(=

Commodore

DX-64

MANUAL

© 1984 Commodore Business Machines

C64DX SYSTEM SPECIFICATION

o Design Concepts
o Hardware Specifications
o Software Specifications

Requires ROM Version 0.9A.910228 or later.

COPYRIGHT 1991 COMMODORE BUSINESS MACNINES, INC.
ALL RIGHTS RESERVED.

INFORMATION CONTAINED HEREIN IS THE UNPUBLISHED AND CONFIDENTIAL
PROPERTY OF COMMODORE BUSINESS MACHINES, INC. USE, REPRODUCTION, OR
DISCLOSURE OF THIS INFORMATION WITHOUT THE PRIOR WRITTEN PERMISSION OF
COMMODORE IS PROHIBITED.

Ccccce 666 555555
C C 6 5

c 6 5

C 6 55555
C 66666 5 5
c 6 6 5
c 6 6 5
C C 6 6 5 5
cccce 6666 5555

Copyright 1991 Commodore Business Machines, Inc.
All Rights Reserved.

This documentation contains confidential, proprietary, and unpublished
information of Commodore Business Machines, Inc. The reproduction,
dissemination, disclosure or translation of this information to others
without the prior written consent of Commodore Business Machines, Inc.
is strictly prohibited.

Notice 1s hereby given that the works of authorship contained herein
are owned by Commodore Business Machines, Inc. pursuant to U.S.
Copyright Law, Title 17 U.S.C. 3101 et. seq.

This system specification reflects the latest information available at
this time. Updates will occur as the system evolves. Commodore
Business Machines, Inc. makes no warranties, expressed or implied with
regard to the information contained herein including the quality,
performance, merchantability, or fitness of this information or the
system as described.

This system specification contains the contributions of several people
including: Fred Bowen, Paul Lassa, Bill Gardei, and Victor Andrade.

Portions of the BASIC ROM code are Copyright 1977 Microsoft.

PPPP RRRR EEEE L I M M I N N A RRRR Y Y
P P R R E L I MMM I NN N A A R R YY
PPPP RRRR EEE L I MMM I NNN AAAAA RRRR Y
P R R E L I M M I N NN A A R R Y
P R R EEEE LLLL I M M I N N A A R R Y

Revision 0.2 (pilot release) January 31, 1991

At this time, Pilot Production, the C65 system consists of either
revision 2A or 2B PCB, 4510R3, 4567R5 (PAL only), FO011B/C FDC, and 018
DMAgic chips. There will Dbe changes to all these chips before
Production Release.

This work is by:

Fred Bowen System Software - C65

Paul Lassa Hardware engineer - C65, DMagic
Bill Gardei LSI engineer - 4567, FDC
Victor Andrade LSI engineer - 4510

Included are contributions by contractors hired by Commodore for the
C65 project. These contributions include the DOS, Graphics, Audio, and
Memory management areas.

Several 4502 assembler systems are available:

VAX, Amiga, and PC based BSO-compatible cross assemblers.

PC based custom cross assembler by Memocom, compatible
with Memocom 4502 emulator and Mem-ulator systems.

Cl28-based BSO compatible cross assembler by Commodore.

Custom software support 1is available for the following 1logic
analyzers:

Hewlett Packard HP655x A and B logic analyzers.

Table of Contents

1.0. Introduction

System Concept
System Overview
System Components
System Concerns

N =
S W N e

1.4.1. C64 Compatibility
1.4.1.1. Software
1.4.1.2. Hardware
1581 DOS Compatibility
Modes of Operation

e
NS
w N

1.5. System Maps

Composite System Memory Map
C65 System Memory Map

C65 System Memory Layout
C65 I/0 Memory Map

PR e e
(G IS
S w N

2.0. System Hardware

2.1. Keyboard

2.1.1. Keyboard Layout
2.1.2. Keyboard Matrix
2.2. External Ports & Form-Factor
2.3. Microcontroller

2.3.1. Description
.2. Configuration
2.3.3. Functional Description

N
w

.3.1. Pin Description
.3.2. Timing Description
.3.3. Register Description

NN DN
w w w

.

2.3.4. Mapper
2.3.5. Peripheral Control

I/0 Ports
Handshaking
Timers

TOD Clocks

Serial Ports

Fast Serial Ports
Interrupt Control
Control Registers

NDDNDDNDDNDDNDDNDDNDDN
O ~J o U b W N

W wwwwwww
[S2BNC BNC, BNC, RN, BN BN B)]

N
w
[
@]
b
]
H

Control Registers
Status Register
Character Configuration
Register Map

w w w w

N DN DN
N O O O
S N

2.3.7. CPU

Introduction

CPU Operation
Interrupt Handling
Addressing Modes
Instruction Set
Opcode Table

DD DN DNDDNDDN

~N g 99
oUW N

w w ww ww

2.4. Video Controller

2.4.1. Description

2.4.2. Configuration

2.4.3. Functional Description
2.4.4. Programming

2.4.5. Registers

2.5. Disk Controller

2.5.1. Description

2.5.2. Configuration

2.5.3. Registers

2.5.4. Functional Description
2.5.5. Expansion port protocol
2.5.6. Timing diagrams

2.6. Expansion Disk Controller (option)

.6.1. Description
.6.2. Expansion port protocol

2.7. DMAgic Controller

1. Description
2. Registers

2.7.
2.7.
2.8. RAM Expansion Controller (option)
2.8.1. Description
2.9. Audio Controller

3.0. System Software

3.1. BASIC 10.0

3.1.1. Introduction

3.1.2. List of Commands
3.1.3. Command Descriptions
3.1.4. Variables

3.1.5. Operators

3.1.6. Error Messages

3.1.6.1. BASIC Error Messages
3.1.6.2. DOS Error Messages

3.2.1. Introduction
3.2.2. Commands and Conventions
3.2.3. Command Descriptions

3.3. Editor

3.3.1. Escape Sequences
3.3.2. Control Characters

3.4. Kernel

Kernel Jump Table

BASIC Jump Table

Editor Jump Table

Indirect Vectors

Kernel Documentation

BASIC Math Package Documentation
I1/0 Devices

w w w wwww
B DD DD D
~N o O W N

4.0. Development Support

1.0. Introduction

This specification describes the requirements for a low-cost 8-bit
microcomputer system with excellent graphic capabilities.

1.1. System Concept

The C65 microcomputer 1is a low-cost, versatile, competitive product
designed for the international home computer and game market.

The C65 is well suited for first time computer buyers, and provides an
excellent upgrade path for owners of the commercially successful
C64. The C65 is composed of concepts inherent in the C64 and C128.

The purpose of the C65 is to modernize and revitalize the 10 year old
C64 market while still taking advantage of the developed base of C64
software. To accomplish this, the C65 will provide a C64 mode of
operation, offering a reasonable degree of C64 software compatibility
and a moderate degree of add-on hardware and peripheral compatibility.
Compatibility can be sacrificed when it impedes enhanced functionality
and expandability, much as the C64 sacrificed VIC-20 compatibility.

It 1s anticipated that the many features and capabilities of the new
C65 mode will quickly attract the attention of developers and
consumers alike, thereby revitalizing the low-end home computer
market. The C65 1incorporates features that are normally found on
today's more expensive machines, continuing the Commodore tradition of
maximizing performance for the price. The C65 will provide many new
opportunities for third party software and hardware developers,
including telecommunications, video, instrument control (including
MIDI), and productivity as well as entertainment software.

1.2. System Overview
o CPU -- Commodore CSG4510 running at 1.02 or 3.5 Mhz
o New instructions, including Rockwell and GTE extensions
o Memory Mapper supporting up to 1 Megabyte address space

o R6511-type UART (3-wire RS-232) device, programmable baud
rate (50-56K baud, MIDI-capable), parity, word size, sync
and async. modes. XD/RD wire ORed/ANDed with user port.

o Two CSG6526-type CIA devices, each with 2 I/O ports
programmable TOD clocks, interval timers, interrupt control

o Memory

o RAM -- 128K bytes (DRAM)
Externally expandable from additional 512K bytes to 4MB
using dedicated RAM expansion port.

o ROM -- 128K bytes
C64 Kernel and BASIC 2.2
C65 Kernel, Editor, BASIC 10.0, ML Monitor (like C128)
DOS v10 (1581 subset)
Multiple character sets: 40 and 80 column versions
National keyboards/charsets for foreign language systems
Externally expandable by conventional C64 ROM cartridges
via cartridge/expansion port using C64 decodes.
Externally expandable by additional 128K bytes or more
via cartridge/expansion port using new system decodes.

o DMA -- Custom DMAgic controller chip built-in
Absolute address access to entire 8MB system map
including I/0 devices, both ROM & RAM expansion ports.
List-based DMA structures can be chained together
Copy (up,down,invert), Fill, Swap, Mix (boolean Minterms)
Hold, Modulus (window), Interrupt, and Resume modes,
Block operations from 1 byte to 64K bytes
DRQ handshaking for I/0 devices
Built-in support for (optional) expansion RAM controller

o Video -- Commodore CSG 4567 enhanced VIC chip
o RGBA with sync on all colors or digital sync
o Composite NTSC or PAL video, separate chroma/luma

o Composite NTSC or PAL digital monochrome
o RF TV output via NTSC or PAL modulator
o Digital foreground/background control (genlock)

o All original C64 video modes:
40x25 standard character mode
Extended background color mode
320x200 bitmap mode
Multi-color mode
16 colors
8 sprites, 24x21

o 40 and 80 character columns by 25 rows:
Color, blink, bold, inverse video, underline attributes

o True bitplane graphics:
320 x 200 x 256 (8-bitplane) non-interlaced
640 x 200 x 16* (4-bitplane) non-interlaced
1280 x 200 x 4~ (2-bitplane) non-interlaced
320 x 400 x 2506 (8-bitplane) interlaced
640 x 400 x 16* (4-bitplane) interlaced
1280 x 400 x 4% (2-bitplane) interlaced

*plus sprite and border colors
o Color palettes:
Standard 16-color C64 ROM palette
Programmable 256-color RAM palette, with 16 intensity
levels per primary color (yielding 4096 colors)

o Horizontal and vertical screen positioning verniers

e} Display Address Translator (DAT) allows programmer to
access bitplanes easily and directly.

o Access to optional expansion RAM

o Operates at either clock speed without blanking

o Audio -- Commodore CSG8580 SID chips

o Stereo SID chips:
Total of 6 voices, 3 per channel
Programmable ADSR envelope for each voice
Filter, modulation, audio inputs, potentiometer
Separate left/right volume, filter, modulation control
o Disk, Printer support --

o FDC custom MFM controller chip built in, with 512-byte
buffer, sector or full track read/write/format, LED and
motor control, copy protection.

o Built-in 3.5" double sided, 1MB MFM capacity drive

o Media & file system compatible with 1581 disk drive

o Supports one additional "dumb" drive externally.

o Standard CBM bus serial (all modes, about 4800 baud)

o Fast serial bus (C65 mode only, about 20K baud)

o Burst serial (C65 mode only, about 50K baud)

o External ports --
o 50-pin Cartridge/expansion port (ROM cartridges, etc.)
0 24-pin User/parallel port (modem (1670), RS-232 serial)
o Composite video/audio port (8-pin DIN)
o Analog RGB video port (DB-9)
o RF wvideo output jack
o Serial bus port (disks (1541/1571/1581), printers, etc.)
o External floppy drive port (mini DINS8)
o 2 DBY9 control ports (joystick, mouse, tablets, lightpen)
o Left and right stereo audio output jacks

o RAM expansion port, built-in support for RAM controller

o Keyboard -- 77 keys, including standard C64 keyboard plus:
o Total of 8 function keys, F1-F16, shifted and nonshifted
o TAB, escape, ALT, CAPS lock, no scroll, help (F15/16)
o Power, disk activity LEDs

o Power supply -- external, brick type

o +5VDC at 2.2A and +12VDC at .85A

1.3. System Components

Microcontroller: 4510 (65CE02, 2x6526, 6511 UART, Mapper,
Fast serial)

Memory: 4464 DRAM (128K bytes)
271001 ROM (128K bytes)

Video controller: 4567 (extended VIC, DAT, PLA)
Audio controllers: 6581 (SID)
Memory control: 41xx-F018 (DMA)
Disk controller: 41xx-F011 (FDC, supports 2 DSDD drives, MFM,
RAM buffer)

KEYS

+ USER PORT

| + CONTROL PORTS EXPANSION PORT

|]+ + + + ==+

|| L | +MOD-> RFOUT
FH-+-++ [I +-+----> COMP, CHROMA/LUMA
| | [| t—————- > RGBA

| e - t————— + | +-———+

| e - + +-- -+ R +--+

| | [| | E | EXPANSION
| | tmm—t A=t hm——t A==t A==t | | | +--...-+ C +--+ MEMORY
[4 | | (. [[[N -t

| 5 +-—---- + D +--+ F +——+ S 4-—+ S +--+ R +—-+-—--—-4+ 5 | +-—4+ +—-——+ +——+ +--+
1 +-—- + M+4-——+ D 44—+ I +—+ I +-——+ O +-—————- + 6													
0O	ADR	A		C		D		D		M			7 +-——+ +-—+ 4+-—+ +-—+
		G											=+ 4=+ +-—-F +-—-+
+————= + I +-—+ +-——+ +-—+ +-——+ +———t—-—+ +——+ +-—+ ==+ +——+													
+————= + C +--+ +-—+ +-—+ +-——+ +————— + +——+ =+ ==+ +——+													
	DAT												
+——+——+ +——=+ +++-+ +—+—-+ H+—+—-+ +-——+ +—==+ 4+-=+ +-—+ +-—4 -+

| | | | 128K
+ | R L RAM INTERNAL
SERTIAL BUS | SPEAKERS
++

FLOPPY PORT

1.4. System Concerns

1.4.1. C64 Compatibility Issues
1.4.1.1. Software

C64 software compatibility is an important goal. To this end, when the
system is in "C64 mode" the processor will operate at average 1.02MHz
speed and dummy "dead" cycles are emulated by the processor. The C64
ROM 1is the same except for patches to serial bus routines in the
kernel (to interface Dbuilt-in drive), the removal of cassette code
(there 1is no cassette port), and patches to the C64 initialization

routines to boot C65 mode if there is no reason (eg., cartridges) to
stay in C64 mode.

Compatibility with C64 software that uses previously unimplemented
6502 opcodes (often associated with many copy-protection schemes) or
that implements extremely timing dependent "fast loaders" is iherently
impossible. Because the VIC-III timing is slightly different, programs
that are extremely timing dependant may not work properly. Also
because the VIC-III does not change display modes until the end of a
character 1line, programs that change displays based strictly upon the
raster position may not display things properly. The aspect ratio of
the VIC-III display is slightly different than the VIC-II. The use of
a 1541-1I1 disk drive (optional) will improve compatibility. C64 BASIC

2.2 compatibility will be 100% (within hardware constraints). C128
BASIC 10 compatibility will be moderate (graphic commands are
different, some command parameters different, and there are many new
commands) .

1.4.1.2. Hardware

C64 hardware compatibility is limited. Serial bus and control port
devices (mouse, Jjoysticks, etc.) are fully supported. Some user port
devices are supported such as the newer (4-DIP switch) 1670 modems,
but there's no 9VAC so devices which regquire 9VAC won't function

correctly. The expansion port has additional pins (50 total), and the
pin spacing is closer than the C64 (it's like the PLUS/4). An adaptor
("WIDGET") will Dbe necessary to utilize C64 cartridges and expansion

port devices. Furthermore, timing differences between some C64 and C65
expansion port signals will affect many C64 expansion devices (such as
the 1764).

1.4.2. DOS Compatibility

The built-in C65 DOS is a subset of Commodore 1581 DOS. There is no
track cache, index sensor, etc. To load and run existing 1541-based
applications, the consumer must add a 1541 drive to the system. Many
commercial applications cannot be easily ported from 1541/5.25" media
to 1581/3.5" media, due to copy protection or "fast loaders". Most C64
applications that directly address DOS memory, specific disk tracks
or sectors, or rely on DOS job queues and timing characteristics will
not work with the built-in drive and new DOS.

1.4.3. Operating Modes

The C65 powers up in the C64 mode. If there are no conditions present
which indicate that C64 mode is desired, such as the C= key depressed
or a Co4 cartridge signature found, then C65 mode will Dbe
automatically brought into context. Unlike the C128, "C6 4 mode" is
escapable. Like the (C128, all of the extended features of the C65
system are accessible from "C64 mode" via custom software. Whenever
the system initiates C64 mode, new VIC mode is always disabled except
when the DOS is required.

1.5. System Maps
1.5.1. Composite System Memory Map

C64 CARTRIDGES Co4 C65 RAM-L0O RAM-HI

SFFFF+-——————————— + e + e +
I [[I
SF800 | GAME [KERNEL [KERNEL |
I [& [& |
| CARD [EDITOR [EDITOR |
I [[I
SE00Q0+-———====———- + e —————— + tmmmmm—————— +
| COLOR NYBS | |COLOR NYBS |
|I/O & CHARS| |I/O & CHARS|
$D000 —-=-—=-—--—-- Fo—m— + ot +
I I
| KERNEL |
I I
$CO000+——=====———- + + e —————— +
I [[I
|APPLICATION]| | [
I [BASIC [
| CARD HI | | [BASIC |
I [| | GRAPHICS |
SA000+—————————-—- I + | |
I | I I
APPLICATION		DOS
		(MAPPED)
CARD _ LOW		
I	I I	
$8000+-—=====—=———- + o Fmm———————— +		
COLOR NYBS		
I/0 & CHARS		
$6000 ——=—=—=——=—=——————————————————— Fom +		
I		
I I		
I I		
I I		
BASIC		
I I		
I I		
I I		
$2000 ———===—=——————————————————— Fom———————— +		
$0000 ——=—=====—————-—		
1.5.2. C65 System Memory Map		
MAPPER BANK		
_____ +_____		
I		
1M SF,FFFF 4-———————————— Fommmmm——		
+- -+		
RAM		
768K $C,0000 +- -+		
EXPANSTION		
+- -+		
512K $8,0000 +-—-=-=-——-—-———= + o

RESERVED -+

| C65 EVEN |
| BITPLANES |

| I
| |
| |
| C65 BASIC |
| TEXT |
|$2000-$FEFF|
| |
| I
| |
| |

C64 VARS &|
STRINGS |
TEXT-S$SBFFF |

TEXT

|

|

|

|

|

|

|

|

| C64 BASIC
|

| $S0800-VARS
|
|
|
|
|
|

| C65 SYSTEM|
| TEXTSCREENS |

| Ce5 ODD |
| BITPLANES |

C65 VARS &|
STRINGS |
$2000-$F7FF|

| C64 & C65 |
| DOS |

| 512K BLOCK APPEARING

FUTURE CARTRIDGES

HERE IS DETERMINED BY
THE RAM EXPANDER CTLR
(UP TO 8MB TOTAL MAP)

256K $4,0000 +-——=—=—=———mm- +ommmm—m— e
128K $2,0000 +-———--——--————- + SEE SYSTEM MEMORY

| SYSTEM ROMS | LAYOUT, BELOW
$0,0000 +-———===—===== O

1.5.3. C65 System Memory Layout

BANK O BANK 1 BANK 2 BANK 3
RAM-LO RAM-HI ROM-LO ROM-HI

SFFFF +-———————————— + e + oo I +

SF800 | | | COLOR NYBS | | Co4 [C65 |
| | 4mmmmmm e + KERNEL | KERNEL |

SE000 | BITPLANES [| +———————————— I +
| (EVEN) || | | C64 CHRSET | |

$D000 | [BITPLANES | +————————————- + | RESERVED |
| [] (ODD) | | INTERFACE | | |

$C000 Lt e + - + +-—-—--———- +
| I | Co4 | I
| [|| BASIC [

SA000 | STRUCTURES [STRINGS | +———————————— + | GRAPHICS |
| Earare [| C65 | I
| I [CHRSET [

$8000 +..viiiinnn. R Fofmm - Fodmm - +
| I || [I
| I || [I
| [|| [|
| I || [I
| BASIC [BASIC [RESERVED [C65 BASIC |
| TEXT | | VARIABLES | | | |
| [|| [|
| I || [I

$4000 | | | +=———m——- + I
| [I [I
| I || [I
| I || [I

$2000 4-—-—-———————- + oA + | +————— = +
| TEXT SCREEN | | DOS || DOS | MONITOR |
Fommm e + || [I
| [BUFFERS [(MAPS TO [(MAPS TO |
| SYSTEM VARS | | & VARS [$8000) [$6000) |
| I || [I

$0000 +--—-——-————————- I + + +

What does this mean? Here is what the 64K memory map looks like in

various configurations (i.e., as seen by the processor):

C64 mode: SEOOO0-SFFFF Kernel, Editor, Basic overflow area

————————— SDO0O0-$SDFFF I/0 and Color Nybbles, Character ROM

$CO000-S$CFFF Application RAM
SAO00-$SBFFF BASIC 2.2
$0002-$9FFF RAMLO. VIC screen at $0400-$07FF

BASIC program & vars from $0800-$9FFF

C65 mode: SEQ00-SFFFF Kernel, Editor ROM code

————————— SDO0O0-S$SDFFF I/0 and Color Bytes (CHRROM at $29000)
SCO000-SCFFF Kernel Interface, DOS ROM overflow area
$8000-S$SBFFF BASIC 10.0 Graphics & Sprite ROM code

$2000-$7FFF BASIC 10.0 ROM code

$S0002-$1FFF RAMLO. VIC screen at $0800-$O0FFF
BASIC prgs mapped from $02000-$0FFO0O0
BASIC vars mapped from $12000-$1F7FF

C65 DOS mode: SEOOO-SFFFF Kernel, Editor ROM code

————————————— SDO00-SDFFF I/0 (CIA's mapped out), Color Bytes
SC800-SCFFF Kernel Interface
$S8000-$SC3FF DOS ROM code
$2000-$7FFF (don't care)
$0000-S1FFF DOS RAMHI

C65 Monitor: SEOOO-SFFFF Kernel, Editor ROM code

———————————— SDO00-SDFFF I/0 and Color Bytes
SCO000-SCFFF Kernel Interface
$8000-SBFFF (don't care)
$6000-S7FFF Monitor ROM code
$0002-S$5FFF RAMLO

It's done this way for a reason. The CPU MAPPER restricts the
programmer to one offset for each 32Kbyte half of a 64Kbyte segment.
For one chunk of ROM to MAP in another chunk with a different offset,
it must do so into the other half of memory from which it is
executing. The O0OS does this by never mapping the chunk of ROM at
SCO000-$SDFFF, which allows this chunk to contain the Interface/MAP code
and I/0 (having I/0O in context is usually desirable, and you can't map

I/0 anyhow). The Interface/MAP ROM can be turned on and off via VIC
register $30, bit 5 (ROM @ $C000), and therefore does not need to be
mapped itself. Generally, OS functions (such as the Kernel, Editor,

and DOS) 1live in the upper 32K half of memory, and applications such
as BASIC or the Monitor) 1live in the lower 32K half. For example,
when Monitor mode is entered, the 0OS maps out BASIC and maps in the
Monitor. Each has ready access to the 0S, but no built-in access to
each other. When a DOS call is made, the 0S overlays itself with the
DOS (except for the magical $C000 code) in the upper 32K half of
memory, and overlays the application area with DOS RAM in the lower
32K half of memory.

