string is within a string LOC
Convert...
... a string of digits to a number VAL

16: Overview 207



...a number to a string FIX$, GEN$

SCI$, NUM$
Get the character with a certain character code CHR$
Date and time
Find out the current date and time...
...as a string DATIMS
...Just the current time SECOND,
MINUTE, HOUR
...just the current date DAY, MONTH, YEAR
Find ou...
...the number of days between two dates DAYS

...what day of the week, or what week number, a certain DOW, WEEK
date falls in

Express...

...1-12 as the name of a month MONTHS$

...1-7 as a day of the week DAYNAMES$

Convert between time formats {DATETOSECS
SECSTODATE

Graphics

Drawing commands

Set current position gAT, gMOVE

Draw a line gLINEBY, gLINETO

Draw a sequence of lines gPOLY

Draw a rectangle {gB 0X, gBORDER
gXBORDER

Fill a rectangle gFILL

[nvert a rectangle gINVERT

Scroll a rectangle gSCROLL

Get current position gX, gY

Display a running clock gCLOCK

208 16: Overview



Draw a 3-D button (key)

Draw a lozenge

Displaying graphics text

Display a list of expressions
Display text in a cleared box
Display text neatly clipped

Find width required by text
Display text underlined/highlighted

Seftting styles

Set font to use

Sect to user-defined fonts

Set graphics to set / clear / invert points

Set text to set / clear / invert / replace points

Set text to bold / underline f inverse / double / mono / italic

Windows and bitmaps
Create a new window

Set position and/or size of a window
Set order to show windows

Get order of a window

Set window visible / invisible

Get screen position of a window

Create a bitmap

Load a bitmap from file

Clear a window / bitmap

Save window / bitmap to bitmap file
Close down a window / bitmap

Set which window / bitmap to use

Set grev on/off in a window

Fill an area with repetitions of another window / bitmap

gBUTTON

gDRAWOBIJECT

gPRINT
gPRINTB
gPRINTCLIP
gTWIDTH
gXPRINT

gFONT
{ gLOADFONT

gUNLOADFONT

¢GMODE
¢TMODE
gSTYLE

gCREATE
gSETWIN
gORDER
gRANK
gVISIBLE

{gORIGINX
gORIGINY

gCREATEBIT
glLOADBIT
gCLS
gSAVEBIT
gCLOSE
gUSE

{ ¢GREY
DEFAULTWIN

gPATT

16: Overview

209



Copy an area from one window / bitmap to another gCOPY

Read data back from a window / bitmap gPEEKLINE

Get ID number of a window / bitmap gIDENTITY

Get size of a window / bitmap gWIDTH, gHEIGHT

Get status information about a window / bitmap and about  gINFO

the cursor

Sprites

Create a sprite CREATESPRITE

Define bitmap-sets for a sprite {APPENDSPRITE
CHANGESPRITE

Draw a sprite DRAWSPRITE

Set a sprite’s position POSSPRITE

Close a sprite CLOSESPRITE

Menus

Start a new set of menus miINIT

Define a menu mCARD

Display menus MENU

Dialogs

Start a new dialog dINIT

Start a new dialog using small fonts dINITS

Position a dialog dPOSITION

Define text for a dialog dTEXT

Define an edit box for a dialog dEDIT

Define a secret edit box for a dialog dXINPUT

Define a filename edit box for a dialog dFILE

Define a choice list for a dialog dCHOICE

Define a numeric edit box for a dialog dFLOAT, dLONG

210 16: Overview



Define a date/time edit box for a dialog

dDATE, dTIME

Define exit keys for a dialog dBUTTONS

Display a dialog DIALOG

Display a simple "alert" dialog ALERT
Status Window

Display/hide status window STATUSWIN

Get status window information STATWININFO

Set a program’s name SETNAME
Screen messages

Display information messages GIPRINT

Display ‘busy’ messages BUSY
Advanced use

Run machine code USR, USR$

Find out where a certain variable is in memory ADDR

Store a value in a specific place in memory POKE commands

Find out the value stored at a certain place in memory PEEK commands

Open any type of file ICOPEN

Read from a file opened with IODOPEN IOREAD

Write to a file opened with I00PEN IOWRITE

Close a file opened with 100PEN IOCLOSE

Position within a file opened with I00PEN IOSEEK

Keywords which provide low-level access 10 the Workabout

Call an operating system service CALL, OS

Perform an aysnchronous /O function IOA, 10C

16: Overview

211



Cancel an aysnchronous I/Q function

Wait for completion of a function performed by IOA
or [OC

Signal comptletion of an [/O function
Ensure an asynchronous handler runs
Perform a synchronous I/O function
Perfom an asynchronous keyboard read
Cancel a KEYA

Get command line information

Parse a full file specification

Check for system events

Mark an OPA as locked or uniocked
Get system-level info on data files
Load/link a DYL

Uninad a DY1.

Find category handles

Create new objects

Send a message to an object

Allocate a heap cell

Free an allocated cell

Change size of aliocated cell

Insert or delete section of cell

Find tength of allocated cell

Remove returned procedures from a cache
Read cache index header

Read cache index record

212 16: Overview

{

{

IOCANCEL

[OWAIT
[OWAITSTAT

TOSIGNAL
IOYIELD

Iow

KEYA

KEYC

CMDS$, GETCMD$
PARSE$

GETEVENT
TESTEVENT

LOCK

ODBINFO
LOADLIB, LINKLIB
UNLOADLIB
FINDLIB, GETLIBH
NEWOBJ), NEWOBJH

SEND, ENTERSEND
ENTERSENDO

ALLOC
FREEALILOC
REALLOC
ADJUSTALLOC
LENALLOC
CACHETIDY
CACHEHDR
CACHEREC



17

Alphabetic listing

This chapter explains how keywords (functions and
commands) are specified and used, then lists them all
alphabetically. Use this chapter if you know which keyword
you need to use, but need to check how to use it. Each one is
listed with the specification of its usage, then a description of
what it does.

Note: the example programs in this chapter do not include full error handling
code. This means that the programs have been kept short and easy to
understand, but may fail if, for example, you enter the wrong type of value for
a variable.

If you want 1o develop programs from these examples, it is recoirmended that
you add some error handling code to them. An earlier chapter covers error
handhing.

17: Alphabeiic listing 213



Typing commands, functions and arguments

» Commands, functions and arguments may be typed in any combination of UPPER
and lower case.

* To put more than one statement on a line, separate them by a space followed by a
colon —eg: CLS :PRINT "hello" :GET

Any commands may be strung together like this, and as many of them as you like —
provided the total line length does not exceed 255 characters. The colon is optional
before a REM statement,

* Where one space is allowed, any number of spaces is allowed, eg:
CLS : PRINT "Press Esc’

= Functions may be used as arguments to other functions or commands - eg
PRINT LEFTS${AS$,3) and a=COS{ABS (x)) are OK.

How commands are specified

Commands are specified as COMMAND argument (s} where argument (s) follow
the command after a space and are separated from each other by commas. The
arguments may include:

= Floating-point expression (eg SIN{30) +2), variable {eg price or z) or literal
value (eg 78 . 9)

« Integer expression (eg 3*567), variable (eg price%, or prices if in range) or
literal value (eg -5676)

» Long integer expression (eg 3*56799), variable (eg profitg) or literal value
{eg ~5676869)

= String expression (eg b$+MIDS$ (a$) ), variable (eg prices$) or literal value (eg
] Word " )

» Logical file name (&, B, C or D)
» Field name
For example, AT X%, Y% might be used like this; AT 15,2

How functions are specified

Functions are specified as variable=FUNCTION (argument (s)) where
variable may be £% or £& for a function returning an integer or long integer result,
f for a function returning a floating-point result, or £3 for a function returning a string
result. The argument(s):

= follow the command immediately
* are enclosed in brackets ()
= are separated from each other in the brackets by a comma

* may include variables, literal values or expressions of the appropriate kind - integer,
long integer, floating-point or string, as described above.

Eg £$=LEFT$ (g$, x8) might be used like this; PRINT LEFTS (fname$, 2)

If you use the wrong type of number as an argument it will, where possible, be
converted. For example, you can use an integer for a floating-point argument, or a long
integer for an integer argument. If the conversion is not possible - for example, if you
use a floating-point number for an integer argument and its value is outside the range of
integers — an error will be produced and the program stopped.

Some functions, such as GET, have no arguments.

214  17: Alphabetic listing



ABS
Usage:
a=aBS (x)

Returns the absolute value of a
floating-point numher — that is, without
any +/- sign - for example
ABS(-10.099) is 10.099

If 2z is an integer, you won't get an error,
but the result will be converted to
floating-point — for example ABS (-6} is
6. 0. Use 1ABS to return the absolute
value as a long integer,

ACOS

Usage:

a=ACOS (x)

Retuflns the arc cosine, or inverse cosine
(cos ') of x.

x must be in the range -1 to +1. The
number returned will be an angle in
radians. To convert the angle to degrees,
use the DEG {unction.

ADDR
Usage:
a%=ADDR (variable)

Returns the address at which variable
is stored in memory.

The values of different types of variables
are stored in bytes starting at

ADDR (variable). See PEEK for
details.

See also UADD, USUB,

ADJUSTALLOC
Usage:

prelln®=ADJUSTALLOC (pcell¥,
off%,am¥)

Opens or closes a gap at of £% within the
allocated cell pcell%, returning the new
cell address or zero if out of memory.

o ££% is O for the first byte in the cell.
Opens a gap if the amount am% 18
positive, and closes it if negative.

ALERT
Usage — any of:

r%=ALERT(mIS, m2s,bls, b2s,b35)
r%=ALERT(mls, m25,b15,b2S)
r$=ALERT (m1%,m2$, b13)
r%=ALERT (m1$,m2$)

r%=ALERT (ml5)

Presents an alert — a simple dialog — with
the messages and keys specified, and
waits for a response. m1$ is the message
to be displayed on the first line, and m2 5
on the second line. If m2$ is not supplied
or if it is a ne' string, the second
message line is left blank.

Up to three keys may be used. b1$,b2$
and b3$ are the strings (usually words)
to use over the keys. b1l$ appears over
an Esc key, b2$ over Enter, and b3$
over Space. This means you can have
Esc, or Esc and Enter, or Esc,
Enter and Space keys. If no key
strings are supplied, the word
CONTINUE is used above an Esc Kkey.

The key number — 1 for Esc, 2 for
Enter or 3 for Space ~ is returned.

ALLOC
Usage:
pcell%=ALLOC (size¥)

Allocates a cell on the heap of the
specified size, returning the pointer to the
cell or zero if there is not enough
memory.

APP
Usage:

APP name

ENDA

Begins definition of an OPA. name gives
the name of the OPA.

See the ‘Advanced topics’ chapter for
more details of OPAs.

17: Alphabetic listing 215

spiomAax 140



APPEND
Usage:

APPEND

Adds a new record to the end of the
current data file. The record which was
current is unaffected. The new record, the
last in the file, becomes the current
record.

The record added is made from the
current values of the field variables
A.fieldl$,A.field2$, and soon,
of the current data file. If a field has not
been assigned a value, zero will be
assigned to it if it is a numeric field, or a
null string if it is a string field,

Example:

PROC add:

OPEN "address",A,fl$,f28,£38
PRINT "ADD NEW RECORD"
PRINT "Enter name:",
INPUT A.f13

PRINT "Enter street:",
INPUT A.£258

PRINT "Enter town:",
INPUT A_f35

APPEND

CLOSE

ENDP

To overwrite the current record with new
field values, use UPDATE.

APPENDSPRITE
Usage:

APPENDSPRITE time%,bits(),
dx%,dv$
or

APPENDSPRITE time%, bits()

Appends a single bitmap-set to the
current sprite.

time% gives the duration in tenths of
seconds for the bitmap-set to be
displayed before going on to the next
bitmap-set in the sequence.

bits () contains the names of bitmap
files in the set, or "" to specify no bitmap.
The array must have at least 6 elements:
bit$ (1} for setting black pixels

216  17: Alphabetic listing

bits$ (2) for clearing black pixels
bit$ (3) for inverting black pixels
bit$ (4) for setting grey pixels
bit$ (5} for clearing grey pixels
bits (6} forinverting grey pixels

All the bitmaps in a single bitmap-set
must be the same size or ‘Argument’
error (-2) is raised on attempting to draw
the sprite. Bitmaps in different
bitmap-sets may diffcr in size,

dx$% and dy%, if supplied, are the (x,y)
offsets from the sprite position to the
top-left of this bitmap-set, with positive
for right and down. The default value of
each is zero.

ASC
Usage:

a¥=ASC{as)

Returns the character code of the first
character of a$.

See the ‘Character set and character
codes’ appendix at the end of this manual
for the character codes. Alternatively, use
A%=%char to find the code for char —
eg %X for °X’,

If a$ is a null string (
value 0.

Example A%=ASC (*hello") rewms
104, the code for h.

(L] 13

) ASC returns the

ASIN

Usage:

a=ASIN{x)

Retujns the arc sine, or inverse sine
(SIN"') of x.

x must be in the range -1 to +1. The
number returned will be an angle in
radians. To convert the angle to degrees,
use the DEG function.

AT
Usage:
AT x%,y%

Positions the cursor at x% characters
across the text window and y% rows
down. AT 1, 1 always moves to the top



left corner of the window. Initially, the
window is the full size of the screen, but
you can change its size and position with
the SCREEN command.

A common use of AT is to display strings
at particular positions in the text window.
For example:

AT 5,2 :PRINT "message'.

« PRINT statements without an AT
display at the left edge ot the window
on the line below the last PRINT
statement (unless you use *,’or *;7)
and strings displayed at the top of the
window eventually scroll off as more
strings are displayed at the bottom of
the window,

= Displayed strings always overwrite
anything that is on the screen — they
do not cause things below them on the
screen to scroll down.

Example:

PROC records:
LOCAL k%
OPEN "clients",A,name$,tels
DO
CLS
AT 1,7
PRINT "Press a key to"
PRINT "step to next record"
PRINT "or { to guit®
AT 2,3 :PRINT A.name$
AT 2,4 :PRINT A.teld
NEXT
iIFr EOF
AT 1,6
FIRST
ENDIF
k%=GET
UNTIL k%=%Q OR k%=%g
CLOSE
ENDP

:PRINT "EndOfFile"

ATAN
Usage:

a=ATAN (x)

Returns the are tangent, or inverse
tangent (TAN ') of x.

The number returned will be an angle in
radians. To convert the angle to degrees,
use the DEG function.

BACK
Usage:
BACK

Makes the previous record in the current
data file the current record.

If the current record 1is the first record in
the file, then the current record does not
change.

BEEP
Usage:
BEEFP time%,pitch%

O
3
3
<
S
g

Sounds the buzzer. The beep lasts for
time% /32 seconds — so for abeep a
second long make time%=32, etc. The
maximum is 3840 (2 minutes).

The pitch (frequency) of the beep is
512/ (pitch%+1) KHz,

BEEP 5, 300 gives a comfortably
pitched beep.

If you make time% negative, BEEP first
checks whether the sound system is in
use (perhaps by another OPL programy,
and returns if it is. Otherwise, BEEP waits
untii the sound system is free.

Example — a scale from middie C:

PROC scale:
LOCAL freq,n$%
REM n% relative to middle A
n%=3 REM start at middle C
WHILE n%<16
freqg=440*2**(n%/12.0)
REM middle A = freqg 440Hz
BEEP 8,512000/freqg-1.0
n%=n%+1
IF n%=4 OR n%=6 OR n%¥=9% OR
n%=11 OR n%=13
n¥=n%+1
ENDIF
ENDWH
ENDP

(Note that the IF statement should all be
on the same ling).

17: Alphabetic listing 217



Alternatively, sound the buzzer with this
statement: PRINT CHRS (7). This
beeps at a fixed pitch for a fixed length
of time.

(Note that sounds produced by the
Workabour are not as loud as those from
the Series 3a; this is because the
Workabout has a buzzer and not a
loudspeaker.)

BREAK

Usage:

BREAK

Makes a program performing a
DO..UNTIL or WHILE..ENDWH loop exit the

loop and immediately execute the line
following the UNTIL or ENDWH statement.

Example:
DO

BUSY

Usage - one of:

BUSY str$,cg,delay$
BUSY strs,c%®

BUSY strs

BUSY OFF

BUSY strg displays str$ in the
bottom left of the screen, until

BUSY OFF is called. Use this to indicate
‘Busy’ messages, usually when an OPL
program is going to be unresponsive to
keypresses for a while.

If ¢% is given, it controls the corner in
which the message appears: -

o% corner
¢ top left
1 bottom left {default)

218 17: Alphabetic listing

2 top right

3 bottom right

delay% specifies a delay time (in half
seconds) before the message should be
shown. Use this to prevent ‘busy’

messages from continually appearing
very briefly on the screen,

Only ore message can be shown at a
time. The string to display can be up to
19 characters long.

CACHE

Usage — one of:

CACHE init%, max$
CACHE ON
CACHE COFF

CACHE creates a procedure cache of a
specified initial number of bytes init$%
which may grow up to the maximum size
max%. You should usually TRAP this.

Once a cache has been created,

CACHE OFF prevents further cacheing,
although the cache is still searched when
calling subsequent procedures.

CACHE ON may then be used to
re-enable cacheing.

CACHEHDR
Usage:

CACHEHDR addr (hdr$())

Read the current cache index header into
array hdr% (), which must have at least
11 integer elements.

See the ‘Advanced topics’ chapter for
more details.

CACHEREC
Usage:
CACHEREC addr(rec%(}),cff%

Read the cache index record at offset
of£% into array rec% (), which must
have at least 18 integer elements.

See the ‘Advanced topics’ chapter for
more details.



CACHETIDY
Usage:
CACHETIDY

Remaove from the cache any procedures
that have returned to their callers,

CALL
Usage:

e%=CALL (5%, bx%,cx%,dx%,81%,
dig)

This function enables you to make
operating system calls. To use it requires
extensive knowledge of the Operating
System and related programiming
techniques. The syntax of this command
is inclnded here for completeness.

The INT number itself is the least
significant byte of s%. The AH value (the
subfunction number) is the most
significant byte of s%. The values of the
other arguments are passed to the
corresponding 8086 registers, The value
of the AX register is returned.

CHANGESPRITE
Usage:

CHANGESPRITE ix%, time%,
bits(},dx%,dvs

or

CHANGESPRITE

ix%, time%, bits ()

Changes the bitmap-set specified by ix%
(1 for the first bitmap-set) in the current
sprite, using the supplied bitmap files,
offsets and duration in the same way as
for APPENDSPRITE.

CHR$
Usage:

a$=CHRS { x%)

Returns the character with character code
»%.

You can use it to display characters not
easily available from the keyboard - for
example, the instruction

PRINT CHRS (174) displays «.

The full character set is given in the
‘Character set and character codes’
appendix to this manual.

CLOSE

Usage:

CLOSE

Closes the current file (that is, the one

which has been opENed and most
recently used).

If you’ve used ERASE to remove some
records, CLOSE recovers the memory used
by the deleted records, provided it is held
either in the internal memory or on a
Ram §SD.

CLOSESPRITE
Usage:

CLOSESPRITE id$%
Closes the sprite with D 1d%.

CLS
Usage:
CLS

Clears the contents of the text window,

The cursor then goes to the beginning of
the top line. If you have used CURSOR OFF
the cursor is still positioned there, but is
not displayed.

CMD$
Usage:

c$=CMDS {x¥%)

Returns the command-line arguments
passed when starting a program. Null
strings may be returned. x% should be
from 1 to 5. cmd$(2) to cmd$(5) are only
for OPAs (OPL applications).

cmd$( 1) returns the full path name used
to start (e runing program.

cmd$(2) returns the full path name of the
file to be used by an oPa application.

cmd$(3) returns " C " for "Create file" or
*O" for "Open file". If the OPA is being
run with a new filename, this will return

17: Alphabetic listing 219

spiomAss 140



“C". This happens the very first time the
OPA is used, and whenever a new
filename is used to run it. Otherwise, the
OFA is being run with the name of an
existing file, and cmd$ (3) will return

(1] O n .

cmd¥(4) returns the alias information, it
any. In practice this has no relevance for
OPAs.

emd$(5) returns the application name, as
declared with the APp keyword.

See the ‘Advanced topics’ chapter for
more details of OPAs.

See also GETCMDS.

COMPRESS
Usage:
COMPRESS sro¢$, dests

Copies data file src$ to another data file
dests. If dest$ already exists, the
records in src$ are appended to the end
of dests.

Deleted records are not copied. This
makes COMPRESS particularly useful
when copying from a Flash SSD. (The
space used by deleted records on a Ram
SSD or in internal memory i1s
automatically freed when you close the
file.)

If you want src$ to overwrite instead of
append to dest$§, usc:

TRAP DELETE dest$

before the COMPRESS statement.

You can use wildcards if you wish to
copy more than one file at a time. But if
the first name contains any wildcards, the
second name must not include a
filename, just the device and directory to
which the files are to be copied under
their original names.

Example: to copy all the data files on A;
{(in \OPD, the default directory) to
B:\BCK\:

COMPRESS "A:*.0DB", "B:\BCK\*

(Remember the final backslash on the
directory name.)

See copy for copying any type of file.

220 17: Alphabetic listing

CONTINUE
Usage:
CON'Y' INUE

Makes a program immediately go to the
UNTIL... line of a DO..UNTIL loop or the
WHILE... line of a WHILE..ENDWH loop —
i to the test condition.

Example:
DO

IF a<3.5
CONTINUE
ENDIF

UNTIL a=b
See also BREAK,

COPY
tlsage:

COPY src$,dests

Copies the file src$, which may be of
any type, to the file dest$. Any existing
file with the name dest$ is deleted. You
can copy across devices.

Use the appropriate file cxtensions to
indicate the type of file, and wildcards if
you wish to copy more than one file at a
time:

» If src$ contains wildcards, dest$
must not specify a filename, just the
device and directory to which the files
are to be copied under their original
names.

*  You must specify either an exiension
or .* on the first filename. The file
type extensions are listed under ‘Files
and directories’ in the ‘Advanced use’
chapter.

Example:
To copy all the OPL files from internal
memory (in \OPL) to B: \ME\:

COPY "M:\OFL\™.OPL", "B:\ME\"



(Remember the final backslash on the
directory name.)

Sce COMPRESS for more control over
copying data files. If you use copPy to
copy a data file, deleted records are
copied and you cannot append to another
data file.

There are more details of full file
specifications in the Advanced Topics
chapter.

coSs

Usage:

=005 (x)

Returns the cosine of x, where x is an
angle in radians.

To convert from degrees to radians, use
the RAD function.

COUNT
Usage:

c%=COUNT

Returns the number of records in the
current data file,

This number will be 0 if the file is empty.

CREATE
Usage:

CREATE files, log,fl,£f2, ...

Creates a data file called file$.

s The filename may be a fuill file
specification of up to 128 characters.
Field names may be up to 8
letters/numbers.

= The file may have up to 32 fields, as
specified by £1, £2... (if viewed in
the in-built Database application, tield
f1 starts on the top line of the
window, £2 is below it, etc.).

= log specifies the logical file name -
A, B, CorD. This is used as an
abbreviation for the file name when
you use other data file commands
such as USE.

Immediately after the CREATE statement,
the file is open and can be accessed.

Example:
CREATE "“CLIENTS",B,NM$, PHONS

would create a data file in the internal
memory with the name CLIENTS and
the logical name B.

CREATESPRITE
Usage:
id%$=CREATESPRITE

Creates a sprite, returning the sprite 1D,

CURSOR

Usage - one of the following:

spiomAay 740

CURSOR ON

CURSOR QFF

CURSOR id%,asc®,w%, h%
CURSBOR 1d%,asc%,w$%,h%, typed
CURSOR 1d% .

CURSOR ON switches the text cursor on at
the current cursor position. Initiaily, no
cursor is displayed.

You can switch on a graphics cursor in a
window by following CURSOR with the 1D
of the window. This replaces any text
cursor. At the same time, you can also
specify the cursor’s shape, and its
position relative to the baseline of text.

asc$ is the ascent — the number of
pixels (-128 to 127) by which the top of
the cursor should be above the baseline
of the current font. h% and w% (both from
0 to 255) are the cursor’s height and
width.

If you do not specify them, the following
default values are used:

asc% =font ascent

h% =font height

w% =2

If type% is given, it can have these
effects:

1 obloid

2 not flashing

4 grey

You can add thesc values together to
combine effects —eg if type% is6a
grey non-flashing cursor is drawn.

17: Alphabetic listing 221



An error is raised if 1d% specifies a
bitmap rather than a window.

CURSOR OFF switches off any cursor.

DATETOSECS
Usage:

s&=DATETOSECS (yr%.,mo%, dvs,
hr%,m%, sc%)

Returns the number of seconds since
00:00 on | January 1970 at the date/time
specified.

Raises an error for dates before 1 January
1970.

The value returned is an unsigned long
integer. (Values up to +2,147,483,647,
which 1s 03:14:07 on 19/1/2038, are
returned as expected. Those from
+2,147,483,648 upwards are returned as
negative numbers, starting from
-2,147,483,648 and increasing towards
7e10.)

See also SECSTODATE, HOUR, MINUTE,
SECOND.

DATIM$

Usage:

d$=DATIMS

Returns the current date and time from
the system clock as a string — for
example:

“Fri 16 Oct 1992 16:25:30"
The string returned always has this
format — 3 mixed-case characters for the

day, then a space, then 2 digits for the
day of the month, and so on.

DAY
Usage:

d%=DAY

Returns the current day of the month (1
to 31) from the system clock,

DAYNAMES
Usage:
d$=DAYNAMES (x%)

222 17 Alphabetic listing

Converts x%,a number from 1 to 7, to the
day of the week, expressed as a three
letter string.