1.5.4. C65 System I/0O Memory Map

Fmmm e +
$DF00 | I/0-2 | EXTERNAL I/0 SELECT
$DE0OO | 1/0-1 | EXTERNAL I/0 SELECT
Fomm +
$DDO0 | CIA-2 | SERIAL, USER PORT
$DCO0 | CIA-1 | KEYBOARD, JOYSTICK, MOUSE CONTROL
Fmmm +
$D800 | COLOR NYB | COLOR MATRIX (*FROM $1F800-$1FFFF)
fomm - +
$D700 | DMA | *DMA CONTROLLER
Fomm - +
$D600 | UART | *RS-232, FAST SERIAL, NEW KEY LINES
fomm - +
$D440 | SID (L) | AUDIO CONTROLLER (LEFT)
$D400 | SID (R) | AUDIO CONTROLLER (RIGHT)
fom - +
$D300 | BLU PALETTE |
$D200 | GRN PALETTE | *COLOR PALETTES (NYBBLES)
$D100 | RED PALETTE |
fomm - +

SDOAQ | REC | *RAM EXPANSION CTRL (OPTIONAL)

$D080 | FDC | *DISK CONTROLLER
Fom +
SD00Q | VIC-4567 | VIDEO CONTROLLER
Fomm - +
Fom - +
$0000 | 4510 | MEMORY CONTROL FOR C64 MODE
tommm + (this register is actually in

the VIC-4567 in the C65)

*NOTE: VIC must be in "new" mode to address these devices

2.0. C65 System Hardware

2.1.1. Keyboard Layout

+-————+ -ttt -ttt -ttt ————+
|RUN | |[ESC |ALT |ASC | NO | | F1 | F3 | F5 | F7 | | F9 | F11| F13|HELP|
| STOP | | | |DIN |SCRL| | F2 | F4 | F6 | F8 | | F10| Fl2| F14| |
+————+ -ttt -ttt -ttt
R e e e e e e L e D et e
<=0t " 1% 1$ |5 & " 1 C 1) | I I I [CLR |INST|
| /1T 12 13 |14 |5 |6 |7 |8 |9 |0 |+ | - | e |HOME|DEL |
B e e i e e e e e e T e i s st S e e e
| TAB | I I I I I I I I I I I | & | RSTR |
I /o I w | E | R | T | Y | U | I | O |'P | @ | * [7~ | I
-ttt —+-——F -+ -4+ -4+ +
|CTRL | SHE'T | | I | I | | I | [N | RETURN |
I [LOCKl A | S |'D | F |G |®H |9 | K |I'L | =+ | | =1 I
-ttt -4+ -+ -4+ -+ -4+ ————F————+
| C= | SHIFT | | | | | | | | < | > |2 | SHIFT|CRSR]
I I lz | x (¢ [v | B | N | M |, | . |/ | | UP |
fmm e ———— e et e e T e T e L e e L L
| SPACE | | CRSR|CRSR|CRSR|
| | | LEFT | DOWN | RITE |
e + fmmm b=t
Notes:
1/ The cursor keys are special -- the shifted cursor keys appear as

separate keys, but 1in actuality pressing them generates a SHIFT
plus the normal cursor code, making them totally compatible with,
and therefore functional in, C64 mode.

2/ There are a total of 77 keys, two of which are locking keys.

3/ The NATIONAL keyboards are similar, and their layout and operation
is identical to their C128 implementation.

2.1.2. Keyboard Matrix

GND |

|PIN-1|

+-—1+

| RO

|[PIN12 |

| R1

[PIN11|

| R2

|
[PIN1O|

| R4

|
| PIN-8 |

| <————+

|<-—-—+

|<————+

|<-—-—+

| CO | Cc1 |

C2

C3

c4

C5

| C6 | C7 |

cs8

|PIN20|PIN19|PIN18|PIN17|PIN16|PIN15|PIN14|PIN13|PIN-4]

i e T T e T e e T At =

\Y% Y
e to———- +
INS | # |
| DEL | 3 |
tm———= R +
RET | W |
I | I
- to———= +
HORZ | A |
| CRSR] |
e to———- +
F8 | S |
[7 | 4 |
tm———= R +
F2 | Z |
| F1 | I
- to———= +
F4 | s |
| F3 | I
e to———- +
Fo6 | E |
| F5 | I
tm———= R +
VERT | LEFT |

| CRSR|SHIFT|

fo—tm—t—— =+

Y% \Y%
F———— t———— +
| ce b
| 1
+-———- +o———- +
Lo <==
| | |
+-———- +-———- +
| 1 | CTRL]
Lo |
F———— t=———— +
| CLR | " |
| HOM | 2 |
+-———- +o———- +
|RIGHT | SPACE |
|SHIFT| BAR |
+-———- +-———- +
| = | C= |
| | |
F———— t=———— +
I a | Q |
A |
+-———- +o———- +
| 2 | RUN |
| / | STOP|
fmmt e +

| A——t——t / (LOCKING) | ! |

| ISHIFT+-———+ 4-——m—mmmmm e + | |
|
| | LOCK| I I I
|
| +————- + | | |
|
| tom——- to——- + I I
|
to—t——t I | I I
I
|CRSR +-======——=—~ o + tommm + |
|
| UP | K1 PIN-21 | | |
|
to—t——1 | 4066 | I
|
| | DECODER | I
|
R — I | |
|
|CRSR +--—————————- fmmm e + Fom e +
|
| LEFT | K2 PIN-22 | |
|
tm———— + fommm e +
|
|
fm——— + +=——— + /
|
| NMI | <-—==—=-=—- FRESTR+—===+ +-———————— - mm—m e
+
| PIN-3 | | I
|
o + - +
|
|
|
+-——— + t———— + / (LOCKING)
|
| R8 | <=====———- FCAPS +====+F o
|
|[PIN-2 | | LOCK |
+-—— + - +

Keyboard Notes:
1/ The 64 keys under CO through C7 occupy the same matrix position as
in the C/64, as does the RESTORE key. Including SHIFT-LOCK, there

are 66 such keys.

2/ The extended keyboard consists of the 8 keys under the C8 output.

Counting the CAPS-LOCK key, The C/64 does not

scan these keys.

there are 9 new keys.

3/ The new CURSOR LEFT and CURSOR UP keys simulate a CURSOR plus RIGHT

SHIFT key combination.

4/ The keyboard mechanism will be mechanically similar to that of the
Cl128.
2.2. Form Factor
EXPANSION SERIAL USER PORT STEREO RGBA RF COMPOSITE FAST DISK
PORT BUS (PARALLEL) L R VIDEO VIDEO VIDEO PORT
#HASHSHHEH #HH# FHEHEHHEH # # #HHHH Ei #HHHH #HH#
| ~ e ~ Sttt e dades e St ~ |
|
POWER CONNECTOR I
| oo +
POWER SWITCH I I
| | I
| I
CONTROL PORT #2 | |
I 3.5" I
| t-————— === + |
| I | DISK DRIVE |
CONTROL PORT #1 I I I I
| RAM EXPANSION (BOTTOM) | |
| | | | I
#4# RESET | | | EJECT |
| fomm - + - +-——+—+
| +-—=+ |
| I
o +
NOTES:
1. Dimensions: about 18" wide, 8" deep, 2" high.

2. Disk unit faces forward.

2.3. The CSG 4510 Microcontroller Chip

2.3.1. Description

This specification
8-bit microcontroller
technology for high speed

The IC 1is a fully
microprocessor (65CE02),
24-hour (AM/PM) time
full-duplex serial 1I/0
generator,
memory,
individually programmable

2.3.2. Configuration

of

two 8-bit shift registers for synchronous serial 1/0,

describes the requirements for a single chip

unit fabricated 20 CMOS double-metal

and low power consumption.

static device that contains an enhanced 6502
four independent 16-bit interval timers/two
day clocks each with programmable alarm,

(UART) channel with programmable baud rate

in

built-in memory map function to access up to 1 megabyte of

and 30
I/0 lines.

This IC device shall be configured in a standard,
[*** Pinout below will change

chip carrier package.

A3
A4
A5
Ab
A7
A8
A9
Al0
All
Al2
Al3
Al4
Alb
Ale6
Al7
Al8
Al9
PSYNC
AEC
DMA *
NOIO

2.3.3. Functional Description

2.3.3.1.

PIN
NAME

VSS

VCC

SPB,

13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |

oo R 0=

[l o
o

w)
w)}

[os]
o

Pin Description

PIN
NUMBER

84-pin plastic
for 4510R5 ***]

CTMHZ
SRQDAT
SRQCLK
SROATN
PA2
COL7
COL6
COLS5
COL4
COL3
COL2
coLrl
COLO
ROW7
ROW6
ROWS
ROW4
ROW3
ROW?2
ROW1
ROWO

(0 volts).

(+5 volts).

FSCSCSVVCCRERINRTT
LRNPNPCSOAEIXS SRDMZXZXE
AQT1T2CSLPSTTOQTIDDS
G I 1 2 8 SERR * * T
2 N L T * *
* * K *
8 8 8 8 7 7 7 7 7
876 5432143210987 ¢6375
12 === + 74
| 73
| 72
|71
| 70
| 69
| 68
| 67
| 66
| 65
CSG 4510 | 64
| 63
| 62
| 61
| 60
| 59
| 58
| 57
| 56
| 55
32 +4———— + 54
33334444 4444445050505
6789 01234506789 0123
DDDDDDVPRPPPPPPPPP
BBBRBBBCH/BBBBRBIBIBIBLC
543210CO0OWO012345%672
SIGNAL
DIRECTION DESCRIPTION
IN This is the power ground signal
IN This is the power supply signal
I/0 The SPA and SPB signals are open-drain

SPA 5 I/0 and bidirectional, each with a 3Kohm
(min.) passive pull-up. The SPA and SPB
signals are the data lines used by the
two 8-bit synchronous serial port
registers. In input mode, SPA and SPB are
clocked into the device on the rising
edge of the CNTA and CNTB clocks,
respectively. In the output mode, SPA and
SPB change on the falling edge of the
CNTA and CNTB clocks, respectively.

CNTB, 4 I/0 The CNTA and CNTB signals are open-drain

CNTA 6 I/0 and bidirectional, each with a 3K ohm
(min.) passive pull-up. These pins are
internally synchronized to the PHO clock
and then used to clock the synchronous
serial registers, in input mode. In
output mode, each pin will reflect the
clock signal derived from the
corresponding timer.

FLAGA/ 1 I/0 The FLAGA/ and FLAGB/ inputs are negative
FLAGB/ 8 IN edge sensitive input signals. A passive
pull-up (3Kohm min.) is tied on each of

these pins. They are internally
synchronized to the PHO clock and are
used as general purpose interrupt

inputs. Any negative transition on either
of these signals will cause the device to
start an interrupt sequence, provided
that the proper bit is set in each of the
interrupt mask registers. The device-will
drop the IRQ/ line to indicate that an
interrupt sequence is underway.

*** When the FAST SERIAL MODE is enabled the CNTA, SPA and ***
*** FPLAGA/ lines will not function as described above. See ***
*** section 2.5.6. for FAST SERIAL MODE description. xxx

AO0-A19 9 thru 28 I/0 Address Bus - This is a 20 bit bi-directional
bus with tri-state outputs. The output of each
address line is TTL compatible, capable of
driving two standard TTL loads and 55 pf. When
the AEC or DMA/ line goes low, the bus goes
tri-state. If AEC only is low, Al7, Al8 and Al1l9
will each reflect the state of the Al6 line.
During an I/O access (IO/ is low), AO0-A3, A8 and
A9 are used to select an internal I/0O register.
If AEC is high, the bus will be driven by the
CPU and Al16-A19 will point to a mapped memory
location (if MAP/ is low). If memory is not
mapped (MAP/ is high), A16-A19 will be low.

PSYNC 29 OuT This output line is provided to identify those
cycles in which the microprocessor is doing an
OP CODE fetch. The PSYNC line goes high during
PHI of an OP CODE fetch and stays high for the
remainder of that cycle. If AEC or DMA/ is low
during the rising edge of PHI, in which pulse
PSYNC went high, the processor will stop in its
current state and will remain, in the state until

AEC 30 IN
DMA/ 31 IN
(READY) Internal Signal
10/ 32 IN
MAP/ 33 ouT

DB7-DBO 34 thru 41 1I/0

R/W 43 I/0

either AEC or DMA/ goes high. In this manner,
the SYNC signal can be used to control either
the AEC or DMA/ line to cause single instruction
execution.

This input signal is the Address Enable Control
line. When high, the address bus, R/W are
valid. When low, the address bus, R/W and MAP/
are in a high-impedance state except for Al7,
A18 and Al19 each of which will be connected to
the Al6 line.

This signal is connected to a 3K passive pull-
up. When this signal is low the address Dbus
and R/W will be tri-stated. This will allow
external DMA devices to assume control of the
system bus lines.

This signal is generated internally via the

AEC and DMA/ lines. The READY signal goes high
when both AEC and DMA/ are high. It goes low

if either AEC or DMA/ goes low. The READY

signal allows the user to single-cycle the
microprocessor on all cycles including write
cycles. A low state on either DMA/ or AEC

during the rising transition of phase one (PHI)
will deassert the READY line and halt the

micro processor with the output address lines
holding the current address. This feature allows
microprocessor interfacing with low speed memory
as well as fast (max 2 cycle) Direct Memory Access
(DMA) .

This input signal is used to select the internal
registers of the device, provided memory is not
being mapped by the CPU.

This signal is passively pulled-up (3 Kohm)
whenever DMA/ or AEC is pulled low.

This output signal is used to indicate whether
or not memory is being mapped by the device.

If the CPU is addressing a mapped memory region
the MAP/ line will go low and will inhibit the
I0/ line from selecting an internal register.
If the CPU is not mapping memory the MAP/ line
will be-high and A16-A19 will be kept low.

DO-D7 form an 8 bit bi-directional data bus for
data exchanges to and from the internal CPU (the
65CEO2) and the device internal registers. It is
also used to communicate with external peripheral
devices. The output buffers are capable

of driving two standard TTL loads and 55pf.

This signal is generated by the CPU to control
the direction of data transfers on the data bus.
This line is high except when the CPU is writing
to memory, an internal I/0 register or an
external device. When the AEC or DMA/ signal is
low, the R/W becomes tri-state.

PHO

PC/

PRDO-PRD7
PRBO-PRB7
PRAO-PRA7

PRC2

PRC3

PRC46

PRC57

45
54
62

44

53

thru 52
thru 61
thru 69

70

71

72

73

IN

OuT

I/0
I/0
I/0

I/0

ouT

1/0

I/0

This clock is a TTL compatible input used for.
internal device operation and as a timing
reference for communicating with the system

data bus. Two internal clocks are generated by
the device; phase two (PH2) is in phase with PHO,
and phase one (PH1) is 180 degrees out of phase
with PHO.

This output line is a strobe signal and is
Centronics interface compatible. The signal goes
low following a read or write access of PORT D.

These are three 8-bit ports with each of their
lines having a passive pull-up (min. 3K ohm)
as well as active pull-up and pull-down
transistors. Each individual port line may be
programmed to be either input or output.

This line corresponds to PORT C, bit 2.
It has passive pull-up (min. 3k ohm) as
well as active pull-up and pull-down
transistors. The line can be configured
as input or output. PRC2 becomes the
external shift register clock when the
UART 1is configured to operate in the
synchronous mode, otherwise PRC2
operates as normal.

This signal is an open drain output with a
passive pull-up (1K ohm min). It corresponds to
bit 3 of PORT C. When this port bit is set as
an input, the PRC3 line is driven low; reading
the port bit will give a high. If configured as
an output, reading this port bit will not give
the-status of the PRC3 line but the wvalue
previously written on the PORT C data reg. bit 3.

This is an open drain bi-directional signal with
a passive pull-up (1K ohm min). Bit 6 of PORT C
is always configured as an input; the bit will
give the status of the PRC46 line anytime the
the port is read, regardless of what is written
in the data direction register.

If bit 4 of PORT C is set as an input, the PRC46
line will be pulled low; reading the port bit
will give a high. If bit 4 is configured as

an output, PRC46 will be pulled low if bit 4 in
the port data register is high, otherwise the
PRC46 line will float to a high.

This is an open drain bi-directional signal with
a passive pull-up (1K ohm min). Bit 7 of PORT C
is always configured as an input; the bit will
give the status of the PRC57 line anytime the
the port is read, regardless of what is written
in the data direction register.

If bit 5 of PORT C is set as an input, the PRC57
line will be pulled low; reading the port bit
will give a high. 1If bit 5 is configured as

an output, PRC57 will be pulled low if bit 5 in
the port data register is high, otherwise the

PREO, PRE1

BAUDCLK

TEST

TXD

RXD

NMI/

IRQ/

83, 84 I/0
74 IN
75 IN
76 ouT
77 IN
78 I/0
79 I/0

PRC57 line will float to a high.

This a 2-bit port with each line having a
passive pull-up (min. 3K ohm) as well as active
pull-up and pull-down transistors. Each indi-
vidual port line may be programmed to be eithi.
input or output.

This Input is a 7MHz clock used to drive the
UART Baud Rate Generator, and is assumed to

be synchronous with the PHO clock. This clock
is also divided down to 1MHz to drive the
interval timers, and down to 10Hz to drive the
TOD timers. This clock is also used to time out
the FOR and RESTORE (RSTR*) circuits.

When this input goes to a high state, the device
will operate in a test mode. The test mode will
allow the BAUDCLK dividers to be initialized and
the TOD and interval timers to be driven
directly by the BAUDCLK clock, bypassing all the
dividers.

This is the UART transmit data output line.

The LSB of the Transmit Data Register is the
first data bit transmitted. The data transmission
rate (baud rate) is determined by the

value written to the Baud Rate Timer latches.

This is the UART receive data input line and
is connected to a passive pull-up (1K ohm min)
The first data bit received is loaded into the
LSB of the Receive Data Register. The receiver
data rate must be the same as that determined
by the value written to the Baud Rate Timer
latches.

The NMI/ pin is an open drain bi-directional
signal. A passive pull-up (3K ohms minimum) is
tied on this pin, allowing multiple NMI/ sources
to be tied together. A negative transition on
this pin requests a non-maskable interrupt
sequence to be generated by the microprocessor.
The interrupt sequence will begin with the first
PSYNC after a multiple-cycle opcode. NMI/ inputs
cannot be masked by the processor status
register I flag. The two program counter bytes
PCH and PCL, and the processor status register
P, are pushed onto the stack. Then the program
counter bytes PCL and PCH are loaded from memory
addresses FFFA and FFFB/ respectively.

NOTE: Since this interrupt is non-maskable,
another NMI/ can occur before the first is
finished. Care should be taken to avoid this.
The NMI/ line is normally off (high impedance)
and the device will activate it low as described
in the functional description. AEC and DMA/ must
be high for any interrupt to be recognized.

The Interrupt Request line (IRQ/) is an open

RESTR/

EXTRST/

RESET/

80

81

82

IN

ouT

1/0

drain bi-directional signal. A passive pull-

up (3K Ohms minimum) is tied on this pin/
allowing multiple IRQ/ sources to be connected
together. This pin is sampled during PH2 and
when a negative transition is detected an inter-
rupt will be activated, only if the mask flag
(I) in the status register is low. The inter-
rupt sequence will begin with the first PSYNC
after a multiple-cycle opcode. The two program
counter bytes PCH and PCL, and the processor
status register P, are stored-onto the stack;
the interrupt mask flag is set high so that no.
further IRQ/'s may occur. At the end of this
cycle, the program counter low byte (PCL) will
be loaded from address FFFE/ and the high byte
(PCH) from FFFF, thus transferring program
control to the vector located at this addresses.
The IRQ/ line is normally off (high impedance)
and the device will activate it low as described
in the functional descriptioni AEC and DMA/ must
be high for any interrupt to be recognized.

This input is tied to a 3K ohm (min.) passive
pull-up. A bounce eliminator circuit is used
on this pin to remove any bounce during its
falling transition, if the pin is tied to a
contact closure. If the device sees a negative
transition on this pin, it will immediately

assert the NMI/ line to start a Non-Maskable In-
terrupt sequence. The device will ignore any
subsequent transitions on the RESTR/ line until
4.2ms has elapsed, at which time the NMI/ line
is deasserted.

This output is an open drain output with a min.
1K ohm pull-up. This pin will only go to a low
state during power-up, and will stay low until
.9 seconds after VDD has reached its operating
voltage.

The Reset line (RESET/) is an open drain bi-
directional signal. A passive pull-up (1K ohm
minimum) is tied on this pin, allowing any ex-
ternal source to initialize the device. A low

on RESET/ will instantly initialize the internal
65CE02 and all internal registers. All port
pins are set as inputs and port registers to

zero (a read of the ports will return all highs
because of passive pull-ups); all timer control
registers are set to zero and all timer latches
to ones. All other registers are reset to zero.
During power—-up RESET/ is held low and will go
high .9 seconds after VDD reaches the operating
voltage. If pulled low during operation, the
currently executing opcode will be terminated.
The B and 2 registers will be cleared. The stack
pointer will be set to "byte" mode, with the
stack page set to page 1. The processor status
bits E and I will be set. When the high transition
is detected/the reset sequence begins

on the CPU cy

reset sequence do nothing.

counter bytes
addresses FFF
execution beg

cle. The first four cycles of the
Then the program

PCL and PCH are loaded from memory
C and FFFD, and normal program

ins.

2.3.3.2. 4510R3 Timing Description
+-——+ +-——+
——————————— | R et | -~————----AEC, DMA
+-——+ +-——+
TAES---| + |--TAEH | ————- TPWH ----- |
————————————— + fomm ¢
| | | PHO
o + fom -
| -———- TPWL ----- |
TAIS--| |-- --| |--TAIH
————————————————— + s NOIO,R/W
tommm - + VALID tommm o A0-A19/NOMAP
————————————————— + et et (INPUT)
---|TAOS |--- ---| |--TAOH
———————————————— + e +---- PSYNC,R/W
o=t VALID +o——t A0-A19/NOMAP
———————————————— + Hmm———mm—— -4+ 4———— (OUTPUT)
TDIS|- —-+- -|TDIH | -—TDOS-- | |- - |TDOH
+—————— + R +
———————— + VALID +------——-——-———————————4 VALID +------ D0-D7
+—————— + Fommm +
______ + +_________
| | AEC, DMA
Fmm +
-=| |--TAZ -—| |--TZA
________ + +_______
ON 4-———————mm————— + ON DO0-D7,R/W/A0-A15(AEC, DMA)
———————— + +-------A16-A19 (DMA)
|-—— TCH ---|
——————— + fom e+
| | | C7MHZ
Fom—————— + +-————
| -——-TCL---| --| |--TCCL
___________________________ +
| PHO
+ ________
Param Description MIN TYP MAX
Tpwh PHO clock high time 65 135 -
Tpwl PHO clock low time 65 135 -
Taes AEC, DMA setup to PHO falling 30 - -
Taeh AEC, DMA hold from PHO falling 10 - -
Tais address input setup to PHO rising 20 - -
Tain address input hold from PHO falling 10 - -
Taos address output setup from PHO falling - - 50
Taoh address output hold from PHO falling 15 - -
Tdis data input setup to PHO falling 40 - -
Tdih data input hold from PHO falling 10 - -

Tdos data output setup from PHO rising - - 50

Tdoh data output hold from PHO falling 30 - -
Taz address off from AEC or DMA falling 0 15 20
Tza address on from AEC and DMA rising 15 - 30
Tch C7MHZ clock high time 65 - -
Tcl C7MHZ clock low time 65 - -
TccL C7MHZ delay from PHO 0 - 50

2.3.3.3. Register Description

This device contains a total of 41 I/0O peripheral registers which
can be accessed after the following conditions are met. In a an access
cyclethe device must be in a non-mapped mode (MAP/ line is not
asserted), the IO/ line must be in an active low state and the AO-A3,
A8 and A9 address-lines must contain the valid address of the register

to be accessed. 1In addition the state of the R/W line will indicate
whether a read (R/W is "high") write (R/W is "low") cycle is under
way.

A9 A8...A3 A2 Al A0 HEX ADD REG SYMBOL REGISTER NAME
e - +—————— - - +
0 O 0O 0 O O	O0X0	PRA	Peripheral Data Reg A
0 O 0O 0 O 1	O0X1	PRB	Peripheral Data Reg B
0 O O 0 1 O	0X2	DDRA	Data Direction Reg A
0 O O 0 1 1	0X3	DDRB	Data Direction Reg B
0 O 0O 1 0 O	0X4	TA 1O	Timer A Low Register
0 O 0O 1 0 1	0X5	TA HI	Timer A High Register
0 O 0O 1 1 ©0	0Xo6	TB LO	Timer B Low Register
0 O o 1 1 1	0X7	TB HI	Timer B High Register
0 O 1 0 0 O	0X8	TODATS	TODA 10ths Sec Register
0 O 1 0 0 1	0X9	TODAS	TODA Seconds Register
0 O 1 0 1 O	0XA	TODAM	TODA Minutes Register
0 O 1 0 1 1	0XB	TODAH	TODA Hours-AM/PM Reg.
0 O 1 1 0 O	0XC	SDRA	SERIALA Data Register
0 O 1 1 0 1	0XD	ICRA	INTERRUPTA Control Reg.
0 O 1 1 1 ©0	OXE	CRA	Control Register A
0 O 1 1 1 1	OXF	CRB	Control Register B
0 1 O 0 0 O	1X0	PRC	Peripheral Data Reg. C
0 1 O 0 0 1	1X1	PRD	Peripheral Data Reg. D
0 1 O 0 1 O	1X2	DDRC	Data Direction Reg C
0 1 O 0 1 1	1X3	DDRD	Data Direction Reg D
0 1 O 1 0 O	1X4	TC LO	Timer C Low Register
0 1 O 1 0 1	1X5	TC HI	Timer C High Register
0 1 O 1 1 O	1X6	TD LO	Timer D Low Register
0 1 o 1 1 1	1X7	TD HI	Timer D High Register
0 1 1 0 0 O	1X8	TODBTS	TODB 10ths of Sec Reg.
0 1 1 0 0 1	1X9	TODBS	TODB Seconds Register
0 1 1 0 1 0	1XA	TODBM	TODB Minutes Register
0 1 1 0 1 1	1XB	TODBH	TODB Hours-AM/PM Reg.
0 1 1 1 0 O	1XC	SDRB	SERIALB Data Register
0 1 1 1 0 1	1XD	ICRB	INTERRUPTB Control Reg.
0 1 1 1 1 0	1XE	CRC	Control Register C
0 1 1 1 1 1	1XF	CRD	Control Register D
1 0 0O 0 0 0O	2X0	DREG	Receive/Transmit Data Reg]
[1 0 0O 0 O 1	2X1	URSR	UART Status Register
1 0 O 0 1 O	2X2	URCR	UART Control Register
1 0 O 0 1 1	2X3	BRLO	Baud Rate Timer LO Reg.
1 0 O 1 0 O	2X4	BRHI	Baud Rate Timer HI Reg.
1 0 0 1 0 1	2X5	URIEN	UART IRQ/NMI Enable Reg.
1 0 0 1 1 0	2X6	URIFG	UART IRQ/NMI Flag Reg.

E

Peripheral Data Reg.
Data Direction E

PRE

2X7
2X8

2X9
it Tl R

DDRE

Fast Serial Bus Control

FSERIAL

REGISTER ADDRESS ALLOCATION

TABLE 1

the memory mapper follows in section

of

description
The Fast Serial register is described in section 2.3.5.6.

functional
4.

The
2

.3

REGISTER BIT ALLOCATION

2.3.3.3.1.

D7 D6 D5 D4 D3 D2 D1 DO

NAME

R/W REG
e e s e e T e Tttt H

PAO

pPAl

PA2

PA3

PAG PAS PAd |

PAT

PRA

| 0XO0 |

R/W
i i T T e it St L

PBO

PB1

PB2

PB3

PB6 PB5 PB4 |

PB7

PRB

| OX1 |

R/W
e it e ettt B e it

| DPA3 | DPA2 | DPA1l | DPAO |

DPAS DPA4

DPA7 | DPAG6

DDRA

| 0X2 |

R/W
i i T e il ittt s

DPB1 | DPBO |

| DPB3 | DPB2 |

DPB6 DPB5 DPB4

DPB7

DDRB

| 0X3 |

R/W
T et T ettt A e

TALO

TAL1

TAL2

| TALG6 TALS TAL4 | TAL3 |

TAL7
T o mm e mm e b}

TA LO|

READ | 0X4 |
B T

TAH1 | TAHO |

TAH2

et st T T Tttt

TAH3

TAH4 |

TAHS

TAHG6

TBL5 | TBL4 | TBL3 | TBL2 | TBL1l | TBLO |

TBL6
i T S T St

| TBL7

E

| TBH3 | TBH2 | TBH1 | TBHO |

TBH4

TBHS

TBHG6

READ| 0X5 |

TB LO

READ| 0X6 |

READ | 0X7 |

T i S it Tt E e e

PALI | PALO |

PAL2

fommm—tmm—tmmmm——+ B o m b mmm e m e bt

PAL7 | PAL6 | PALS5 | PAL4 | PAL3 |

R

TA LO|

|[WRITE | 0X4 |

PAH6 | PAH5 | PAH4 | PAH3 | PAH2 | PAH1l | PAHO |

PAH7
Fommm—tm— b mmm——t € e mm b

S

TA HI|

[WRITE | 0X5|

PBL1 | PBLO |

PBL2

T it S PR T et T Tt s

PBL7 | PBLS5 | PBLS5 | PBL4 | P3L3 |

A

TB LO|

|[WRITE | 0X6 |

PBH7 | PBH6 | PBHS5 | PBH4 | PBH3 | PBH2 | PBH1 | PBHO |

E

TB HI|

|[WRITE | O0X7|

R e ettt e e e e i AT e S

TAl

TA2

TA4

TAS8

0

e T e) R i ST T e T e e

READ| O0X8 | TODATS| O

SAL8 | SAL4 | SALZ2 | SAL1 |

SAH1 |

SAH2

| SAH4

0
it L i it T e ettt L T PP

(%)

READ| O0X9 | TODAS

MAL8 | MAL4 | MAL2 | MAL1l |

MAH2 MAH1

| MAH4

0
e e e ¥ e T i T e 1

()

I

READ| OXA|TODAM |

HAL2 | HALL |

HALA4

it e e

HALS

0 HAH

0

APM |

E

READ| OXB| TODAH |

tom b —

WILL READ DIVIDER STAGE OUTPUTS

IN TEST MODE:

(*)

T e e et e e

TA4 | TA2 | TAl

TAS8

0
s A e sttt T

0

|WRITE | 0X8 | TODATS |
fom ¢
|[WRITE|0X9 | TODAS

SAL8 | SAL4 | SAL2 | SAL1l |

SAH4 SAH2 SAH1 |

0
i i it e e A ittt s

MAL8 | MAL4 | MAL2 | MAL1l |

MAH1

MAH2

e e e e T T T T T

MAH4

0

A

|[WRITE | OXA | TODAM

HALS | HAL4 | HAL2 | HAL1l |

HAH

| APM

C

|WRITE | 0XB | TODAH

ALARM REGISTER IS WRITTEN
TOD REGISTER IS WRITTEN

4

1

IF CRB ALARM BIT=0
i et ettt T Aatala L L R PP

IF CRB ALARM BIT

E

14

SRA1 | SRAO |

| SRAG6 SRAD SRA4 | SRA3 | SRA2 |

SRA7

SDRA

| 0XC |

R/W
e e i Rt

TB TA

| ALRMA |

| SPA

FLGA

0

IRA

ICRA

READ | 0XD|

| (INT DATA) |
e e T e e

ALRMA| TB TA

| SPA

FLGA

|AS/C~

| (INT MASK) |
e T T ST T

ICRA

|WRITE | 0XD |

| STARTA |

PRB6
ON

RUN-A| OUT-A|

| LOADA|
| INMODE |

TMRA
i et et T St L

SPA

TODA
IN

CRA |

| OXE |

R/W

MODE

MODE

MODE

RUN-B| OUT-B| PRB7 |STARTB|
ON

MODE

| TIMERB | INMODE | LOADB |

| ALARM

CRB

| OXF |

R/W

MODE |

CRB5

CRB6
i i T T e it St L

| (TODA) |

PCO

PC1

PC2

PC4 | PC3 |

PC5

PC6
e it e ettt B e it

PRC PC7

READ|1XO0|

PDO

PD1

PD2

PD3

PD6 PD5 PD4 |

PD7

PRD

[1X1]

R/W
i i T e il ittt s

| DPC3 | DPC2 | DPC1l | DPCO |

DPC6 DPC5 DPC4

DPC7

DDRC

| 1X2 |

R/W
e e i Rt

| DPD3 | DPD2 | DPD1 | DPDO |

DPD5 DPD4

DPD6

DPD7

DDRD

[1X3]

R/W
e T s s T e e

TCLO

TCL1

TCL2

TCL3

TCL4 |

TCL5

TCL6
T o — b mm b}

TCL7

TC LO|

READ|1X4 |

fomm -t

| TCH3 | TCH2 | TCH1l | TCHO |

TCHS TCH4

TCH6
e T Rt e T

TDL1 | TDLO |

TDL2

et et s B

TDL7 | TDL6 | TDL5 | TDL4 | TDL3 |

E

| TDH3 | TDH2 | TDH1 | TDHO |

TDHS TDH4

TDH6

READ|1X5|

TD LO

READ|1X6 |

READ | 1X7 |

s T Tt T B e SR

| PCL6 | PCL5 | PCL4 | PCL3 | PCL2 | PCL1 | PCLO |

PCL7
T s S T T R T

R

TC LO|

[WRITE|1X4 |

| PCH5 | PCH4 | PCH3 | PCH2 | PCH1 | PCHO |

PCH6
Fommm—tmm—tmmmmm— (e m b mm e b}

| PCH7 |

S

TC HI|

|[WRITE | 1X5 |

PDL5 | PDL4 | PDL3 | PDL2 | PDL1 | PDLO |

PDL6
s T F e S T s TS

| PDL7

A

TD LO|

|[WRITE|1X6|

PDH7 | PDH6 | PDHS5 | PDH4 | PDH3 | PDH2 | PDH1 | PDHO |

E

TD HI|

|WRITE | 1X7 |

Tt T e Tt s T Attt L e e

TB1

TB2

TB4

i B B st T e A ettt E

TBS8

0

O

| 1X8 | TODBTS |

|READ

SBL1

SBL2

SBL4

SBL8

SBH4 SBH2 SBH1 |

0
e e e e ST T T T s

| ()

| 1X9 | TODBS

|READ

MBL1

MBL2

MBL4

MBLS

MBH2 MBH1

MBH4
b m e m e mmmmm M e mm e m e e e}

0

I

| 1XA | TODBM

| READ

HBL8 | HBL4 | HBL2 | HBL1 |

0 HBH

BPM | 0

E

| 1XB | TODBH

|READ

IN TEST MODE: WILL READ DIVIDER STAGE OUTPUT |

(*)

T T s T Tt T AT

TB1

TB2

T it SO B T e et s e L E

| TB4 |

TB8

0

T

|[WRITE|1X8|TODBTS |

SBL8 | SBL4 | SBL2 | SBL1 |

SBH2 SBH1 |
s T F e S e i T S

SBH4

D

|[WRITE|1X9|TODBS

MBL1

MBL2

MBL4

MBLS8

MBH1 |

MBH?2

MBHA4
T ettt S Lt e it T E

0

A

|[WRITE|1XA | TODBM

|WRITE|1XB|TODBH | C | BPM | O | 0 | HBH | HBL8 | HBL4 | HBL2 | HBL1 |
| I | | H | | | | | I | I I
| | | | E | TIF CRD ALARM BIT=1 , ALARM REGISTER IS WRITTEN |
| | | | S | IF CRD ALARM BIT=0 , TOD REGISTER IS WRITTEN |
tm———= fom tmm———= fmm——— tm———— tm————= e tm————= tm———— tm————- +
| R/W |1XC]| SDRB | SRB7 | SRB6 | SRB5 | SRB4 | SRB3 | SRB2 | SRB1 | SRBO |
o= Fom - o= to————- to————= t-————= to——— = t-————= to——— = t-————= +
|READ |1XD] ICRB | IRB | O | 0 | FLGB | SPB | ALRMB| TD | TC |
| | | (INT DATA) | | | | | | | I I
R Fom e R fom— R R R R R R +
[WRITE | 1XD| ICRB |BS/C~ | -= | -= | FLGB | SPB | ALRMB| TD | TC |
| I | (INT MASK) | I | I | I I I I
Fo———= Fom to———— fo———— to———— e e e to——— e +
| R/W |1XE]| CRC | TODB | SPB | TMRC | LOADC| RUN-C| OUT-C| PRD6 |STARTC|
| | | | IN | MODE | INMODE | | MODE | MODE | ON | |
= e T tm————= to———— tm———— = tm———— t—————= tm———— o= +
| R/W |1XF| CRD |ALARM |TIMERD|INMODE| LOADD| RUN-D| OUT-D| PRD7 |STARTD|
| | | | (TODB) | CRD6 | CRDS5 | | MODE | MODE | ON | |
fm———= fom - = fmm——— e tm————= e tm————= e tm————= +
| READ|2XO0| DREG | RCV7 | RCV6 | RCV5 | RCV4 | RCV3 | RCV2 | RCV1 | RCVO |
| (RECEIVE DATA REG) | | | | | | | | |
tm—— = Fom - t—————= to————- t—————= t-————= to——— = t-————= to——— = t-————= +
|[WRITE | 2XO0 | DREG | XMT7 | XMT6 | XMT5 | XMT4 | XMT3 | XMT2 | XMT1 | XMTO |
| (TRANSMIT DATA REG) | | | | | I I I I
to———= fom - to——— = tom— - to——— = t-————= to—— o= to———— o= +
| READ|2X1| URSR | TDONE | EMPTY| ENDT | IDLE | FRME | PRTY | OVR | FULL |
Fo———= Fom to————= fo———— to————= e to———— e to——— e +
|WRITE | 2X1 | URSR | -- | -- | ENDT | IDLE | -- | -= | == | == |
tm—— = Fom - to————= to————- to————= t-————= to——— = t-————= tm——— = t-————= +
| R/W |2X2] URCR | XMITR| RCVER| UART | MODE | CHAR LENGTH |PARITY PARITY |
| | | | EN | EN | UMl | UMO | CH1 CHO | EN | EVEN |
to———= fom - to——— = tom— to—— = o= to— t-————= to———— - +
| R/W |2X3] BRLO | BRL7 | BRL6 | BRLS5 | BRL4 | BRL3 | BRL2 | BRL1 | BRLO |
tm———= fom tmm———= fmm——— tm———— tm————= e tm————= tm———— tm————- +
| R/W |2X4| BRHI | BRH7 | BRH6 | BRH5 | BRH4 | BRH3 | BRH2 | BRH1 | BRHO |
tm———= Fom - to————= to————- to————= t-————= to——— = t-————= to——— = t-————= +
| R/W |2X5] URIEN | XDIRQ| RDIRQ| XDNMI| RDNMI| =-- | =--= | =—-= | =—= |
Fo———= Fom to———— fo———— to———— e to————= to———— to——— e +
| READ|2X6| URIFG | XDIRQ| RDIRQ| XDNMI| RDNMI| =-- | =-= | === | == |
tm—— = Fom - t—————= to————- to————= t-————= to—— = t-————= to——— = t-————= +
| R/W |2X7]| PRE | -= | -= | -= | -= | -= | -= | PE1 | PEQO |
fo———= Fom to———— fo———— to————= e to———— e to———— e +
| R/W |2X8| DDRE | -= | -= | -= | -= | -= | -= | DPE1 | DPEO |
to———= Fom - == to————- to————= t-————= tm——— = t—————= tm——— = t-————= +
| R/W |2X9| FSERIAL |*DMODE|*FSDIR| -- | -- | - | — | — | - |
R Fmm e R fom— R R R R e R +

REGISTER BIT ALLOCATION
TABLE 2
2.3.4. Memory Mapper

The microprocessor core 1s actually a C4502R1 with some
addittional instructions, used to operate the memory mapper.