Eg A$=DAYNAMES (1) returns Mon.
Example:

PROC Birthday:
LOCAL d&,m&, vk, dWk$%
DO
dINIT
dTEXT "","Date of birth",2
ATEXT "', "eg 23 12 1963",£202
dLONG d&, "Day", 1,31
dLONG m&, "Month", 1,12
dLONG y&, "Year",1900,21585
IF DIALOG=0 :BREAK :ENDIF
AWk %=DOW { A&, m&, y&)
CLS :PRINT DAYNAMES (dWk$),
PRINT d&,m&,v&
dINIT
dTEXT "", "Againz*,3202
dBUTTONS "No", %N, "Yes", %Y
UNTIL, DIALOG<>%y
ENDP

See also DOW,

DAYS
Usage:
d&=DAYS{day¥%, month$, year$)

Returns the number of days since
01/01/1900.

Use this to find out the number of days
between two dates.

Example:

PROC deadline:

LOCAL a%,b%,c%,deadling
LOCAL today&, togo%

PRINT "What day? (1-31)"
INPUT a$%

PRINT "What month? (1-12})"
INPUT b%

PRINT "What year? (192?)"
INPUT c%
deadlin&=DAYS (a%,b%, 1900+c%)
todayv&=DAYS (DAY, MONTH, YEAR)
togo%=deadlin&-todays&
PRINT togo%,"days to go*



GET
ENDP

See also dDATE, SECSTODATE.

dBUTTONS

Usage — one of these:

dABUTTONS pls, kl1%,p28,k2%,
P38, k3%

dBUTTONS plS,k1%,p28, k2%

dBUTTONS pl1$, k1%

Defines exit keys to go at the bottom of a
dialog.

From one to three exit keys may he
defined. Each pair of p$ and k%
specifies an exit key; p$ is the text to be
displayed above it, while k% 1s the
keycode of the key. DIALOG returns the
keycode of the key pressed (in lower case
for leiters).

For alphabetic keys, use the % sign - $A
means ‘the code of &, and so on. The
‘Character codes’ appendix lists the
codes for keys (such as Tab) which are
not part of the character set. If you use
the code for one of these keys, its name
{eg ‘Tab’, or ‘Enter’) will be shown in
the key.

If you use a negative value for a k%
argument, that key is a ‘Cancel’ key. The
corresponding positive value is used for
the key to display and the value for
DIALOG to return, but if you do press this
key to exit, the var variables used in the
commands like dEDIT, d¢TIME etc. will not
be sct.

The Esc key will always cancel a dialog
box, with DIALOG returning 0. If you
want to show the Esc key as one of the
exit keys, use -27 as the k% argument (its
keycode is 27) so that the var variables
will not be sct if Esc is pressed.

There can be only one dBUTTONS item per
dialog, and it takes up three lines on the
screen. dBUTTONS must be the last dialog
command you use before DIALOG itself.

Some keypresses, such as those using the
Control key, cannot be specified.

This example presents a simple query,
returning ‘True’ for Yes, or ‘False’ for No.

PROC query:

JdINIT
dTEXT "", "FORGET CHANGES",2
ATEXT "', "Sure?",$202

dBUTTONS “No",3%N, "Yes", %Y
RETURN DIALOG=%y
ENDP

See ‘I/O functions and commands’ in the
‘Advanced topics’ chapter for a
description of the use of ‘var’ variables.

dCHOICE
Usage:
dCHOICE var choice%,p$,list§

Defines a choice list to go in a dialog.

p$ will be displayed on the left side of
the line. 1i1st$ should contain the
possible choices, separated by commas —
for example, "Yes, No". One of these
will be displayed on the right side of the
line, and « — can be used to move
between the choices.

choice% must be a LOCAL or a GLOBAL
variable. It specifies which choice should
initially be shown — 1 for the first choice,
2 for the second, and so on. When you
finish using the dialog, choice% is
given a value indicating which choice
was selected — again, 1 for the first
choice, and so on.

See ‘IO functions and commands’ in the
‘Advanced topics’ chapter for a
description of the use of ‘var’ variables.

dDATE

Usage:

ADATE var lgk,p$S,min&g, maxk
Defines an edit box for a date, to goin a
dialog.

p$ will be displayed on the left side of
the line.

1¢%, which must be a LOCAL or a
GLOBAL variable, specifies the date to be
shown initially. Although it will appear
on the screen like a normal date, for

17: Alphabetic listing 223

spIomAsy 140



example 15/03/92, 1g& must be
specified as “days since 1/1/1900".

min& and maxé& give the minimum and
maximum values which are to be
allowed. Again, these are in days since
1/1/1900. An error is raised if miné is
higher than maxk.

When you finish using the dialog, the
date you entered is returned in 1gé&, in
days since 1/1/1900,

The system setting determines whether
years, months or days are displayed first.

See also DAYS, SECSTODATE. See ‘[/O
functions and commands’ in the
‘Advanced topics’ chapter for a
description of the use of ‘var’ variables.

dEDIT
Usage:
dEDIT var strs,p$,leng

or
dEDIT var str$,p$

Defines a string edit box, to go in a
dialog.

p$ will he displayed on the left side of
the line.

str$ is the string variable to edit. Its
initial contents will appear in the dialog.
The length used when str$ was defined
is the maximum length you can type in.

len%, il supplied, gives the width of the
edit box (allowing for widest possible
character in the font). The string will
scroll inside the edit box, if necessary. If
1len% is not supplied, the edit box is
made wide enough for the maximum
width stxr$ could possibly he.

See also dTEXT. See ‘I/O functions and
commands’ in the ‘Advanced topics’
chapter for a description of the use of
‘var’ variables.,

DEFAULTWIN
Usage:
DEFAULTWIN mode%

Change the default window {ID=1) to
enable or disable the use of grey. Initially
grey cannot be used in that window.

224 17: Alphabetic listing

mode$=1 enables the use of grey.
mode%=0 disables the use of grey.

A side-effect of DEFAULTWIN is to clear
the default window.

Using grey does use more memory than
using black only.

You are advised to call DEFAULTWIN once
and for all near the start of your program
if you nced to use grey. If it fails with
‘Out of memory’ etror, the program can
then exit cleanly without losing vital
information.

See also gGREY and gCREATE.

DEG
Usage:
d=DEG (x}

Converts from radians to degrees.

Returns x, an angle in radians, as a
number of degrees. The formula used is:
180*x/PI

All the trigonometric functions (SIN,COS
etc.) work in radians, not degrees. You
can use DEG to convert an angle returned
by a trigonomctric function back to
degrees:

Example:

PROC xarctan:

LOCAL arg,angle

PRINT "FEnter argument

INPUT arg

PRINT "ARCTAN of'",arg, "is"
angle=ATAN{arg) '
PRINT angle, *radians”
PRINT DEG{angle), "degrees”
GET
ENDP

To convert from degrees to radians, use
RAD.



DELETE
Usage:

DELETE filename$

Deletes any type of file.
You can use wildcards — for example, (0

delete all the OPL files in BAOPL
DELETE "B:\OPL\*.OPL"

The file type extensions are listed under
‘Files and directories’ in the ‘Advanced
use’ chapter.

See also RMDIR.

dFILE
Usage:
AFITFE var strs,ps.£$

Defines a filename edit box, to go in a
dialog. A ‘Disk’ selector is automaticaily
added on the line below. (See ‘1/0
functions and commands’ in the
‘Advanced topics’ chapter for a
description of the use of ‘var’ variables.)

p$ will be displayed on the left side of
the line.

£% controls the type of file editor, and
the kind of input allowed. You can add
together any of the following values:

value meaning

1 use an edit box

2 allow directory names
4 directory names only
8 disallow existing files

16 query existing files
32 allow null string mput
128  obey/allow wildcards

The first of the list is the most crucial. If
you add 1 into £%, you will see a file edit
box, as when creating a new file. If you
do not add 1, you will see the ‘matching
file’ selector, used when choosing an
existing file.

If performing a ‘copy to’ operation, you
might use 1+2+16, to specify a file edit
box, in which you can type the name of a
directory to copy to, and which will
produce a query it you type the name of
an existing file.

If asking for the name of a directory to
remove, you might use 4, to allow an
existing directory name only.

‘Query existing’ is ignored if ‘disallow
existing’ is set. These two, as well as
‘allow null string input’, only work with
file edit boxes, not ‘matching file’
selectors.

str$ is the string variable to edit. Its
initial contents always control the initial
drive and directory used. For a file edit
box, any filename part of stxr$ is
shown. For a ‘matching file’ selector, you
can use wildcards in the filename part
(such as * . tmp) to control which
filenames are matched. To do this, you
must add 128 to £%. 128 also allows
wildcard specifications to be entered
(returncd in str$), for both ‘matching’
and ‘new file’ selectors.

.
0
r~
-
D

<
=
S

&

If str$ does not contain any drive or
directory information, the paih as sct by
SETPATH is used. If SETPATH has not been
used, the \OPD directory on the default
drive (usually M:, ‘Internal’) is used.

With a matching file selector (as
opposed to an edit box) the value 8
restricts the selection to files which
match the filename/extension in stx$.
Matching file selectors can also use 64,

in which case files with the same
extension as that in str$ are shown
without this extension. (Many Workabout
file selectors are like this.)

You can always press Tab to produce the
full file selector with a dFILE item.

str$ must be declared to be at least 128
bytes long, or an error will be raised.

dFLOAT
Usage:

dFLOAT var fp,pS,min,max

Defines an edit box for a floating-point
number, to go in a dialog. (See ‘I/O
functions and commands’ in the
‘Advanced topics’ chapter for a
description of the use of ‘var’ variables.)

p$ will be displayed on the left side of
the line.

17: Alphabetic listing 225



min and max give the minimum and
maximum values which are to be
allowed. An error is raised if min is
higher than max.

fp must be a LOCAL or a GLOBAL
variable. Tt specifies the value to be
shown initially. When you finish using
the dialog, the value you entered is
returned in £p.

DIALOG
Usage.
n%=DIALOG

Presents the dialog prepared by dINIT or
dINITS and commands such as dTEXT and
dCHOICE. If you complete the dialog by
pressing Enter, your settings are stored in
the variables specified in dTEXT, dCHOICE
etc., although you can prevent this with
dBUTTONS.

If you used dBUTTONS when preparing the
dialog, the keycode which ended the
dialog is returned. Otherwise, DIALOG
returns the line number of the item which
was current when Enter was pressed. The
top item (or the title line, if present), has
line number 1.

If you cancel the dialog by pressing Esc,
the variables are not changed, and 0 is
returned.

diINIT
Usage:

AINIT title$

or
dINIT

Prepares for definition of a dialog,
cancelling any existing one. Use dTEXT,
dCHOICE etc. to define each item in the
dialog, then DIALOG to display the dialog.

If title$ is supplied it will be
displayed at the top of the dialog, centred
and with a line across the dialog below it.

Use aINTT if the dialog contains less than
6 lines of text (or 4 lines if underlines are
also utilised); for more lines use dINITS.

226 17: Alphabetic listing

dINITS
Usage:
dINITS title$

or
dINITS

Prepares for definition of a dialog using
small fonts, cancelling any existing one.
Use dTEXT, dCHOICE ete. to define each
item in the dialog, then DIALOG to display
the dialog,

If title$ is supplied it will be
displayed at the top of the dialog, centred
and with a line across the dialog below it.

Use dINITS if the dialog is to contain more
than 6 lines of text (or 4 lines if
underlines are also utilised); for fewer
lines use dINIT.

DIR$
Usage:

d$=DIRS (filespecs) then
ds=DIRS("")

Lists filenames, including subdirectory
names, matching a file specification. You
can include wildcards in the file
specification. If £ilespec$ isjusta
directory name, include the final
backslash on the end - for example,

"M: \TEMP\ " . Use the function like
this:

= DIRS (filespecy$) returns the
name of the first file matching the file
specification,

= DIRS {**) then returns the name of
the second file in the directory.

= DIRS$ ("") again returns the third,
and so on.

» When there are no more matching
files in the directory, DIRS (" ")
returns a null string.

Example, listing all the . DBF files in
M:\DAT:

PROC dir:
LOCAL d$(128)
d$=DIRS("M:\DAT\*.DBF")
WHILE d$<>""

PRINT 45



d$=DIRS (" ")
ENDWH
GET
ENDP

dLONG
Usage:
ALONG var l1lg&,ps,min&,maxs&

Defines an edit box for a long integer, to
go in a dialog. (See ‘[/O functions and
commands’ in the ‘Advanced topics’
chapter for a description of the use of
‘yar’ variables.)

p$ will be displayed on the left side of
the line.

min& and maxé& give the minimum and
maximum values which are to be
allowed. An error is raised if ming is
higher than max&.

1g& must be a LOCAL or a GLOBAL
variable. It specifies the value to be
shown initially. When yon finish using
the dialog, the value you entered is
returned in 1g&.

DO...UNTIL
Usage:

DO
statement
statement

UNTIL condition

po forces the set of statements which
follow it to execute repeatedly uniil the
condition specified by UNTIL is met,

This is the easiest way to repeat an
operation a certain number of times.

= Every DO must have its matching
UNTIL to end the loop.

» If you set a condition whichis
never met, the program will go round
and round, locked in the loop forever.
You can escape by pressing Psion-Esc,
provided you haven’t set ESCAPE OFF.
If you have set ESCAPE OFF, you will
have to return to the System screen,

move to the program name under the
RunOpl icon, and press Delete,
Alternatively, you can use the stop
command in the Command processor
1o escape from the program.

Dow
Usage:
A%=DOW (day ¥, monthg, yearg)

Returns the day of the week ~ from 1
(Monday) to 7 (Sunday) - given the date.

day% must be between 1 and 31,
month% from 1 to 12 and year$ from
1900 to 2155.

For example, D$=DOW {4, 7,1992)
returns 6, meaning Saturday,

dPOSITION
Usage:
dPOSITICN x%,v%

Positions a dialog. Use dPOSITION at any
time between dINIT or dINITS and DIALOG.

dPOSITION uses two integer values. The
first specifies the horizontal position, and
the second, the vertical.

dPOSITION -1, -1 positions to the
top left of the screen; aPOSITION 1,1
to the bottom right; dPOSITION 0,0
to the centre, the usual position for
dialogs.

dPOSITION 1, 0, for example,
positions to the right-hand edge of the
screen, and centres the dialog half way
up the screen.

DRAWSPRITE
Usage:

DRAWSPRITE x%,y%

Draws the current sprite in the current
window with top-left at pixel position
=%, v%.

17: Alphabetic listing 227

splomA3Y 140



dTEXT
Usage:

dTEXT ps, bodys, t3
or
dATEXT p$&, bodys

Defines a line of text to be displayed in a
dialog.

p$ will be displayed on the lcft side of
the line, and bedy$ on the right side. If
you only want to display a single string,
use a null string (" *) for p$, and pass
the desired string in body$. It will then
have the whole width of the dialog to
itself. An error is raised if body$ is a
null string.

body$ is normally displayed left aligned
(although usualily in the right column).
You can override this by specifying t%:

t% effect

0 left align body$

1 right align body$
2 centre body$

In addition, you can add any or all ol the
following three values to t%, for these
effects:

t% effect

$100  use bold text for body$
$200 draw a line below this
item
$400 (allow this item to
be selected)

Only one line can be drawn across a
dialog. It will be below the last item
which asks for it, whether the title from
dINIT, dINITS Or a dTEXT item,

See also deDIT,

dTIME
Usage:

dTIME var lg&,pS$,t%,ming,maxé&

Defines an edit box for a time, to goin a
dialog. (See ‘I/O functions and
commands’ in the ‘Advanced topics’
chapter for a description of the use of
‘var’ variables. )

p$ will be displayed on the left side of
the line.

228 17 Alphabetic listing

1g&, which must be a LOCAL or a
GLOBAL variable, specifies the time to be
shown initially. Although it will appear
on the screen like a normal time, for
example 18:27, 1g& must be specified
as seconds after 00:00. A value of 60
means one minute past midnight; 3600
means one o’ clock, and so on.

min& and max& give the minimum and
maximum values which are to be
allowed. Again, these are in seconds after
00:00. An error is raised if ming is
higher than maxs,

When you finish using the dialog, the
time you entered is returned in 1g&, in
seconds after 00,00,

t% specifies the type of display required,
as follows:

t% time display

0 absolute time no seconds

1 absolute time with seconds
2 duration no seconds

3 duration with seconds

For example, 03 : 45 represents an
absolute time while 3 hours 45 minutes
represents a duration,

Absolute times are displayed in 24-hour
or am/pm format according to the current
system setting.

dXINPUT
Usage:
dXINPUT var str$,p$

Defines a secret string edit box, such as
for a password, to go in a dialog. (See
‘I/O functions and commands’ in the
‘Advanced topics’ chapter for a
description of the use of ‘var’ variables.)

p$ will be displayed on the left side of
the line.

str$ is the string variable to take the
string you type. Important: str$ must
be at least eight characters long.

Initially the dialog does not show any
characters for the string; the initial
contents of strs$ are ignored. A special
symbol will be displayed for each
character you type, to preserve the
secrecy of the string,



EDIT
Usage:
EDIT a$

Displays a string variable which you can
edit directly on the screen. All the usnal
editing keys are available - the arrow
keys move along the line, Esc clears the
line, and so on.

When you have finished editing, press
Enter to confirm the changes. If you
press Enter before you have made any
changes, then the string will be unaltered.

If you use EDIT in conjunction with a
PRINT statement, use a comma at the cnd
of the PRINT statement, so that the string
to be edited appears on the same line as
the displayed string:

PRINT "Edit address:",
EDIT A.address$
UPDATE

TRAPEDIT

If the Esc key is pressed while no text is
on the input line, the ‘Escape key
pressed” error (number -114) will be
returned by ERR — provided that the EDIT
has been trapped. You can use this
feature to enable someone to press the
Esc key to escape from inputting a string.

See also INPUT, dEDIT.

ELSE(IF)/ENDA/ENDIF/ENDV/
ENDWH

See IF, APP, VECTOR, WHILE.

ENTERSEND
Usage:

ret$=ENTERSEND (pobj$, m%,
var pl,...)

This is the same as SEND except that, if
the method leaves, the error code is
returned to the caller. Otherwise the value
returned is as returned by the method.
(See ‘I/O functions and commands’ in the
‘Advanced topics’ chapter for a
description of the use of ‘var’ variables.)

ENTERSENDO

Usage:

ret$=ENTERSENDU (pobj%, m%,
var pl,...}

This is the same as ENTERSEND except
that, if the method does not leave, zero is
returned. (See ‘1/0 functions and
commands’ in the *Advanced topics’
chapter for a description of the use of
‘var’ variables.)

EOF
Usage:
e%=EQF

@)
0
™
>
=~z
<
S
73

Finds out whether you’re at the end of a
file yet.

Returns -1 (true) if the end of the file has
been reached, or 0 (false) if it hasn’t.

When reading records from a file, you
should test whether there are still records
left to read, otherwise you may get an
error.

Example:

PROC eoftest:
OPEN "myfile",A,a%,b%
PO

PRINT A.a$

PRINT A.b%

NEXT

PAUSE -40
UNTIL EOF
PRINT "The last record®
GET
RETURN
ENDP

ERASE
Usage:
ERASE

Erases the current record in the current
file.

The next record is then current. If the
erased record was the last record in a file,
then following this command the current
record will be null and EOF will return
true.

17: Alphabetic listing 229



ERR
Usage:
e%=ERR

Returns the number of the last error
which occurred, or 0 if there has been no
error.

Example:

PRINT "Enter age in years"

age: :
TRAFP INPUT age%

IF ERR=-1

PRINT “Number please:"
GOTO age
ENDIF

See also ERRS.

See the ‘Error handling’ chapter for full
details, including the list of error
numbers and messages.

ERR$

Usage:

eS$=ERRS$ (x%)

Returns the error message for the
specified error code x%.

ERRS$ (ERR) gives the message for the
last error which occurred. Example:

TRAP OPEN
"B:\FILE",A, fieldl$
IF ERR

PRINT ERRS$ (ERR)
RETURN
ENDIF

See also ERR.

See the Error handling chapter for full
details, including the list of error
numbers and messages.

ESCAPE OFF
Usage:
ESCAPE OFF...ESCAPE ON

ESCAPE OFF stops Psion-Esc being
used to break out of the program when it

230 17: Alphabetic listing

is running. ESCAPE ON enables this
feature again.

ESCAPE OFF takes effect only in the
procedure in which it occurs, and in any
sub-procedures that are called. Psion-Esc
is always enabled when a program begins
running.

If your program enters a loop which has
no logical exit, and ESCAPE OFF has
been used, you will have to return to the
System screen, move to the program
name under the RunOpl icon, and press
the Delete key. Alternatively, you can use
the STOP command in the Command
processor to escape from the program.

EVAL
[Jsage:

d=EVAL (s5)

Evaluates the mathematical string
expression s$ and returns the
floating-point result. s$ may include any
mathematical function or operator, but
cannot include variables (eg.
sin(x}/{2**3)). Note that
floating-point arithmetic is always
performed,

For example:

Do

AT 10,5 :PRINT “Calc:*,
TRAP INPUT n$

IF n$="" :CONTINUE :ENDIF
IF ERR=-114 :BREAK :ENDIF
CLS AT 10,4

PRINT n$;"=";EVAL(n$)
UNTIL 0

See also vaAlL.

EXIST
Usage:

e%$=EXIST (filenames)

Checks to see that a file exists.

Returns -1 (“True’) if the file exists and 0
(‘False”) if it doesn’t.

Use this function when creating a file to
check that a file of the same name does



not already exist, or when opening a file
to check that it has already been created:

IF NOT EXIST("CLIENTSY)
CREATE “CLIENTS",A,names$
ELSE '

OPEN "CLIENTS',A,names$
ENDIF

EXP
Lisage:

e=EXP (x)}

Retums ¢” — that is, the value of the
arithmetic constant e (2.71828...) raised
to the power of x.

EXT
Usage:
EXT name$

Gives the file extension of files used by
ar1 OPA. This can only be used between
APP and ENDA. (See the ‘Advanced
topics’ chapter for more details of OPAs.)

FIND
Usage:

f$=FIND(a$)

Searches the current data file for fields
matching a$. The search starts from the
current record, so use NEXT to progress to
subsequent records. FIND makes the next.
record containing a$ the current record
and returns the number of the record
found. Capitals and lower-case letters
match.

You can use wildcards:

? matches any single character

* matches any group of characters,
To find a record with a field containing

Dr and either BROWN or BRAUN, use:
F$=FIND{"*DR*BR?7?N*")

FIND ( "BROWN" ) will find only those
records with a field consisting solely of
the string BROWN.

You can only search string fields.

On failure to find a match FIND returns
0.

See also FINDFIELD.

FINDFIELD
Usage:

£f$=FINDFIELD(as, start%,no%,
flags$)

FINDFIELD, like FIND, finds a string,
makes the record with this string the
current record, and returns the number of
this record.

You may experience some problems in
using FINDFIELD with some versions of
OPL. To ensure that problems are
avoided use the line:

POKEB (peekw ($1c)+7), 0

spiomAsy 740

immediately before each call to
FINDIIELD,

a$ is the string to look for, as for FIND.
start$ is the string field at which to
start the matching (1 for the first ficld),
and no% is the number of string fields to
search in (starting from the field
specified by the startc%). If you want to
search in all fields, use start%$=1 and
for no% use the number of fields you
used in the OPEN/CREATE command.

flags% adds together two values:

= { for a case-independent match, where
capitals and lower-case letters match,
or 16 for a case-dependent maich.

s 0 to search backwards from the
current record, 1 to search forwards
from the current record, 2 to search
backwards from the end of the file, or
3 to search forwards from the start of
the file.

On failure to find a match FINDFIELD
retums Q.

FINDLIB
Usage:
ret%=FINDLIB(var catg, nameS)

Find DYL category name$ (including
.DYL extension) in the ROM. On
success returnsg zero and writes the

17: Alphabetic listing 231



category handle to cat%. (See ‘I/0
functions and commands’ in the
‘Advanced topics’ chapter for a
description of the use of ‘var’ variables.)

FIRST
Usage:

FIRST

Positions to the first record in the current
data file.

FIX$
Usage:
£5=FIX$ (x,v%, z%)

Returns a string representation of the
number x, to y% decimal places. The
string will be up to z% characters long.

Example: FIX$(123.456,2,7)
returns “123.46",

= If z% is negative then the string is
right-justified — for example
FIX$(1,2,-6) returns
" 1.00" where there are two
spaces to the Ieft of the 1.

« [f z% is positive then no spaces are
added — for example FIX$(1,2,6)
returns "1.00",

» If the number x will not fit in the
width specified by z%, then the string
will just be asterisks, for example
FIX$(256.99,2,4) returns

It A& dkon

See also GEN$, NUMS, SCI$.

FLT
Usage:

f=FLT (x&)

Converts an integer expression (either
integer or long integer) into a
floating-point number. Example:

PROC gamma: (v}

LOCAL <

c=3E8

RETURN 1/SQR(1-(v*v})/{c*c))

ENDP

232 17: Alphabetic listing

You could call this procedure like this:

gamma: (FLT (a%) ) if you wanted to
pass it the value of an integer variable
without having first to assign the integer

value to a floating-point variable.
See also INT and INTF.,

FONT
Usage:

FONT id$%,style$
Sets the text window font and stylc.

See ‘The text and graphics windows’ at
the end of the ‘Graphics’ chapter for
more details.

FREEALLOC
Usage:

FREEALLOC pcell%

Frees a previously allocated cell at
pcell%.

gAT
Usage:
gAT x%,v%

Sets the current position using absolute
co-ordinates. gAT 0, 0 moves 1o the top
left of the current drawable.

See also gMOVE.

gBORDER
Usage:

gBORDER flags%,width®, height¥%

or
gBORDER flags$g

Draws a one-pixel wide border around
the edge of the current drawable. If
width% and height$ are supplied, a
border shape of this size is drawn with
the top left corner at the current position,
If they are not supplied, the border is
drawn around the whole of the current
drawable,

flags% controls three attributes of the
border - a shadow to the right and



beneath, a one-pixel gap all around, and
the type of comers used:

flags$% elfect

1 single pixel shadow

2 gap for single pixel
shadow

3 double pixel shadow

4 gap for double pixel
shadow

$100 one-pixel gap all round

$200 meore rounded corners

You can combine the values to control
the three different effects. (1, 2, 3 and 4
are mutually exclusive ~ you cannot use
more than one of them.) For example, for
rounded comers and a gap for a double
pixel shadow, use £1lags%=5204.