The former AUG (augment) opcode has been changed to MAP (mapper),
and the former NOP (no-operation) has been changed to EOM (end-of-

mapping-sequence) .

The 4510 memory mapper allows the microprocessor to access up to

1 megabyte of memory. Here's how. The 6502 microprocessor can only
access 64K bytes of memory because it only uses addresses of 16 bit's.
The 4502 is not different, nor is the 4510. But the 4510 memory mapper
allows these addresses to be redirected to new physical addresses
to access different parts of a much larger memory, within the 64K byte
confinement window.

The 64K window has been divided into eight blocks, and two

regions, with four blocks in each region. Blocks 0 through 3 are in
the "lower" region, and blocks 4 through 7 are in the "upper" region,
as shown. ..
+- fommmm - +FFFF
| | BLK 7 |
| Fommm +E000
| | BLK 6 |
UPPER REGION -+ pommm - +C000
| I BLK 5 |
| Fomm +A000
| | BLK 4 |
+= Fomm +8000
| I BLK 3 |
| t-——————————- +6000
| | BLK 2 |
LOWER REGION -+ tommmmm - +4000
| | BLK 1 |
| tm—————————- +2000
| | BLK 0 |
+- fomm - +

Each block can be programmed to be "mapped", or "non-mapped" via
bits in the mapper's "mask" registers. NON-MAPPED means, simply,
address out equals address in. Therefore, there are still only 64K
bytes of non-mapped memory. MAPPED means that address out equals
address in plus some offset. The offset is programmed via the mapper's
"offset" registers.

There are two "offset" registers. One is for the lower region, and one
is for the upper region.

The low-order 6 addresses are never mapped. The offsets are only
added to the 12 high-order addresses. This means the smallest unit you
can map to is 256 bytes, or one page.

The 4510 has an output (NOMAP) which lets the outside world know
when the processor is accessing mapped (0) or non-mapped (1) address.
This 1is wuseful for systems where you may want I/0 devices to be at
fixed (non-mapped) addresses, and only memory at mapped addresses.

It is possible, and likely, to have mapped, and unmapped memory
at the same physical address. And, with offset registers set to zero,
mapped addresses will match unmapped ones. The only difference is the

NOMAP signal to tell whether the address is mapped or unmapped.

To program the mapper, the operating system must load the A, X,
Y, and Z registers with the following information, and execute a MAP
opcode.

Mapper Register Data

7 6 5 4 3 2 1 0 BIT

| LOWER | LOWER | LOWER | LOWER | LOWER | LOWER | LOWER | LOWER | A

| OFF15 | OFF14 | OFF13 | OFF12 | OFF11 | OFF10 | OFF9 | OFF8 |
tom—— - tomm— - tom—— - tomm———— tm———— tm———— to—m—— - fomm—— - +
| MAP | MAP | MAP | MAP | LOWER | LOWER | LOWER | LOWER | X
| BLK3 | BLK2 | BLK1 | BLKO | OFF19 | OFF18 | OFF17 | OFFl6 |
fom—— - tom—— fom—— - fomm fomm to———— po—m— - fom—— - +
| UPPER | UPPER | UPPER | UPPER | UPPER | UPPER | UPPER | UPPER | Y
| OFF15 | OFF14 | OFF13 | OFF12 | OFF11 | OFF10 | OFF9 | OFF8 |
fomm—— - fom—— - fomm— - fomm fomm fomm - to——— - fomm—— - +
| MAP | MAP | MAP | MAP | UPPER | UPPER | UPPER | UPPER | Z
| BLK7 | BLKG6 | BLKS5 | BLK4 | OFF19 | OFF18 | OFF17 | OFFl6 |
to——— e fom—— fom——— fom———— fom——— fom—— tom - +

After executing the MAP opcode, all interrupts are inhibited.
This 1s done to allow the operating system is complete a mapping
sequence without fear of getting an interrupt. An interrupt occurring
before the proper stack-pointer is set will cause return address data
to be written to an undesired area.

Upon completing the mapping sequence, the operating system must
remove the interrupt inhibit by executing a EOM (formerly NOP) opcode.
Note that application software may execute NOPs with no effect.

2.3.5. Peripheral Control Functions

2.3.5.1. I/O0 Ports

Ports A, B and D each <consist of an 8-bit Peripheral Data
Register (PR) and an 8-bit Data Direction Register (DDR). Port E
consists of a 2-bit PR and DDR registers. If a bit in the DDR is set
to one, the corresponding bit in the PR is an output, if a DDR bit is
set to a zero, the corresponding PR bit is defined as an input. On a
READ, the PR bit reflects the information present on the actual port
pins (PRAO-PRA7, PRBO-PRB7, PRC2, PRDO-PRD7, PREO-PRE1l) for both input
and output bits. All ports have passive pull-up devices as well as
active pull-ups, providing both CMOS and TTL compatibility.

In addition to normal I/O operation, PRB6, PRB7, PRD6 and PRD7 also
provide timer output functions (refer to Control Register section,
2.5.8.).

Only Dbit PC2 and DPC2 of PORT C meet the above description. The
other bits function as described in the following.

PCO,PCl These signals are simply a register bits. When read, they
will reflect the wvalue previously written to the PRC

register.
PC4 This bit is a "high" if it's configured as input (DPC4 is a
"low"). If configured as output (DPC4 is a "high"), the bit

will reflect its previous written wvalue when PORT C 1is
read. Then the PRC46 pin is pulled "low" if PC4 is "high";
otherwise, PRC46 is pulled-up through passive resistor.

PC5 This bit is a "high" if it's configured as input (DPC5 is a
"low"). If configured as output (DPC5 is a "high"), the bit
will reflect its previous written wvalue when PORT C is
read. Then the PRC57 pin is pulled "low" if PC5 is "high";

otherwise, PRC57 is pulled-up through passive resistor.

PC6,PC7 These bits are always configured as inputs. When PORT C
(PRC) is read, PC6 and PC7 will reflect the values on the
PRC46 and PRC57 pins, respectively.

2.3.5.2. Handshaking

Handshaking on data transfers can be accomplished using the PC/
output pin and either the FLAGA/ or FLAGB/ input pin. The PC/ line
will go low and stay low for two cycles, two cycles after a read or
write to PORT D. This 1is required to meet Centronics Parallel
Interface specs. The PC/ line can be used to indicate "data ready" at
PORT D or "data accepted" from PORT D. Handshaking on 1l6-bit data
transfers (using either PORT A or B and then PORT D) 1s possible by
always reading or writing PORT A or PORT B first. The FLAG/ lines are
negative edge sensitive inputs which can be used for receiving the PC/
output from other 4510 devices, or as general purpose interrupt
inputs. A negative transition on FLAGA/ or FLAGB/ will set the FLAGA
or FLAGB interrupt bits, respectively.

2.3.5.3. Interval Timers (Timer A, Timer B, Timer C, Timer D)

FEach interval timer consists of a 16-bit read-only Timer Counter
and a 1l6-bit write-only Timer Latch (prescaler). Data written to the
timer are latched in the Timer Latch, while data read from the timer
are the present contents of the Timer Counter. The timers can be used
independently or linked in pairs for extended operations (TIMER A may
be 1linked with Timer B; TIMER C may be linked with TIMER D). The
various timer modes allow generation of long time delays, variable
width pulses, pulse trains and variable frequency waveforms. Utilizing
the CNT inputs, the timers can count external pulses or measure
frequency, pulse witdth and delay times of external signals. Each
timer has an associated control register, providing independent
control of the following functions (see bits functional description in
section 2.5.8 below):

Start/Stop

Each timer may be started or stopped by the microprocessor at
any time by writing to the START/STOP bit of the corresponding control
register (CRA, CRB, CRB or CRC).

PRB, PRD On/Off

Control Dbits allow any of the timer outputs to appear on a PORT
B or PORT D output line (PRB6 for TIMER A, PRB7 for TIMER B, PRD6 for
TIMER C and PRD7 for TIMER D). Note that this function overrides the
DDRB control Dbit and forces the appropriate PB or PC line to be an
output.

Toggle/Pulse

Control bits select the ouputs applied to PORT B and PORT D. On
every timer underflow the ouput can either toggle or generate a single
positive pulse of one cycle duration. The Toggle output is set high

whenever the appreciate timer is started and is set low by RESET/.

One-Shot/Continuous

Control Dbits select-either timer mode. In one-shot mode, the
timer will count down from the latched value to =zero, generate an

interrupt, reload the latched value, then stop. In continuous mode,
the timer will count from the latched wvalue to =zero, generate an
interrupt, reload the latched wvalue and repeat the procedure
continuously.

Force Load

A strobe bit allows the timer latch to be loaded into the timer
counter at any time, whether the timer is running or not.

Input Mode

Control Dbits allow selection of the clock used to decrement the
timer. TIMER A or TIMER C <can count CIMHZ clock pulses or external
pulses applied to the CNTA or CNTB, respectively. The CIMHZ clock is
obtained after internally dividing the C7MHZ by a factor of seven.

TIMER B can count CIMHZ clock pulses, external pulses applied to
the CNTA input, TIMER A underflow pulses or TIMER A underflow pulses
while the CNTA pin is held high.

TIMER D can count CIMHZ clock pulses, external pulses applied to
the CNTB input, TIMER C underflow pulses or TIMER C underflow pulses
while the CNTB pin is held high.

The timer latch is loaded into the timer on any timer underflow,
on a force load or following a write to the high byte of the prescaler
while the timer is stopped. If the timer is running, a write to the
high byte will load the timer latch, but not reload the counter.

2.3.5.4. Time of Day Clocks (TODA, TODB)

The TODA and TODB clocks are special purpose timers for
real-time applications. ©Each clock, TODA or TODB, consists of a
24-hour (AM/PM) clock with 1/10th second resolution. Each is organized
into four registers: 10ths of seconds (TODATS, TODBTS) , Seconds
(TODAS, TODBS) /Minutes (TODAM, TODBM) and Hours (TODAH, TODBH) . The
AM/PM flag is in the MSB of the Hours register for easy testing. Each
register reads out 1in BCD format to simplify conversion for driving
displays, etc. Each TOD requires a 10HZ clock input to keep accurate
timing. This 10HZ clock is generated by dividing the C7MHz clock input
by a factor of 102273 for NTSC (60Hz) applications, or a factor of
101339 for PAL (50Hz) applications. The divider ratio is selected by
the TODA IN and the TODB IN bits of the Control Registers, CRA and
CRC, respectively (see 2.5.8).

In addition to time-keeping, a programmable ALARM is provided
for generating an interrupt at the desired time, from either of the
TOD clocks. The ALARM registers registers are located at the same
addresses as the corresponding TODA and TODB registers. Access to the
ALARM is governed by bit 7 in the Control Registers CRB and CRD. The
ALARM registers are write-only; any read of a TOD address will read
time regardless of the state of the ALARM access control bits.

A specific sequence of events must be followed for proper
setting and reading of each TOD. A TOD is automatically stopped
whenever a write to the corresponding Hours register occurs. The TOD

will not start again until after a write to the proper 10ths of
seconds register. This assures that a TOD will always start at the
desired time. Since a carry from one stage to the next can occur at
any time with respect to a read operation, a latching function is
included to keep all Time of Day information constant during a read
sequence. All four registers of each TOD latch on a read of the
corresponding Hours register and remain latched until after a read of
the corresponding 10ths of second register. A TOD continues to count
when the output registers are latched. If only one register is to be
read, there is no carry problem and the register can be read "on the
fly", provided that any read of the Hours register if followed by a
read of the proper 10ths of seconds, to disable the latching.

2.3.5.5. Serial Ports (SDRA, SDRB)

Each serial port is a buffered, 8-bit synchronous shift register
system. A control bit (CRA SPA bit, CRC SPB bit) selects input or
output mode for either the SDRA or SDRB port.

In input mode, data on the SPA or SPB pin is shifted into the
corresponding shift register on the rising edge of the signal applied
to the CNTA or CNTB pin, respectively. After 8 CNTA pulses, the data
in the shift register is dumped into the SERIALA Data Register (SDRA)
and an interrupt is generated, SPA bit is set in register ICRA. After
8 CNTB pulses, the data in the shift register is dumped into the
SERIALB Data Register (SDRB) and an interrupt is generated, SPB bit is
set in register ICRB.

In the output mode, TIMER A is used for the baud rate generator
of serial port A, Timer C for serial port B. Data is shifted on an SP
pin at half the underflow rate of the TIMER used. The maximum baud
rate possible is CIMHz divided by four, but the maximum useable baud
rate will Dbe determined by line loading and the speed at which the

receiver responds to input data. Transmission will start following a
write to Serial Data Register (provided the proper TIMER used is
running and in continuous mode). The clock signal derived from TIMER A

would appear as an output on the CNTA pin; the one from TIMER C would
appear on the CNTB pin. The data in the Serial Data Register will be
loaded into its corresponding shift register then shift out to the SPA
or SPB pin when a CNTA or CNTB pulse occurs, respectively.

Data shifted out Dbecomes valid on the falling edge of its CNT
clock and remains wvalid wuntil the next falling edge. After 8 CNT
pulses, an 1interrupt 1s generated to indicate more data can be sent.
If the Serial Data Register was loaded with new information prior to
this interrupt, the new data will automatically be loaded into the
shift register and transmission will continue. If the microprocessor
stays one Dbyte ahead of the shift register, transmission will be
continuous. If no further data is to be transmitted, after the 8th CNT
pulse, CNT will return high and SP will remain at the level of the
last data Dbit transmitted. SDR data 1is shifted out MSB first and
serial input data should also appear on this format.

The bidirectional capability of each of the Serial Ports and CNT
clocks allows many 4510 to Dbe connected to a common serial
communication bus on which one Serial Port would act as a master,
sourcing data and shift clock, while the other Serial Port (and all
other ports from other 4510 devices) would act as slaves. All the CNT
and SP outputs are open drain to allow such a common bus. Protocol for
master/slave selection can be transmitted over the serial bus, or via

dedicated handshaking lines.

2.3.5.6. FAST SERIAL MODE

The FAST SERIAL logic consists of a 2-bit write-only register,
which resides in location 0001 (hex). This register may only be
accessed by the CPU if neither the AEC or DMA/ line is low. Upon
reset, both bits in the register are forced low which allows the
device to operate as normal (the CNTA, SPA, PRC57 and FLAGA/ lines
will not be affected).

Bit 1 of +the FAST SERIAL register is the Fast Serial Mode
disable bit (DMODE* bit).

Bit 6 of the FAST SERIAL register is the FSDIR* bit. When the
DMODE* bit is set high, the FSDIR* bit will be used as an output to
control the fast serial data direction buffer hardware, and as an
input to sense a fast disk enable signal. This function will affect
the CNTA, SPA, PRC57 and FLAGA/ lines as summarized in the following
table.

DMODE* FSDIR* FUNCTION
0 0 Fast Serial mode is disabled.
X 1 Both the FLAGA/ and the PRC57 lines will behave as

outputs. The FLAGA/ output will reflect the state of
the CNTA pin, whereas the PRC57 output will reflect
the state of the SPA pin.

1 0 Both the CNTA and SPA lines will behave as outputs.
The CNTA output will reflect the state of the FLAGA/
pin, whereas the SPA output will reflect that of the
PRC57 pin.

2.3.5.7. Interrupt Control Registers (ICRA, ICRB)
These registers control the following sources of interrupts:

i. Underflows from TIMER A, TIMER B, TIMER C and TIMER D.
ii. TODA ALARM and TODB ALARM.
iii. SERIALA and SERIALB Port full/empty conditions.

iv. FLAGA/ and FLAGB/ low transitions.

The ICRA and ICRB registers each provides masking and interrupt
information. ICRA and ICRB each consists of a write-only MASK register
and a read-only—-DATA register. Any interrupt will set the
corresponding bit in the DATA register. Any interrupt which is enabled
by the MASK register will set the IR bit (MSB) of its corresponding
DATA register and bring the IRQ/ pin low. In a multi-chip system, the
IR bit (IRA of ICRA or IRB of ICRB) can be polled to detect which chip

has generated an interrupt request. The interrupt DATA register 1is
cleared and the 1IRQ/ line returns high following a read of the DATA
register. Since each interrupt sets and interrupt bit regardless of

the MASK, and each interrupt bit can be selectively masked to
prevent the generation of a processor interrupt, 1t is possible to
intermix polled interrupts with true interrupts. However, polling
either of +the IR bits will cause its corresponding DATA register to
clear, therefore, 1t 1is wup to the user to preserve the information

contained in the DATA registers if any polled interrupts were present.

Both MASK (ICRA, ICRB) registers provide convenient control of
individual mask bits. When writing to a MASK register, if bit 7 of the
data written (corresponding to AS/C in ICRA, or BS/C in ICRB) is a
ZERO, any mask bit written with a one will be cleared, while those
bits written with a zero will be unaffected. In order for an interrupt
flag to set +the IR Dbit and generate an Interrupt Request, the
corresponding MASK bit must be set in the corresponding MASK Register.

2.3.5.8. Control Registers (CRA, CRB, CRC, CRD)

CRA (0XE) :
BIT Bit Name Function
0 STARTA 1=START TIMER A, 0=STOP TIMER A. This bit is
automatically reset when TIMER A underflow occurs
during one-shot mode.
1 PRB6 ON 1=TIMER A output appears on PRB6, 0=PRB6 normal port

operation.

2 OUT-A MODE 1=TOGGLE output applied on port PRB6,
0=PULSE output applied on port PRB6.

3 RUN-A MODE 1=0ONE-SHOT TIMER A operation,
0=CONTINUOUS TIMER A operation.

4 LOADA 1=FORCE LOAD on TIMER A (this is a STROBE input,
there is no data storage, bit 4 will always read
back a zero and writing a zero has no effect).

5 TMRA INMODE 1=TIMER A counts positive CNTA transitions,
0=TIMER A counts internal C1MHZ pulses.

6 SPA MODE 1=SERIAL A PORT output mode (CNTA sources shift
clock),
0=SERIAL A PORT input mode (external shift clock
on CNTA) .

7 TODA IN 1=50 Hz operation. CT7TMHZ divided down by 101339 to

generate TODA input of 10 Hz.
0=60 Hz operation. C7MHZ divided down by 102273 to
generate TODA input of 10 Hz.

CRB (0OXF) :
BIT Bit Name Function

(Bits 0-4 of the CRB register operate identically to bits 0-4 of the
CR7 register, except that functions now apply to TIMER B and bit 1
control the output of TIMER B on PRB7).

5,6 TIMERB Bits 5 and 6 select one of four input modes for
INMODE TIMER B as follows:
CRB6 CRB5
0 0 TIMER B counts CIMHz pulses.

0 1 TIMER B counts positive CNTA transitions.

1 0 TIMER B counts TIMERA underflow pulses.
1 1 TIMER B counts TIMERA underflows while
CNTA is high.

7 ALARM TODA l=writing to TODA registers sets ALARM,
O=writing to TODA registers sets TODA clock.

CRC (1XE):
BIT Bit Name Function
0 STARTC 1=START TIMER C, 0=STOP TIMER C. This bit is
automatically reset when TIMER C underflow occurs
during one-shot mode.
1 PRD6 ON 1=TIMER C output appears on PRD6, 0=PRD6 normal port

operation.

2 OUT-C MODE 1=TOGGLE output applied on port PRD6,
0=PULSE output applied on port PRDG6.

3 RUN-C MODE 1=0ONE-SHOT TIMER C operation,
0=CONTINUOUS TIMER C operation.

4 LOADC 1=FORCE LOAD on TIMER C (this is a STROBE input,
there is no data storage, bit 4 will always read
back a zero and writing a zero has no effect).

5 TMRC INMODE 1=TIMER C counts positive CNTB transitions,
0=TIMER C counts internal CIMHZ pulses.

6 SPB MODE 1=SERIAL B PORT output mode (CNTB sources shift
clock),
0=SERIAL B PORT input mode (external shift clock
on CNTB) .

7 TODB IN 1=50 Hz operation. CT7MHZ divided down by 101339 to

generate TODB input of 10 Hz.
0=60 Hz operation. C7MHZ divided down by 102273 to
generate TODB input of 10 Hz.

CRD (1XF):
BIT Bit Name Function

(Bits 0-4 of the CRD register operate identically to bits 0-4 of the
CRD register, except that functions now apply to TIMER D and bit 1
controls the output of TIMER D on PRD7).

5,6 TIMERD Bits 5 and 6 select one of four input modes for
INMODE TIMER D as follows:
CRD6 CRDS
0 0 TIMER D counts CIMHz pulses.
0 1 TIMER D counts positive CNTB transitions.
1 0 TIMER D counts TIMERC underflow pulses.
1 1 TIMER D counts TIMERC underflows while

CNTB is high.

7 ALARM TODB l=writing to TODB registers sets ALARM,

O=writing to TODB registers sets TODA clock.

C65 Peripheral Control Utilization
6526 cia complex interface adapter #1

keyboard / joystick / paddles / mouse / lightpen / fast serial

pra0 keybd output c0 / joystick #1 up / mouse right button

pral keybd output cl / joystick #1 down

pra2 keybd output c2 / joystick #1 left / paddle "A" fire button
pra3 keybd output ¢3 / joystick #1 right / paddle "B" fire button
pra4 keybd output c4 / joystick #1 fire / mouse left button

pra5 keybd output c5 /

pra6é keybd output c6 / / select port #1 paddles|mouse
pra7 keybd output c7 / / select port #2 paddles|mouse
prb0 keybd input r0 / joystick #2 up / mouse right button

prbl keybd input rl / joystick #2 down / paddle "A" fire button
prb2 keybd input r2 / joystick #2 left / paddle "B" fire button
prb3 keybd input r3 / joystick #2 right

prb4 keybd input r4 / joystick #2 fire / mouse left button

prb5 keybd input r5 /

prb6 keybd input r6 / timer b: toggle/pulse output

prb7 keybd input r7 / timer a: toggle/pulse output

timer 1 & cra : fast serial

timer 2 & crb

tod
sdr
icr

6526 cia complex interface adapter #2
user port / rs232 / serial bus / VCC bank / NMI

pral0 wvald VIC 16K bank select

pral wvalb

pra2 rs232 DATA output (C64 mode only)
pra3 serial ATN output

pra4 serial CLK output

prab5 serial DATA output

pra6 serial CLK input

pra7 serial DATA input

rs232 received data (C64 mode only)
rs232 request to send

rs232 data terminal ready

rs232 ring indicator

rs232 carrier detect

prb0 user port
prbl user port
prb2 user port
prb3 user port
prb4 user port
prb5 user port
prb6 user port / rs232 clear to send
prb7 user port / rs232 data set ready

NN N N

timer 1 & cra : rs232 baud rate (C64 mode only)
timer 2 & crb : rs232 bit check (C64 mode only)

tod

sdr
icr
2.3.

modes
regis

regis

2.3.6
BIT

0

1

2,3

4,5

6.

nmi (/irq)

UART Operation

The device contains seven registers to control the different UART

of operation. Section 2.2 describes how to access these

ters.

The UART modes can be programmed by accessing the UART control

ter, URCR, whose bits function as described below.

.1. UART Control Register (DRCR)

Bit Name Function

PARITY EVEN 1 = Even Parity. If parity 1is enabled, the
transmitter will assert the parity bit (P) to a low
when "even" parity data is transmitted, otherwise

it will pull it high.
parity Dbit 1is asserted,

received has even parity;
asserted,

0=0dd Parity.

or
if
the device will indicate a parity error.

The receiver checks that the
low,

if
bit

the
is

data

the not

If parity is enabled, the transmitter
low when "odd" parity

will pull it

checks that the parity bit is

if

will pull the parity bit (P)
data 1s transmitted, otherwise it
high. The receiver
asserted 1f the data received has odd parity;
the bit 1s not asserted when data had odd parity,
the device will indicate a parity error.
PARITY EN 1 = Parity Enabled.
0 = Parity Disabled.

Configuration chart below.

CHAR LENGTH These two bits are
bits per
5, 6, 7 or
follows:
CH1 CHO
0 0 eight bits
0 1 seven bits
1 0 six bits
1 1 five Dbits
UART MODE These two bits
asynchronous or synchronous
and/or receiver. The
follows:
DM1 DMO
0 0 both

per
per
per
per

for

The transmitter and receiver
will not allocate a parity bit in the data,
a stop bit will be used in its place.

instead

See the Data

used to select the number of
character to be transmitted or received.
8 bits per character may be selected as

character
character
character
character

select whether operations will be

the transmitter

actual selection is done as

transmitter and receiver operate

6

7

RCVR EN

XMITR EN

in asynchronous mode.

0 1 receiver operates in synchronous mode,
transmitter in asynchronous mode.
1 b4 receiver operates in asynchronous mode,

transmitter in synchronous mode.

0 = Receiver 1is disabled.

1 = Receiver is Enabled. To provide noise immunity,
the duration of a bit interval 1is segmented into
16 subintervals. This is also used to verify that
a high to low transition (START bit) on the RXD
line is wvalid (stays low) at the half point of a

bit duration; if not wvalid, operation will not
start.

If after an idle period, a high to low transition
is detected on the RXD line and is verified to be
low, the receiver will synchronized itself to the
incoming character for the duration of the
character. Received data is then sampled or latched
in the center of a bit time to determine the wvalue
of the remaining bits. The LSB of the data is the
leading bit received. Any unused high order
register Dbits will be set "high". The receiver
expects the data to have only one parity bit (when
parity is enabled) and one stop bit. At the end of
the character reception, the receiver will check
whether any errors have occured and will update the
status register (URSR) accordingly. In addition, if
no errors were encountered the receiver will load
the contents of the shift register into the
Receiver Data Register, eliminating parity and stop
bits.

In synchronous mode, the receiver will reconfigure
its Data Register and Shift Register so that only 8
data bits are always accepted on the RXD line. This
mode only works if an external clock is applied on
the PRC2 input 1line, which is used to shift the
bits into the Receiver Shift register. Data on the
RXD 1s 1latched at the rising edge of the external
clock applied in PRC2.

o
Il

Transmitter is disabled.

1 = Transmitter is Enabled. Transmitter will start
operation once the microprocessor writes data to
the transmitter data register (DREG), after which
the Transmitter Shift Register is loaded and the
start bit is placed on the TXD line. The LSB of the
data 1is the 1leading bit being transmitted. The
Transmitter 1is "doubled buffered" which means that
the CPU can 1load a new character as soon as the
previous one starts transmission. This is indicated

by the status register, bit 6 (URSR6 -- Empty Data
Register), which when set, it indicates that the
data register is ready to accept the next

character. The character data format is illustrated
by figure 1.3. In synchronous mode, the transmitter
will reconfigure its Data Register and Shift

2.3.6.2.
BIT Bit Name
0 FULL
1 OVR
2 PRTY
3 FRME
4 IDLE
5 ENDT

Register so that only 8 data Dbits are always
transmitted on the TXD line, eliminating all parity
and stop bits. The external clock output will be
placed in the PRC2 line and will shift the data out
of the transmitter shift register. Data on the TXD
line will change on the falling edge of the PRC2
signal, the external clock.

UART Status Register (URSR)

Function

Receiver Data Register Full bit. This bit is forced
to a low wupon reset, or after the data register
(DREG) is read. This Dbit is enabled only if the
RCVER EN bit is set in the URCR register. The FULL
bit 1is set when the character being received 1is
transferred from the receiver shift register into
the receiver data register. If an error 1is
encountered 1n the character data, this bit will
not be set and the proper error bit will be set in
the URSR register.

Receiver Over-Run Error bit. This bit 1is cleared
upon reset or after reading the receiver data
register. This Dbit is set i1f the new received

charater is attempted to be transferred from the
receiver shift register Dbefore reading the last
character from the data register. Therefore, the
last character 1is ©preserved in the data register
while the new received character is lost.

Receiver Parity Error bit. This bit is cleared upon
reset or after reading the receiver data register.
The PRTY Dbit will Dbe set when a parity error is
detected on the received character, provided the
PARITY EN Dbit 1is set and receiver 1is running
asynchronously.

Receiver Frame Error bit. This bit is cleared upon
reset or after reading the receiver data register.
The FRME bit is set whenever the received character
contains a low in the first stop-bit slot.

Receiver Idle bit. When this Dbit is written to a
"high", the status register bits 0-3 are disabled
until the receiver detects 10 consecutive marks,
highs, on the RXD line, at which time the IDLE bit
is cleared. This bit is also cleared upon reset.
This bit allows the microprocessor, or any external

microprocessor device, to ignore the transmission
of a character until the start of the next
character.

Transmitter End of Transmission bit. This bit 1is

cleared upon reset or whenever data is written into
the transmitter data register, DREG. Setting this
bit would disable the Transmitter Empty bit, EMPTY,
until device completes transmission.

2.3.6.3. Character Configuration

ASYNC MODE
S
T P = PARITY BIT
AT STP = STOP BIT
R
T LSB -—+
MARK>-+ +---+---+---+---4+--—-4--—+-—-—+-——+
| | DO| D1| D2| D3| D4| P |STP|STP| <-- 5-BIT/CHARACTER

T it S R e
-+ T e it S R
| | DO| D1| D2| D3| D4| D5| P |STP|STP] <-- 6-BIT/CHARACTER

et i s S S

I
|
I
I
I
|
I
+
-+ e T e e
|
I
I
|
I
I
+

->
| | DO| D1| D2| D3| D4| D5| D6| P |STP|STP| <-- 7-BIT/CHARACTER
fom - ———+

-—+ Rt e e e e
| | DO| D1| D2| D3| D4| D5| D6| D7| P |STP| <-- 8-BIT/CHARACTER
fom - ———+
-—+
-——+ -ttt -+ —-——+ |
| | DO| D1| D2| D3| D4|STP|STP| <-- 5-BIT/CHARACTER |
fo— ettt 4=+ ———+ |
|
-—+ -ttt -+
| | DO| D1| D2| D3| D4| D5|STP|STP| <-- 6-BIT/CHARACTER |
et e e et e |
+->
-—+ fom— e+ ———+
| | DO| D1| D2| D3| D4| D5| D6|STP|STP] <-- 7-BIT/CHARACTER |
i st e e mntt T e
I
-—+ fom— et ——————+
| | DO| D1| D2| D3| D4| D5| D6| D7]|STP|STP| <-- 8-BIT/CHARACTER |
Rttt e e D e e e AT e e |
-—+
CHARACTER CONFIGURATION
TABLE 3
2.3.6.4. Register Map
C65 UART
R/W REG NAME D7 D6 D5 D4 D3 D2 D1 DO
+————- -t +————— - +————— +————— +————— +————— +—————- -
| I | | | | | I I I I
| R/W | 0 | DATA | R/X7 | R/X6 | R/X5 | R/X4 | R/X3 | R/X2 | R/X1 | R/XO

[= N B v R = v

OHB W =Z2H

< H H 0o

OB W nHO

| READ| 1 | STATUS | XMIT | XMIT | ENDT | IDLE | FRAME|PARITY| OVER | RCVR |
| | | | DONE | EMPTY| (R/W)| (R/W) | | | RUN | FULL |
+-———- Rt +-————- R +o———— f-———— fo———— f-———— fo———— fo———— +
R/W	2	CONTROL	XMIT	RCVR	UART MODE	WORD LENGTH	PARITY
			ON	ON			ON EVEN
+-———- Fom +o————- e +o———— fo———— fo———— +-———— fo———— +-———— +							
R/W	3	BAUD LO	BRL7	BRL6	BRL5	BRL4	BRL3
I					I I I I I		
fo——— fom +-————- +-———— +o———— fo———— to———— f-———— fo———— +-———— +							
R/W	4	BAUD HI	BRH7	BRH6	BRH5	BRH4	BRH3
I					I I I I I		
fo——— Fom +-————- +-———— +o———— +-———— to———— f-———— to———— f-———— +							
R/W	5	INT MASK	XMIT	RCVR	XMIT	RCVR	-
			IRQ	IRQ	NMI	NMI	
+-———- Fom - fomm——- +o————- fomm——— +o————- fomm——— +o————- fomm = +o—m——- +							
READ	6	INT FLAG	XMIT	RCVR	XMIT	RCVR	-
			IRO	IRQ	NMI	NMI	
+-———- Fom Fomm——- R Fomm——— +o————- fomm——— +o————- +—————- +o————- +
The BAUD RATE can be generated using the following formulas:
URCLK URCLK
BaudRate = ---——---——--—-——- or, COUNT = —----————-—-—-——--- -1
16 x (COUNT+1) 16 x BaudRate
Where: COUNT = value loaded into BAUD RATE register
URCLK = C7Mhz input, 7.15909 MHz NTSC

7.09375 MHz PAL

The following tables show some of the most common data rates. Data
rate errors of less than +/-1.5% are acceptable for most purposes.

A. NTSC URCLK = 7.15909 MHZ
et to—m———— Fomm - to————— +
| BR | BAUD RATE | COUNT | BAUD RATE | PERCENT |
| # | REQUIRED | (HEX) | OBTAINED | ERROR |
fomm - fom - fmmm - fom +
1 50	22F4	49.999	0015	
2 75	174D	74.999	0015	
3 110	OFE3	109.991	0080	
4	134.5	OCFE	134.488	0090
5	150	0BA6	149.998	0015
6	300	05D2	299.895	035
7] 600	02E9	599.79	.035	
8	1200	0174	1199.58	035
9	1800	00F8	1796.96	.17
10	2400	00BYS	2392.74	.30
[11	3600	007B	3608.41	.23
12	4800	005C	4811.22	.23
13	7200	003D	7216.82	23
14	9600	002E	9520.07	83
15	19200	0016	19454.0	1.323
16	31250	000D	31960.2	1.023
0	56000	0007	55930.4	124
fomm - fom - fmmm - fom +

B. PAL URCLK = 7.09375 MHZ

fmm e fmm fmmm - fmm +
| BR | BAUD RATE | COUNT | BAUD RATE | PERCENT |
| # | REQUIRED | (HEX) | OBTAINED | ERROR |
Fomm b Fmm fmmm - fmm +
1] 50	22A2	50.001	0020	
2 75	1716	75.005	0080	
3	110	OFBE	109.987	010
4	134.5	OCDF	134.514	010
5	150	0B8B	149.986	009
6	300	05C5	299.973	009
7 600	02E2	599.75	009	
8	1200	0170	1198.27	144
9	1800	00F5	1802.27	.126
10	2400	00B8	2396.54	144
11	3600	0072	3604.55	126
12	4800	005B	4819.12	.398
13	7200	003D	7150.96	.68
14	9600	002D	9638.25	40
15	19200	0016	19276.5	.40
16	31250	000D	31668.5	1.01
0	56000	0007	55419.9	1.04
Fomm e Fmm Fmmm - Fmm +

2.3.7. CPU

2.3.7.1. Introduction

The 4502, wupon reset, looks and acts like any other CMOS 6502
processor, with the exception that many instructions are shorter or
require less cycles than they used to. This causes programs to execute
in less time that older versions, even at the same clock frequency.

The, stack pointer has been expanded to 16 bits, but can be used
in two different modes. It can be used as a full 16-bit (word) stack
pointer, or as an 8-bit (byte) pointer whose stack page 1is
programmable. On reset, the byte mode is selected with page 1 set as

the stack page. This is done to make it fully 65C02 compatible.

The zero page is also programmable via a new register, the "B" or
"Base Page" register. On reset, this register is cleared, thus giving
a true "zero" page for compatability reasons, Dbut the user can define
any page in memory as the "zero" page.

A third index register, "Z", has Dbeen added to increase
flexibility 1in data manipulation. This register is also cleared, on
reset, so that the STZ instructions still do what they used to, for
compatibility.

This 1s a 1list of opcodes that have Dbeen added to the 210
previously defined MOS, Rockwell, and GTE opcodes.

1. Branches and Jumps

BCC
BCS
BEQ
BMI
BNE
BPL
BRA
BVC
BVS

BSR
JSR
JSR
RTN

label
label
label
label
label
label
label
label
label

label
(ABS)
(ABS, X)
#

word-relative
word-relative
word-relative
word-relative
word-relative
word-relative
word-relative
word-relative
word-relative

Branch to subroutine (word relative)

Jump to subroutine absolute indirect

Jump to subroutine absolute indirect, X

Return from subroutine and adjust stack pointer

2. Arithmetic Operations

NEG

ASR
ASR
ASR

INW
DEW

INZ
DEZ

ASW
ROW

ORA
AND
EOR

ADC
CMP
SBC

CPZ
CP2
CPZ

3. Loads, Stores,

LDA

LDZ
LDZ
LDZ

LDA
STA

STX
STY

STZ
STZ

A

A
7P
2P, X

ZP
ZP

ABS
ABS

(Z2P), 2
(ZP) , 2
(zP) , 2

(ZP) , 2
(ZP), Z
(zP) , 2

IMM
ZP
ABS

(ZP), 2

IMM
ABS
ABS, X

(d,SP),Y
(d,SP),Y

ABS,Y
ABS, X

ZP
ABS

Negate (or 2's complement) accumulator

Arithmetic Shift right accumulator or memory

Increment Word
Decrement Word

Increment and
Decrement 7 register

Arithmetic Shift Left Word
Rotate Left Word

These were formerly (ZP) non-indexed
now are indexed by Z register
(when .Z=0, operation is the same)

Compare Z register with memory immediate,
zero page, and
absolute.

Pushes, Pulls and Transfers

formerly (ZP)
Load Z register immediate,
absolute,

absolute, X.