Set £lags%=0 for no shadow, no gap,
and sharper corners.

For example, to de-emiphasise a
previously emphasised border, use
gBORDER with the shadow turned off:

gBORDER 3 REM show border
GET
gBORDER 4 REM border off

See also gXBORDER.

gBOX
Usage:

gBOX width%, height$%

Draws a box from the current position,
width% to the right and height%
down. The current position is unaffected.

gBUTTON
I_{sage:

gBUTTON texts, type$,
w$,h%,states

Draws a 3-D black and grey button (or
key) at the current position in a rectangle
of the supplied width w% and height h%,
which fully encloses the button in all its
states. texts specifies up to 64
characters to be drawn in the button in
the current font and style. You must
ensure that the text will fit in the button.

type%=0 draws a Series 3 style button;
type%$=1 draws a Series 3a/Workabou!
style button,

The meaning of state® varies
according to type%:

= For type%=0,state%=01ora
raised button and stare%=1 fora
depressed (flat) button.

» For type%=1, state%=0fora
raised button, state%=1 fora
semi-depressed (flat) button and
state%=2 for a fully-depressed
(sunken) button. An error is raised if
the current window has no grey plane.

9
r~...
-~
3
Q
&

gCLOCK

Usage - one of;

gCLOCK ON/OFF

gCLOCK ON,mode%

gCLOCK ON,mode%,oflsel?

gCLOCK ON,mode%,offset%,
format$

gCLOCK ON,mode%,ocffset%,
format$, font%

gCLOCK ON,mode%,offset%,
formats, font%, style%

Displays or removes a clock showing the
system time. The current position in the
current window is used. Only one clock
may be displayed in each window.

mode% controls the type of clock. Modes
1 to 5 are provided for Series 3
compatibility, and produce Series 3
clocks: small (digital}, medium (system
setting}, medium (analog), medium
(digital), and large (analog) respectively.
Other values are:

6 black and grey medium, system setting
7 black and grey medium, analog

8 second type medium, digital

9 black and grey extra large :

10 formatted digital (described below)

You can OR the value with any of these:

$10 shows the date in all except the
extra large and formatted clocks

$20 shows seconds in small digital,
large analog, black and grey medium
analog and extra large clocks

$40 shows am/pm in small digital and
black medium clocks only.

17: Alphabetic listing 233



$80 specifies that a clock is to be
drawn in the grey plane (only for clocks
that do not contain both black and grey:
ie. all except the black and grey, medium,
analog clock and the extra large clock).

formats, font% and style% are
used only for formatted digital clocks as
described below.

g Do not use gSCROLL to scroll the
region containing a clock. When the
time is updated, the old position
would be used. The whole window
may, however, be moved using
gSETWIN

g It is possible to draw clocks that
include grey in windows that have
no grey plane.

Digital clocks display in 24-hour or
12-hour mode according to the
system-wide setting. The ‘am/pm’ flag
($40) can be used with digital clocks in
12-hour mode, and with medium analog
ciocks.

of fset% specifies an offset in minutes
from the system time to the time
displayed. This allows you to display a
clock showing a time other than the
system time.

If these arguments are not supplied,
mode% is taken as 1, and offsct ¥ as 0.

For the formatted digital clock
(mode%=10), you may optionally
specily font% and style% with values
as for gPONT and gSTYLE. The default font
for gCLOCK is the system font (value $9a).
The default style is normal (0).

For the formatted digital clock, a
SJormat string (up to 235 characters long)
specifies how the clock is to be
displayed. The format string contains a
number of format specifiers in the form
of a ¢ followed by a letter. (Upper or
lower case may be used.) For example,
%H means "hours” and %T means
"minutes";

gCLOCK ON, 10,0, *h:%H, m:%T",
at 11:05 pm, displays a running clock as
h:23, m:05.

To make each item as abbreviated as
possible, you can use a * after the %. For
example, *%*T* at 11:05 pm abbreviates
‘05’ to ‘5’. In the following list of

234  17: Alphabetic listing

specifiers, those which produce numbers
will do so without any leading zero, if
you use %* instead of %. Other
abbreviations arc markcd, appropriatcly,
by "Abbrev":

%% =a % character

%:, %/ =time and date separators, as set
for the system-wide setting

%A =‘am’ or ‘pm’ text (Abbrev: 1st
letter)

%D, %W, %M =day/week/month number as
two digits, 01-31, 01-53 and 01-12

%F, %N =day/month name (Ahbrev:
shorter form, eg 1st 3 characters in
English)

%H,% T =hour in 24-hour or 12-hour
format, 00-23 and 01-12

%S,%T =seconds/minutes, 00-59

%X =suffix string for day number, eg st
in *1st’, ndn ‘2nd’

%Y =ycar as a four digit number
(Abbrev: discards the century)

%1,%2,%3 =day,month,year as ordered
by the system-wide setting. Eg Europe is
Day/month/year, so $1=%D, $2=%M,
%$3=%Y. So to display a date in correct
formatuse "%1/%2/%3". (Abbrev: see
$G/%P/%U.)

$4,%5 =day,month as ordered by the
system-wide setting.

%F,%0 =toggles days/months (displayed
by %1, $2 and %3) between numeric and
name formats, On 9th March 1993, with
European date type, "%1%F%1%F%1"
gives "09Tuesday(9"

%G,%P, %U =toggles 1, %2 and %3
between long form and abbreviation. On
9th March 1993, with European date
type, "SFEL%CH1HGHL" gives
"TuesdayTueTuesday"

%L =toggles the suffix on the day
number for $1/%2/%3 (in numeric form
only). On 9th March 1993, with
European date type, *$G%13%L%1%L31"
gives "99th9"

%6,%7 =hour and am/pm text according
to the format set as the system-wide
setting. With am-pm format, $6=%T and
%7=%A. With 24-hour format, %6=%H
and %7 gives no ‘am/pm’ characters.

So the format string “$1%/%2%/%3 "
automatically generates a clock with day,
month and year in the order selected as
the system-wide setting. " $4%/%5"
gives a clock with just day and month in



selected order. Similarly,
"%$6%:%T%:%S%7" gives a clock with
hour, minute and second automatically
conforming to the system configuration.

p" Note that for those specifiers that
toggle between two different
options (eg. $F), the state of toggle
1s remembered only within one
format string and not from one
string to the next — ie the toggle
state is restored to the defauit
selting when displaying a new
clock.

As a final example, assuming that the
system-wide settings are for
‘Day/month/year’ date format, ‘am-pm’
time format and *;” time separator and
that the time is 11:30:05 pm on Sth
March 1903,
"$GHELYPFOS*E, %1 %2

$3 %6%:%7T:%5%"
generaies
"Tue, 9th Mar 1993 11:30:05pm". With
the same setup except for
‘Month/day/year’ date format in
‘24-hour’ mode, the same string
generates "Tue, Mar 9th 1993 23:30:05".

gCLOSE
Usage:
gCLOSE id%

Closes the specified drawable that was
previously opened by gCREATE,
gCREATEBIT Or gLOADBIT.

If the drawable closed was the current
drawable, the default window (1D=1)
becomes current.

An error is raised if you try to close the
defautt window,

gCLS
Usage:
gCLS

Clears the whole of the current drawable
and sets the current position to 0,0, its top
left corner.

gCoOPY
Usage:
gCOPY 1id%,x%,v%,wi, h$, node$

Copies a rectangle of the specified size
(width w%, height h%) from the point
x%,y% in drawable 1d%, to the current
position in the current drawable.

As this command can copy both set and
clear pixels, the same modes are
available as when displaying text. Set
mode% = 0 for set, 1 for clear, 2 for
invert or 3 for replace. 0, 1 and 2 act only
on set pixels in the pattern; 3 copies the
entire rectangle, with set and clear pixels.

The current position is not affected in
either window.

gCOPY is affected by the setting of gGREY
(in the current window) as follows: with
gGREY 0 it copies black to black; with
gGREY 1 it copies grey to grey, or black
to grey if source is black only; with
GGREY 2 it copies grey to grey and
black to black, or black to both if source
1s black only.

gCREATE
Usage:

1d%=gCREATE (x%, v%, w, h%, v%)

or

1d%=gCREATE (x&, v, w$, h&, v§,
greyy)

Creates a window with specified position
and size (width w%, height h%), and
makes it both current and foreground.
Sets the current position to 0,0, its top
left corner. If v% is 1, the window will
immediately be visible; if 0, it will be
invisible.

If grevy% is not given or is (, the
window will not have a grey plane. If
grey% is 1, it will have one,

Returns id% (2 to 8) which identifies this
window for other keywords.

See also gCLOSE, gGREY, DEFAULTWIN.

17: Alphabetic listing 235

spiomAY 140



gCREATEBIT
Usage:
id%=gCREATEBLT (w3, b%)

Creates a bitmap with the specified width
and height, and makes it the current
drawable. Sets the current position to 0,0,
its top left corner,

Remrns 1d% (2 to 8) which identifies this
bitmap for other keywords.

See aiso gCLOSE.

gDRAWOBJECT
Usage:

gDRAWOBJECT type$, flagst,
w%, h%

Draws the scaleable graphics object
specified by type$%, scaled to fit in the
rectangle with top left at the current
graphics cursor position and with the
specified width w% and height h%.

The Workabout has only one object type

(set type%=0)—a ‘lozenge’. Thisis a
3-D rounded box lit from the top left,
with a shadow at bottom right and a grey
body.

For type%=0, flags$% specifies the
corner roundness:

0 for normal roundness

1 for more rounded

2 for a single pixel removed from each
corner.

An error is raised if the current window
has no grey plane.

GEN$
Usage:

gS=gens$ (x, y%)

Returns a string representation of the
number x. The string wiil be up to v%
characters long,

Example GENS (123.456, 7) returns
"123.456" and GENS (243 ,5)
returns " 243"

» [f y% is negative then the string is
right-justified — for example
GEN$ (1, -6) returns

236 17: Alphabetic listing

" 1* where there are five spaces
to the left of the 1.

» If v% is positive then no spaces are
added - for example GEN$ (1, 6)
returns "1".

» If the number s will not fit in the
width specified by v%, then the string
will just be asterisks, for example
GENS (256.99,4) returns "**** v,

See also FIX$, NUMS, SCI$.

GET
Usage:
g%=GET

Waits for a key to be pressed and returns
the character code for that key.

For example, if the ‘A’ key is pressed
with Caps Lock off, the integer returned
is 97 (a), or 65 (a) if ‘A’ was pressed
with the Shift key down.

The character codes of special keys, such
as ‘Pg Dn’, are given in the ‘Character
set and character codes’ appendix at the
back of this manual; this appendix also
lists the full Workabout character set,

You can use KMOD to check whether
modifier keys (Shift, Control, Psion and
Caps Lock) were used.

See also KEY.

GETS

Usage:

g$=GETS$

Waits until a key is pressed and then

returns which key was pressed, as a
string.

For example, if the ‘A’ key is pressed in
lower case mode, the string returned is

u a L} .

You can use KMOD to check whether any
modifier keys (Shift, Control, Psion and
Caps Lock) were used.

See also KEYS.



GETCMD$
Usage:

w$=GETCMDS

Returns new command-line arguments to
an OPA, after a "change files” or "quit"
event has occurred. The first character of
the returned string is "C", "O" or "X".
If itis "C¥ ar *0O", the rest of the string
is a filename.

The first character has the following
meaning;:

"¢ " - close down the current file, and
create the specified new file.

"¢ — close down the current file, and
open the specified existing file.

*X* - close down the current file (if any)
and quit the OPA.

You can onty call GETCMDs once for each
systcm message.

See the ‘Advanced topics’ chapter for
more details of OPAs.

See also CMDS.

GETEVENT
Usage:

GETEVENT var a%(}

Waits for an event to occur. Returns with
a% () specifying the event. The data
returned in a% (} depends on the type of
event that occurred. If the eventis a
key-press, (a% (1) AND $400) is
guaranteed to be zero. For other events
(a% {1} AND $400) is guaranteed to
be non-zero.

If a kcy has been pressed:

a% (1) =keycode (as for GET)

a%(2) AND $00ff=modifier (as for
KMOD)

a% (2) /256= auto-repeat count
(ignored by GET)

If a program has moved to foreground:
a% (1)=3$401

If a program has moved to background:
a%(1)=3%402

If the machine has switched on:
a% (1)=9%403

If the Workabout wants an OPA to
change files or exit:
a% (1) =5$404

If the date changes:
a% (1)=3$405

Note: Events are ignored while you are
using keywords which wait for
keypresses — GET, GET$, EDIT, INPUT,
MENU and DIALOG. If you need to use
these keywords in OPAs, use

LOCK ON / LOCK OFF around them.

If you do use GETEVENT you should allow
for other events to be specified in the
future.

For a key-press event, the modifier is
returned in a% {2) and is not returned by
KMOD.

Note: If a non-key event such as
‘foreground’ occurs while a keyboard
keyword such as GET, INPUT, MENU or
DIALOG is being used, the event is
discarded. So GETEVENT must be used if
non-key events are to be monitored.
(OPAs can still handle the $404 event
correctly — see the LOCK command for
more details.)

The array (or string of integers) must be
at least 6 integers long.

See also TESTEVENT, GETCMDS. See ‘1/O
functions and commands’ in the
‘Advanced topics’ chapter for a
description of the use of ‘var’ variables.

GETLIBH
Usage:
cat%$=GETLIBH (num?)

Convert a category number num% to a
category handle. If num$ is zero, gets the
category handle for OPL.DYL.

gFILL
Usage:

gFILL width%, height%, gMode?%

Fills a rectangle of the specified size
from the current position, according to
the graphics mode specified.

The current position is unaffected.

17: Alphabetic listing 237

!
v |
~
3
i
S
S
&




gFONT

Usage:

gFONT fontId%

Sets the font for current drawable to
fontId%. The font may be one of the
predefined fonts in the ROM or a

user-defined font. See the ‘Graphics’
chapter for more details of fonts.

User-defined fonts must first be loaded
by gLOADFONT, which returns the
font IA% needed for gFONT.

See also gLOADFONT, FONT.

gGMODE
Usage:
gGMODE mode$

Sets the effect of all subsequent drawing
commands - gLINEBY. gBOX etc. — on the
current drawable.

node% Pixels will be:
0 set

1 cleared

2 inverted

When you first use drawing commands
on a drawable, they set pixels in the
drawable. Use gGMODE to change this.
For example, if you have drawn a black
background, you can draw a white box
outline inside it with either gGMODE 1
or gGMODE 2, followed by gBOX.

gGREY
Usage:

gGREY mode%®

Controls whether all subsequent graphics
drawing and graphics text in the current
window draw to the grey plane, the black
plane or te both,

mode%=0 for black plane only (default)
mode%=1 for grey plane only
mode%=2 for both plancs

It is helpful to think of the black plane
being in front of the grey plane, so a
pixel set in both planes will appear black.
See the ‘Graphics’ chapter for details.

To enable the use of grey in the default
window (ID=1) use DEFAULTWIN 1 at

238 17: Alphabetic listing

the start of your program. If grey is
required in other windows you must
create the windows with a grey plane
using gCREATE.

gGREY cannot be used with bitmaps

- which have only one plane.

See also DEFAULTWIN and sCREATE.

gHEIGHT
Usage:
height% = gHEIGHT

Returns the height of the current
drawable.

gIDENTITY
Usage:

1d%=gIDENTITY
Recturns the 1D of the current drawable.
The default window has Ib=1.

gINFO
Usage:

gINFO var 1%()

Gets general information about the
current drawable and about the graphics
cursor (whichever window it is in). The
information is returned in the array i% ()
which must be at least 32 integers long.

The information is about the drawable in
its current state, so eg the font
information is for the current font in the
current style.

The following information is retumned:

1% (1) lowest character code

i%(2) highest character code

i%(3)}) height of font

i%(4) descent of font

i%(5) ascent of font

i%{6} width of ’(’ character

1%{7) maximum character width

i%(8) flags for font (see below)

1i%(9-17) name of font

1i%(18) current graphics mode
{(gGMODE)

i%(19) current text mode
(gTMODE)

i%(20) current style (gSTYLE)



i%(21) COrsor state
(ON=1,0FF=0)

i%(22) 1> of window containing
cursor {-1 for text cursor)

1%(23) cursor width

i%(24) cursor height

i%(25) cursor ascent

1%(26) cursor x position in
window

i%(27) Cursor y position in
window

i%(28) 1 if drawable is a bitmap

i%(29) cursor effects

i%(30) gGREY setting

i%(31) reserved (window server
ID of drawable)

1%{(32) reserved

1% (8) specifies a combination of the
following font characteristics;

Value: Meaning:

1 font uses standard ASCH
characters (32-126)

2 font uses Code Page 850
characters (128-255)

4 font is bold

8 font is italic
16 font is serifed
32 font is monospaced

$8000 font is stored expanded
for quick drawing

(See HEXS for an explanation of
hexadecimal numbers. See ‘I/O functions
and commands’ in the ‘Advanced topics’
chapter for a description of the use of
*var’ variables.)

Use PEEKS (ADDR (1% (9) }) toread
the name of the font as a string,

If the cursoris on (1% (21} =1),itis
visible in the window identified by
i%(22).

i%(29) has bit O set

(1%(29) AND 1) if the cursor is
obloid, bit 1 set (1% (29) AND 2)if
not flashing, and bit 2 set

(1i%(29) AND 4)if grey.

If the cursaris off (i%(21)=0), oris a
textcursor (1% (22)=-1),i%(23) to

i%(27) and 1% (29) should be ignored.

gINVERT
Usage:

gINVERT width$,height$

Inverts the rectangle width$% to the right
and height$% down from the cursor
position, except for the four corner pixels.

GIPRINT
Usage:

GIPRINT strs,c$

or
GIPRINT str$

GIPRINT displays an information message
for about two seconds, in the bottom
right corner of the screen. For example,
GIPRINT "Not Found" displays
Not Found. The string you specify can
be up to 64 characters, If a string is too
long for the screen, it will be clipped.

If ¢% is given, it controls the comer in
which the message appears:

c% corner

0 top left

1 bottom left
2 top right

3 bottom right (default)

Only one message can be shown at a
time. You can make the message go
away — for example, if a key has been
pressed — with GIPRINT *",

gLINEBY
Usage:

gLINEBY dx#%,dvg

Draws a line from the current position to
a point dx% to the right and dy% down.
Negative dx% and dy% mean left and up
respectively,

For horizontal lines, the line includes the
pixel with the lower x coordinate and
excindes the pixel with the higher x
coordinate. Similarly for vertical lines,
the line includes the pixel with the lower
y coordinate and excludes the pixel with
the higher y coordinate. For oblique lines
(where the x and y coordinates change),
the line is drawn minus one or both end
points.

17: Alphabetic listing 239

O
RS,
=
g
S
&




The current position moves to the end of
the line drawn.

gLINEBY 0, 0 sets the pixel at the
current position.

See also gLINETO, gPOLY.

gLINETO
Usage:

gLINETO x%,v%

Draws a line from the current position to
the point x%, v%. The current position
moves to x%, v%.

For horizontal lines, the line includes the
pixel with the lower x coordinate and
excludes the pixel with the higher x
coordinate. Similarly for vertical lines,
the line includes the pixel with the lower
y coordinate and excludes the pixel with
the higher y coordinate. For oblique lines
(where the x and y coordinates change),
the line is drawn minus one or both end
points.

To plot a single point, use gLINETO to the
current position (or gLINERY 0, 0).

See also glLINEBY, gPOLY.

gLOADBIT

Usage - one of:

id%=gLOADBIT (names, write%, 1%)
1d%=gLOADBIT (names, write$)
id%=gLOADBIT (names$}

Loads a bitmap from the named bitmap
file and makes it the current drawable,
Sets the current position to 0,0, its top
left corner. If name$ has no file
extension , PIC is used. The bitmap is
kept as a local copy in memory.

Returns 1d% (2 to 8) which identifies this
bitmap for other keywords.

wr1te%$=0 sets read-only access.
Attempts to write to the bitmap in
memory will be ignored, but the bitmap
can be used by other programs without
using more memory. write%=1 allows
you to write to and re-save the bitmap.
This is the default case.

For bitmap files which contain more than
one bitmap, i% specifies which one to

240 17: Alphabetic listing

Ioad. For the first bitmap, use 1%=0. This
is also the defanlt value. Bitmap files
saved with gSAVEBIT have only one
bitmap, and this argument is not needed
for them.

See also gCLOSE.

gLOADFONT
Usage:

fontId%=gLOADFONT (names)

Loads the uscr-defined font name s, It
returns a font ID; use this with gFONT to
make the current drawable use this font.
If name$ does not contain a file
extension, . FON is used.

gFONT itself is very efficient, so you
should normally load all required fonts at
the start of a program.

Note: The built-in Workabout fonts are
autommatically available, and do nut need
loading.

See also gUNLOADFONT.

GLOBAL
Usage:

GLOBAL variables

Declarcs variables to be used in the
current procedure (as does the LOCAL
command) and (unlike LOCAL) in any
procedures called by the current
procedure, or procedures called by them.

The variables may be of 4 types,
depending on the symbol they end with:

= Variable names not ending with $ %
& or () are floating-point variables,
for example price, x

» Those ending with a % are integer
variables, for example x%,
sales92%

« Those ending with an & are long
integer variables, for example x&,
sales92&.

v Those ending with a $ are string
variables. String variable names must
be followed by the maximum length
of the string in brackets — for example
namess$ (12),a$(3)



Array variables have a number
jmmediately following them in brackets
which specifies the number of elements
in the array. Array variables may be of
any type, for example:
x(6),y%(5),£5(5,12), 2& (3}

When declaring string arrays, you must
give two numbers in the brackets. The
first declares the number of elements, the
second declares their maximum length.
For example surnames$ (5, 8) declares
five elements, each up to 8 characters
long.

Variable names may be any combination
of up to 8 numbers and alphabetic letters,
They must start with a letter. The length
inciudes the % & or $ sign, but not the
() in string and array variables.

More than one GLOBAL of LOCAL
statement may be used, but they must be
on separate lines, immediately after the
procedure name.

See also LOCAL.

gMOVE

Usage:

gMOVE dx%, dyv$

Moves the current position dx? to the

right and dy'% downwards, in the current
drawable.

A negative dx$% causes movement to the
lefl; a negative Ay % causcs upward
movement.

See also gAT.

gORDER
Usage:

gORDER id$%,position$%

Sets the window specified by 1A% to the
selected foreground/background position,
and redraws the screen. Position 1 is the
foreground window, position 2 is next,
and so on. Any position greater than the
number of windows is interpreted as the
end of the list.

On creation, a window is at position 1 in
the list.

Raises an error if id% is a bitmap.

See also gRANK.

gORIGINX
Usage:
xE=gORIGINX

Returns the gap between the left side of
the screen and the left side of the current

window, O
Raises an error if the current drawable is ' ;:G.
a bitmap. x
D

<

gORIGINY S
Usage: . a
O

v%$=gORIGINY

Returns the gap between the top of the
screen and the top of the current window.

Raises an error if the current drawable is
a bitmap.

GOTO
Usage:

GOTO label or GOTO label::

label::

Goes to the line following the label:
and continues from there, The label —

s Must be in the current procedure

= Must start with a letter and end with a
double colon, although the double
colon is not necessary in the GoTo
statement

« May be up to 8 characters long
excluding the colons.

gPATT

Usage:

gPATT id%,width$, height$,
mode?

Fills a rectangle of the specified size
from the current position with repetitions
of the drawable 1d%.

As with gCOPY, this command can copy
both set and clear pixels, so the same

17: Alphabetic listing 241



modes are available as when displaying
text. Set mode% = 0 for set, 1 for clear, 2
for invert or 3 for replace. 0, | and 2 act
only on set pixels in the pattemn; 3 copies
the entire rectangle, with set and clear
pixels.

If you set 1d%=-1 a pre-defined grey
pattern is used.

The current position is unaffected.

gPATT is affected by the setting of pgGREY
(in the current window) in the same way
as gCoPY: with gGREY 0 if copies black
to black; with gGREY 1 it copies grey to
grey, or black to grey if source is black
only, with gGREY 2 it copies grey to
grey and black to black, or black to both
if source is black only.

gPEEKLINE
Usage:
gPEEKLINE id%,x%,v%.d%(),1n%

Reads a horizontal line from the black
plane of the drawable 1A%, length 1n$%,
starting at x%, y%. The leftmost 16 pixels
are read into d% (1), with the first pixel
read into the least significant bit.

The array d% () must be long enough to
hold the data. You can work out the
number of integers required with

{ (In%+15) /16) (using whole-number
division).

If you set 1d% to 0, this just reads from
the whole screen, not from any particular
window.

If you add $8000 o 1a%, the grey plane
(not the black plane) will be pecked.

gPOLY
Usage:

gPOLY a%{)

Draws a sequence of lines, as if by
gLINEBY and gMOVE commands,
The array 15 set up as follows:

a% (1) starting x position

a% (2) starting y position

a% (3) number of pairs of offsets
a% (4) dx1%

a%(5) dyl%

242 17: Alphabetic listing

a% (o) dx2%
a%(7) dy2% etc.

Each pair of numbers — dx1%,dy1%, for
example - specifies a line ora
movement. To draw a line, dy% is the
amount to move down, while dx% is the
amount to move to the right multiplied
by two. :

To specify a movement (ie without
drawing a line) work out the dx%, dy%
as for a line, then add 1 to dx%.

{For drawing/movement up or left, use
negative numbers. )

gPOLY is quicker than combinations of
gAT, gLINEBY and gMOVE,

Example, to draw three horizontal lines
50 pixels long at positions 20,10, 20,30
and 20,50.