Load Accu via stack vector indexed by Y
and Store

Store X Absolute,Y
Store Y Absolute, X

Store Z register (formerly store zero)

STZ 7P, X

STZ ABS,X

STA (ZP),2 formerly (Z2P)

PHD IMM Push Data Immediate (word)

PHD ABS Push Data Absolute (word)

PHZ Push Z register onto stack

PLZ Pull Z register from stack

TAZ Transfer Accumulator to Z register

TZA Transfer Z register to Accumulator

TAB Transfer Accumulator to Base page register

TBA Transfer Base page register to Accumulator

TSY Transfer Stack Pointer High byte to Y register
and set "byte" stack-pointer mode

TYS Transfer Y register to Stack Pointer High byte

and set "word" stack-pointer mode

2.3.7.2. CPU Operation

The 4502 has the following 8 user registers:

A accumulator
X index-X
Y index-Y
Z index-27
B Base-page
P Processor status
SP Stack pointer
PC Program counter
Accumulator
The accumulator 1is the only general purpose computational
register. It can Dbe wused for arithmetic functions add, subtract,
shift, rotate, negate, and for Boolean functions and, or,
exclusive-or, and bit operations. It cannot, however, be used as an

index register.
Index X

The index register X has the largest number of opcodes pertaining
to, or using it. It can be incremented, decremented, or compared, but
not wused for arithmetic or logical (Boolean) operations. It differs
from other index registers in that it is the only register that can be
used 1n 1indexed-indirect or (bp,X) operations. It cannot be used in
indirect-indexed or (bp),Y mode.

Index Y

The index register Y has the same computational constraints as
the X register, but finds itself in a lot less of the opcodes, making
it less generally used. But the index Y has one advantage over index
X, in that it can be used in indirect-indexed operations or (bp),Y
mode.

Index 72

The index register Z is the most unique, 1in that it is used in

the smallest number of opcodes. It also has the same computation
limitations as the X and Y registers, but has an extra feature. Upon
reset, the Z register is cleared so that the STZ (store zero) opcodes

and non-indexed 1indirect opcodes from previous 65C02 designs are
emulated. The Z register <can also Dbe used in indirect-indexed or
(bp),Z operations.

Base page B register

FEarly versions of 6502 microprocessors had a special subset of
instructions that required less code and less time to execute. These
were referred to as the "zero page" instructions. Since the addressing
page was always known, and known to be zero, addresses could be
specified as a single byte, instead of two bytes.

The CSG4502 also implements this same "zero page" set of
instructions, but goes one step further by allowing the programmer to

specify which page is to be the "zero page". Now that the programmer
can program this page, it 1is now, not necessarily page zero, but
instead, the "selected page". The term "base page" is used, however.

The B register selects which page will be the "base page", and
the wuser sets 1t by transferring the contents of the accumulator to
it. At reset, the B register is cleared, giving initially a true "zero

page".
Processor status P register

The processor status register is an 8-bit register which is used

to indicate the status of the microprocessor. It contains 8 processor
"flags". Some of the flags are set or reset based on the results of
various types of operations. Others are more specific. The flags
are...
Flag Name Typical indication
N Negative result of operation is negative
\Y Overflow result of add or subtract causes signed overflow
E Extend disables stack pointer extension
B Break interrupt was caused by BRK opcode
D Decimal perform add/subtract using BCD math
I Interrupt disable IRQ interrupts
Z Zero result of Operation is zero
C Carry operation caused a carry

Stack Pointer SP

The stack pointer is a 16 bit register that has two modes. It can
be programmed to Dbe either an 8-bit page programmable pointer, or a
full 16-bit pointer. The ©processor status E bit selects which mode
will be used. When set, the E bit selects the 8-bit mode. When reset,
the E bit selects the 16-bit mode.

Upon reset, the CSG 4502 will come wup 1in the 8-bit page-
programmable mode, with the stack page set to 1. This makes it
compatible with earlier 6502 ©products. The programmer can quickly
change the default stack page Dby loading the Y register with the

desired page and transferring its contents to the stack pointer high
byte, using the TYS opcode. The 8-bit stack pointer can be set by
loading the X register with the desired value, and transferring its
contents to the stack pointer low byte, using the TXS opcode.

To select the 16-bit stack pointer mode, the user must execute a
CLE (for CLear Extend disable) opcode. Setting the 16-bit pointer is
done Dby loading the X and Y registers with the desired stack pointer
low and high bytes, respectively, and then transferring their contents
to the stack pointer using TXS and TYS. To return to 8-bit page mode,
simple execute a SEE (SEt Extend disable) opcode.

KA A A AR A A A A A A A A A A A A AR A AR AR A A A A AR A AR A AR AR A A A A A AR A A A A AR A AR AR AR X kK

WARNING

If you are using Non-Maskable-Interrupts, or Interrupt
Request 1s enabled, and you want to change BOTH stack
pointer bytes, do not put any code between the TXS and
TYS opcodes. Taking this precaution will prevent any
interrupts from occuring between the setting of the two
stack pointer Dbytes, causing a potential for writing

stack data to an unwanted area.

*
*
*
*
*
*
*
*
*
KA KA KA AR A AR A AR A AR AR AR A AR A AR A AR A AR AR A AR A A A AR R AR A AR XA AR A ARk Xk

*
*
*
*
*
*
*
*
*
*

Program Counter PC

The program counter is a 16-bit up-only counter that determines
what area of memory that program information will be fetched from. The
user generally only modifies it using jumps, branches, subroutine

calls, or returns. It 1is set initially, and by interrupts, from
vectors at memory addresses FFFA through FFFF (hex). See "Interrupts"
below.

2.3.7.3. 65CE02 Interrupts

There are four basic interrupt sources on the CSG 4502. These are
RES*, IRQ*, NMI*, and SO, for Reset, Interrupt Request, Non-Maskable
Interrupt, and Set Overflow. The Reset 1is a hard non-recoverable
interrupt that stops everything. The IRQ is a "maskable" interrupt, in
that its occurance can be prevented. The MMI is "non-maskable", and if
such an event occurs, cannot be prevented. The SO, or Set Overflow, is
not really an interrupt, but causes an externally generated condition,
which can be used for control of program flow.

One important design feature, which must be remembered is that no
interrupt can occur immediately after a one-cycle opcode. This is very
important, Dbecause there are times when vyou want to temporarily
prevent interrupts from occurring. The best example of this is, when
setting a 16-bit stack pointer, you do not want an interrupt to occur
between the times you set the low-order byte, and the high-order byte.
If it could happen, the interrupt would do stack writes using a
pointer that was only partially set, thus, writing to an unwanted
area.

IRQ*

The IRQ* (Interrupt ReQuest) input will cause an interrupt, if it
is at a low logic level, and the I processor status flag is reset. The
interrupt sequence will begin with the first SYNC after a
multiple-cycle opcode. The two program counter bytes PCH and PCL, and

the processor status register P, are pushed onto the stack. (This
causes the stack pointer SP to be decremented by 3.) Then the program
counter bytes PCL and PCH are loaded from memory addresses FFFE and
FFFF, respectively.

An interrupt caused Dby the IRQ* input, is similar to the BRK
opcode, but differs, as follows. The program counter value stored on
the stack points to the opcode that would have been executed, had the
interrupt not occurred. On return from interrupt, the processor will
return to that opcode. Also, when the P register is pushed onto the
stack, the B or '"break" flag pushed, is zero, to indicate that the
interrupt was not software generated.

NMI*

The NMI* (Non-Maskable Interrupt) input will cause an interrupt
after receiving high to low transition. The interrupt sequence will
begin with the first SYNC after a multiple-cycle opcode. NMI* inputs
cannot be masked by the processor status register I flag. The two
program counter bytes PCH and PCL, and the processor status register
P, are pushed onto the stack. (This causes the stack pointer SP to be
decremented by 3.) Then the program counter bytes PCL and PCH are
loaded from memory addresses FFFA and FFFEB.

As with IRQ*, when the P register is pushed onto the stack, the B
or "break" flag pushed, 1is zero, to indicate that the interrupt was
not software generated.

RES*

The RES* (RESet) input will cause a hard reset instantly as it is
brought to a low logic level. This effects the following conditions.
The currently executing opcode will Dbe terminated. The B and Z
registers will be cleared. The stack pointer will be set to "byte"
mode/with the stack page set to page 1. The processor status bits E
and I will be set.

The RES* input should be held low for at least 2 clock cycles.
But once brought high, the reset sequence begins on the CPU cycle. The
first four cycles of the reset sequence do nothing. Then the program
counter bytes PCL and PCH are loaded from memory addresses FFFC and
FFFD, and normal program execution begins.

SO

The SO (Set Overflow) input does, as its name implies, set the
overflow or V processor status flag. The effect is immediate as this
active low signal is brought or held at a low logic level. Care should
be taken if +this signal is used, as some of the opcodes can set or
reset the overflow flag, as well. NOTE: The SO pin has been removed
for C65.

2.3.7.4. 65CEQ02 Addressing Modes

It should be noted that all 8-bit addresses are referred to as
"byte" addresses, and all 16-bit addresses are referred to as "word"
addresses. In all word addresses, the low-order byte of the address is
fetched from the 1lower of two consecutive memory addresses, and the
high-order byte of the address is fetched the higher of the two. So,
in all operations, the low-order address is fetched first.

Implied OPR

The register or flag affected 1is identified entirely by the
opcode in this (usually) single cycle instruction. In this document,
any implied operation, where the implied register is not explicitly
declared, implies the accumulator. Example: INC with no arguments
implies "increment the accumulator".

Immediate (byte, word) OPR #xx

The data wused 1in the operation is taken from the byte or bytes
immediately following the opcode in the 2-byte or 3-byte instruction.

Base Page OPR bp (formerly Zero Page)

The second byte of the two-byte instruction contains the
low-order address byte, and the B register contains the high-order
address byte of the memory location to be used by the operation.

Base Page, indexed by X OPR bp,X (formerly Zero Page,X)

The second byte of the two-byte instruction is added to the X
index register to form the low-order address byte, and the B register
contains the high-order address byte of the memory location to be used
by the operation.

Base Page, indexed by Y OPR bp,Y (formerly Zero Page,Y)

The second byte of the two-byte instruction is added to the Y
index register to form the low-order address byte, and the B register
contains the high-order address byte of the memory location to be used
by the operation.

Absolute OPR abs

The second and third bytes of the three-byte instruction contain
the low-order and high-order address bytes, respectively, of the
memory location to be used by the operation.

Absolute, indexed by X OPR abs, X

The second and third bytes of the three-byte instruction are
added to the unsigned contents of the X index register to form the
low-order and high-order address bytes, respectively, of the memory
location to be used by the operation.

Absolute, indexed by Y OPR abs,Y

The second and third bytes of the three-byte instruction are
added to the unsigned contents of the Y index register to form the
low-order and high-order address bytes, respectively, of the memory
location to be used by the operation.

Indirect (word) OPR (abs) (JMP and JSR only)

The second and third bytes of the three-byte instruction contain
the low-order and high-order address bytes, respectively, of two
memory locations containing the low-order and high-order JMP or JSR
addresses, respectively.

Indexed by X, indirect (byte) OPR (bp,X) (formerly (zp,X))

The second byte of the two-byte instruction is added to the
contents of the X register to form the low-order address byte, and the
contents of the B register contains the high-order address byte, of
two memory locations that contain the low-order and high-order address
of the memory location to be used by the operation.

Indexed by X, indirect (word) OPR (abs, X) (JMP and JSR only)

The second and third bytes of the three-byte instruction are
added to the wunsigned contents of the X index register to form the
low-order and high-order address bytes, respectively, of two memory
locations containing the low-order and high-order JMP or JSR address
bytes.

Indirect, indexed by Y OPR (bp),Y (formerly (zp),Y)

The second byte of the two-byte instruction contains the
low-order Dbyte, and the B register contains the high-order address
byte of two memory locations whose contents are added to the unsigned
Y index register to form the address of the memory location to be used
by the operation.

Indirect, indexed by Z OPR (bp), 2 (formerly (zp))

The second byte of the two-byte instruction contains the
low-order Dbyte, and the B register contains the high-order address
byte of two memory locations whose contents are added to the unsigned
Z index register to form the address of the memory location to be used
by the operation.

Stack Pointer Indirect, indexed by Y OPR (d,SP),Y (new)

The second byte of the two-byte instruction contains an unsigned
offset wvalue, d, which is added to the stack pointer (word) to form
the address of two memory locations whose contents are added to the
unsigned Y register to form the address of the memory location to be
used by the operation.

Relative (byte) Bxx LABEL (branches only)
The second byte of the two-byte branch instruction is sign-
extended to a full word and added to the program counter (now
containing the opcode address plus two). If the condition of the
branch is true, the sum is stored back into the program counter.
Relative (word) Bxx LABEL (branches only)
The second and third bytes of the three-byte branch instruction
are added to the low-order and high-order program counter bytes,
respectively. (the program counter now contains the opcode address

plus two). If the condition of the branch is true, the sum is stored
back into the program counter.

2.3.7.5. 65CEQ02 Instruction Set
Add memory to accumulator with carry ADC

A=A+M+C

Addressing Mode Abbrev. Opcode

immediate MM 69
base page BP 65
base page indexed X BP, X 75
absolute ABS 6D
absolute indexed X ABS, X 7D
absolute indexed Y ABS,Y 79
base page indexed indirect X (BP,X) 6l
base page indirect indexed Y (BP),Y 71
base page indirect indexed Z (BP),Z2 72

Bytes Cycles Mode

2 2 immediate

2 3 base page non-indexed, or indexed X or Y

3 4 absolute non-indexed, or indexed X or Y

2 5 base page indexed indirect X, or indirect indexed Y or Z

The ADC instructions add data fetched from memory and carry to
the contents of the accumulator. The results of the add are then
stored 1in the accumulator. If the "D" or Decimal Mode flag, 1in the
processor status register, then a Binary Coded Decimal (BCD) add is
performed.

The "N" or Negative flag will be set if the sum is negative,
otherwise it is cleared. The "V" or Overflow flag will be set if the
sign of the sum is different from the sign of both addends, indicating
a signed overflow. Otherwise, it is cleared. The "Z" or Zero flag is
set if the sum (stored into the accumulator) is zero, otherwise, it is
cleared. The "C" or carry is set if the sum of the unsigned addends
exceeds 255 (binary mode) or 99 (decimal mode).

Flags
NVEBDTIZZC
NV -=---22¢C
And memory logically with accumulator AND
A=A.and.M
Addressing Mode Abbrev. Opcode
immediate IMM 29
base page BP 25
base page indexed X BP, X 35
absolute ABS 2D
absolute indexed X ABS, X 3D
absolute indexed Y ARS,Y 39
base page indexed indirect X (BP, X) 21
base page indirect indexed Y (BP),Y 31
base page indirect indexed 2 (BP),Z 32

Bytes Cycles Mode

2 2 immediate

2 3 base page non-indexed, or indexed X or Y

3 4 absolute non-indexed, or indexed X or Y

2 5 base page indexed indirect X, or indirect indexed Y or Z

The AND instructions perform a logical "and" between data bits

fetched from memory and the accumulator bits. The results are then
stored in the accumulator. For each accumulator and corresponding
memory bit that are both logical 1's, the result is a 1. Otherwise it
is 0.

The "N" or Negative flag will be set if the bit 7 result is a 1.
Otherwise it 1s cleared. The "Z" or Zero flag is set if all result
bits are zero, otherwise, it is cleared.

Flags
NVEBDTIZZC
N-=-=-=-=-72Z -

Arithmetic shifts, memory or accumulator, left or right ASL ASR ASW
ASL Arithmetic shift left A or M A<A<<]l or M<M<<1
ASR Arithmetic shift right A or M A<A>>1 or M<M>>1
ASW Arithmetic shift left M (word) Mx<Mw<<1

Opcodes

Addressing Mode Abbrev. ASL ASR ASW
register (A) 0A 43
base page BP 06 44
base page indexed X BP, X 16 54
absolute ABS 0E CB
absolute indexed X ABS, X 1E
Bytes Cycles Mode

1 1 register (ASL)

1 2 register (ASR)

2 4 base page (byte) non-indexed, or indexed X

3 5 absolute non-indexed, or indexed X

3 7 absolute (ASW)

The ASL instructions shift a single byte of data in memory or the
accumulator left (towards the most significant bit) one bit position.
A 0 is shifted into bit O.

The "N" or Negative bit will Dbe set if the result bit 7 is

(operand bit 6 was) a 1. Otherwise, it is cleared. The "Z" or Zero
flag is set if ALL result bits are zero. The "C" or Carry flag is set
if the Dbit shifted out is (operand bit 7 was) a 1. Otherwise, it is
cleared.

The ASR instructions shift a single byte of data in memory or the
accumulator right (towards the least significant bit) one bit
position. Since this is an arithmetic shift, the sign of the operand
will be maintained.

The "N" or Negative bit will be set if bit 7 (operand and result)
a 1. Otherwise, it is cleared. The "Z" or Zero flag is set if ALL
result Dbits are zero. The "C" or Carry flag is set if the bit shifted
out is (operand bit 0 was) a 1. Otherwise, it is cleared.

The ASW instruction shifts a word (two bytes) of data in memory
left (towards the most significant bit) one bit position. A zero is

shifted into bit O.

The "N" or Negative bit will Dbe set if the result bit 15 is

(operand bit 14 was) a 1. Otherwise, it is cleared. The "7Z" or Zero
flag is set if ALL result bits (both bytes) are zero. The "C" or Carry
flag 1is set 1if the Dbit shifted out is (operand bit 15 was) a l.
Otherwise, it is cleared.

Flags

NVEBDTIZC
N-----2C¢C

Branch conditional or unconditional BCC BCS BEQ BMI BNE
BPL BRA BVC BVS

Opcode Opcode Byte Opcode Word Opcode

Title Relative Relative Purpose
BCC 90 93 Branch if Carry Clear
BCS BO B3 Branch if Carry Set
BEQ FO F3 Branch if EQual (2 flag set)
BMT 30 33 Branch if Minus (N flag set)
BNE DO D3 Branch if Not Equal (Z flag clear)
BPL 10 13 Branch if PLus (N flag clear)
BRA 80 83 BRanch Always
BVC 50 53 Branch if overflow Clear
BVS 70 73 Branch if overflow Set
Bytes Cycles Mode
2 2 byte-relative
3 3 word-relative
All Dbranches of this type are taken, 1if the condition indicated
by the opcode is true. All branch relative offsets are referenced to
the branch opcode location+2. This means that for byte-relative, the

offset 1is relative to the location after the two instruction bytes.
For word-relative, the offset 1is relative to the last of the three
instruction bytes.

Flags
NVEZBDTIZZC

Break: (force an interrupt) BRK
Bytes Cycles Mode Opcode
2 7 implied 00 (stack)<PC+1lw, P SP<SP-2

The BRK instruction causes the processor to enter the IRQ or
Interrupt ReQuest state. The program counter (now incremented by 2),
bytes PCH and PCL, and the processor status register P, are pushed
onto the stack. (This causes the stack pointer SP to be decremented by
3.) Then the program counter bytes PCL and PCH are loaded from memory
addresses FFFE and FFFF, respectively.

The BRK differs from an externally generated interrupt request
(IRQ) as follows. The ©program counter value stored on the stack is
PC+2, or the address of the BRK opcode+2. On return from interrupt,
the ©processor will return to the BRK address+2, thus skipping the
opcode byte, and a following "dummy" byte. A normal IRQ will not add
2, so that a return will execute the interrupted opcode. Also, when
the P register is pushed onto the stack, the B or "break" flag is set,

to indicate that the interrupt was software generated. All outside
interrupts push P with the B flag cleared.

Flags
NVEBDTIZZC

Branch to subroutine BSR
Bytes Cycles Mode Opcode
3 5 word-relative 63 (stack)<PC+2w SP<SP-2

The BSR Branch to SubRoutine instruction pushes the two program
counter bytes PCH and PCL onto the stack. It then adds the
word-relative signed offset to the ©program counter. The relative
offset 1is referenced to the address of the BSR opcode+2, hence, it is
relative to the third byte of the three-byte BSR instruction. The
return address, on the stack, also points to this address. This was
done to make it compatible with the RTS functionality, and to be
consistant will other word-relative operations.

Flags
NVEBDTIZZC

Clear processor status bits CLC CLD CLE CLI CLV
Opcode Cycles Flags

NVEBDTIZC

CLC Clear the Carry bit 18 1 - - -----R
CLD Clear the Decimal mode bit D8 1 - - =--R - - -
CLE Clear stack Extend disable bit 02 2 - -R - - - - =
CLI Clear Interrupt disable bit 58 2 - - - - -R - -
CLV Clear the Oveflow bit B8 1 - R=-=-=-=- - -
Bytes Mode

1 implied

All of the P register bit clear instructions are a single byte
long. Most of them require a single CPU cycle. The CLI and CLE require
2 cycles. The purpose of extending the CLI to 2 cycles, 1is to enable
an interrupt to occur immediately, 1f one is pending. Interrupts
cannot occur after single cycle instructions.

Compare registers with memory CMP CTX CPY CPZ
CMP Compare accumulator with memory (A-M)
CPX Compare index X with memory (X-M)
CPY Compare index Y with memory (Y-M)
CPZ Compare index Z with memory (Z2-M)
Opcodes
Addressing Mode Abbrev. CMP CPX CPY CPZ
immediate MM C9 EO CcO C2
base page BP C5 E4 Cc4 D4
base page indexed X BP, X D5

absolute ABS CDh EC CC DC

absolute indexed X ABS, X DD

absolute indexed Y ABS,Y D9
base page indexed indirect X (BP,X) Cl
base page indirect indexed Y (BP),Y D1
base page indirect indexed Z (BP),Z D2

Bytes Cycles Mode

2 2 immediate

2 3 base page non-indexed, or indexed X or Y

3 4 absolute non-indexed, or indexed X or Y

2 5 base page indexed indirect X, or indirect indexed Y or Z

Compares are performed by subtracting a value in memory from the
register Dbeing tested. The results are not stored in any register,
except the following status flags are updated.

The "N" or Negative flag will be set if the result is negative
(assuming signed operands), otherwise it is cleared. The "Z" or Zero
flag is set if the result is zero, otherwise it is cleared. The "C" or
carry flag 1is set if the unsigned register value is greater than or
equal to the unsigned memory value.

Flags
NVEBDTIZZC
N-=-=-=-=-7Z283C
Compare registers with memory CMP CPX CPY CPZ
CMP Compare accumulator with memory (A-M)
CPX Compare index X with memory (X-M)
CPY Compare index Y with memory (Y-M)
CPZ Compare index Z with memory (Z-M)
Opcodes
Addressing Mode Abbrev. CMP CPX CPY CPZ
immediate IMM C9 EO Cco C2
base page BP C5 E4 c4 D4
base page indexed X BP, X D5
absolute ABS CD EC ccC DC
absolute indexed X ABS, X DD
absolute indexed Y ABS,Y D9
base page indexed indirect X (BP.X) C1l
base page indirect indexed Y (BP),Y D1
base page indirect indexed Z (BP),Z D2
Bytes Cycles Mode
2 2 immediate
2 3 base page non-indexed, or indexed X or Y
3 4 absolute non-indexed, or indexed X or Y
2 5 base page indexed indirect X, or indirect indexed Y or Z

Compares are performed by subtracting a value in memory from the
register being tested. The results are not stored in any register,
except the following status flags are updated.

The "N" or Negative flag will be set if the result is negative
(assuming signed operands), otherwise it is cleared. The "Z" or Zero
flag is set if the result is zero, otherwise it is cleared. The "C" or
carry flag 1is set if the unsigned register value is greater than or

equal to the unsigned memory value.

Flags
NVEBDTIZZC
N-----2¢
Exclusive OR accumulator logically with memory EOR

A=A.or.M.and..not. (A.and.M)

Addressing Mode Abbrev. Opcode
immediate MM 49
base page BP 45
base page indexed X BP, X 55
absolute ABS 4D
absolute indexed X ABS, X 5D
absolute indexed Y ABS,Y 59
base page indexed indirect X (BP,X) 41
base page indirect indexed Y (BP),Y 51
base page indirect indexed 7Z (BP) , 2 52

Bytes Cycles Mode

2 2 immediate

2 3 base page non-indexed, or indexed X or Y

3 4 absolute non-indexed, or indexed X or Y

2 5 base page indexed indirect X, or indirect indexed Y or Z

The EOR instructions perform an "exclusive or" Dbetween bits
fetched from memory and the accumulator bits. The results are then
stored 1in the accumulator. For each accumulator or corresponding
memory Dbit that are different (one 1, and one 0) the result is a 1.
Otherwise it is O.

The "N" or Negative flag will be set if the bit 7 result is a 1.
Otherwise it is cleared. The "Z" or Zero flag is set if all result
bits are zero, otherwise, it is cleared.

Flags
NVEBDTIZZC
N-=-=-=-=-17Z -

Jump to subroutine JSR
Addressing Mode Abbrev. Opcode Dbytes cycles
absolute ABS 20 3 5
absolute indirect (ABS) 22 3 7
absolute indexed indirect X (ABS, X) 23 3 7

The JSR Jump to SubRoutine instruction pushes the two program
counter bytes PCH and PCL onto the stack. It then loads the program
counter with the new address. The return address, stored on the stack,
is actually the address of the JSR opcode+2, or is pointing to the
third byte of the three-byte JSR instruction.

Flags
NVEBDTIZZC

Load registers LDA LDX LDY LDZ

LDA Load Accumulator from memory A<M

LDX Load index X from memory X<M

LDY Load index Y from memory Y<M

LDZ Load index Z from memory Z<M
Addressing Mode Abbrev. LDA LDX LDY LDZ
immediate IMM A9 A2 AQ A3
base page BP A5 A6 A4
base page indexed X BP,X B5 B4
base page indexed Y BP,Y B6

absolute ABS AD AE AC AB
absolute indexed X ABS, X BD BC BB
absolute indexed Y ABS,Y B9 BE
base page indexed indirect X (BP,X) Al

base page indirect indexed Y (BP),Y Bl
base page indirect indexed Z (BP),Z B2

stack vector indir indexed Y (d,SP),Y E2

Bytes Cycles Mode
2 2 immediate
base page non-indexed, or indexed X or Y
absolute non-indexed, or indexed X or Y
base page indexed indirect X, or indirect indexed Y or %
stack vector indirect indexed Y

NN W N
oy U1 b W

These 1instructions load the specified register from memory. The
"N" or Negative flag will be set if the bit 7 loaded is a 1. Otherwise
it 1s <cleared. The "Z" or Zero flag is set if all bits loaded are
zero, otherwise, it 1is cleared.

Flags
NVEBIDTIZZC
7 - - - = -=-7 -
Negate (twos complement) accumulator NEG

A=-A

Addressing Mode Opcode Bytes Cycles

implied 42 1 2

The NEG or "negate" instruction performs a two's-complement
inversion of the data in the accumulator. For example, 1 becomes -1,
-5 Dbecomes 5, etc. The same can be achieved by subtracting A from
zZero.

The "N" or Negative flag will be set if the accumulator bit 7
becomes a 1. Otherwise it is cleared. The "2" or Zero flag is set if
the accumulator is (and was) zero.

Flags

NVEBDTIZC
N--=---127-

No-operation NOP

Addressing Mode Opcode Bytes Cycles
implied EA 1 1

The NOP no-operation instruction has no effect, unless used
following a MAP opcode. Then its is interpreted as a EOM end-of-map
instruction. (See EOM)

Flags
NVEBDTIZZC

Or memory logically with accumulator ORA

A=A.or.M
Addressing Mode Abbrev. Opcode
immediate IMM 09
base page BP 05
base page indexed X BP, X 15
absolute ABS 0D
absolute indexed X ABS, X ID
absolute indexed Y ABS,Y 19
base page indexed indirect X (BP, X) 01
base page indirect indexed Y (BP),Y 11
base page indirect indexed Z (BP),2 12

Bytes Cycles Mode

2 2 immediate

2 3 base page non-indexed, or indexed X or Y

3 4 absolute non-indexed, or indexed X or Y

2 5 base page indexed indirect X, or indirect indexed Y or Z

The ORA instructions perform a logical "or" between data bits

fetched from memory and the accumulator bits. The results are then
stored in the accumulator. For either accumulator or corresponding
memory bit that is a logical 1's, the result is a 1. Otherwise it is
0.

The "N" or Negative flag will be set if the bit 7 result is a 1.
Otherwise it 1s cleared. The "Z" or Zero flag is set if all result
bits are zero, otherwise, it is cleared.

Flags
NVEZBDTIZZC
N--=-=-=-7 -
Pull register data from stack PLA PLP PLX PLY PLZ
Opcode
PLA Pull Accumulator from stack 68
PLX Pull index X from stack FA
PLY Pull index Y from stack TA
PLZ Pull index Z from stack FB

PLP Pull Processor status from stack 28

Bytes Cycles Mode

1 3 register

The Pull register operations, first, increment the stack pointer
SP, and then, load the specified register with data from the stack.

Except in the case of PLP, the "N" or Negative flag will be set
if the bit 7 loaded is a 1. Otherwise it is cleared. The "Z" or Zero
flag is set if all bits loaded are zero, otherwise, it is cleared.

In the case of PLP, all processor flags (P register bits) will be
loaded from the stack, except the "B" or "break" flag, which is always
a 1, and the "E" or "stack pointer Extend disable" flag, which can
only be set by SEE, or cleared by CLE instructions.

Flags
NVEBDTIZZC
N - - == -2 - (except PLP)
76 --3210 (PLP only)
Push registers or data onto stack PHA PHP PHW PHX PHY PHZ

PHA Push Accumulator onto stack

PHP Push Processor status onto stack
PHW Push a word from memory onto stack
PHX Push index X onto stack

PHY Push index Y onto stack

PHZ Push index Z onto stack

Opcodes

Addressing Mode Abbrev. PHA PHP PHW PHX PHY PHZ
register 48 08 DA 5A DB
word immediate IMMw F4
word absolute ABSw FC
Bytes Cycles Mode

1 3 register

3 5 word immediate

3 7 word absolute

These 1instructions push either the contents of a register onto
the stack, or push two bytes of data from memory (PHW) onto the stack.
If a register 1is pushed, the stack pointer will decrement a single
address. If a word from memory is pushed ([SP]<-PC(LO),
[SP-1]<-PC(HI)), the stack pointer will decrement by 2. No flags are
changed.

Flags
NVEBDTIZZC

Reset memory bits RMB
M=M.and.-bit

Opcode to reset bit
0 1 2 3 4 5 6 7

o7 17 27 37 47 57 67 17

Bytes Cycles Mode
2 4 base-page

These instructions reset a single bit in base-page memory, as
specified by the opcode. No flags are modified.

Flags
NVEBDTIZZC

Rotate memory or accumulator, left or right ROL ROR ROW

ROL Rotate memory or accumulator left throught carry
ROR Rotate memory or accumulator right throught carry
ROW Rotate memory (word) left throught carry

Opcodes
Addressing Mode Abbrev. ROL ROR ROW
register (A) 2A oA
base page BP 26 66
base page indexed X BP, X 36 76
absolute ABS 2E oE EB
absolute indexed X ABS, X 3E TE
Bytes Cycles Mode

1 1 register

2 4 base page (byte) non-indexed, or indexed X

3 5 absolute non-indexed, or indexed X

2 [absolute (word)

The ROL instructions shift a single byte of data in memory or the
accumulator left (towards the most significant bit) one bit position.
The state of the "C" or "carry" flag is shifted into bit 0.

The "N" or Negative bit will Dbe set if the result bit 7 is
(operand bit 6 was) a 1. Otherwise, it 1s cleared. The "Z" or Zero
flag is set if ALL result bits are zero. The "C" or Carry flag is set
if the Dbit shifted out is (operand bit 7 was) a 1. Otherwise, it is
cleared.

The ROR instructions shift a single byte of data in memory or the
accumulator right (towards the least significant bit) one bit
position. The state of the "C" or "carry" flag is shifted into bit 7.

The "N" or Negative bit will be set if bit 7 is (carry was) a 1.
Otherwise, it 1is cleared. The "Z" or Zero flag is set if ALL result
bits are zero. The "C" or Carry flag is set if the bit shifted out is
(operand bit 0 was) a 1. Otherwise, it is cleared.

The ROW instruction shifts a word (two bytes) of data in memory
left (towards the most significant bit) one bit position. The state of
the "C" or "carry" flag is shifted into bit 0.

The "N" or Negative bit will Dbe set if the result bit 15 is
(operand bit 14 was) a 1. Otherwise, it is cleared. The "Z" or Zero
flag is set if ALL result bits (both bytes) are zero. The "C" or Carry
flag 1is set 1if the bit shifted out is (operand bit 15 was) a 1.
Otherwise, it is cleared.

Flags
NVEBDTIZZC

N-----232C

Return from BRK, interrupt, kemal, or subroutine RTI RTN RTS

Operation description Opcode bytes cycles
RTI Return from interrupt 40 1 5 P, PCw< (SP) , SP<SP+3
RTN #n Return from kernal 62 2 7 PCw< (SP)+1, SP<SP+2+N
RTS Return from subroutine 60 1 4 PCw< (SP)+1, SP<SP+2

The RTI or ReTurn from Interrupt instruction pulls P register
data and a return address into program counter bytes PCL and PCH from
the stack. The stack pointer SP 1is resultantly incremented by 3.
Execution continues at the address recovered from the stack.

Flags
NVEBDTIZZC
76 - -32 10 (RTI only)

The RTS or ReTurn from Subroutine instruction pulls a return
address into program counter Dbytes PCL and PCH from the stack. The
stack pointer SP is resultantly incremented by 2. Execution continues
at the address recovered + 1, since BSR and JSR instructions set the
return address one byte short of the desire return address.

The RTIN or ReTurn from kerNal subroutine is similar to RTS,
except that it contains an immediate parameter N indicating how many
extra Dbytes to discard from the stack. This is useful for returning
from subroutines which have arguments passed to them on the stack. The
stack pointer SP is incremented by 2 + N, instead of by 2, as in RTS.

Flags
NVEZBDTIZZC
- - - - - — — - (RTN and RTS)
76 --3210 (RTI)
Set memory bits SHMB
M=M.or.bit
Opcode to set bit
0 1 2 3 4 5 6 7

87 97 A7 B7 C7 D7 ET F7

Bytes Cycles Mode
2 4 base-page

These instructions set a single Dbit in base-page memory, as
specified by the opcode. No flags are modified.

Flags
NVEZBDTIZZC

Store registers STA STX STY STZ

STA Sto
STX Sto
STY Sto
STZ Sto
Addressing

base page
base page
base page
absolute

absolute i
absolute i
base page
base page
base page
stack vect

Bytes
2

Cycle
3

3 4

2 5

2 6

These

flags are af

Flags
NV EDBTD

Transfers (b

Operation
Symbol C

TAB
TAX
TAY
TAZ
TBA
TSX
TSY
TXA
TXS
TYA
TYS
TZA

These
register to
Y, or Z wil
will be set
is cleared.
zZero (all b
SPH will not

re Accumulator to memory M<A
re index X to memory M<X
re index Y to memory M<Y
re index Z to memory M<Z
Opcodes
Mode Abbrev. STA STX STY STZ
BP 85 86 84 64
indexed X BP, X 95 94 74
indexed Y BP,Y 96
ABS 8D 8E 8C 9C
ndexed X ABS, X 9D SB 9E
ndexed Y ABS,Y 99 9B
indexed indirect X (BP, X) 81
indirect indexed Y (BP),Y 91
indirect indexed Z (BP), 2 92
or indir indexed Y (d,SP),Y 82
s Mode
base page non-indexed, or indexed X or Y
absolute non-indexed, or indexed X or Y
base page indexed indirect X, or indirect indexed Y or Z
stack vector indirect indexed Y
instructions store the specified register to memory. No
fected.
I Zz2 C
etween registers) TAB TAX TAY TAZ
TBA TSX TSY TXA
TXS TYA TYS TZA
Flags Transfer
ode NVEBDTIZC from to
5B - - - - - - - - accumulator base page reg
AR N ---=--72 - accumulator index X reg
A8 N---=--72 - accumulator index Y reg
4B N---=--2 - accumulator index Z reg
7B N-----2Z - base page reg accumulator
BA N---=--72 - stack ptr low index X reg
0B N-----72 - stack ptr high index Y reg
8A N---=-=-2 - index X reg accumulator
9A - - - - - - - = index X reg stack ptr low
98 N-----172 - index Y reg accumulator
2B - - - - - - - = index Y reg stack ptr high
6B N--=-=-=-2 - index Z reg accumulator
instructions transfer the contents of the specified source

the specified destination register.
1 affect the flags as follows.
if the value moved i1s negative
The "Z" or
its 0), otherwise,
alter any flags.

Any transfer to A, X,
The "N" or "negative" flag
(bit 7 set), otherwise, it
flag will be set if the value moved 1is
it is cleared. Any transfer to SPL or

"Zero"

KA A KA AR A AR A AR A AR AR AR A AR A AR A AR A AR A A AR A A A AR R AR A AR XA A A AR AKXk

WARNING

* *
* *
* If you are using Non-Maskable-Interrupts, or Interrupt *
* Request is enabled, and you want to change BOTH stack *
* pointer bytes, do not put any code between the TXS and *
* TYS opcodes. Taking this precaution will prevent any *
* interrupts from occuring Dbetween the setting of the *
* two stack pointer Dbytes, causing a potential for *
* *
* *

writing stack data to an unwanted area.
R b b b b b b b b b b A b b S b S b b b b S b S b b b b S b S b b b b S b b b b b b S b b b b 2 b b b b b b g Y

Bytes Cycles Mode
1 1 register
Test and reset or set memory bits TRB TSB

TRB Test and reset memory bits with accumulator (M.or.A),M<M.and.-A

TSB Test and set memory bits with accumulator (M.or.A) ,M<M.or.A
Opcodes
Addressing Mode Abbrev. TRB TSB
base page BP 14 04
absolute ABS 1cC ocC

These instructions test and set or reset bits in memory, using
the accumulator for both a test mask, and a set or reset mask. First,
a logical AND is performed between memory and the accumulator. The "Zz"
or "zero" flag is set if all bits of the result of the AND are zero.
Otherwise it is reset.

The TSB then performs a logical OR between the bits of the
accumulator and the Dbits in memory, storing the result back into
memory.

The TRB, instead, performs a logical AND between the inverted
bits of the accumulator and the bits in memory, storing the result
back into memory.