2%(1}=20 :a%(2)=10 REM 20,10
a%(3})=5 REM 5 operations
REM draw right 50
a%{4)=50*2 :a%(5)=0
REM move down 20
a%{6)=0*2+1 :a%(7)=20
REM draw left 50
a%(8)=-50*2 :a%(9)=0
REM move down 20
a%(10)=0*2+1 :a%(11)=20
REM draw right 50
a%(12}=50*2 :a%{(13)=0
gPOLY a%()

gPRINT
Usage:

gPRINT 1list of expressions

Displays a list of expressions at the
current position in the current drawable,
All variable types are formatted as for
PRINT,

Unlike PRINT, gPRINT does not end by
moving to a new line. A comma between
expressions is still displayed as a space,
but a semi-colon has no effect. gPRINT
without a list of expressions does nothing,

See also gPRINTR, gPRINTCLIP, gTWIDTH,
gXPRINT, gTMODE.



gPRINTB
Usage — any of:

gPRINTB t$,w$,als%, tps, brs, m%
gPRINTB t8,w%,al%, tp%, btg
gPRINTB t5,w%,al%, tp$
gPRINTB t5,w%,al%

gPRINTB t8,w$

Displays text £ $ in a cleared box of
width w% pixels. The current position is
used for the left side of the box and for
the haseline of the text.

al% confrols the alignment of the text in
the box — 1 for right aligned, 2 for left
aligned, or 3 for centred.

tp% and bt% are the clearances between
the text and the top/bottom of the box.
Together with the current font size, they
conitrol the height of the box. An error is
raised if tp% plus the font ascent is
greater than 255.

% controls the margins. For left
alignment, m% is an offset from the left of
the box to the start of the text, For nght
alignment, m% is an offset from the right
of the box to the end of the text. For
centering, m% is an olfset from the left or
right of the box to the region in which to
centre, with positive m% meaning left and
negative meaning right.

If values are not suppiied for some
arguments, these defaults are used:

als left
tpg 0O
bt 0
m$ 0

See also gPRINT, gPRINTCLIP, gTWIDTH,
gXPRINT.

gPRINTCLIP
Usage:
w%=gPRINTCLIP (text$, widthg)

Displays text$ at the current position,
displaying only as many characters as
will fit inside width$% pixels. Returns
the number of characters displayed.

See also gPRINT, gPRINTB, gTWIDTH,
gXPRINT, gTMODE.

gRANK
Usage:
rank$=gRANK

Returns the foreground/background
position, from 1 to 8, of the current
window.

Raises an error if the current drawable is

a bitmap. o
See also gORDER. ;Q
=
gSAVEBIT <
Usage: g
&

gSAVEBIT name$,width%, height¥
or :
gSAVEBIT names

Saves the current drawable as the named
bitmap file. If width$% and height%
arc given, then only the rectangle of that
size from the current position is copied.
If name$ has no file extension . PICis
used.

Saving a window to file when it includes
grey will save both planes to the file -
black bitmap first followed by grey.

gSCROLL
Usage:

gSCROLL dx%, dv$, x%, ve, wds, ht%
or
gSCROLL dx%, dy%

Scrolls pixels in the current drawable by
offset dx%, dy%. Positive dx% means to
the right, and positive dy% means down.
The drawable itself does not change its
position.

If you specify a rectangle in the current
drawable, at x%, y% and of size
wd% , ht$, only this rectangle is scrolled.

The areas dx% wide and dy$% deep which
are "left behind” by the scroll are cleared.

The current position is not affected.

17: Alphabetic listing 243



gSETWIN
Usage:
gSETWIN x%,v%,width%, height%

or
gSETWIN x%,v%

Changes position and, optionally, the size
of the current window.

An error is raised if the current drawable
is a bitmap.

The current position is unaffected.

If you use this command on the default
window, you must also use the SCREEN
command to ensure thaft the area for PRINT

commands to use is wholly contained
within the default window.

gSTYLE
Usage:
gSTYLE style$%

Sets the style of text displayed in
subsequent gPRINT, gPRINTB and
gPRINTCLIP commands on the current
drawable.

style% Text style:

0 normal

1 bold

2 underlined

4 inverse

8 double height
16 mono

32 italic

You can combine these styles by adding
their values — for example, to set bold,
underlined and double height, use
gSTYLE 11,as 11=1+2+8.

This command doees not affect
non-graphics commands, like PRINT.

gTMODE
Usage:
gTMODE mode$%

Sets the way characters are displayed by
subsequent gPRINT and gPRINTCLIP
commands on the current drawable.

mode% Pixels will be:
0 set
1 cleared

244 17: Alphabetic listing

2 inverted
3 replaced

When you first use "graphics text"
commands on a drawable, ecach dot ina
letter causes a pixel to be set in the
drawable. This is mode%=0.

When mode% is 1 or 2, graphics text
commands work in a similar way, but the
pixels are cleared or inverted. When
mode% is 3, entire character boxes are
drawn on the screen — pixels are set in
the letter and cleared in the background
box.

This command does not affect other text
display commands.

gTWIDTH
Usage:
width$=gTWIDTH (texts}

Returns the width of texts in the
current font and style.

See also gPRINT, gPRINTB, gPRINTCLIP,
gXPRINT.

gUNLOADFONT
Usage:

gUNLOADFONT fontId$

Unloads a user-defined font that was
previously loaded using gLOADFONT.
Raises an error if the font has not been
loaded.

Note: The built-in Workabout fonts are
not held in memory and cannot be
unloaded.

Sec also gLOADFONT.

gUPDATE

Usage — one of:

gUPDATE ON
gUPDATE OFF
gUPDATE

The Workabout screen is usually updated
whenever you display anything on it.
gUPDATE OFF switches off this feature.
The screen will then be updated as few
times as possible (though note that some
keywords will always cause an update.)



You can still force an update by using the
gUPDATE command on its own.

This can result in a considerable speed
improvement in some cases. You might,
for example, use gUPDATE OFF, then a
sequence of graphics commands,
followed by gUPDATE. You should
certainly use gUPDATE OFF if you are
about to write exclusively to bitmaps.

gUPDATE ON returnis to normal screen
updating.

gUPDATE affects anything that displays on
the screen. If you are using a lot of PRINT
commands, gUPDATE OFF may imake a
noticeable difference in speed.

Note that with gUPDATE OFF, the location
of errors which occur while the
procedure is running may be incorrectly
reported. For this reason, gUPDATE OFF 1s
best used in the final stages of program
development, and even then you may
have to remove it to locate some errors.

gUSE
Usage:
gUsFE 1d%

Makes the drawable 1d% current,
Graphics drawing commands will now
2o tu this drawable. gUSE does not bring
a drawable to the foreground (see
gORDER).

gVISIBLE ON/OFF
Usage:

gVISIBLE ON/OFF

Makes the current window visible or
invisible.

Raises an error if the current drawable is
a hitmap.

gWIDTH
Usage:

width%=gWIDTH

Returns the width of the current drawable,

" rectangle of the specified size or with the

gX
Usage:
x%=gX

Returns the x current position (in from
the left) in the current drawable.

gXBORDER
Usage:

gXBORDER type%, flags$%,ws, h$
or
gXBORDER type%, flags$

Draws a border in the current drawable
of a specified type, fitting inside a

O
Y,
r‘--
-
®
<
<
Q
=
QL
n

size of the current drawable if no size is
specified.

type%=0 for drawing the Series 3 type
border; £1ags$% are then as for gBORDER.

type%=1 for drawing the Workabout
3-D grey and black border. A shadow or a
gap for a shadow is always assumed.
flags%=1,2,3, 4 are as for gBORDER.
When the shadow is enabled (1 or 3)
only the grey and black parts of the
border are drawn; you should pre-clear
the background for the white parts. When
the shadow is disabled (2 or 4) the outer
and inner burder lines are drawn, but the
areas covered by grey/black when the
shadow is enabled arc now cleared. (This
allows a shadow to be turned off simply
by calling gXBORDER again.)

The following values of £1lags% apply
to all border types:

0 for normal corners

OR with $100 leaves 1 pixel gap around
the border.

OR with $200 for more rounded corners
OR with $400 for losing a singie pixel.

If both $400 and $200 are mistakenly
supplied, $200 has priority.

An error is raised if the current window
has no grey plane.

See also gBORDER.

17: Alphabetic listng 245



gXPRINT
Usage:

ygXPRINT string$, flags?

Displays string$ at the current
position, with precise highlighting or
underlining. The current font and style
are still used, even if the style itself is
inverse or underlined. Text mode 3
(replace} is used — both set and cleared
pixels in the text are drawn,

flags$% has the following effect:

flags% effect

0 normal, as with gPRINT

1 inverse

2 inverse, except comer
pixels

3 thin inverse

4 thin inverse, except
comer pixels

5 underlined

6 thin underlined

Where lines of text are separated by a
single pixel, the thin options maintain the
separation between lines.

gXPRINT does not support the display of a
list of expressions of various types.

gY
Usage:

y%=g¥

Returns the y current position (down
from the top) in the current drawable.

HEXS$
Usage:
h&=HEXS (x&)

Returns a string containing the
hexadecimal (base 16) representation of
integer or long integer x&.

For example HEX$ (255) returns the
string "FF".

Notes

To enter integer hexadecimal constants
(16 bit) put a $ in front of them. For
example $FF is 255 in decimal, (Don’t
confuse this use of $ with string variable
names.)

246 17 Alphabetic listing

To enter long integer hexadecimal
constants (32 bit) put a & in front of
them. For example &FFFFF is 1048575
in decimal.

Counting in hexadecimal is like this: ¢
123456789 ABCDE
F 10... A stands for decimal 10, B for
decimal 11, ¢ for decimal 12 ...upto ¥
for decimal 5. After F comes 10, which
is equivalent to decimal 16.

To understand numbers greater than
hexadecimal 10, again compare
hexadecimals with decimals. In %hese
examples, 10° means 10x10, 10" means
10x10x10 and so on.

253 in?'decimal ]is:
(2x109)+5x10H)+(3x10%)
= (2x100)4+(5x10)+(3x 1)
= 200+50+3

By analggy, &253 in hexadecgnal 15!
(&2x167)+{(&5x16")+(&3x167) '
=(2x256)+(5x16)+(3x1)

=512+80+3 = 595 in decimal.

Similarl%, &A6B inlhexadecimgl is
(BAX16T)H{(&6x16 )+ &Bx16™)
=(10x256)+(6x16)+(11x1)
=2560+96+11 = 2667 in decimal.

You may also find this tablc uscful for
converting between hex and decimal:

hex. decimal
&l 1 =16°
£10 16 =161
&100 256 =16*
%1000 4096 =16

For example, &20F9 is

(2x& 1000 +(0x & 100} +{15x & 10)+9
which in decimal is;
{2x4096)+-(0x256)+(15x16)+9 = 844 1.

All hexadecimal constanis are inlegers
($) or long integers (&). So arithmetic
operations involving hexadecimal
numbers behave in the usual way. For
example, &3 /&2 retums 1, &3/2.0
returns 1.5, 3/52 retutns 1.



HOUR
Usage:
h%=HOUR

Returns the number of the current hour
from the system clock as an intcger
between 0 and 23.

IABS

Usage:

1&=IABS3 (x&)

Returns the absolute value, ie withott

any sign, of the integer or long integer
expression x&.

For example IABS(-10) is 10.

Sce also ans, which retums the absolute
value as a floating-point value.

ICON
Usage:
ICON names

Gives the name of the bitmap file to use
as the icon for an OPA.

This can only be used between APP and
ENDA.

See the ‘Advanced topics’ chapter for
more details of OPAs,

IF...ENDIF
Usage:

IF conditionl

ELSEIF condition2
ELSE

ENDIF

Does either

= the statements following the IF
condition

or

» the statements following one of the
ELSEIF conditions (there may be as
many ELSEIF statements as you like -
none at all if you want)

or

= (he statements following ELSE (or, if
there is no ELSE, nothing at all). There
may be either one ELSE statement or
none.

After the ENDIF statement, the lines
following ENDIF carry on as normal,

IE, ELSEIF, ELSE and ENDIF must be in that
order.

Every if must be matched with a closing
ENDIF.

Q
s
l""-
T
3
S
&

You can also have an IE. ENDIF structure
within another, for example:

IF conditionl

ELSE

IF condition2
ENDIF
ENDIF

condition is an expression returning a
logical value — for example a<b. If the
expression returns logical true (non-zero)
then the statements following are
executed. If the expression returns logical
false (zero) then those statements are
ignored. For more details about logical
expressions, see the ‘Operators and
logical expressions’ appendix.

INPUT
Usagce:

INPUT variable

or
INPUT log. field

Waits for a value to be entered at the
keyboard, and then assigns the value
entered to a variable or data file field.

You can edit the value as you type it in.
All the usual editing keys are available —

17: Alphabetic listing 247



the arrow keys move along the line, Esc
clears the line and so on.

If inappropriate input is entered, for
example a string when the input was to
be assigned to an integer variable, a ? is
displayed and you can try again.
However, it you used TRAP INPUT,
control passes on to the next line of the
procedure, with the appropriate error
condition being sel and the value of the
variable remaining unchanged.

INPUT is usually used in conjunction with
a PRINT statement:

PROC exch:
LGCAT, pds,rate
BoO

PRINT "Pounds Sterling?",
INPUT pds
PRINT "Rate (DM)}?",
INPUT rate
PRINT "=",pds*rate, "DM"
GET
UNTIL 0O
ENDP

Note the commas at the end of the PRINT
statements, used so that the cursor
waiting for input appears on the same
line as the messages.

TRAPINPUT

If a bad value is entered (for example
*abc* for a%) in response to a TRAP
INPUT, the ? is not displayed, but the ERR
function can be called to return the value
of the error which has occurred. If the
Esc key is pressed while no text is on the
input line, the ‘Escape key pressed’ error
(number -114) will be returned by ERR
(provided that the INPUT has been
trapped). You can use this feature to
enable someone to press the Esc key to
escape from inputting a value.

See also EDIT. This works like INPUT,
except that it displays a string to be
edited and then assigned to a variable or
ficld. It can only be used with strings.

INT
Usage:
i&=INT (x)

248 17: Alphabetic listing

Returns the integer (in other words the
whole number) part of the floating-point
expression x. The number is returned as
a long integer.

Positive numbers are rounded down, and
negative numbers are rounded up - for
example INT (-5.9) returns -5 and
INT(2.9) returns 2. If you want to
round a number to the nearest integer,
add 0.5 to it (or subtract 0.5 if itis
negative) before you use INT.

In the in-built Calculator application, you
need to use INT fo pass a number to a
procedure which requires a long integer
parameter. This is because the Calculator
passes all numbers as floating-point by
default.

See also INTF.

INTF
Usage:
i=INTF {x)

Used in the same way as the INT function,
but the value returned is a floating-point
number. For example,

INTF (1234567890123 .4) returns
1234567890123.0

You may also need this when an integer
calculation may cxeced integer range.

See also INT.

/0 functions

These functions and the use of ‘var’
variables are covered in detail in the
‘Advanced topics’ chapter.

r%=TOA (h%, f%, var status$,
var al,var a2)

The device driver opened with handle
h% performs the asynchronous IO
function £% with two further
arguments, al and a2. The argument
status?® is set by the device driver.
An IOWAIT must be performed for each
IOA.

r¥=I0C (h%, £%, var statusg,
var al,var aZ2)



Make an [/O request with guaranteed
completion. This has the same form as
I0A etc but it returns zero always.

IOCANCEL {h$)

Cancels any outstanding
asynchronous I/O request (10C or I0A).

r$=I0OCLOSE (h#%)
Closes a file with the handle h%.

r%$=I00PEN (var h%,names,
mode%)

Creates or opens a file called names$,
Defines h% for use by other /O
functions. mode% specifies how to
open the file. For unique file creation,
use

ICOPEN{var h%,addr%,mode%)

r%=I0READ (h%, addr%,maxLen%)

Reads from the file with the handle
h%. address% is the address of a
buffer large enough to hold a
maximum of maxLen% bytes. The
value returned to r% is the actual
number of bytes read or, if negative, is
an error value,

r$=I0SEEK { h%, mode%, var off&)

Seeks to a position in a file that has
been opened for random access.
mode% specifies how the offset
argument of £& is to be used.

JOSIGNAL
Signals an F/O function’s completion.

r¥=I0W(h%, funck, var al,
var az)

The device driver opened with handle
h% performs the synchronous I/O
function func% with the two further
arguments.

IOWAILT

Waits for an asynchronous I/Q
function to signal completion.

IOWAITSTAT var stat$s

Waits for an asynchronous function,
called with 10A or IOC, to complete.

r$=IOWRITE (h$%, addr$, length¥)

Writes 1ength$% bytes in a buffer at
address% to the file with the handle
h%.

ICYIELD

Ensures that any asynchronous
handler set up with I0A or 10C is given
a chance to run. '

KEY
Usage:
k%=KEY

Returns the character code of the last key
pressed, if there has been one since the
last call to the keyboard. These functions
count as calling to the keyboard: INPUT,
EDIL. GET, GETS, KEY and KEYS.

O
R
r-q-
)
s
S
S
&

If no key has been pressed, zero is
returned.

See the ‘Character set and character
codes’ appendix for a list of special key
codes. You can use KMOD to check
whether modifier keys (Shift, Control,
Psion and Caps Lock) were used.

This command does not wait for a key to
be pressed, unlike GET.

KEY$%
Usage:
k$=KEYS

Returns the last key pressed as a string, if
there has been a keypress since the last
use of the keyboard by INPUT, EDIT, GET,
GETS, KEY or KEYS.

If no key has been pressed, a null string
("") is returned.

See the ‘Character set and character
codes’ appendix for a list of special key
codes. You can use XMOD to check
whether modifier keys (Shift, Control,
Psion and Caps Lock) were used.

This command does not wait for a key to
be pressed, unlike GETS.

17: Alphabetic listing 249



KEYA

Usage:

err%=KEYA({var stat¥$,
var keyv%(1l))

This is an asynchronous keyboard read
function.

See the ‘Advanced topics’ chapter for
details, including the use of ‘var’
variables.

Cancel with KEYC.

KEYC
Usage:

err%=KEYC (var stat$)

Cancels the previously called KEya
function with status stat%.

See the ‘Advanced topics’ chapter for
details, including the use of ‘var’
variables.

KMOD
Usage:
k% =KMOD

Returns a code representing the state of
the modifier keys (whether they were
pressed or not) at the time of the last
keyboard access, such as a KEY function.
The modifiers have these codes:

binary
2 Shift down 10
4 Control down 130

8 Psion down 1000
16 Caps Lockon 10000

If there was no modifier, the function
returns 0. If a combination of modifiers
was pressed, the sum of their codes 1s
returned — for example 20 is returned if
Control (4) was held down and Caps
Lock (16} was on.

Always use immediately after a
KEY/KEYS$/GET/GET$ statement.

The value returned by KMoOD has one
binary bit set for each modifier, as shown
above. By using the logical operator AND
on the value returned by KMOD you can
check which of the bits are set, in order
to see which modifier keys were held

250 17: Alphabetic listing

down. For more details on AND, see the
‘Operators and logical expressions’
appendix.

Example:

PROC modifier:
LOCAL k%,mod%
PRINT "Press a key"
CLS :mod%=KMQOD
PRINT "Key code", k%, "with"
IF mod%=0

PRINT "no modifier®
ENDIF

IF mod% AND 2

PRINT "gShift down"
ENDIF

IF mod% AND 4

PRINT "Control down"
ENDIF

IF mod% AND 8

PRINT "Psion down"
ENDIF

IF mod% AND 16

PRINT "Caps Lock on*
ENDIF
ENDP

: k%=GET

LAST
Usage:

LAST

Positions to the last record in a data filc.,

LCLOSE
Usage:

LCLOSE

Closes the device opened with LOPEN.
(The device is also closed automatically
when a program ends.)

LEFTS

Usage:

bS=LEFTS (as, x%)

Returns the leftmost x% characters from
the string a$.

For example if n$ has the value
Charles, then b$=LEFTS (n$, 3)
assigns Cha to b$.



LEN
Usage:
a%$=LEN (af)

Returns the number of characters in a§.

Eg if a$ has the value
34 Kopechnie Drive then
LEN(a$) returns 18.

You might use this function to check that
a data file string field is not empty before
dispiaying:

IF LEN(A.client$)
PRINT A.client$
ENDIF

LENALLOC
Usage:
1len%=LENALLOC {pcell#$)

Returns the length of the previously
allocated cell at pcells.

LINKLIB
Usage:
LINKLIB cat$

Link any libraries that have been loaded
using LOADLIB.

LN

Usage:

a=LN (x)

Returns the natural (base e) logarithm of
X.

Use LOG to return the base 10 log of a
number.

LOADLIB
Usage.

ret$=LOADLIB (var cat$%, names,
1ink$%)

Load and optionally link a DYL that is
not in the ROM. If successful, this writes
the category handle to cat$% and returns
zero. The DYL. is shared in memory if
already loaded by another process.

See *I/O functions and commands’ in the
‘Advanced topics’ chapter for a
description of the use of ‘var’ variables.

LOADM
Usage:
LOADM modules$

Loads a transtated OPL module so that
procedures in that module can be called.
Until a module is loaded with LOADM,
calls to procedures in that module will
give an error.

module$ is a string containing the name
of the module. Specify the full file name
only where necessary.

Example LOADM "MODULZ2"

Up to 8 modules can be in memory at
any one time; if you try to LOADM a ninth
module, you get an error. Use UNLOADM
to remove a module from memory so that
you can load a different one.

By default, LOADM always uses the
directory of the inttial running program,
or the one specified by a opA application.
It is not affected by the SETPATH
command.

LOC
Usage:

a%=L0C (a§, bs)

Retums an integer showing the position
in a$ where b$ occurs, or zero if b$
doesn’t occur in a$. The search matches
upper and lower case.

Example:

LOC ( " STANDING" , "AND" ) would
return the value 3 because the substring
AND starts at the third character of the
string STANDING.

LOCAL
Usage:

LOCAL variables

Used to declare variables which can be
referenced only in the current procedure.
Other procedures may use the same
variable names to create new variables.

17: Alphabetic listing 251

SpIOMABY TO



Use GLOBAL 10 declare variables common
to all called procedures.

The variables may be of 4 types,
depending on the symbol they end with:

* Variable names not ending with $ %
& or {} are floating-point variables,
for example price, x

» Those ending with a % are integer
variables, for example x%,
sales92%

» Those ending with an & are long
integer variables, for example x&,
sales92&.

* Those ending with a $ are string
variables. String variable names tmust
be followed by the maximum length
of the string in brackets,
for example names$ (12), a$ (3)

Array variables have a number
immediately following them in brackets
which specifies the number of elements
in the array. Array variables may be of
any type, for example:
x(6),y%(5),£$(5,12),=2&(3)

When declaring string arrays, you must
give two numbers in the brackets. The
first declares the number of clements, the
second declares their maximum length.
For example surnames$ {5, 8) declares
five elements, each up to 8 characters
long.

Variable names may be any combination
of up to 8 numbers and alphabctic letters.
They mast start with a letter. The length

includes the % & or $ sign, but not the
{) in sfring and array variables.

More than one GLOBAL or LOCAL
statement may be used, but they must be
on separate lines, immediately after the
procedure name.

See also GLOBAL and the ‘Variables and
constants’ chapler.

LOCK
Usage:
LOCK ON

ar
LOCK OFF

252 17: Alphabetic listing

Mark an OPA (OPL application) as
locked or unlocked. When an OPA is
locked with LOCK ON, the System
screen will not send it events to change
files or quit. If, for example, you move
onto the file list in the System screen and
press Delete to try to stop that ranning
OPA, a message will appear, indicating
that the OPA cannot close down at that
moment. In the Command procesor, the
STOP command may not work.

You should use LOCK ON if your OPA
uses a command, such as EDIT or DIALOG,
which accesses the keyboard. You might
also use it when the OPA is about to go
busy for a considerable length of time, or
at any other point where a clean exit is
not possible. Do not forget to use

LOCK OFF as soon as possible
afierwards.

‘Foreground’, ‘Background’ and
‘Machine on’ events may still occur
while the OPA is accessing the keyboard,
and will be discarded.

An OPA is initially unlocked.

LOG

Usage:

a=L0G { x)

Returns the base 10 logarithm of x.
Use LN to find the base ¢ (natural) log.

LOPEN

Usage:

LOPEN device$

Opens the device to which LPRINTS are to
be sent.

No LPRINTS can be sent until a device
has been opened with LOPEN.

You can open any of these devices:

» The parallel port, with LOPEN
"PAR:C*

» Either of the two serial ports, with
ILLOPEN "TTY:A" or LOPEN
"TTY.C"

» A file on the Workabout or an
attached computer. LOPEN the file
name, eg on a PC:



LOPEN "REM: :C:\BAK\MEMO.TXT"

or on an Apple Macintosh:
LOPEN "REM: :HD40 :ME:MEMO5"

Any existing file of the name given
will be overwriten when you print to
it :
You can open ports A and C at the same
time. Use LCLOSE to close a device. (It
will also close automatically when a
program finishes running.)

See the ‘Serial/parallel ports and printing’
appendix for more information.

LOWERS$
Usage:
b$=LOWERS (a$s)

Converts any upper case characters in the
string a$ to lowcr case and returns the
completely lower case string.

Eg if a$="CLARKE", LOWERS (a$)
returns the string clarke

Use UPPERS to convert a string to upper
case.

LPRINT
Usage:

LPRINT list of expressions

Prints a list of itens, in the same way as
PRINT, except that the data is sent to the
device most recently opened with LOPEN.

The expressions may be quoted strings,
variables, or the evaluated results of
expressions. The punctuation of the
LPRINT statement (comrnas, semi-colons
and new lines) determines the layout of
the printed text, in the same way as PRINT
statements.

If no device has been opened wi_th LOPEN
you will get an error.

See PRINT for displaying to the screen.

See LOPEN for opening a device for
LPRINT. '

See the ‘Serial/parallel ports and printing’
appendix for an overview of printing.

MAX
Usage:

m=MAX (1list}
or
m=MAX (array({).,element)

Returns the greatest of a list of numeric
items.

The list can be either:

= Alist of variables, values and
expressions, separated by commas

or
» The elements of a floating-point array.

When operating on an array, the first
argument must be the array name
followed by (). The second argument,
separated from the first by a comma, is
the number of array elements you wish (o
operate on — for example

m=MAX (arr () ,3) would return the
value of the largest of elements arr (1},
arr(2) and arr(3).

mCARD
Usage:

MCARD titles,nls, k1%

or
mCARD title$,nls$, kl%,n2s,k2%
etc.

Defines a menu. When you have defined
all of the menus, use MENU to display
them.

title$ is the name of the menu. From
one to six items on the menu may be
defined, each specified by two
arguments. The first is the item name,
and the second the keycode for a hot-key.
This specifies a key which, when pressed
together with the Psion key, will select
the option. If the keycode is for an upper
case key, the hot-key will use both the
Shift and Psion keys.

The options can be divided into logical
groups by displaying a grey line under
the final option in a group. To do this,
pass the negative value corresponding to
the hot-key keycode for the final option
in the group. For example, ~ %A specifies
hot-key Shift-Psion-A and displays a

17: Alphabetic listing 253

o
RS
l\-
x
3
2
&




grey line under the associated option'in. -
the menu.

MEAN
Usage:

m=MEAN{list)
or
m=MEAN{array (), element)

Returns the arithmetic mean (avcragc) of
a list of numeric items.

The list can be either:

= Alist of variables, values and
expressions, separated by commas

or , _
» The elements of a floating-point array.

When operating on an array, the first
argument must be the array name
followed by (). The second argument,
separated from the first by a comma, is
the number of array elements you wish to
operate on — for example

m=MEAN (arr (), 3) would return the
average of elements axrr (1), arr (2)
and arr{3}.

This example displays 15 . 0:

a(l)=10
a(2)=15
a(3)=20
PRINT MEAN(a(),3)

MENU
Usage:

val%=MENU
or
val%=MENU (var init$)

Displays the menus defined by mINIT and
mCARD, and waits for you to select an
item. Returns the hot-key keycode of the
item selected, as defined in mCARD, in
lower case.

If you cancel the menu by pressing Esc,
MENU returns 0.

If the name of a variable is passed is sets
the initial menu and item to be
highlighted. init% should be

256* (menu%) +item$; for both

254 17: Alphabetic listing

menu$ and item%, 0 specifies the first,
1 the second and soon. If init% i1s 517
(=256%2+5), for example, this specifies
the 6th item on the third menu.

If init$% was passed, MENU writes back
to init% the valuc for the item which
was last highlighted on the menu. You
can then use this value when calling the
menn again. You only need to use this
technique if you have more than one
menu in your program.

See ‘IO functions and commands’ in the
‘Advanced topics’ chapter for a
description of the use of ‘var’ variables.

MID$
Usage:
m$=MID$ (ag, x%, y$¥)

Returns a string comprising y$%
characters of a$, startmg at the character
at position x%.

Eg if name$="McConnell" then |
MID$ (name$, 3, 3} would return the
string Con.

MIN
Usage:

m=MIN{list)
or
m=MIN(array{).element)

Returns the smallest of a list of numeric -
items.

The list can be either:

= A list of variables, values and
expressions, separated by cornmas

or
« The elements of a floating-point array.

When operating on an array, the first
argument must be the array name
followed by (). The second argument,
separated from the first by a comma, is
the number of array elements you wish to
operate on — for example
m=MIN(arr(),3) would return the
minimum of elements arr (1),

arr(2) and arxr(3).



miNIT
Usage:
mINIT

Prepares for definition of menus,
cancelling any existing menus. Use
mCARD to define each menu, then MENU
to display them.

MINUTE
Usage:
m%¥=MINUTE

Returns the current minute number from
the system: clock (0 to 59).

Eg at 8.54am MINUTE returns 54.

MKDIR
Usage:
MEDIR names

Creates a new directory. For example,
MKDIR "M:\MINE\TEMP" creates a
M: \MINE\TEMP directory, also creating
M: \MINE if it is not already there.

MONTH
Usage:
m%=MONTH

Returns the current month from the
system clock as an integer between 1 and
12.

Eg on 12th March 1992 m$=MONTH

returns 3 to m%.

MONTHS$
Usage:
S =MONTHS (x$%)

Converts x%, a number from 1 to 12, to
the month name, expressed as a
three-letter mixed case string.

Eg MONTHS (1) returns the string Jan.

NEWOBJ
Usage:
pob] $=NEWORJ (num%, clnumt)

Create a new object by category number
num$ belonging to the class clnums,
returning the object handle on success or
zero if out of memory.

NEWOBJH
Usage:

pobj % =NEWOBJH (cat g, clnum¥)

Create a new object by category handle
cat$ belonging to the class clnums,
returning the object handle on success or
cero if out of memory.

NEXT
Usage:
NEXT

Positions to the next record in the current
data file.

If NEXT is used after the end of a file has
been reached, no error is reported but the
current record is a null and the EOF
function retrns true.

NUM$
Usage:

n$=NUMS (x, yv¥)

Returns a string representation of the
integer part of the floating-point number
x, rounded to the nearest whole number.
The string walt be up to y% characters
wide.

» If y% is negative then the string is
right-justified —~ {or example
NUMS (1.9, -3) returns
" 2" where there are two spaces to
the left of the 2.

« If yv% is positive no spaces are added:
eg NUMS (-3.7,3) returns " -4",

v [f the string returned to n$ will not fit
in the width y%, then the string will
just be asterisks; for example
NUMS (256.99,2) returns " ***,

See also FIX$, GENS, SCIS.

17: Alphabetic listing 255

splomAey 7140



ODBINFO
Usage:

ODBINFQ wvar info%()

Provided for advanced use only, this
keyword allows you to use 05 and CALL
o access data file interrupt functions not
accessible with OPL keywords. See the
*Advanced topics’ chapter for more
details, including the use of ‘var’
variables.

OFF
Usage;

OFF

or
OFF x%

Switches the Workabout off.

When you switch back on, the statement
following the OFF command is executed,
for example:

OFF :PRINT "Hello again®

If you specify an integer, x%, between 8
and 16383, the machine switches off for
that number of seconds and then
automatically turns back on and
continues with the next line of the
program (16383 is about 4V hours).
However, during this time the machine
may be switched on by an alarm, and of
course you can turn it on with ON/Esc.

Warning: Be carcful how you usc this
command. If, due 10 a programming
mistake, a program uses OFF in a loop,
you may find it impossible to switch the
Workabout back on, and may have to
reset the computer.

ONERR
Usage:

ONERR label or
ONERR label::

ONERR OFF
ONERR label: : establishes an error
handler in a procedure. When an error is

raised, the program jumps to the
label: : instead of the program

256 17: Alphabetic listing

stopping and an error message being
displayed.

The label may be up to 8 characters long
starting with a letter. It ends with a
double colon (: :), although you don’t
need to use this in the ONERR statement.

ONERR OFF disables the ONERR command,
so that any errors occurring after the
ONERR OFF statement no longer jump to
the label.

It is advisable to use the command ONERR
OFF immediately after the label: ;
which starts the error handling code.

See the Error handling chapter for full
details.

OPEN
Usage:

OPEN fileS,log,fl1,f2...

Opens an existing data file £files,
giving it the logical file name log, and
giving the fields the names £1, £2..

You need only specify those fields which
you intend to update or append, though
you cannot miss out a field.

The opened file is then referred to within
the program by its logical name (A, B, C
or D).

Up to 4 files can be open at once.
Example:
OPEN "clients",A,names, addr$

See also CREATE, USE and OPENR.

OPENR

This command works exactly like OPEN
except that the opened file is read-only -
in other words, you cannot APPEND or
UPDATE the records it contains,

This means that you can run two separate
programs at the same time, both sharing
the same file.



0s
Usage.

a%=0s(i%, addrl®)
or
a%=0s(i%, addrl%, addr23)

Calls the Operating System interrupt 1%,
reading the values of all returned 8086
registers and flags. The CALL function,
although simpler to use, does not allow
the AL register to be passed and no flags
are returned, making it suitable only for
certain interrupts.

The input registers are passed at the
address addr1%. The output registers
are returned at the address addr2% if
supplied, otherwise they are returned at
addr1%. Both addresses can be of an
array, or of six consecutive integers.

Register values are stored sequentially as
6 integers and represent the register
values in this order: AX, BX, CX, DX, SI
and DI. The interrupt’s function number,
if required, is passed in AH.

The output array must be large enough to
store the 6 integers returned in all cases,
irrespective of the interrupt being called.

The value returned by 0s is the flags
register. The Carry flag, which is relevant
in most cases, is in hit (} of the returned
value, so (a% and 1) will be ‘True’ if
Carry is set. Similarly, the Zero flag is in
bit 6, the Sign flag in bit 7 and the
Overflow flag in bit 10.

For example, to find cos (pi/4):

PROC cos:
local a%,b%,c%,d%,s1%,4i%
local result,coshrg, flags%
cosArg=pi/4
si%=addr (coshrg)
di%=addr (result)
ax%=50100 REM AH=1

REM for cosine
flags%=0s(140,addr (ax%))
return peekF{di%)
ENDP

The 0s function requires extensive
knowledge of the Operating System and
related programming techniques.

See also CALL.

PARSES$
Usage:
pS=PARSES (£8, rels, var off$()})

Returns a full file specification from the
filename £$, filling in any missing
information from rels. (See ‘I/O
functions and commands’ in the
‘Advanced topics’ chapter for a
description of the use of ‘var’ variables.)

The offsets to the filename components
in the returned string is returned in

of £% () which must be declared with at
least 6 integers:

off% (1) filing system offset
(1 always)

off%(2) device offset

off%(3) path offset

off%(4) filename offset

off%(5) file extension offset

off%(6) flags for wildcards in

retarned string

The flag values in of £set% (6) are:
(0 : no wildcards

1 : wildcard in filehame

2 : wildcard in file extension

3 : wildcard in both

If rel$ is not itself a complete file
specification, the current filing system,
device and/or path are used as necessary
to fill in the missing parts.

£$ and rel$ should be separate strings.
Example: |

p$=PARSE ("NEW",
“LOC: :M:\ODB\*.0ODB", x% ())

sets p$ to LOC : : M: \ODB\NEW.ODB
andx%()to (1,6,8,13,16,0).

PATH
Usage:
PATH name$

Gives the directory to use for an OPA’s
files.

This can only be used between APP and
ENDA. '

See the ‘Advanced topics’ chapter for
more details of OPAs.

17: Alphabetic listing 257

spiomAsy 740



PAUSE
Usage:

PAUSE x%

Pauses the program for a certain time,
depending on the value of x%:

X% result
0 waits for a key to be pressed.
+ve  pauses for x% twentieths
of a second.
-ve pauses for x% :
twentieths
of a second or until a key
is pressed.

So PAUSE 100 would make the
program pause for % = 5 seconds, and
PAUSE -100 would make the program
pause for 5 seconds or until a key is
pressed.

If x% is O or negative, a GET, GET$, KEY
or KEY$ will return the key press which
terminated the pause. If you are not
interested in this keypress, but in the one
which follows it, clear the buffer after the
PAUSE with a single KEY function;
PAUSE 0 :KEY

PEEK functions

The PEEK functions find the values stored
in specific bytes.

Usage:

p%=PEEKB (x%) returns the integer
value of the byte at address x%

p%=PEEKW (x#%) returns the integer at
address x%

p&=PEEKL (x$%) returns the long
integer value at address x%

P=PEEKF (x%} returns the
floating-point value at address x%

PS$=PEEKS (x%) returns the string at
address x%

Usually you would find out the byte
address with the ADDR function. For
example, if var$ has the value 7,
PEEKW (ADDR {var%) ) returns 7. (See
‘I/0 functions and commands’ in the
‘Advanced topics’ chapter for a
description of the use of 'var’ variables.)

258 17: Alphabetic listing

The different types are stored in different
ways across bytes:

= Integers are stored in two bytes. The
first byte is the least significant byte,
for example:

1 || o =1

0 I = 256

ADDR returns the address of the first
(least significant) byte.

= Long integers are stored in four bytes,
the least significant first and the most
significant last, for example:

olloll1lle] =65536

ADDR returns the address of the first
(least signiftcant) byte.

= Strings are stored with one character
per byte, with a leading byte
containing the string length, eg:

¢7| ="ABC”

3 i 65| 66

Each letter is stored as its character
code — for example, A as 65.

For example, if var$="ABC",
PEEKS (ADDR {var$) ) will return
the string ABC. ADDR returns the
address of the length byte.

s Floating-point numbers are stored
under IEEE format, across eight bytes.
PEEKF automatically reads all eight
bytes and returns the number as a
floating-point. For example if
var=1.3 then
PEEKF (ADDR (var) ) returns 1. 3,

You can use ADDR to find the address of
the first element in an array, for example
ADDR (x% () ). You can also specify
individual elements of the array, for
example ADDR {x%(2) ).

See also the POKE commands and ADDR.

Pi
Usage:

p=PI
Returns the vaiue of Pi (3.14... ).



POKE commands

The POKE commands store values in
specific bytes.

Usage:

POKEB x%, v% stores the integer valne
y'% (less than 256) in the single byte at
address x%

POKEW x%, y% stores the integer v%
across two consecutive bytes, with the
least significant byte in the lower
address, that is x%

POKEL x¥%, y& stores the long-integer
y& In bytes starting at address x%

POKEF x%, y stores the floating-point
value y in bytes starting at address x%

POKES x%, y§ stores the string y$ in
bytes starting at address x%

Use ADDR to find out the address of your
declared variables.

Warning: Casual use of these commands
can result in the loss of data in the
Workabout.

See PEEK for more details of how the
different types are stored across bytes,

POS
Usage:
p%=POS

Returns the number of the current record
in the current data file, from 1 (the first
record) upwards.

A file can have up to 65534 records.
However integers can only be in the
range -32768 to +32767. Record
numbers above 32767 are therefore
returned like this:

record value returned by pPos
32767 32767

32768 -32768

32769 -32767

32770 -32766

65534 -2

To display record numbers, you can use
this check;

IF POS<(

PRINT 65536+P0OS
ELSE PRINT POS
ENDIF

POSITION

Usage:

POSITICON x%

Makes record number x% the current
record in the current data file.

If x% is greater than the number of
records in the file then the E0OF function
will return true.,

POSSPRITE
Usage:

POSSPRITE x%,y$%

Set the position of the current sprite to
pixel x%, v%.

PRINT
Usage:
PRINT list of expressions

Displays a list of expressions on the
screen, The list can be punctuated in one
of these ways:

= [fitems to be displayed are separated
by commas, there is a space between
them when displayed.

= If they are separated by semi-colons,
there are no spaces.

« Each PRINT statement starts a new line,
unless the preceding PRINT ended with
a semi-colon or comma,

= There can be as many items as you
like in this list, A single PRINT on iis
own just moves to the next line.

Examples:

On 1st January 1993,

PRINT "TODAY is",
PRINT DAY;".";"MONTH
would display TODAY is 1.1

PRINT 1 1
PRINT "Hello" Hello
PRINT *Number",1l Number 1

17: Alphabetic listing 259

spiomAsx 140



See also LPRINT, gUPDATE, gPRINT,
gPRINTB, gPRINTCLIP, gXPRINT.

RAD
Usage:
r=RAD (x)

Converts x from degrees to radians.

All the trigonometric functions assume
angles are specified in radians, but it may
be easier for you to enter angles in
degrees and then convert with RAD.

Example:

PROC xcogine:

LOCAL angle

PRINT "Angle {degrees)?:";
INPUT angle

PRINT "C0OS of"',angle,"is",
angle=RAD{angle)

PRINT CO3{angle)

GET

ENDP

(The formula used is * */150)

To convert from radians to degrees use
DEG.

RAISE
Usage:
RAISE x%

Raises an error.

The error raised is error number x%. This
may be one of the errors listed in the
‘Error handling’ chapter, or a new error
number defined by you.

The crror is handled by the error
processing mechanism currently in use -
either OPL’s own, which stops the
program and displays an error message,
or the ONERR handler if you have ONERR
on. -

For a full explanation, scc the Error
handling chapter.

RANDOMIZE
Usage:
RANDOMIZE x&

260 17: Alphabetic listing

Gives a ‘seed’ (start-value) for RND.

Successive calls of the RND function
produce a sequence of random numbers.
If you use RANDOMIZE to set the seed
back to what it was at the beginning of
the sequence, the same sequence will be
repeated.

For example, you might want to use the
same ‘random’ values (o test new
versions of a procedure. To do this,
precede the RND statement with the
statement RANDOMIZE value. Then to
repeat the sequence, use

RANDOMIZE value again.

Example:

PROC SEQ:
LOCAL g$i{l)
WHILE 1
PRINT "S: set seed to 1"
PRINT "0Q: quit"
PRINT "other key: continue*
g$=UPPER¢ (GETS)
IF g$="Q"
BREAK
ELSEIF g$="S"
PRINT *"Setting seed to 1"
RANDOMIZE 1
PRINT "First random no:*
ELSE
PRINT "Next random no:"
ENDIF
PRINT RND
ENDWH
ENDP

REALLOC
Usage:

pcelln%=REALLOC (pcell%,
size$%)

Change the size of a previously allocated
cell at pcall$ to size%, returning the
new cell address or zero if there is not
enough memory.

RECSIZE
Usage:
r%=RECSIZE



Returns the number of bytes occupied by
the current record.

Use this function to check that a record
may have data added to it without
overstepping the 1022-character limit.

Example:

PROC rectest:

LOCAL n$(20)

OPEN "name",A,name$

PRINT "Enter name:",

INPUT n$

IF RECSIZE<={(1022-LEN (nn$))
- A.name$=n$

APPEND

ELSE

PRINT "Won't fit in recoxd"
ENDIF

ENDP

REM
Usage:
REM toxt

Precedes a remark you include to explain
how a program works. All text after the
REM up to the end of the line is ignored.

When you use REM at the end of a line
you need only precede it with a space,
not a space and a colon.

Examples:
INFUT a
b=a*.175 REM b=TAX

INPUT a
b=a*.175 :REM D=TAX

RENAME
Usage:
RENAME filel$,file2$

Renames £ilel$ as £ile2$. You can
rename any type of file.

You cannot use wildcards.

You can rename across directorics —

RENAME *\dat\x.dbf","\x.dbf*

is OK. If you do this, you can choose

Frether or not to change the name of the
ile,

Example:
PRINT "01d name:" :INPUT a$
PRINT "New name:" :INPUT b$

RENAME a$,b$

REPTS
Usage:
r5=REPTS (ag, x%)

Returns a string comprising x%
repetitions of a$.

For example, if a$="ex",
r$=REPTS (a$,5) returns
exexexexex.

spiomAay 140

RETURN
Usage:

RETURN or RETURN variable

Terminates the execution of a procedure
and returns control to the point where
that procedure was called (ENDP does this
automatically).

RETURN 102Ivariable does thisas
well, but also passes the value of
variable back to the calling
procedure. The variable may be of any
type. You can return the value of any
single array element — for example
RETURN x% (3). You can only return
one variable.

RETURN on its own, and the default
return through ENDP, causes the
procedure to return the value 0 or a null
string.

Example:

PROC price:

LOCAL x

PRINT "Enter price:",
INPUT x

x=tax: {x}

PR X

GET
ENDP

PROC tax: {price)
RETURN price+l17.5%
ENDP

17: Alphabetic listing 261



RIGHT$
Usage:
r$=RIGHTS (a3, x%)

Returns the rightmost x% characters of
as.

Example:

PRINT "Enter name/ref",
INFUT cC$

ref$=RIGHTS (c$§, 4)
name$=LEFTS (c5, LEN(c$) -4)

RMDIR
Usage:

RMDIR str§

Removes the directory given by str$.
You can only remove empty directories.

RND
Usage:
I =RND

Returns a random floating-point number

in the range 0 (inclusive) to 1 (exclusive).

To produce random numbers between |
and n — eg between | and 6 for a dice -
use the following statement:
£%=1+INT (RND*n)

RND produces a different number every
time it is called within a program. A fixed
sequence can be generated by using
RANDOMIZE. You might begin by using
RANDOMIZE with an argument generated
from MINUTE and SECOND (or similar), to
seed the sequence differently each time.

Example:

PROC rndvals:
LOCAL i%
PRINT "Random test values:"
DO
PRINT RND
i%=1%+1
GET
UNTIL 1%=1i0
ENDP

262 17 Alphabetic listing

SCiI$
Usage:
S$=SCIS$(x,V%, 2%)

Returns a string representation of x in
scientific format, to v% decimal places
and up to z% characters wide. Examples:

SCIS$(123456,2,8)="1.23E+05"
SCIS(1,2,8)="1.00E+00"
SCI$(1234567,1,-8)=" 1.2E+06"

If the number does not fit in the width
specified then the returned string
contains asterisks.

[f z% is negative then the string is
right-justified.

See also FIX$, GEN$, NUMS.

SCREEN
Usage:

SCREEN width$%, height¥%

or
SCREEN width%,6 height%,x%,v%

Changes the size of the window in which
text is displayed. x% , v% specify the
character position of the top left comer;
if they are not given, the text window is
centred in the screen.

An OPL program can initially display
text to the whole screen.

SCREENINFO
Usage:

SCREENINFC var info%()

Gets information on the text screen (as
used by PRINT etC.)

This keyword allows you to mix text and
graphics. It is required because while the
default window is the same size as the
physical screen, the text screen is slightly
smaller and is centred in the default
window. The few pixels gaps around the
text screen, referred fo as the left and top
margins, depend on the font in use.

On retum, the array info% {}, which
must have at least 10 elements, contains
this information:



info% (1) left margin in pixels
info%(2) top margin in pixels
info%{3) text screen width in
character units

info% (4) text screen height in
character units

info% (5} reserved (window server id
for default window)

info% (6) fontid (FONT and gFONT)
info% (7) pixel width of text window
character cell

info% (8) pixel height of text window
line

info%{9) and info% (10} reserved
Initially SCREENINFO returns the values
for the initial text screen. Subsequently
any keyword which changes the size of
the text screen font, such as FONT, will
change some of these values and
SCREENINFO should therefore be called
again,

See also FONT. See ‘[/O functions and
commands’ in the ‘Advanced topics’
chapter for a description of the use of
‘var’ variables.

SECOND
Usage:

s%=SRECOND

Returns the cuirent time in seconds from
the system clock (0 to 39).

Eg at 6:00:33 SECOND returns 33.

SECSTODATE
Usage:

SECSTODATE s&,var yrg,
var mo%,var dy$,var hrg,
var mn%,var scg,var yrdayig

Returns the date that corresponds (o s&,
the number of seconds since 00:00 on 1

January 1970. yrday% is set to the day
in the year (1-366).

s& is an unsigned long integer. To use
values greater than +2,147,483,647,
subtract 4,294,967,296 from the value.

See also DATETOSECS, HOUR, MINUTE,
SECOND, dDATE, DAYS. See ‘1/0 functions
and commands’ in the ‘Advanced topics’

chapter for a description of the use of
‘var’ variables,

SEND
Usage:

ret$=SEND {pobj %, m%,
var pl,...)

Send a message to the object pob3% to
call the method number m$%, passing
between zero and three arguments (p1l...)
depending on the requirements of the
method, and returning the value returned
by the selected method. (See ‘'1/0
functions and commands’ in the
‘Advanced topics’ chapter for a
description of the use of ‘var” variables.)

SETNAME
Usage:
SETNAME names

Sets the name of the running OPA to
name$ and redraws any status window,
using that name below the icon.

SETPATH
Usage:

SETPATH names

Sets the current directory for file access —
for example, SETPATH "a:\docs".
LOADM continucs to use the directory of
the initial program, or the one specified
by a OPA application, but all other file
access will be to the new directory.

SIN
Usage:

s=8IN(angle)

Returns the sine of angle, an angle
expressed in radians.

To convert from degrees to radians, use
the RAD function.

17: Alphabetic listing

263

spiomAay 140



SPACE
Usage:

s&=8SPACE

Returns the number of free bytes on the
device on which the current (open) data
file is held.

Example:

PROC stock:
OPEN "A:stock",A,as,b%
WHILE 1

PRINT "Item name:";

INPUT A.a$

PRINT "Number:";

INPUT A.b%

IF¥ RECSIZE>SPACE
PRINT "Disk full"
CLOSE
BREAK

EI.SE
APPEND

ENDIF

ENDWH
ENDP

SQR
Usage:
s5=8QR {x}

Returns the square root of x.

STATUSWIN

Usage - one of;

STATUSWIN ON, type%
STATUSWIN ON
STATUSWIN OFF

Displays or removes a "permanent” status
window.

If type%=1 the small status window is
shown. If type%=2 the large status
window is shown. STATUSWIN ON on its
own displays an appropriate status
window; on the Workabout this will
always be the large status window.

The permanent status window is behind
all other OPL windows. In order to see it,
you must use FONT {or both SCREEN and
gSETWIN) to reduce the size of the text

264 17: Aiphabetic listing

and graphics windows. You should
ensure that your program does not create
windows over the top of it.

STATWININFO
Usage:

t$=STATWININFO ( type$t,
var xy¥(})

Sets xy%(1),xy%(2), xy%(3) and xy%(4)
to the top left x, top left y, width and
height respectively of the specified type
of status window. type%=1 is the small
status window; type%=2 is the large
status window; type%=3 is the Series 3
compatibility mode status window;,
type%=~1 is whichever status window
is current.

STATWININEO returns t%, the type of the
current status window (with values as
for type%, or zero if there 15 no current
status window),

See ‘IO functions and commands’ in the
‘Advanced topics’ chapter for a
description of the use of ‘var’ variables.

STD
Usage:

s=STD{1ist)
or
s=8TD(array(}, element)

Retwms the standard deviation of a list of
npumeric items,

The list can be either:

= Alist of variables, values and
expressions, separated by commas

or
» The elements of a floating-point array.

When operating on an array, the first
argument must be the array name
followed by (). The second argument,
separated from the first by a comma, is
the number of array elements you wish (o
operate on — for example

m=8TD (arr (), 3) would return the
standard deviation of elements arx (1),
arr(2) andarxr(3}.

This function gives the sample standard
deviation, using the formula:



SOR (T (xi-x) %/ (n-1)) where x
means 2x;/n. To convert to population
standard deviation, multiply the result

by SQR((n-1}/n).

STOP
Usage:
STOP

Ends the running program.

STYLE
Usage:
STYLE style$

Sets the text window character style.
style% can be 2 for underlined, or 4 for
inverse. '

See “The text and graphics windows’ at
the end of the ‘Graphics’ chapter for
more details.

SUM
Usage:

s=SUM(1list)
or
s=8SUM (array(},element)

Returns the sum of a list of numeric
items.

The list can be either:

» Alist of variables, values and
expressions, separated by commas

or
« The elements of a floating-point array.

When operating on an array, the first
argument must be the array name
followed by {}. The second argument,
separated from the first by a comma, is
the number of array elements you wish to
operate on — for example

m=SUM (arr (), 3) would return the
sum of elements arr (1), arx (2} and
arr(3).

TAN
Usage:
t=TAN{angle)

Returns the tangent of angle, an angle
expressed in radians.

To convert from radians to degrees, use
the DEG function.

TESTEVENT
Usage:
t%=TESTEVENT

Returns “True’ if an event has occurred,
otherwise returns ‘False’, The event is
not read by TESTEVENT — it may be read
with GETEVENT.

TRAP
Usage:

TRAP command

TRAP is an error handling command. It
may precede any of these commands:

Data file commands:

APPEND, UPDATE

BACK, NEXT, LAST, FIRST, POSITION

USE, CREATE, OPEN, OPENR, CLOSE, DELETE

File commands:

COPY, COMPRESS, ERASE, RENAME
LOPEN, LCLOSE

LOADM, UNLOADM

Directory commands:
MKDIR, RMDIR

Data entry commands:
EDIT, INPUT

Graphics commands:
gSAVEBIT, gCLOSE, gUSE
gUNLOADEFONT, gFONT, gPATT, gCOPY

For example, TRAP FIRST.

Any error resulting from the execution of
the command will be trapped. Program
execution will continue at the statement
after the TRAP statement, but ERR will be
set to the error code.

TRAP overrides any ONERR.

See the Error handling chapter for further
details.

17: Alphabetic listing 265

.
e
)
<
S
&




TYPE

Usage:

TYPE num#

Sets the type of an OPA, from 0 to 4,
with num%. On the Workabout you
should set num% from $1000 to $1004 to
set type O to 4 respectively; the $1000

allows a 48x48 black/grey icon to be
used.

This can only be used between APP and
ENDA.

See the ‘Advanced topics’ chapter for
more details of OPAs.

UADD
Usage:
i%=UADD(vall%, val2%)

Add vall% and val2%, as if hoth were
unsigned integers with values from 0 to
65535. Prevents integer overflow for
pointer arithmetic — eg

UADD (ADDR (text$), 1) should be
used instead of ADDR { text$) +1.

One argument would normally be a
pointer and the other an offset expression.

See also USUB.

UNLOADLIB
Usage:

ret$=UNLOADLIB(var cat$)

Unload a DYL from memory. If
successful, returng zero. (See ‘1/0
functions and commands’ in the
*Advanced topics’ chapter for a
description of the use of ‘var’ variables.)

UNLOADM
Usage:

UNLOADM module$

Removes from memory the module
module$ loaded with LOADM.

modules is a string containing the name
of the translated module.

266  17: Alphabetic listing

The procedures in an unloaded moduie
cannot then be called by another
procedure.

UNTIL

See DO,

UPDATE
Usage:
UPDATE

Deletes the current record in the current
data file and saves the current field

values as a new record at the end of the
file,

This record, now the last in the file,
remains the current record,

Example:

A.count=129
A.name%="Brown"
UPDATE

Use APPEND to save the current [ield
values as a new record.

UPPERS$
Usage:
uS=UPPERS (ag)

Converts any lower case characters in a$
to upper case, and returns the completely
upper case string.

Example:

CLS :PRINT "Y te¢ continue"
PRINT "or N to stop."
gS=UPPERS {GETS)

IF g§="Y¥Y"

nextproc:

ELSEIF g$="N"

RETURN

ENDIF

Use LOWERS to convert to Jower case.



USE
Usage:
USE logical name

Selects the data file with the logical name
A, B, C or D, The file must previously
have been opened with OPEN, OPENR or
CREATE and not yet be closed.

All the record handling commands (such
as POSITION or UPDATE) then operate on
this file.

USR
Usage:

u%=USR(pc%, ax%, bx%, cx¥%, dx¥)

Executes your machine code, returning
an integer. The usk code (je the
assembler code you have written) must
return with a far RET, otherwise the
program will crash.

The values of ax%, bx$%... are passed to
the AX, BX... 8086 registers. The '
microprocessor then executes the
machine code starting at pc%. At the end
of the routine, the value in the AX register
is passed back to u%.

Warning: Casual use of this function can

result in the loss of data in the Workabout.

This example shows a simple operation,
ending with a far RET:

PROC trivial:

LOCAL t%(2),u%,ax%
t%{1l)=$c032 REM xor al,al
t%{2)=5ch REM retf
ax%=%$lab

u%=usr{addr (t%(1)),ax%,0,0,0)
REM returns (ax% AND SFF00)
PRINT u% REM 256 ($100)
GET

ENDP

See also USRS, ADDR, PEEK, POKE.

USRS
Usage:

u$S=USRS {pc¥, ax¥, bx%, cx%, dx¥)

Executes your machine code, returning a
string. The Usks cude you have written

must return with a far RET, otherwise
the program wiil crash.

The values of ax%, bx%... are passed to
the AX, BX... 8086 registers. The
microprocessor then executes the
machine code starting at pc%. At the end
of the routine, the value in the ax register
must point to a length-byte preceded
string. This string is then copied to us.

Warning: Casual use of this function can
result in the loss of data in the Workabout.

See USR for an example. See also ADDR,
PEEK, POKE.

usuB
Usage:

i%=USUB({valls, vallé®)

Subtract val2% from vallg, as if both
were unsigned integers with values from
0 to 65535. Prevents integer overflow for
pointer arithmetic.

See also UADD,

VAL
Usage:

v=VAL (numeric string)

Returns the floating-point number
corresponding to a numeric string.

The string must be a valid number — eg
not *"5.6.7" or "196£", Expressions,
such as "45.6+3.1", are not allowed.
Scientific notation such as "1.3E10",
is OK.

Eg VAL {“470.0") returns 470
See also EVAL,

VAR
Usage:
v=VAR(1list)

or
v=VAR{array(),h element)

Returns the variance of a list of numeric
ilems.

The list can be either:

17: Alphabetic listing 267

o
L)
T'i-
%-.
3
S
&




= Alist of variables, values and
expressions, separated by commas

or
» The elements of a floating-point array.

When opcrating on an array, the first
argument must be the array name
followed by (). The second argument,
separalcd from the first by a comma, is
the number of array elements you wish to
operate on — for example

m=VAR {arr (), 3} would return the
variance of elements arr (1), arr(2)
and arr (3).

This function gives the sample variance,
using the formula:

Y (x:-x)2/ (n-1) where x means

2xi/n. To convert to population
variance, multiply the result by
{(n-1)/n

VECTOR
Usage:

VECTOR I%

labell, labeli2, ...
labelN

ENDV

VECTOR I% jumps to label number 1%
in the list — if 1% is 1 this will be the first
label, and so on. The list is terminated by
the ENDV statement. The list may spread
over several lines, with a comma
separating labels in any one line but no
comma at the end of each line.

If 1% is not in the range 1 to N, where N
is the number of labels, the program
continues with the statement after the
ENDV statement,

See also GOTO.

WEEK
Usage:
w3=WEEK (day %, month%, year$)

Returns the week number in which the
specified day falls, as an integer between
1 and 53.

268 17: Alphabetic listing

day% must be between 1 and 31,
monthg between 1 and 12, year$
between 1900 and 2155.

Each week is taken to begin on the ‘Start
of week’ day which by default is
Monday, though you can change it with
the “Time and date’ option on the “1ime’
menu in the Command processor. When
a year begins on a different day, it counts
as wecek 1 if there are four or more days
before the next week starts.

WHILE...ENDWH
Usage:

WHILE expression

ENDWH

Repeatedly performs the set of
mstructions between the WHILE and the
ENDWH statement, so long as

expression returns logical true —
noN-Zero.

If expression is not lrue, the program
Jjumps to the line after the ENDWH
statement.

Evcry WHILE must be closed with a
matching ENDWH,

See also DO..UNTIL and the ‘Loops and
branches’ chapter earlier in this manual.

YEAR

Usage:

Y%=YEAR

Returns the current year as an integer

between 1900 and 2155 from the system
clock.

For example, on 5th May 1992 YEAR
returns 1992,



Appendices

Appendices 269



270 Appendices



A

Character set and
character codes

A: Character set and character codes 271



Character set

The Workabout contains many fonts, but they all have the same basic character
set: the IBM Code Page 850 character set. Characters with decimal codes from
32 to 127 are the same as ASCII characters. Those from 0 to 32 are special
control codes.

The characters available on the Workabout are as follows; for each character,
first the decimal, then the hexadecimal code is given. 32 is the space character.

32 28 33 21 | a4 22 " 30 23 &1
6 24 % 3V 25 % 38 2%& 3927 °
48 28 « 41 239 3 42 27 * 43 2B +
44 2C , 45 20 - 46 2E . 47 2F 7
43 38 @ 49 31 1 28 32 2 51 33 3
22 344 53355 BS54 3BE8 55 377
OB 38 8 37399 5§ 3R : 59 3B ;
68 3C < 61 30D = B2 3E > B3 3F ?
E4 48 2 B5 41 A B8 42 B E7 43 C
B8 44 D BS 453 E VB 4B F V1 47 G
72 48 H 73 49 ] vd4 48 J 73 4B K
v6 4C L 774D M VB8 4EN 73 4F O
e@ 386 P 81 510 82532R 83538
84 34 T BS 55 U 86556 Y 87 57 U
88 98 # B89 38 Y 88 5R Z 91 BB I
92 5C ~ 93 SD 1 94 5E ~ 95 BF _
g6 68 ° 97 61 a 98 62 b 99 B3 ¢
1606 64 d 181 65 & 182 66 f 163 67 g
184 68 h 195 69 1 1686 6A j 167 BB k
168 BC 1 189S 6D m 118 BE n 111 BF o
112 vap 11371 9 11472 r 11573 s
116 ¥4 t 117 S u 118 78 v 119 77 w
120 79 1 121 7Oy 122 7A =z 123 VB
124 YC + 125 7D } 128 PE ° 127 7F &
128 88 C 120 81 & 138 82 &4 131 83 4
132 84 3 133 80 3 134 86 a 1335 87 ¢
136 8¢ & 137 89 & 138 8A & 139 8B i
146 8C 1 141 8D i 142 8E A 143 8F A
144 98 £ 145 91 » 145 82 £ 147 93 35
148 94 5 149 95 & 158 96 & 1351 97 &
152 98 4 153 939 & 154 9A O 155 9B g
156 9C £ 157 9D @ 158 SE = 159 9F ¢
168 A8 & 161 Al 1 182 A2 & 183 A3 u
164 R4 A 165 AS A 166 AGE 2 167 A7 Q
166 AS ¢ 168 A9 & 178 AR - %

171 fAB

272 A: Character set and character codes



Iv2 AC 4 1¥y3 AD i 174 AE « 175 AF *
Ive BB # 177 Bl 8 178 B2 # 173 B3 |
136 B4 { 181 BS A 182 BE A 183 BY A
134 BB € 185 B3 3 186 BAH || 187 BE 7
188 BC 4 183 BD ¢ 138 BE ¥ 131 BF 4
192 CB - 1S3 C1 + 194 C2 + 195 C3 F
196 C4 - 137 C3 + 198 €6 3 193 C7 #
28 Cg b 2081 C9 f 282 CA £ 203 CB 7
284 CC | 265 CD = 288 CE 3 287 CF =
208 DB 4 209 D1 8 218 D2 e 211 D3 E
212 D4 & 213 D51 214 DB £ 215 D7 §
26 D8 1 217 D9 218 DR r 213 DB N
228 DC « 221 DD ; 222 DE 1 223 DF W™
224 EB & 2235 El B 226 EZ2 O 227 E3 b
228 E4 & 22X ET 8 238 E6E u 231 E7 P
232 EB P 233 E9 0 234 ER 0 233 EB U
236 EC g 237 ED v 238 EE - 233 EF °
248 F8 - 241 F1 * 242 F2 = 243 F3 %
244 F4 9| 2453 F53 § 246 F6 + 247 F7 -
248 F§ ¢ 249 F9 ~ 258 FA - 231 FB 1
252 FC ¥ 233 FD 2 254 FE - 2335 FF

Entering characters using the "standard" keyboard

Any of the characters in the character set can be entered directly from the
keyboard. To enter one:

1. Look up the decimal code of the character you want in the preceding table.
2. Hold down the Ctrl key and type the 3-digit code, then release the Ctrl key.

Make sure you add preceding zeros, if they are required, to make a code three
digits long — for example, use Ctrl-096 to enter a left single quote,

Accented characters

The Ctrl key turns the number keys 1 to 6 into accent keys (Ctrl-1 is a special
case — see overleaf):

ACCENT NUMBER TO PRESS WITH CTRL
(umlaut/diacresis) 2
(grave) 3
(acute) 4

~ (tilde) 5

A (circumflex) 6

The letters a, ¢, 1, n, 0, u, y (upper or lower case) can be accented, as
appropriate.

To get the accent, hold down the Ctrl key while you press the accent’s number.
‘Then press the letter to be accented. It will appear on the screen with an accent.

A: Character set and character codes 273



Examples:

a- type: Ctrl-3 a
ii - Ctrl-2 u
fi- Ctrl-5 n

To get the letters in upper case, either have Caps Lock on or hold down a Shift
key while you enter the letter.

Example:

N-  type: Ctrl-5 Shift-n
Other characters

The following characters are also available:
Press Cirl-1 Result:

and then:

a, A a A

¢, C ¢, C

d.D i

e, E z, A

0,0 g, @

t, T bp

To get the upper case versions, have Caps Lock on, or hold down either Shift
key.

Press Ctrl-1 Result:
and then:;

S B

| «

r »

q A

X i

p £

All of these characters are part of the character set given above.

274 A: Character set and character codes



Character codes

To find out a character’s character code either lock up the character in the table
given earlier in this chapter, or run the built-in Calc application and type the %
sign followed by the character — for example %P returns 80. Characters with
codes from 0 to 127 are the same as in the ASCII character set. Codes 128 to
255 are compatible with the 1BM code page 850.

Codes from 256 upwards are for other Workabout keys — see the list below.

Character codes of special keys

The GET and KEY functions return the character code of the key that was
pressed. Some of the keys are not in the character set. They return these

numbers:

Esc 27 Tab 9
Delete 8 Enter 13
Special keys

1 256§ 257
- 258 « 259
Pg Up 260 PgDn 261
Home 262 End 263
Menu 290 Help 291

The Psion key adds 512 to the value of the key pressed. For example, Psion-a
is 609 (512497), and Psion-Help (Dial) is 803 (512+261).

Special character codes with PRINT
These values can be used with PRINT and CHR$(0:

7 beep

8 backspace
9 tab

10 line feed

12 form feed (clear screen)
13 carriage return {cursor to left of window)

For example, PRINT CHRS$ (8) moves the cursor backwards, one character
to the left.

A: Character set and character codes 275



276 A: Character set and character codes



B

Specification

B: Specification 277



Physical characteristics
Size 180mm x 90mm x 35mm

Weight 325g (incl. batteries)
Screen size - 6.24x3.00cm (245x 1.18 ™)

Screen type . Backlit (optional), 240 x 100 pixel LCD
Pixel size: 0.27 x 0.23 mm
Pixel pitch: .30 x 0.26 mm

Sound Piezo buzzer

Power supply

Internal Nickel Cadmium rechargeable battery pack (Part no. 2802-0005)
or 2 x AA alkaline batteries

Backup 3V Lithium R16 battery (CR 1620)

External Psion Series 3 range mains adapter (Part no. 2502-0010 for the U.K.
Part no. 2502-0011 for the rest of Europe)
Note: This mains adaptor must be used in conjunction with a LIF
converter (Part no. 2802-0011)
Workabout Docking Station

Fuse 1.25amp 20mmxSmm glass fast blow

Memory

Built-in IMb Masked ROM and 256KB/IMB/2MB RAM
Two SSD drives allow extra storage space on Flash/RAM SSDs

System information
Processor ~ NEC V30 running at 7.68MHz

Operating  EPOC
System

Expansion

Internal One internal expansion card can be installed.
Currently RS-232 AT, RS-232 AT & RS-232 TTL, and Barcode &
RS-232 AT serial interfaces are available. Expansion
modules must be factory or distributor fitted. Contact your Psion
distributor for more information.

External A combined external LIF-PES connector - LIF converter unit - is
available. This plugs into the standard LIF socket and allows
standard 3Link peripherals, such as the Serial 3Link lead, Parallel
3Link lead and the mains adaptor to be connected to the Workabout.

Peripherals  External peripherals (such as a modems, printers or barcode
readers) can be plugged into any suitable socket connected to an
internal expansion cards (where fitted), or connected to a Serial

278 B: Specification



3Link lead that is attached to the Workabout, or connected to a
Docking Station in which the Workabout is placed.

Environment
Operating temp. -20°C to 60°C
Storage temp. -25°C to 80°C
Operating humidity 0% to 90% non condensing
EMC For Europe: ENS55022 Class B
For the USA: FCC Part 15 Class B (Pending)
For Germany: Vfg 243 Class B (Pending)
Safety For Europe: EN 60950 (Pending)
Static IEC301
Drop 1m onto concrete on any face
Other Dust proof & splash proof (IP54)

B: Specification 279



280 B: Specification



Summary for
experienced OPL
users

OPL has evolved from the Psion Organiser II through the
MC and HC computers to the Series 3, Series 3a and now the
Workabout. This appendix explains the changes made. For
more details of the following topics and keywords, look them up
in the Index or Table of contents.

Bear in mind that some OPL keywords return or allow
different values according to screen size and keyboard layout.

Note: the comparisons against HC and MC OPL in this appendix assume the
original versions of these computers. Some of the Series 3/3a and Workabout
OPL features may be incorporated into future releases in the HC and MC
ranges.

C: Summary for experienced OPL users 281



Using OPL on the Workabout

To create an OPL module from the Command processor: type EDIT
filename.OPL. You can edit an existing OPL. module by typing its name on the
command line.

To create an OPL module from the System screen: move the cursor to the Program
icon. Select ‘New file’ from the ‘File’ menu and give the filename to use, Existing OPL
modules are listed under the Program icon on the System screen. To edit one, move the
cursor onto the module name and press Enter.

Type in the module in the Program editor that wili be displayed. You can type and edit
in the Program editor in much the sanie way as you would in any text editor, the text
you type does not word-wrap; you must press Enter at the end of each line to start a
new one. The keywords that mark the start and end of your first procedure: PROC: and
ENDP are already entered for you.

When you have finished your module, select the ‘Translate” option on the ‘Prog’ menu
to translate it, then use the ‘Run’ option to run it. You can also run the translated module
from the System screen, its name automatically appears under a ‘RunOpl’ icon — you
can simply move the cursor right to the RunOpl icon, down onto the module name, and
press Enter to run it.

To stop a running OPL program that has no exit option, press Psion-Esc.
The Workabour screen is 240 points {pixels) wide by 100 points deep.

OPL programs can be translated as applications which may be installed in the System
screen, This is done with the APP keyword. You can also specify the type of application
using the keyword TYPE, and the icon using ICON, the filename extension of data files to
be listed under the icon in the System screen using EXT and the directory in which these
files are stored using PATH,

Files

If you use the ‘S3 Translate’ option on the ‘Prog’ menu, the Program editor will
translate as if for the Series 3. The translated program can then be run on either a
Series 3, Series 3a or Workabout.

If you use the “Translate’ option on the ‘Prog’ menu, the translated program will run on
the Series 3a and Workabout.

Important: If you used the keyword dINITS to create dialogs in your program, you will
not be able to run it on a Series 3 or Series 3a because the dINITS keyword is not
supported by OPL on these machines.

Modules translated for the Series 3 (not the Series 3a and Workabour) are also
compatibie with HC and MC computers, provided that they only use keywords also
available on those machines. You can build code libraries which can be used on all four
machines, bearing in mind differences between screen size, location of files etc.

Procedures translated on the Organiser need re-translation, as they will not run on the
Series 3a or Workabour.

The Workabout uses the same MS-DOS filing system as the MC, Series 3 and
Series 3a. The directories and file extensions concerned with OPL are:

282 C: Summary for experienced OPL users



Type of file Directory File extension

OPL modules \OPL .OPL
translated modules \OPO .OPO
bitmaps \OFD ric

data files \OPD ODB

(unless specified with the PATH or EXT keywords.

On the MC, Series 3 and Series 3a, the directory structure is hidden {rom view for
everyday use. In the Workabout’s Command processor, however, it is not and you
therefore have greater freedom over the organisation of files on the internal disk.
Having said this, you are recommended to stick to the structure outlined above, unless
you have a good reason not to.

The evolution of OPL

OPL has evolved from the early days of the Psion Organiser I through the MC and HC
computers to the Series 3, Series 3a and now the Workahout. The foilowing sections
explain the changes that were made at each stage of its development:

» changes from Organiser to MC OPL;

= changes from MC to HC OPL;

« changes from HC to Series 3 OPL;

« changes from Series 3 to Series 3a OPL;
and finally:

» changes from Series 3a to Workabout OPL;

So if you have been used to the HC version of OPL, for example, you should look at all
the sections from ‘Changes from HC to Series 3 OPL’ onwards to see how OPL is
different on the Workabout.

Changes from Organiser to MC OPL

Procedures and moditiles

More than one procedure may be stored in a single .opL file, or module. The
beginning of each procedure is identified by the line PROC procedure name: and
the end of each procedure by the line ENDP. So a module might look like this:

PROC oneroot:

LOCAL x

PRINT "Type a number:"
INPUT x

root: (x)

GET
ENDP

PROC root: (p)
CLS

C: Summary for experienced OPL users 283



PRINT "Root of",p,"is",sqr(p)
ENDP

When you run the module, the first procedure in the module is executed. Any other
procedures in the module are available to be called by the first procedure.

Procedures can be called from other modules only if you’ve loaded the modules with
the new LOADM command. Up to four modules can be held in memory at any one time.
Use UNLOADM to remove a module from memory.

Other changes
Data files now have a special format. Records can be 2 maximum of 1022 bytes long.

The FIND function compares a search string against entire text fields. To find text
anywhere within text fields, add an asterisk at either end of the string — eg
FIND("*JONES*").

When you use REM at the end of a line you need only precede it with a space, not a
space and a colon. So these two lines are equivalent:

RAISE —_37 :REM disk full
RAISE -37 REM disk full

No calculator memories are available to OPL on the MC (although they are on the
Series 3/3a and Workabout.)

The specification of the BEEP command has changed.

Different eflects are produced by values below 32, used with PRINT CHRS$ (). See
the ‘Character set and character codes’ appendix for more details.

New functions and commands:
= SCREEN allows you to set the maximum size of the text window.

* LOPEN must now be used before LPRINTing, to specify the destination of the LPRINTS.
Usc LcLost if you then want to LPRINT to another device. You can also use LOPEN to
print to a file.

* COMPRESS copies data files, and makes sure that erased records aren’t copied to the
destination device.

» FINDW, DIRWS, COPYW and DELETEW on Organiser model LZ have been renamed FIND,
DIRS, COPY and DELETE - the functions/commands which previously had these names
having been removed.

These functions/commands have been removed from OPL: CLOCK, UDG, DISP, VIEW,
FREE, MENU and MENUN. Also, the Comms Link commands are not available.

Long integers

A new variable type has been added — long integers, specified by adding an & symbol to
the variable name instead of the % symbol, eg price&, x& (5}.

Long integers are 32-bit rather than 16-bit signed integers, giving the range
+2,147,483,647 to -2,147,483,648 rather than +32767 to -32768.

Long hexadecimal constants should have an & instead of a $ sign in front of them. Even
when the constant fits into an integer, you can use & to widen the constant to 32 hits.

284 C: Summary for experienced OPL users



Advanced use

POKEL, POKEF and POKES$ have been added to POKEB and POKEW, and PEEKL, PEEXF and
PEEKS$ have been added to PEEKB and PEEKW. This means you can poke and peek the full
range of value types — strings, long integers etc.

There is a range of /O file handling facilities, allowing you to open, read, write and
position within any type of file.

To complement the keypress functions, KMOD allows you to detect any modifiers, such
as Control, which have been pressed.

Changes from MC to HC OPL

Graphics commands

Many graphics commands are available. They can, for example:

* Draw lines and boxes.

» Fill areas with patterns.

* Display text in a variety of styles, at any position on the screen.
= Scroll areas of the screen.

* Manipulate up to eight separate windows and bit patterns.

« Read data back from the screen.

The TRAP command can be used with several new commands.

The CURSOR command can be still be used to switch the text cursor on and off, but can
also define the shape and position of a graphics cursor.

The gurpATE command affects anything that displays on the screen. It may make a
noticeable difference in speed if, for example, you are using a lot of PRINT commands.

Other changes

When a program runs, it is given the full screen on which to display text. Use the
SCREEN command to define a different window size for text display.

The SCREEN command can position the text window anywhere on the screen. You can
also use SCREEN repeatedly to change the size of the window.

A ncw function, 0S, allows you to call any intcrrupt scrvice in the Opcrating System,
and read all returned registers and flags.

GETEVENT and TESTEVENT give details of system events of any kind.

C: Summary for experienced OPL users 285



Changes from HC to Series 3 OPL

Everyday features

Many of the interface features of the Series 3 applications — for example menus, dialog
boxes, shadowed boxes and status windows — are available via OPL keywords.

Several keywords have been added for OPAs (OPL. applications).

The two colons at the end of the label in ONERR or GOTO are optional. The colons must
still be used where the label itself occurs in the program.

You can pause a running program by pressing Control-S. It will be paused as soon as it
next tries to display something on the screen. Press any other key to let the program
resume running.

The EVAL function evaluates a string and returns the result as a floating-point number.

The VECTOR command allows you to jump to one of a list of labels. This can save
cumbersome IF statements.

Procedures may now be called using a string expression for the procedure name,

BEEP may be used with the duration made negative. It will first check whether the sound
system is in use (perhaps by another OPL program), and return if it is. This stops BEEP
waiting until the sound system is free.

There are new graphics keywords — gINVERT, gXPRINT, gBORDER and gCLOCK.

DATETOSECS and SCCSTODATE convert between standard system dates / times and the
number of seconds since midnight on 1/1/1970.

The calculator memories MO to M9 are available to OPL.

Advanced features

MKDIR makes a new directory, RMDIR removes a directory, and SETPATH sets the current
directory for file access.

The command line arguments of the OPL program you ruan, including its full pathname,
are returned by CMDS.

Two new I/O commands, IOWAITSTAT and 10YIELD, have been added.

PARSES will produce a single full file specification from two separate parts, or break one
down into its constituent parts.

286 c: Summary for experienced OPL users



Changes from Series 3 to Series 3a OPL

Everyday features

A new SCREENINFO command provides information about the screen size and type. You
can use it to write machine-independent programs.

All appropriate graphics keywords can now draw in grey as well as black. To allow
drawing in grey use DEFAULTWIN 1. By default grey is not available as drawing grey
as well as black uses more memory and takes longer.

TYPE supports new larger black/grey icons, and allows you to specify different icons for
the Series 3 and Series 3a.

New FONT and STYLE keywords set the font and style for displaying text with PRINT
(ete).

gFONT and FONT can access many new fonts which are built into the Series 3a ROM.
gCLOCK supports many more types of clocks.

A dialog on the Scrics 3 can have up to scven lines including the title, whercas a dialog
on the Series 3a can have nine,

A menu on the Series 3 can have up to six options whereas a menu on the Series 3a can
have eight. The MENU function allows you to set which menu and item should be
highlighted initially.

Series 3 programs will always run correctly in compatibility mode but if retranslated (in
normal Series 3a mode) may need changing as follows:

» Menu keywords support case-dependent hot-keys. The hot-keys you specify should
now be in the correct case — upper or lower. If you specify $P (upper case), for
example, this is the hot-key Shift-Psion-P. On selecting an option, MENU returns the
hot-key keyeode in the case which you specified.

I On some very early verstons of the Series 3, menus exited when any key was
pressed together with the Psion key. Later Series 3 versions and all Series 3a versions
exit menus only when valid hot-keys are pressed.

» STATUSWIN ON displays alarge Series 3a status window containing an icon. This
is 64 pixels wide, whereas it was 50 pixels wide on the Series 3.

STATWININEO returns information abouft the sizes of status windows and/or the current
status window.

gBUTTON draws keys such as those displayed in certain dialogs.

gDRAWDOBIECT draws a graphics object. You can use this to draw the "lozenge" used to
display the words ‘City’ and ‘Home’ in the World application.

gXBORDER draws bordered boxes, such as those used to display dialogs. (The gBORDER
keyword works as it did on the Series 3.)

FINDFIELD finds text in a particular string field, or group of string fields.
BEEP cannot play tones as high as those played on the Series 3.
gPEEKLINE can now read from the screen as a whole.

CURSOR can display new kinds of cursors, and gINFO can refurn this (and other)
information,

TYPE supports new actions and icon types for OPAs.

C: Summary for experienced OPL users 287



Advanced features

10C performs an asynchronous 1/0 request, like i0A, but with guaranteed completion.
IOCANCEL cancels any outstanding 10A or 10C.

A new set of keywords supports the definition of a sprite, which you can move around
“on top of" the rest of the screen. The sprite can be animated, displaying a sequence of
different bitmaps.

Cacheing — keeping frequently used procedures in memory instead of loading them
from file every time they are called - can help increase the speed of OPL programs.

New keywords provide access to dynamic libraries (DYLs), to the memory allocator
and to Operating System data file calls,

UADD and Usus allow addition and subtraction of pointers/addresses without the risk of
‘Integer overflow’.

GETEVENT now returns the event $405 when the date changes.

[ Some new system services, not available on the Series 3, are mentioned in this
manual - for example, the ‘Foreground and background’ section in the *Advanced
topics’ chapter uses a "event on machine turn on” service.

Changes from Series 3a to Workabout OPL

OPL on the Workabout is the same as OPL on the Series 3a except for the following:

» The translator only allows 6 menu items to be defined for each menu tile due to the
smaller size of the Workabout screen,

* You cannot display an application icon or diamond list in status windows on the
Workabout because the status windows are not large enough. The DIAMINIT and
Diamros keywords are therefore not supported by OPL on the Workabout.

* Anew keyword, dINITS, has been provided for creating dialogs using a small font.
This allows you to create dialogs that contain nine lines (including the title line);
dINIT as provided on the Series 3a allows only six lines in a dialog on the Workabout.

288 C: Summary for experienced OPL users



Compatibility between Series 3, Series 3a and
Workabout

Programs translated for the Series 3 can run on the Workabout without retransiation.
Those translated for the Series 3a can run on the Workabout without modification and
retranslation only if they do not contain the keywords DIAMINIT and DIAMPOS which are
not provided in OPL on the Workabout.

The Workabout has a much smaller screen than both the Series 3 and Series 3a.
Information in Series 3 and Series 3a applications that does not fit on the screen is
clipped - it is not rescaled to fit the smaller area available.

Slowing down Series 3 programs

Time dependent programs, such as games, written for the Series 3 will run too fast on
the Workabout and Series 3a. If you wish to slow down a Series 3 program, you can
write a short OPL program to run in the background, like this:

proc slowdn:
local i%,3
print "Slow down S3a”
call(5138b) rem "unmark as active®
while 1
1%=10 :i=j+1
while 1% :1%=i%-1 :endwh
if §=300000
3=0 :pause 2
else
pause 1
endif
endwh
endp

If you change the number 10 assigned to 1% at the op of the WHILE loop, you can
control the amount by which the Workabour slows down - a bigger value slows it down
by more, and a smaller value by less. You may need to use different values for different
Series 3 programs.

Warning: Running this program will cause the Workabou! to use more battery power.

The loop which j counts is designed to do a pause 2 instead of a pause 1, roughly
every twenty five minutes, Apauge 2 gives just enough delay for the automatic turn
off of the Workabour to have a chance to work. Without this, autematic torn off
cannot work,

3 Using pause 2 in the main delay loop might cause the foreground process to have
a noticeably jerky appearance.

g3 You can change the value 300000 to change the time before automatic turn off wiil
occur. If you make it too small you may notice the pauge 2 occasionaliy. (If you
make i% a lot bigger than 10 in the loop, you may alsc find the period before
automatic turn off increases.)

If you do not allow automatic turn off like this, and you then forget to exit the
"slowdown" program, no automatic turn off can occur. If you left the Workabout turned

C: Summary for experienced OPL users 289



on it would stay on until the batteries were run down. It would then turn off, and you
would not be able to use it again until you changed the batteries.

Do not forget to exit the program (with Psion-Esc) when you want to use the
Workabout at full speed again.

290 C: Summary for experienced OPL users



D

Operators and
logical expressions

D: Operators and logical expressions 291



Operators

These operatorss are available in OPL:

Arithmetic operators

+ add

- subtract

* multiply

/ divide

¥4 raise to a power

- unary mmnus (in negative numbers - for example, ~10)
Yo percent

Comparison operators

> greater than

>= greater than or equal to
< less than

<= less than or equal to

= equal to

<> not equat to

Logical and bitwise operators

AND
OR
NOT

The % operator
The percentage operator can be used in expressions like this:

60+5% ie 60 plus 5% of 60. Result: 63

£0-5% ie 60 minus 5% of 60. Result: 57

60*5% ie 5% of 60. Result; 3

60/5% ie what number is 60 5% of. Result: 1200.

It can also be used like this:

105>5% ie what number, when increased by 5%, becomes 105. Result: 100
105<5% ie how much of 105 was a 5% increase. Result; 5
Examples

To add 15% tax to 345:

345+15% Result = 396.75

To find out what the price was before tax:

396.75>15% Result = 345

To find out how much of a total price is tax:

396.75<15% Resuit = 51.75

292 D: Operators and logical expressions



Precedence

Highest: ok
- (unary minus) NOT
»
+ -
= > < < >% <=
Lowest: AND OR
So 7+3*4 returns 19 (3 is first multiplied by 4, and 7 is addcd to the result) not 40 (4
times 10).

When there is equal precedence

In an expression where all operators have equal precedence, they are evaluated from
lcft to right (with the exception of powers). For example, in a+b-c, a is added to b
and then ¢ is subtracted from the result.

Powers are evaluated from right to left — for example, in a%* *b%* *c%, b% will first
be raised to the power of ¢% and then a% will be raised to the power of the result.

Changing precedence with brackets

The result of an expression such as a+b+c is the same whether you first add a to b, or
b to c. But how is a+b*c¢/d evaluated? You may want to use brackets to either:

» Make it obvious what the order of calculation is

or _

= Change the order of calculation,

By default, a+b*c/d is evaluated in the order: b multiplied by ¢, then divided by 4,
then added to a. To perform the addition and the division before the multiplication, use
brackets: (a+b) * (¢/d). When in doubt, simply use brackets.

Precedence of integer and floating-point values

You are free to mix floating-point and integer values in expressions, but be aware how
OPL handles the mix:

» In each part of the calculation, OPL uses the simplest arithmetic possible, Two
integers will use integer arithmetic, and this can give unexpected results: 7/2 gives
the integer 3 . Otherwise floating-point arithmetic is used ( 7. 0 is a floating-point
number, so 7. 0/2 gives the floating-point number 3.5 ).

= Finally, the evaluted result of the right-hand side of an expression is automatically
converted to the same type as the variable to which it is assigned.

For example, your procedure might include the expression a%$=b%+c . This is handled
like this: b% is converted to floating-point and added to ¢ . The resulting
floating-point value is then automatically converted to an integer in order to be assigned
to the integer variable. a% .

Such conversions may produce odd results — for example a%=3.0* (7/2) makes
a%=9,buta%=3.0*(7.0/2) makes a%=10. OPL does not report this as an error, so
it’s np to you 1o ensnre that it doesn’t happen — unless you want it to.

D: Operators and logical expressions 293



Type conversions and rounding down

There are three numeric types — floating-point, integer and long integer. You can assign
any of these types to any other. The value on the right-hand side will be automatlcally
converted to the type of the variable on the left-hand side. For example:

= If you assign an integer value to a floating-point variable, there are no problems.

« If you assign a floating-point value to an integer variable, the value is converted to
an integer, always rounded towards zero - for example, if you declare LOCAL c%
and then say c%=3 .75, the value 3. 75 is converted to the value 3.

Rounding down towards zero can sometimes cause unusual results. For example,
a%=2.9 would give a% the value 2, and a%=-2.3 would give a% the value -2.

When you run a module, if the left-hand side of an assignment has a narrower range
than the right-hand side, you may get an error (for example, if you had x%=a& where
aé& had the value 320000).

To control how floating-point numbers are rounded when converted. use the INT
function.

Logical expressions

The comparison operators and logical operators are based on the idea that a certain
situation can be evalvated as either true of faise. For example, if a%$=6 and b%=8,
a%>b% would be ‘False’.

These operators are useful for setting up alternative paths in your procedures. For
example you could say:

IF salary<expenses
doBad:

ELSE
doGood:

ENDIF

You can also make use of the fact that the result of these logical expressions is
represented by an integer:

» ‘True’ is represcnted by the integer -1
« ‘False’ is represented by the integer O {zero).

Eg Result returned Return value
< a<b Trueif aless thanb -1
False if a greater than or equaltob 0
> a>b  True if a greater than b -1
False if a less than or equal to b 0
<= a<=b Tre if a less than or equal to b -1
False if a greater than b 0
>= a>=b True if a greater than or equal to b -1
False if a less than b 0
<> a<>b True if a not equal to b -1
Falseif aequalto b 0
= a=b Trueifaequaltob -1
False if a not equal to b 0

294 b: Operators and logical expressions



These integers can be assigned to a variable or displayed on the screen to tell you
whether a particular condition is true or false, or used in an IF statement.

For example, in a procedure you might arrive at two sub-totals, a and b. You want to
find out which is the greater. So use the statement, PRINT a>b. If zero is displayed, a
and b are equal or b is the larger number; if -1 is displayed, a>b is true — a is the larger.

Logical and bitwise operators

The operators AND, OR and NOT have different effects depending on whether they are
used with floating-point numbers or integers:

When used with floating-point numbers...
... AND, OR and NOT are logical operators, and have the following effects:

Example Result Integer returned
a AND b True if both a and b are non-zero -1
False if either a or b are zero 0
a CR b True if either a or b is non-zero -1
False if both a and b are zero 0
NOT a True if a is zero -1
False if a is non-zero 0

When used with integer or long integer values...
. AND, OR and NOT are bitwise operators.

The way OPL holds integer numbers internally is as a binary code -- 16-bit for integers,
32-bit for long integers. Bitwise means that an operation is performed on individual
bits. A bit is ser if it has the value 1, and clear if it has the value 0. Long integer values
with AND, OR and NOT behave the same as integer values.

AND - Sets the result bit if both input bits are set, otherwise clears the result bit.

For example, the statement PRINT 12 AND 10 displays 8. To understand this, write
12 and 10 in binary:

12 coo0o00C0O0OCO0O0Q0O00C11O00
10 00000CO0OCO0CO0OC00CQO0C1O010

AND acts on each pair of bits. Thus, working from left to right —~ discounting the first 12
hits (since 0 AND 0 gives ()):

1 AND 1 — 1
1 AND O - 0
0 AND 1 -3 0
0 AND O — 0

The result is therefore the binary number 1000, or 8.
OR - Sets the result bit if either input bit is set, otherwise clears the result bit.

What result would the statement PRINT 12 OR 10 give? Again, write down the
numbers in binary and apply (he operator o each pair of digits.

1 O0R 1 - 1
1 0RO — 1
¢ OR 1 - 1
0 OR O - 0

The resuit is the binary number 1110, or 14 in decimal.

D: Operators and logical expressions 295



NOT - Sets the result bit if the input bit is net set, otherwise clears the result bit.

NOT works on only one number, It returns the one’s complement, ie it replaces 0s with
1s and 1s with Os.

So since 7 is 00000000000001 11, NOT 7 is 1111111111111000. This is the binary
representation of -8.

A quick way of calculating NoT for integers is to add 1 to the original number and
reverse its sign, SO NOT 23 15 -24, NOT Qis-1 and NOT -~1is,

296 »: Operators and logical expressions



K

Serial/parallel
ports and printing

E: Serial/paralie! ports and printing 297



You can use LPRINT in an OPL program to send information (for printing or otherwise)
to either of the two Expansion ports that can be fitted to the Workabout:

s A 9-pin serial port, Port A.

« A LIF {Low Insertion Force) socket, Port C, which can be a serial or parallel port,
depending on what is connected to it. See the ‘LIF-PFES socket’ section in the
‘Introduction’ chapter for a description.

s A file on the Workabout or an attached computer.

You can also read information from the serial port.

Using the parallel port

In your OPL program, set up the port with the statement LOPEN "PAR:C",

Provided the port is not already in use, the connection is now ready. LPRINT will send
information down a paralle! 3Link lead connected to the LIF-PFS socket - for example,
to an attached printer.

Example

PRCC prints:
OPEN "clients',2,a$
LOPEN "PAR:C"
PRINT "Printing..."
DG
IF LEN(A.a$)
LPRINT A.a$

ENDIF
NEXT
UNTIL EQF
LPRINT CHRS(12); :LCLOSE
PRINT "Finished" :GET
ENDP

298 E: Serial/parallel ports and printing



Using the serial port

In your OPL program, set up the port with the statement LOPEN “TTY:A" or
LOPEN “TTY:A" whichever port you require.

Now LPRINT should send information down the serial cable connected to the 9-pin serial
port — for example, to an attached printer. If it does not, the serial port settings are not
correct.

Serial port settings

LOPEN "TTY:A" or LOPEN "TTY:C" opens the serial ports A or C with the
following default characteristics:

9600 baud

no parity

8 data bits

1 stop bit

RTS handshaking.,

= If your printer (or other device) does match these characteristics, the LOPEN _
statement sets the port up correctly, and subsequent LPRINT statements will print
there successfully.

= If your printer does not match these characteristics, you must use a procedure like
the one listed below to change the characteristics of the serial port, before LPRINTS
will print successfully to your printer.

Printers very often use DSR (DSR/DTR) handshaking, and you may need to set the port to
use this.

Setting the serial port characteristics

Calling the procedure
The rsgset : procedure listed below provides a convenient way to set up the serial port.

Each time you use an LOPEN “TTY: " statement, follow it with a call to the
rsoet: procedure. Otherwise the LOPEN will use the default characteristics.

Passing values to the procedure
Pass the procedure the values for the five port characteristics, like this:

reset: (baud%, parity%,data%, stop%, hand%, &0}
3 The final parameter, which should be &0 here, is only used when reading from the
port.

To find the value you need for each characteristic, use the tables below. You must give
values to all five parameters, in the correct order.

Baud = 50 75 110 134 150 300 600 1200
value = 1 2 3 4 5 6 7 8

1800 2000 2400 3600 4800 7200 9600 19200
9 10 11 12 i3 14 15 16

Parity = NONE EVEN OLD
value = 0 1 2
Data kits = 5, 6, 7 or 8

E: Serial/parallel ports and printing 299



Stop bitg = 2 or 1

Handshaking = ALL, NONE XON RTS XON+RTS
value = 11 4 7 0 3

DSR XON+DSR RTS+DSR
12 15 &

The rsset : procedure:

PROC rsset: (baud%,paritv%,data%,stop%, hand%, termé&)
LOCAL frame%,srchar%{6), dunmy$, err$
frame%=data%-~5
IF stop%=2 :[frame®=frame% OR 16 :ENDIF
IF parity% :frame%=frame% OR 32 :ENDIF
srchar% (1) =baud% OR (baud%*256}
srchar%(2)=frame% OR (parity%*256)
srchar% (3)=(hand% AND 255) OR $1100
srchar%(4)=513
POKEL ADDR (srchar%(5)), term&
err%=I0W(~1,7,srchar% (1), dummy%)

IF err%$ :RAISE err% :ENDIF

ENDP

Take care to type this program in exactly as it appears here,
Example of calling the procedure

PROC test:
PRINT "Testing port settings"
LOPEN "TTY:A"
LOADM "raset"
rsset:(8,0,8,1,0,&0}
LPRINT "Port OK" :LPRINT
PRINT "Finished" :GET
LCLOSE

ENDP

rsset:(8,0,8,1,0,&0) sets 1200 Baud, no parity, 8 data bits, 1 stop bit, and
RTS/CTS handshaking.

Advanced use
The section of the rsset : procedure which actually sets the port is this:

srchar% (1) =baud®% OR (baud%*256)
srchar%(2)=frame% OR (parity%*256}
srchar% (3)=(hand% AND 25%) OR $1100
srchar% (4) =513

POKEL ADDR(srchar%(5)},term&
arr&=I0W{-1,7,srchar% (1), dummy%)

IF err% :RAISE err% :ENDIF

The elements of the array srchar% contain the values specifying the port

characteristics. If you want to write a shorter procedure, you could work out what these
values need to be for a particular setup you want, assign these values to the elements of
the array, and then use the 10w function (followed by the error check) exactly as above.

300 E: serial/parallel ports and printing



Reading from the serial port

If you need to read from the serial port, you must also pass a parameter specifying
terminating mask for the read function. If term& is not supplied, the read operation
terminates only after reading exactly the number of bytes requested. In practice,
however, you may not know exactly how many bytes to expect and you would
therefore request a large maximum number of bytes. If the sender sends less than this
number of bytes altogether, the read will never complete.

The extra parameter, texmé , allows you to specify that one or more characters should
he treated as terminating characters. The terminating character itself is read into your
buffer too allowing your program to act differently depending on its value.

The 32 bits of texrm& each represent the corresponding ASCII character that should
terminate the read. This allows any of the ASCII charcaters 1 to 31 to terminate the read.

For example, to terminate the read when Control-Z (ic. ASCII 26) is received, set bit 26
of term&. To terminate on Control-Z or <CR> or <LF> — which allows text to be
read a line at a time or until end of f{ile — sel the bits 26, 10 and 13. In binary, this is:

0000 0100 0000 0000 06010 0100 0000 0000

Converting to a long integer gives &040{02400 and this is the value to be passed in
termé& for this case.

p< Clearly term& cannot be used for binary data which may include a terminating
character by chance. You can sonetimes get around this problem by using terms
and having the sender transmit a leading non-binary header specifying the exact
number of full-binary data following. You could then reset the serial characteristics
not to use texrmé , read the binary data, and so forth.

Example reading from serial port

This example assumes that each line sent has maximum length 255 characters and is
terminated by a <CR> and that Control-Z signals the end of all the data.

PROC testread:

LOCAL ret%,pbuf?%,buf$ (2065}, end%, len%

PRINT "Test reading from serial port"

LOPEN "TTY:A" '

LOADM "rsset"

REM receive at 2400 without h/shake

reset:(11,0,8,1,0,&04002000) REM Control-Z or CR

pBut%=ADDR (buf$)

DO
REM read max 255 bytes, after leading count byte
len%=255
ret%=I0W(-1,1, #UADD (pbuf%, 1), len%)
POKEB pbuf%, len% REM len% = length actually read

REM including terminator char

end%$=LOC (buf$,CHRS${(26)) REM non-zero for Control-Z
IF ret%<0 and ret%<>-43

BEEP 3,500
PRINT
PRINT “Serial read error: ";ERRS$({(ret%)
ENDIF
IF ret%<>-43 REM if received with terminator
POKEB pbuf%, len%~1 REM remove terminator
PRINT bufs REM echo with CRLF

E: Serial/parallel ports and printing 301



ELSE
PRINT buf$; REM echo without CRLF
ENDIF
UNTIL end%
PRINT "End of session® :PAUSE -30 :KEY
ENDP

[ Note that passing -1 as the first argument to I/0 keywords means that the LOPEN
handle is to be used. Also, OPL strings have a leading byte giving the length of the
rest of the string, so the data is read beyond this byte. The byte is then poked to the
length which was read.

Printing to a file

Printing to a file on a PC or Apple Macintosh

As if you were going to transfer a file:
* Physically connect the Workabout and the other computer.

= Type LINK inthe Command processor or select the ‘Remote link” option in the
System screen and press Enter.

* Run the server program (supplied with 3Link) on the other computer.

In your OPL program, specify the destination file with an LOPEN statement. For
example, to a PC:

LOPEN "REM: :C:\BACKUP\PRINTOUT\MEMO.TXT"

Any subsequent LPRINT would go to the file MEMO . TXT in the directory
\BACKUP\PRINTOQUT on the pC’s drive C:.

With a Macintosh, you might use a file specification like this:
LOPEN “"REM::HD40:MY BACKUP:PRINTED:MEMOS"

An LPRINT would now go to the file MEMOS in the PRINTED folder, itself in the
MY BACKUP folder on the hard drive HD40. Note that colons are used to separate the
various parts of the file specification.

Printing to a file on the Workabout
In your OPL program, specify the destination file with an LOPEN statement like this:

LOPEN "B:\PRINT\MEMO.TXT"

This would send each subsequent LPRINT to the file MEMO . TXT in the \PRINT\
directory on an $SD in drive B:

302 E: Serial/paralle! ports and printing



Index

!
# symbol 134
Yo operator 80, 292
& symbol 284
? prompt 74
@ symbol 164
A
ABS function 215
ACOS function 215
ADDR function 215
ADJUSTALLOC function 197, 215
ALERT function 130, 215
ALLOC function 197, 215
ANI) operator 295
APP keyword 167, 215, 282
APPEND command 216
APPENDSPRITE command 179, 216
Apple Macintosh
{ile specifications 165
Applications
and *C’ language 26
"erashing” 19,20
developing 22,26
dialogs 40
downloading from a PC 22,27
examples 38
exiting 24
filename extensions 27
help il
help index 11
tnstalling 282
killing 31
menus 40
names of built-in applications 28
OPL applications 26
running 22,28,32
switching between 11
tasking 11
See also Built-in applications
Arguments 81
conversion 214
Arithmetic operators 71,292
Array variable 69

Arrow keys

ASC function

ASIN function

Assign, value to vanable

AT command

ATAN Hfunction

ATTRIB command

Auto-indentation

Automatic switch off
battery power
disabling
problems with
settings
in System screen
while busy

B

BACK command
Backlight

automatic switch off

switching off

switching on
Backlight key

enabling/disabling
Bad command o file name
Barcode interface
Baseline of text
Batch files

calling

cormments

creating

ECHO mode

exiting

filename extensions

filenames

IF statements

jumping to a label

pausing

running

shifting parameters
Batteries

backup

backup battery cover

backup battery type

‘Battery info’ dialog

changing

charging

checking

condition

il
216
216
70
216
217
30
65
6,7, 16, 17
24
9
18
24
39
24

109
29
30
32
33
30
32
13
33
31
31
32
33
32

278
1
3,4

11



disposing of
and Docking Station
fast charging
fitting
lithium
location
Ni-Cd
+ sign on backup battery
rechargeable
recharging
recharging times
recornmended
removing
SSD/Batiery drawer
status
trickle charging
Baud rate
BEEFP command
example uses

scale from middle C
Beep. with PRINT
Beeping
Bitmaps

filenames

files

in memory
Bitwise operators
Rold text. while editing
Borders, in windows
BREAK command
Ruilt-in applications

Calc

Comms

Cirl-Menu keypress

Data

displaying

Esc key

‘File’ menu

File selector

File selector {accessing)

help

help index

Help index Keypress

Help keypress

hot keys

keys and keypresses

menu options (selecting)

menus (using)

Program editor

e O L s

uuov

F e N
=

NN

mmy&hwmm
F =N

Cho— e
R
L - —
& o
]
o)

299
217,287
98, 139, 140,
146, 173
217

275

17

171

165, 283
117

17

295

65

114
82,218

46
52
43
44
38
41
42
40
40
41
41
41
41
40
41
40
40
51

Pston-Menu keypress
Sheet
status windows

status windows (temporary)

System screen
text wrapping
“Zoom infout’ options
‘Zoom' scttings
BUSY command
‘Busy’ messages
Buzzer

C

CACHE command
CACHEHDR command
Cacheing procedures
CACHEREC command
CACHETIDY command
Cale
current memory
¢ (exponential) numbers
functions
hexadecimal numbers
large numbers
logs
memories
*Medule does not exist’
new calculations
number formats
number range supported
operator precedence
operators
order of calculation
percentage operator
powers
results of calculations
screen areas
small numbers
‘Syntax error’ message
Calculator memories
CALL command
CALL function
Calling procedures
uses
Capital letters
Caps lock keypress
Case (upper/lower)
CD command
CHANGESPRITE command

43

49

43

43

38

43

43

43

132, 218
132
8,13,23

163, 174, 218
176,218
174

177, 218
176, 219
46

46, 47
47

48

47

47

43
47,173
48

46

139,47

46

46

46

46

47

48

46

46

47

47

173

30

219, 257
86

87

10, 11, 60
11

60

30

180, 219



Character codes
finding
special keys
with GET,GET$,KEY, KEY$
Character set
IBM Code Page 850
Characters
accented characters
entering with decimal codes
foreign characters
CHDIR command
CHRS function
Cleaning the Workabout
Clearing pixels
Clearing rectangles in text window
Clock
displaying
in status windows
removing
types
CLOSE command
CLOSESPRITE command
CLS command
CMD$ function
Co-ordinates
Clommand processor
accessing
batch files
clearing the display
date setting
default disk
device drivers (listing)
displaying
e17or messages
exiting
‘Formats’ option
keys and keypresses
menu options
recalling commands
‘Remote link’ option
‘Summer time’ option
syntax error
text files (displaying)
‘Time and datc’ option
time setting
vsing
Commands
and functions
batch files of
DOS equivalents

271-276
275

275

75
271-276
272

273

273

273

30

219

2

107, 108, 111
191

[i8
132
I8
113
101, 219
180, 219
30, 219
219
104

25

22

29

30

23

30

31

22

34

29

23

29

23

29

2
23,24,33,43
34

33

23

23

22

30

71

33

30

errorlevel state
errorlevels

help about
listing with help

31
33
3l
33

See individua! command names

Comms

abandoning file transfer
Baud rate

‘Block nn’ message
bulletin boards

‘Cannot open Port TTY:A’
CONNECT message
Data bits

default disk

Delete key code
clectronic mail

Enter key code

exiting

52
58
54
58
52
53
56
54
57
54
52
54
53

‘Failed to open a comms port’ 53

file transfer

file transfer protocols
filenames and directories
handshaking settings
LIF converter

menus

modem commands
modems

moving around screen
other computers
Parity

pausing display

port setfings

‘Port TTY:A online...’
receiving files
requirements
resuming display
RS-232 serial port
screen border

Script editor

script language

serial port

setting up a link

Stop bits

terminal emulatien
Terminal emulation screen
terminal emulation type
3Link lead

timing out
‘Translates’ option
transmitting files

56
56
57
54
52
53
56
52,54
55
52
54
55
53
53
53
52
55
52
55
52
52
52
52
54
53
53
54
27,52,56
58
54
53,57



uses
XMODEM protocol
XON/XOFF handshaking
YMODEM protocols
YMODEM/G protocol
Comparison operators
COMPRESS command
Conditions, in loops
Connecting to
barcode scanners
other computers
PCs
Constants
CONTINUE command
Contrast key
Control-S keypress
Conversion, of types
COPY command
‘Copy file’ option
in System screen
Copying modules
COS function
COUNT function
CREATE command
CREATESPRITE function
Ctrl key
Current position
Current window
Cuorsor
in graphies
movement with PRINT
moving
"position, reading
user-defined
See alse gAT
See also gMOVE
CURSCR command

D

Data
‘Add’ screen
adding entries
compressing files
deleting entries
display
editing an entry
editing Jabels
‘Entry’ menu

52

57

54

57

57

292

220, 284
81

14

13, 14

27

72

220

8, 10,17

64

294

30, 220, 284

63
63
22)
221
95, 221
179,221
10
104
113

110, 115
275

il

190

118

110, 115, 221,
285

EER

45
44

ERES

entry numbers
"Evaluate” format
fields
files on Flash SSDs
‘Find by label” option
‘Find’ screen
finding an entry
hiding labels
inserting text
‘Jump to entry’ option
labels
lines
merging files
‘No more found’ message
*Not found’ message
and OPL data files
plain text
search clues
searching for an entry
‘Update’ screen
updating an entry
Data bits
Data file
advanced information
appending/updating
checking for EQOF
closing
copying
creating in OPL
example program
field name
filenames
finding a record
logical name
moving between records
opening
ordering
structure
using a different file
Date
displaying
format
separator
setting
DATE command
Date input
DATETOSECS function
DATIMS function

‘DAY function

DAYNAMEY function

45
39
44
45
44
44
44
45
45
45
44
44
45
45
45
102

45
44
44
44

44
299

193

98

101

101

220, 284
95

141

95

102, 165, 283
99

95

08

96

143

94

100



DAYS function
dBUTTONS command
dCHOICE command
dDATE command
‘Declaration error’
Declaring variables

examples

explained

LOCAL aud GLOBAL
dEDIT command
‘Default’ template
Default window
DEFAULTWIN command
DEG function
DEL command
DELETE command
‘Delete file’ option

in System screen
Delete key
Deleting modules
Device drivers, listing
dFILE commiand
dFLOAT command
DIALOG function
Dialogs

cancelling

choice lists

closing

date/time input

exit keys

moving between lines

number input

string display

string input

‘... at end of line
dINIT command
dINITS command
DIRS$ function
Directories

changtng

creating

removing
Directory, in filenames
‘Disk full’ message
Disks

formatting

labelling

volume labels
Division, problems
dLONG command

222

130, 223
127, 223
127, 223
69

70

68

%0

126, 224

65

113

106, 113,224, 287
224

30

225, 284

63

10

63

32

126, 225
127,225
125, 226
125

40

127

40

127

130

40

127

129

126

41

125, 226
125, 226
226, 284
164, 165, 283
30

32

32

{64

18

31
31
33
72
127,227

DO...UNTIL command
Docking Station

Dots, drawing
Double-height text
DOW function
dPOSITION command
Drawables
DRAWSPRITE command
Drives, in filenames
dTEXT command
dTIME command
dXINPUT command
DYL handling

E

ECHO command
EDIT command
EDIT with TRAP
End of file, in data file
ENDA keyword
ENDP - explained
ENDYV keyword
Enter key
ENTERSEND function
ENTERSENDO function
Environment variables
displaying
editing
for printing
EOF function
ERASE ¢command
ERR function
ERRS$ function
ERRLEVEL command
Error handling
ERR, ERR$
ONERR
overview
RAISE
TRAP
Error messages
in Command processor
listed
with ERR/ERR$ in OPL
Error numbers, listed
Errors
COMINCN Syntax errors
while running
Esc key

78, 227
3,5,6,13,36
105

111

227

130, 227
117

179, 227
164

129, 228
127,228
126, 228
194

30

229

155

101

167

60

83, 268
10

196, 229
196, 229

32

32

28

(01, 229
99, 229
154, 230
154,230
31

54
156
153
157
154

34

158
154
158

152
153
10



Esc key, in INPUT
ESCAPE ON/OFF command
EVAL fanction
Events
Example programs
adding two numbers
animation
beep, using
birthdays
houncing ball
calling procedures
cheice lists in dialogs
circles, drawing
countdown timer
creating new windows
currency, changing
data file, creating
data filc, opecning
data file, saving
data files, advanced handling
data files, reordering
data files, on 8SDs
data files, using
data records, copying
databases, adding new lines
declaring variables
dialogs
diceroll
displaying a plain text file
using DO. UNTIL
drawing horizontal lines
error handling, testing
using gMODE
grey and black (using)
icon design
using IF
IOW screen functions
keypresses
loops and breaks
Ienus
OPAs, type 0
OPAs, type 3
passing values
" passwords
returning a string
returning values
robot face, drawing
sprite
stopwatch
test procedure

155

230

230, 286

168, 237, 265

70
149
173
140
146
86, 87
127
147
139
113
74

95

96

97
193
143,
134
141
101
145
90
125, 129
140
187
78, 80
104, 105, 107
158
112
107
171
80
191
75

33
123
169
170
88
126
39
89,91
107, 108
180
144
6l

using WHILE.. ENDWHILE 79
using WHILE.. ENDWHILE 78

zooming
EXIST function
EXF function
Expansion modules
Expansion ports

setting up for printing

Expression

See also EVAL function

EXT keyword

Extensions, in filenames

F

False, and true
Fields
in data files
input to
types
File attributes
‘File or device in use’
Filenames
extensions
See also dFILE
Files
copying
deleting
listing
renaming
See also Modules
FILES command
Filing system
FIND function
FINDFIELD function
FINDLIB function
FIRST command
FIX$ function
Flash SSDs
See also SSDs
Floating-point variables
explained
precedence
range
rounded down
FLT function
FONT command
Fonts
displaying
user-defined

148
230
231
14

8
22,28
71

167, 231, 282
161

294

94

97

95

30

63

165, 283
164

30
30
31
32

31

164

99, 231, 284
231
195,231

98, 232

232

35

68

293

68

294

232

131,132, 232
110

110

118



FOR command
Foreground/background
FORMAT comumand
FREEALLOC command
Functions

and commands

Fuse

G

Games, (Series 3) slowing down
gAT command
gBORDER command
gBOX command
gBUTTON command
gCLOCK command
gCLOSE command
£CLS command
gCOPY command
gCREATE function
gCREATEBIT function
gDRAWOBIECT command
GENS$ function
‘General failure’ error
GET function

special key codes
GETS function
GETCMDS function
GETEVENT command
GETLIBH function
gFILL command
gFONT command
gGMODE command
gGREY command

gHEIGHT function
gIDENTITY function
gINFO command
gINVERT command
GIPRINT command
gLINEBY command
gLINETO command
gLOADBIT function
gL OADFONT function
GLOBAL command
Global variables
returning values
“Undefined externals’ error

gMOVE command

31

173

31
197,232

"7
See individual function names

14, 17

289
104, 232
114, 232
107, 233
233

118, 233
115, 235
235

117, 235
113,235
117,236
230

236

106

236

275

236
168, 237
168, 237
165, 237
107, 237
110, 113,238
108, 113, 238
106, 113, 116,
238

238

238

238

239
132, 239
104, 239
105, 240
240
118, 240
90. 240

91
90, 91
104, 241

gORDER command
gORIGINX function
gORIGINY function
GOTO command
gPATT command
gPEEKLINE command
gPOLY command
gPRINT command
gPRINTB command
gPRINTCLIP function
gRANK function
Graphics

copying grey

‘General failure’ error

grey

grey in default window

text window
Grey
gSAVEBIT command
gSCROLL command
gSETWIN command
gSTYLE command
gTMODE command
gTWIDTH function
gUNLOADFONT command
gUPDATE command
gUSE command
eVISIBLE command
gWIDTH function
gX function
gXBORDER command
gXPRINT command
gY function

H

Handshaking
HC, differences in OPL
Heap allocator
HELP command
Help index keypress
Help keypress
HEXS$ function
Hexadecimal
Holster
Hot-keys

case
HOUR function

115, 241
241

241

31, 82,241, 286
108, 117, 241
242

118, 242
109, 242
243

243

243

116

106

106, 113, 116
106

118
106,113, 116
171, 243

243

244

11, 113, 244
11E, 113, 244
244

118, 244
117, 244
113, 245

115, 245

245

245

245

246

246

299

281

196

31

11

i1

246

246

36

122, 123
122,124
128, 247



/

I/O functions
device handling
error handling
example program
opening a file
overview
positioning in a file
reading a file
writing to a file
1ABS function
ICON keyword
[cons
IDs
for fonts
for windows
IF command
IF...ENDIF command
‘Indentation’ option
Information messages
INPUT command
INPUT with TRAP
INPUT, to data fields
INT fuanction
‘Integer overflow’
Integer variables
precedence
range
Internal Expansion ports
setting up for printing
INTF functivn
Invalid directory
Invalid drive specification
Invalid parameters
Inverse text
Inverting pixels
IOA function
10C function
IOCANCEL function
IOOPEN function
[OREAD function
IOSEEK function
IOSIGNAL function
IOW function
example
IOWAIT function
IOWAITSTAT function
IOWRITE function
IOYIELD function

188
184
187
185
184
187
186
187
247
167, 172,247, 282
171

118
113

31

79, 247
65

132
74, 247
155

97

248

72

293
68

3, 14
22,28
248
34

34

34
111
107, 108, 111
188
189
190
185
186
187
189
188, 190
191
189
189
187
189

K

K (kilobyte)
KEY function
special key codes
KEYS$ function
KEYA function
Keyboard
hot-keys
ne response
scanning in OPL
special keyboard
UK version
variants
Western European version
KEYC function
Keypresses, recognising
Keys
movement keys
not working
special function keys
yellow keys
Keys pressed down
KILL command
KMOD function

L

LABEL command
Labels
in programs
jumping to
vectoring to
LAST command
LCLOSE command
LEFT}$ function
LEN function
LENALLOC function
LIF converter
LIF-PFS socket
connections to
parallel connections
problems
serial connections
uses
LINK command
LINK software
exiting
problems
LINKLIB command

18

249
275
249
190

24

17
182
10, 24

190
75

10
17
1G
16
182
31
250

31

286

286

82

83

99, 250
250
250

251

197, 251
3,5,13,27,52
13,27
13

i3

19

i3

i3
27,32
27,32
32

19

195, 251



LLDEV command
LN function
LOADLIB function
LOADM command
LOC function
LOC:: in full filenames
LLOCAL command
LOCK command
LOG functicn
Logical expressions
Logical name, of data file
Logical operators
Long integer
range
variable
Loops
conditions
IF. ENDIF
maximum nested
LOPEN
a filename
PAR:C pacalle] port
TTY:A serial port
TTY:C serial port
LOPEN command
Low power
Lower case
LOWERS function
LPDEV command
LPRINT command
LPROC command
LSEG command

M

MO - M9, Calculator memories
‘Main battery is low’
Mains adaptor
type
MAX function
MC, differences in OPL
mCARD command
MD command
MEAN function
‘Media is corrupt’
MEM command
Memory
displaying current memory
freeing
listing memory segiments

31

251

195, 251
162, 251
251

164

68, 90, 251
171,252
252

294

95

295

68
08

81
79
80

302
298
299
299
252
6
60
253
32
253, 284
32
32

173

6
3,513
278
253
281
122,253
32

254

16

32

32
18
32

‘Memory info’ option
Memory allocation
‘Memory full®
MENU function
Menu key
Menu option hol keys
Menus
grouping options together
menu optiens (selecting)
problems
using
MID$ funcrion
MIN function
mINIT command
MINUTE function
MEKDIR command
‘Module does not exist’
Modules
calling other modules

18

196

18
122,123,254
10,22, 64, 131
40

122
122,253

40

19,123

40

254

254

122, 255
128, 255

32, 165, 255
48

162

containing several procedures 86

copying

defined

deleting

editing

names

running

saving

slopping while running
translating

unloading

63

60

63

65

60
62,04
134
04

62
163

See also Procedures, Example programs

MONTH function
MONTHS function

N

Names, of vanables
‘New file’ option
in Program editor
in System screen
NEWORB]J function
NEWOBIJH function
NEXT command
‘No system memory’
NOT operator
NUMS function
Number input
Numbers

255
255

69

63

60, 63

195, 255

195, 255

99, 255

18,62, 106, 123
295

255

74,127

See Floating-point vanables, Integer
variables. Long integer variables



o

ONRINFO command
OFF command
Off key
On key
ONERR comtnand
OPAs
OPEN command
‘Open file’ option

in Program editor
OPENR command
Operating System
Operators

arithmetic

bitwise

listed

logical

precedence

with integer values
OR operator
Ordering a data file
Organiser, differences in OPL
OS lunction
Other products
Overwriting, in graphics

P

PAR:C device
Parallel port
Parallel port connections
Parallel printing, PAR:C device
Parameters
explained
multiple
‘type mismatch’ error
types
See aiso Returning values
Parity
PARSES function
Passwords
forgetting
on OPL modules
problems
and Spreadsheet files
See dXINPUT
PATH keyword
PAUSE command
Pausing a program

193, 256

256

10, 16

10, 16

156, 256, 286
166

96, 256

63
256
219, 257

71

295

292
294, 295
293

295

80, 295
143

281

257

35

107, 108, 111

298
28
13
298

- 88

88
88
88

299
165, 257

20
65
20
20

167, 257
32,258
64, 286

PC drives
PEEK functions
Percentage operator
PI function
Pixels
Plain text
‘Please replace volume’
POKE commands
Port A
Port C
Ports
See Scrial port, Printing
POS function
POSITION command
POSSPRITE command
Power
conserving
consumption
low power
sources
Precedence (of operators)
PRINT command
special characters
Printing
data file
rsset: procedure
serial port settings
to file
to parallel port PAR:C
to sertal port TTY: A
to serial port TTY:C
Problems
application crashes
automatic switch off
beeping
blank screen
‘Disk full’
LIF-PFS socket
LINK software
‘Media is corrupt’
‘Memory full’
with menus
no response from keyboard
‘No system memory’
passwords
resetting a Workabout
screen contrast
with SSDs
switching off
turning on

27

258, 285
202

258

104

187

9

259, 285
27,28
13,28

98, 259
98, 259
180, 259

e O h =]

293
73,259
275
28,298
143
299
299
302
28, 298
28, 299
299

17

19

18

17

17

18

19

19

19

i8

15

17

18

20

20

17

19

17

17



PROC - explained
Procedures
calling
creating
defined
in other modules
saving
transiating

60

86, 164, 286
60

60

162, 284
134

02

See also Example programs, Modules

‘Prog’ menu
in Program editor
Program editor
commands
editing text
ENDP keyword
keywords
‘New file’ option
*Open tile” option
OPL langnage
OPL SDK
PROC: keyword
procedutes
‘Prog’ menu
‘Run’ option
running programs
‘53 Translate’ option

‘Save as template’ option

statements
‘Translate’ option
translating programs

‘Program’ icon, in System screen

Programs
names

See also Modules, Procedures

Proportional font

while editing
Psion key
Psion-Cirl-Del keypress
Psion-Tab keypress

Q

QUIT command

R

RAD function
RAISE command
RAM 55Ds

Random numbers

65
51
51
51
51
51
63
63
51
31
51
51
65
64
51
282
65
51
62,282
51
63

60

65
124
20

64, 65

32

260

157, 260
is

140

RANDOMIZE command
Range

floating-point

integer/long integer
RD command
REALILOC function
Records

explained

finding

moving between

saving to file
RECSIZE functicn
REM command
REM:: drives
REM:; in full filenames
Remote drives
‘Remote link not connected’
REN command
RENAME comunand
REPT$ function
Resetting

hard reset

rebooting

soft reset
RETURN command
Returning values
RIGHTS function
RMDIR command
RNDP function
RS-232 AT interface
RS-232 TTL interface
rsset: procedure
‘Run’ option

in Program editor
Running a module

S

‘Save as template’ option
in Program editor
Saving modules
SCI$ function
Screen
Backlight
blank screen
character size
characters
contrast
font size
lines

260

G838
68
32
197, 260

94

99

98

98

260
32,261, 284
27

164
27

34 -
32

261
261

20

20

20

20

89, 261
89
262
32, 165, 262
262

[4

14
299

64
62,64

65
134
262

810
17

8, 10,17
8,43
43



moving around
positions
size
specilication
text wrapping
zooming
SCREEN command
SCREENINFO command

SDK (Software development Kit)

SECOND function
SECSTODATE ¢command
SEND function
Serial port
changing settings
default settings
reading and writing
TTY:A device
TTY.C device
Series 3
differences in OPL
programs, slowing down
Series 3a, differences in OPL
SET command
SETDEF command
in batch files
parameters
in Startup files
SETNAME command
SETPATH command
Seiting up a Workabout
Settings (changing)
Sheet
alignment in cells
AND aperator
AT function
cell ranges
cell references
column widths
database facility
deleting cells
‘Edit’ menu options
editing cells
entering data
= character
formulae
graphs
grid labels
grid lines
hiding columns
hiding zeros

11

104

278,282

278

24,33

3

162, 284, 285
262

51

263

263

195, 263
13,27,28,52
299

269

298

299

299

281
289
281
28,32
23,32
25

25

23

inserting cells
Lotus laand 2
mathematical functions
naming ranges of cells
number formats
numeric data
OR operator
power operator
ranggcs of cclls
titles of rows and columns
“View’ menu options
SHIFT command
Shift key
Shift-Psion-Ctrl-Del keypress
‘Show error’ option
SIN function
Solid State Disk Drives
Sorting a dara file
Sound
beeps
keyclicks
settings
turning on/off
volume
SPACE function
Space key
Specification

132, 171, 172, 263 Speed

165, 263
22
23
49
50
50
50
50
49, 50
50
50
50
50
49
49
49
49
50
50
50
50
50

and Series 3 programs
Sprites
animation of
closing
creating
drawing
example program
example uses
explained
positioning
SQR function
SSD drives
A: drive
B: drive
for PCs
SSD/Battery drawer
opening
release button
SSDs
Flash
formatting
formatting utility

50
49
49
50
39
49
50
50
50
50
50
32
10
20
05
263
12
143
13,17
23
23
23
23
23
264
Iy
271 278,219, 280
117
289
178
178
180
179
179
180
179
[78
180
264
g 12
12
12
35
2
12
3
12,35
35
31
35



inserting
labelling
from QPL
problems
RAM
removing
SSD/Battery drawer
volume labels
write protecting
START command
Start of week day
Startup file
cormmands
creating
directory
filename
filename extensions
multiple copies
running
SETDEF command
and Startup SSDs
system-wide settings
USEes
Startup Shell
Startup SSD
Statement, defined
Status window
position
size
type
visibility
STATUSWIN command
STATWININFO function
STD function
Stap hits
STOP command
Stop, running module
Stopwatchl
String
input
joining (conczitenating)
variable
“Structure fault’
STYLE command
SUM function
Summer time settings
Switching off
problems
Switching on
the first time

i2 Startup file

G} Startup SSD
134 ‘Syntax ervor’
19 System screen
35 accessing
12 ‘Apps’ menu
12 *Auto switch off” option
33 closing applications
35 ‘Copy file’ option
28,32 “‘Ctrl’ menn
268 date (sctting)
16,22 ‘Defauit disk’ option
25 default disk setting
25 ‘Delete file’ option
25 described
25 ‘Disk’ menu
25 display {setting)
26 displaying
33 file management
23 ‘File” menu

26 font of display
25 ‘Info’ menu
25 keyboard setting
22 28,29 38 ‘Memory info’ option
16 menus
60 multiple files
64, 131 ‘New file’ option
131 OPAs
131 opening applications
13 preferences
13§ ‘Remote Iink’ option
13t, 172, 264 ‘Set preferences” option
131, 264 ‘Set time and date’
264 sound
299 ‘Sound’ option
83, 265 ‘Special’ menu
64 ‘Status window’ option
44 system-wide settings

task keypress

M, 126 time {sctting)
73 ‘Time and date formats’
69 “Wrap on/off” option
152 System-wide settings
265 changing
265 SETDEF command
23 Startup file
6, 10, 16
17
10, 16

16,22

16
16
62,152
38
22
38
39
42
63
8
39
39
39
63
22
38
35
22
42
38, 43
39
38
39
I8
38
35
60
166
42
39
27
39
39
39
39
38
43
3R
42
39
39
43
22
23
25
25



T

Tab key
Tab width
Tabstops
TAN function
Task keypress
Template files, in OPL
TESTEVENT function
Text input
Text styles
Text wrapping
Time
accuracy
am/pm
current time
displaying
format
midnight
separator
setting
stopwatch
summer time
TIME command
Time input
“Too complex’
“Too many items’
“Too wide’
“Translate’ option
in Program editor
Translating, explained
TR AP command
TRAP with INPUT/EDIT
Troubleshooting
See Problems
True, and false
TTY: A device
TTY:C device
Turming on
See switching on
TYPE command
Type conversion
TYPE keyword
“Type mismatch’ erTor

)

UADD function
‘Undefined externals’ error
Underlined text

UNLOADLIB function

UNLOADM command
10 UPDATE command
65 Upper case
275 UPPERS$ function
205 USE command
11 USR function
65 USRS function
168, 265 USUB function
74, 126
11
24 . V
VAL function
23 VAR function
23 uses
128 ‘yar’ vanables
33 Variables
23 array
23 assign value to
23 declaning
23 declaring - examples
144 explained
23 floating-point
33 GLOBAL v LOCAL
127 long integer
_ 80 names
130 operations upon
130 string
& t‘ipa:,s explained
62 VECTOR command
101, 154, 265, 285 VER command
155 Verston information
VOL command
Volume names
294
299
299 w
WEEK funciion
3 WHILE...ENDWH command
Wildcards, in data file search
294 Windows
167,172,266, 282 borders
88 current window
default window
hiding
166. 266 information about
90, 81 overlapping

text window
111

195, 266
163, 266
266

10, 11, 60
266

100, 267
267

267

166, 267

267
267
184
184

69
70
68
70
68
68
90
68
69
71
69
68
184
83, 268, 286
33
33
33
19

268
78, 268
99
113
114
113
113
115
116
115
118



Y

YEAR function

Z

Zooming
in built-in applications
explained
font sizes
settings

148
8,43

43
43