Bytes Cycles Mode
2 4 base page non-indexed
3 5 absolute non-indexed
Flags
NVEBDTIZZC
______Z_

2.3.7.6. 4502 Opcode Table

0 1 2 3 4 5 6 7 8 9 A B C D E F
et i e e s et et e Y
|[BRK |ORA |CLE*|SEE*|TSB |ORA |ASL |RMBO|PHP |ORA |ASL |TSY*|TSB |ORA |ASL |BBRO]
| | INDX | | | ZP | ZP | ZP | ZP | | IMM | | |ABS |ABS |ABS |ZP |
0
i T T e st T
|BPL |ORA |ORA |BPL*|TRB |ORA |ASL |RMB1|CLC |ORA |INC |INZ*|TRB |ORA |ASL |BBRI1|
|[REL |INDY|INDZ|WREL|ZPX |ZPX |ZPX |ZP | |ABSY | |ABS |ABSX|ABSX|ZP |
1

B e e i et S B e Tt e s S E T
|JSR |AND |JSR*|JSR*|BIT |AND |ROL |RMB2|PLP |AND |ROL |TYS*|BIT |AND |ROL |BBR2|
|ABS |INDX|IND |INDX|ZP |2ZP |2ZP |ZP | | IMM | | |ABS |ABS |ABS [ZP |
2

e T e S i e et et e e s ST RIS
|BMI |AND |AND |BMI*|BIT |AND |ROL |RMB3|SEC |AND |DEC |DEZ*|BIT |AND |ROL |BBR3|
|[REL |INDY|INDZ|WREL|ZPX |ZPX |ZPX |ZP | | ABSY | | |ABSX |ABSX |ABSX | ZP |
3

B i e e i e et s st
|IRTI |EOR |NEG*|ASR*|ASR*|EOR |LSR |RMB4|PHA |EOR |LSR |TAZ*|JMP |EOR |LSR |BBR4|
| | INDX | | |ZP |ZP |ZP |ZP | | IMM | | |ABS |ABS |ABS |ZP |
4

B b e e e E e e i R T
|BVC |EOR |EOR |BVC*|ASR*|EOR |LSR |RMB5|CLI |EOR |PHY |TAB*|MAP*|EOR |LSR |BBR5|
|IREL |INDY|INDZ|WREL|ZPX |ZPX |ZPX |ZP | |ABSY | | | |ABSX |ABSX|ZP |
5

T e sttt e s s s sl R et S
|IRTS |ADC |RTN*|BSR*|STZ |ADC |ROR |RMB6|PLA |ADC |ROR |TZA*|JMP |ADC |ROR |BBR6|
| | INDX | |IWREL|ZP |ZP |ZP |ZP | | IMM | | |IND |ABS |ABS |[ZP |
6

e e s st e s st s S T s
|BVS |ADC |ADC |BVS*|STZ |ADC |ROR |RMB7|SEI |ADC |PLY |TBA*|JMP |ADC |ROR |BBR7|
|IREL |INDY|INDZ|WREL|ZPX |ZPX |ZPX |ZP | | ABSY | INDX | ABSX | ABSX | ZP |
Z

e e s st e et KT st T &
|IBRU |STA |STA*|BRU*|STY |STA |STX |SMBO|DEY |BIT |TXA |STY*|STY |STA |STX |BBSO|
|IREL |INDX|IDSP|WREL|ZP |ZP |ZP |ZP | | IMM | |ABSX |ABS |ABS |ABS |ZP |
8

e T s M s T s St e X
|BCC |STA |STA |BCC*|STY |STA |STX |SMB1|TYA |STA |TXS |STX*|STZ |STA |STZ |BBS1|
|REL |INDY|INDZ|WREL|ZPX |ZPX |ZPY |ZP | | ABSY | |ABSY |ABS |ABSX|ABSX|ZP |
9

e T e S s Tt T s et S 1
|LDY |LDA |LDX |LDZ*|LDY |LDA |LDX |SMB2|TAY |LDA |TAX |LDZ*|LDY |LDA |LDX |BBS2|
|IMM |INDX|IMM |IMM |ZP |ZP |2ZP |ZP | | IMM | |ABS |ABS |ABS |ABS |ZP |
A

B e e s et S it T T e Tt TS
|BCS |LDA |LDA |BCS*|LDY |LDA |LDX |SMB3|CLV |LDA |TSX |LDZ*|LDY |LDA |LDX |BBS3|
|[REL |INDY|INDZ|WREL|ZPX |ZPX |ZPY |ZP | | ABSY | |ABSX | ABSX | ABSX |ABSY | ZP |
B

e T e T T i T B e e e e T B
|CPY |CMP |CPZ*|DEW*|CPY |CMP |DEC |SMB4|INY |CMP |DEX |ASW*|CPY |CMP |DEC |BBS4|
|IMM |INDX|IMM |ZP |ZP |ZP |2ZP |ZP | | IMM | | ABS|ABS |ABS |ABS |ZP |
C

T sttt e e e e
|BNE |CMP |CMP |BNE*|CPZ*|CMP |DEC |SMB5|CLD |CMP |PHX |PHZ*|CPZ*|CMP |DEC |BBS5|
|IREL |INDY|INDZ |WREL|ZP |ZPX |ZPX |ZP | | ABSY | | |ABS |ABSX|ABSX|ZP |
D

B i B e e e R e e
|CPX |SBC |LDA*|INW*|CPX |SBC |INC |SMB6|INX |SBC |EOM |ROW*|CPX |SBC |INC |BBS6|
|IMM |INDX|IDSP|ZP |ZP |ZP |2ZP |ZP | |IMM |NOP |ABS |ABS |ABS |ABS |ZP |
E

Rt e e e s s e B et &
|BEQ |SBC |SBC |BEQ*|PHD*|SBC |INC |SMB7|SED |SBC |PLX |PLZ*|PHD*|SBC |INC |BBS7]|
|[REL |INDY|INDZ|WREL|IMM |ZPX |ZPX |ZP | | ABSY | | |ABS |ABSX ABSX|ZP |
F

e T et it T i sl T Rl R

2.4. The CSG 4567 System/Video Controller

2.4.1. Description

The CSG 4567 is a low-cost high-peformance system/video
controller, designed to be wused 1in a wide variety of low-end
home-computer type systems ranging from Joystick controlled video
games to high-end home-productivity machines with built-in disk drives
and monitor. The 4567 was designed with Commodore-64 (Co64)
architecture as a subset of 1its advanced features. In addition to
having all of the C64 video modes, it also supports the character
attributes -- blink, bold, reverse video, and wunderline, and can
display any of the new or old video modes in 80 column or 640
horizontal pixel format, as well as the older 40 column 320 pixel
format.

A new "bitplane" video mode was added to allow the displaying of true
bitplane type video, with up to eight bitplanes in 320 pixel mode and
up to four in 640 pixel mode. The 4567 can also time-multiplex the
bitplanes to give a true four-color 1280 pixel picture. Vertical
resolution is maintained at 200 lines as standard, but can be doubled
to 400 with interlace.

2.4.2. CSG 4567 Pin Assignments

(*** Pinout will change with 4567R7 **¥*)

RBGCSFSRRRIINARNEGTES SV
VVVVYGIOOOOOOEWOZXAXRTIC
IIIINBDMMM21IC MRMPDC
DDDDCG®*LH®**x * 0 AOENC
EEEE * ok PM DL
0000 * K
777778888 11
567890123412345¢6782901

PSYNC Th Ao + 12 CAS*

CASS 73 | | 13 CASB*

DISK* 72 | | 14 CASA*

MEMCLK 71 | | 15 RAS*

vce 70 | | 16 CPUCLK

DO 69 | | 17 DOTCLK

EO 68 | | 18 XTAL1l4

D1 67 | | 19 XTAL17

E1l 66 | | 20 MAO

D2 65 | | 21 MAl

E2 64 | CSG 4567 | 22 MA2

D3 63 | | 23 MA3

E3 62 | | 24 MA4

D4 61 | | 25 MAS

E4 60 | | 26 MAG6

D5 59 | | 27 MA7

E5 58 | | 28 MB7

D6 57 | | 29 MB6

E6 56 | | 30 MB5

D7 55 | | 31 Ale6

E7 54 4o + 32 Al5
55554444444 4443333333
3210987 6543210987 %65143

VIRLEEAAAAAAAAAAAAAAARA

X01234567891
T 0
\Y

*

n n
* 10O I

* 0 @

* g

* o3 X

2.4.3. CSG 4567 Operation

The 4567 accesses two 8-bit memory blocks, which are up to 64K
each, via two 8-bit bidirectional busses. These are D0-D7 and EO-E7.
The DO-D7 bus is common with the CPU chip, ROM, SID, and the expansion
port, and is used for system memory and bitplanes. The EO0-E7 port is
only connected to RAM. This RAM is used for COLOR RAM, attribute RAM,
system memory, and bitplanes.

To access these RAMs, the 4567 has two multiplexed address
busses. These are MAO-MAT7, and MB5-MB7. Lines MAO-MA4 are common to
both 64K banks of RAM, but MA5-MA7 go only to bank A, and MB5-MB7 go
only to bank B.

There are four types of DMA accesses which the 4567 can perform.
Remember that RAS* 1is asserted on every memory clock cycle. These
are...

mode operation CASA* CASB* ROM¥*
1. 4567 reading both banks X X
2. 4567 reading bank "A" X
3. 4567 reading ROM X
4 4567 doing refresh

There are six types of CPU routings to RAM and peripheral devices
that are handled by the 4567.

mode operation CASA* CASB* ROM*
2. CPU reading bank "A" X
3. CPU reading bank "B" X
4. CPU writing bank "A" X
5. CPU writing bank "B" X
6. CPU reading ROM X
7. CPU accessing I/01, I/02,

SID, ROMH, ROML

There are four basic data routings through the 4567 chip. Three

internal signals route the data busses. WTREG (write 4567 register)
enables routing the external D0-D7 bus to the internal register data
bus. It is normally a logic 1. When it is brought low, the internal

bus disconnects, and the DO-D7 bus output drivers turn on. This is for
CPU reads of 4567 registers or "B" bank RAM. RDBMEM (read "B" bank
memory) routs the EO-E7 data bus to the inputs of the D0-D7 bus output
drivers when at logic level 1. This is for CPU reads of "B" bank RAM.
When O, (normal) the internal register data bus is routed to the
DO-D7 bus output driver inputs, instead. WTBMEM (write B" bank memory)
turns on the EO0-E7 bus drivers, which directly routs the D0-D7 data
bus to the EO-E7 bus when 1. This is for CPU writes to the "B" bank
RAM. When 0, (normal) the EO-E7 bus is input only.

mode operation Wtreg RdBmem WtBmem
1. CPU write 4567 register,
CPU access external,
4567 DMA, etc 1 0 0 (default)

2. CPU read 4567 register 0 0 0

3. CPU read B RAM 0 1 0
4. CPU write B RAM 1 0 1

DMA and Special CPU Accesses
VMF -- Video Matrix Fetch

The 4567 performs Video Matrix Fetches, during displayed video
times, in all of the original VIC-II modes (SCM, MCM, ECM, BMM). This
is true for both 40 and 80 column (320 and 640 pixel) modes. During
VMF, the 4567 reads -- Dboth banks (A & B) of memory over both data
busses DO0-D7 and EO-E7. The DO-D7 bus provides the video matrix data,
EO-E3 provides <color data, and E4-E7 provides character attribute
data.

CDF -- Character Data Fetch

The 4567 performs Character Data Fetches immediately after each
Video Matrix Fetch in the original VIC-II modes except bitmap mode.
During this fetch Character image data is fetched from ROM or RAM bank
A over the D0-D7 bus.

BMF -- BitMap Fetch

The 4567 performs Bitmap Data Fetches immediately after each
Video Matrix Fetch, only in the bitmap mode. During this fetch. Bitmap
image data is fetched from RAM bank A over the D0-D7 bus.

BPF -- BitPlane Fetch

The 4567 can perform Bitplane image fetches during displayed
video times, if the Bitplane mode (BPM) is enabled. The number and
position of these fetches 1is determined by which bitplanes are
enabled. During bitplane fetches, even numbered bitplane data is
fetched over DO0-D7 and odd numbered bitplane data is fetched over
EO-E7.

REF -- RAM refresh

The 4567 performs six cycles of dynamic RAM refresh every scanned
video line. During this time no data is fetched and CASA* and CASB*
are not activated.
SPF —-- Sprite Pointer Fetch

Up to eight Sprite Pointer Fetches can occur each scanned video
line. One SPF 1is generated for each sprite that is enabled and
currently being displayed. During an SPF, the pointer to the sprite
image data 1is fetched from the video matrix area of memory for the
sprite in question over the D0-D7 data bus.
SDF -- Sprite Data Fetch

Three Sprite Data Fetches follow each Sprite Pointer Fetch.
During this time, sprite image data for the sprite in question is
fetched over the D0-D7 data bus.

DAT -- Display Address Translation

Display Address Translation, or DAT fetches, are not actually

DMA-t
case,
multi

COL -

ype accesses, but rather CPU address redirections to RAM. In this
is totally separated from the

the unmultiplexed address Dbus

plexed address bus.

- Color RAM accesses

Color RAM is also accessed by the CPU via an address translation.
This is because color RAM would otherwise be located in the I/O0 area.

Contents of the Internal A and B Memory
Address Busses Prior to Multiplexing

1 "VME" "CDE" "BMEF" "BPEF" "RE"
vCO RCO RCO RCO RFO
VvC1l RC1 RC1 RC1 RF1
vC2 RC2 RC2 RC2 RF2
VC3 DO vCO vCOo RF3
vC4 D1 VC1l VC1l RF4
VC5 D2 VC2 VC2 1
VC6 D3 VC3 VC3 1
vC7 D4 vC4 vC4 1
vC8 D5 VC5 VC5 1
VC9 D6 VC6 VCo6 1

VM0/VC10 D7 VC7 VC7 RF5
VM1 CBO vC8 vC8 RFO
VM2 CB1 VC9 VC9 RE7
VM3 CB2 CB2/VC10 BE13/VC1l0 1
VBO VBO VBO BE14 1
VB1 VB1 VB1 BE15 1
Alo Alo Alo6 Alo RFE'8
O/* * * * *

l * * * *
l * * * *
1 * * B013/* *
1 * * B014 *
1 * * BO15 *
1 1 1 1 1
d
= Video Matrix Counter

Row Counter
Video Matrix Address

= Video Bank Address

Character Generator Bank Address
Refresh Counter

Sprite Pointer Fetch Counter
Sprite Data Fetch Counter
Display Address Translator

= Bitplane Even Pointer

Bitplane 0dd Pointer
Address Out = Address In

= Data fetched from previous fetch

"B" bus contents, same as "A" bus

xxx/yyy = contents for 320/640 pixel modes

"SPF"

*

*

* % %

"SDF"

D4

D7

VBO
VB1
Ale

bl N S N I

AL DAT n

DT5
DT6
DT7
DT8
DT9
DT10
DT11
DT12
BE13/DT13
BE14
BE1S5
DT16

*
*

*

B013/*
B014
B015

"COL"

Al0

e

A]

Multiplexed Address Bus Generation

The A and B memory address busses are multiplexed 2:1 to generate
the MA and MB multiplexed address busses. Listed below are the primary
addresses used to generate the multiplexed row and column addresses.

signal row column
MAO AQ Ab
MA1 Al Ab
MA2 A2 A7
MA3 A3 A8
MA4 A4 A9
MAS Al0 Al13
MA6 All Al4
MA7 Al2 Al5
MB5 B10O B13
MB6 B11l B14
MB7 B12 B15

ROM physical addresses

0000 New area A
2000 Basic

4000 New area B
5000 Character sets
6000 Kernal

ROM can appear (to the 4567) at 1000-1FFF (bank 0)

and 9000-9FFF (bank 2)
The ROM address translates to 5000-5FFF

Contents of Memory map based on Loram, Hiram, Game, and Exrom

L HGE Area
OTIAX
R R MR /ROML /ROMH /ROMH
A AEO 0000~ 8000~ AQ00- Cco00- DO00- EOO0O0-
M M M TEFFF 9FFF BFFF CFFF- DFFF FFFF
XX 01 4KRAM EXT NADA NADA I/0 EXT
001X RAM RAM RAM RAM RAM RAM
00 XO0 RAM RAM RAM RAM RAM RAM
0100 RAM RAM EXT RAM I/0 ROM
011X RAM RAM RAM RAM I/0 ROM
1 000 RAM RAM RAM RAM I/0 RAM * CG ROM off
1 01X RAM RAM RAM RAM I/0 RAM
1100 RAM EXT EXT RAM I/0 ROM
1110 RAM EXT ROM RAM I/0 ROM
1111 RAM RAM ROM RAM I/0 ROM
Color Palette ROM Programming

index red green Dblue fg/bg I Q Y color

0 0 0 0 0 0 0 0 black

2 15 0 0 1 .60 .21 .30 red

3 0 15 15 1 -.60 -.21 .70 cyan

4 15 0 15 1 .28 .52 .41 magenta

5 0 15 0 1 -.28 -.52 .59 green

6 0 0 15 1 -.32 .31 .11 blue

7 15 15 0 1 .32 -.31 .89 yellow

8 15 6 0 1 .49 0 -.54 orange

9 10 4 0 1 .33 0 .36 brown

10 15 7 7 1 .32 .11 .63 pink

11 5 5 5 1 0 0 .33 dark grey
12 8 8 8 1 0 0 .53 medium, grey
13 9 15 9 1 -.11 -.21 .84 light green
14 9 9 15 1 -.13 -.12 .64 light blue
15 11 11 11 1 0 0 .73 light, grey

Horizontal Sync Counter Events (assuming HPOS reg=0)

For NTSC the first 390 HCOUNT steps are at half the primary clock
rate, and 390 are at the primary clock rate, giving 520 counts for 910
clocks. For PAL the first 388 HCOUNT steps are at the slow rate, and
132 are at the faster clock rate, giving 520 counts for 908 clocks.

EVENT Clock +256 /2 HCOONT Duration
VSYNC1 START 513 769 384 384 846 59us
VSYNC1 STOP 449 705 352 352

VSYNC2 START 58 314 157 157 846 59us
VSYNC2 STOP 904 250 W 125 125

HSYNC START 513 769 384 384 63 4.4us
HSYNC STOP 576 832 416 442

HEQU1 START 513 769 384 384 36 2.5us
HEQU1 STOP 549 805 402 414

HEQU2 START 58 314 157 157 36 2.5us
HEQU2 STOP 94 350 175 175

BURST START 576 832 416 442 47 3.3us
BURST STOP 623 879 439 488

HBLANK START 478 734 367 367 175 12.2us
HBLANK STOP 653 909 454 518

Horizontal DMA Counter Events

(these are actual counts - decode 1 count earlier)
EVENT HCOUNT
HDMAEN START 15 19 (640 mode)
HDMAEN STOP 335 339 (640 mode)
HDEW START 25 32 (38 col)
HDEN STOP 345 336 (38 col)
HPIXEN START 24
HPIXEN STOP 344
SPR GO 358
SPR STOP 359
SPR CLOCK DIS 360
SPR CLOCK ENA 488
SPR DMA START 372 (and EOL)
SPR DMA STOP 482
REFRESH START 482
REFRESH STOP 506

VINC 370

HRES 15

DOG START 16

DOG STOP 376

SYNCO 0

SYNC1 1

SYNC2 3

FAST 390 NTSC 388 PAL

Vertical Timings

When the wvertical position register VPOS is set to zero by the
CPU, it actually is storing a compare value of 128, since the MSB of
VPOS is inverted. This actually corresponds to raster count 256, since
the wvertical event counter is counting half-lines. When the vertical
event counter matches the VPOS register, the vertical sync. counter is
reset to zero. Multiply the desired 1line for each event by 2 and
subtract the nominal VPOS value of 256 to get the desired decode. If
the result is negative add the modulo of the vertical event counter,
which is 525 for NTSC and 625 for PAL. The "line" in these tables
refer to raster lines, where line 50. is the first displayed line in a
25 row display.

NTSC
Event line v count - vpos decode
VSYNC START 11 22 -234 291
VSYNC STOP 14 28 -228 297
VEQU START 8 16 -240 285
VEQU STOP 17 34 -222 303
VBLANK START 8 16 =240 285
VBLANK STOP 28 56 -200 325
EARLY START 64 128 -128 397
EARLY STOP 11 22 -234 291
LATE START 11 23 -233 292
LATE STOP 3 6 -250 275
PAL -- timings begin 25 lines before NTSC because of 50 extra lines
Event line v count - vpos decode
VSYNC START -14 -29 -285 340
V&YNC STOP -11 -24 -280 345
VEQU START -17 -34 -290 335 *equ/sync is 15 half-lines
VEQU STOP -9 -19 -275 350 *for pal
VBLANK START -17 -34 -290 335
VBLANK STOP 3 6 -250 375
EARLY START 39 78 -176 447
EARLY STOP -14 -29 -285 340
LATE START -14 -28 -284 341
LATE STOP =22 -44 -300 325

Note : EARLY and LATE active concurrently indicate GROSS.

Divide ratios (including external sync values)

Counter Normal Early Late Gross

NTSC vertical 525 524 526 540

PAL vertical 625 624 626 640

NTSC horizontal 910 908 912
PAL horizontal 908 906 910
horizontal counter 520 519 521

Number of cycles per line
In "slow" CPU mode...

Total cycles no video 65
40 column SCM, MCM, ECM, BMM,

320 pixel BPM, BPO-BP3 only, or

640 pixel BPM, BPO-BP1l only no cost 0
80 column SCM, MCM, ECM, BMM,

320 pixel BPM, BP0-BP7, or

640 pixel BPM, BPO-BP3 subtract 40
Sprites subtract 2 per active sprite
Examples. ..
No video on line 65
40 column text or equiv. BPs (no sprites) 65
80 column text or equiv. BPs (no sprites) 25
80 column text or equiv. BPs, all sprites 9 -- worst case

227 memory cycles/line
6 refresh

0-32 sprite
0,40,80,120,160 video

fast slow

277 138 total cycles/line

-6 -3 refresh

-32 -16 sprites

239 119 avail CPU cycles/line (no video)
no 1 2 3 4

video fetch fetch fetch fetch

cpucyc 239 199 159 119 79 all sprites (fast)
cpucyc 271 231 191 151 111 no sprites (fast)
cpucyc 119 79 79 39 39 all sprites (slow)
cpucyc 135 95 95 55 55 no sprites (slow)

2.4.4. Programming the new VIC (4567)

The C4567R6 1s a high performance single chip video controller
designed to Dbring exceptional graphics to low cost computer and game
systems. It presently is available in NTSC and PAL versions to match
European and North American television standards.

The following are new features that are added as a superset of
the old VIC-II video controller functions incorporated in the C4567R6.

a. NewVic mode
b. 80 column character and 640 horizontal pixel mode
c. Scan interlace and 400 line mode

Character attributes (blink, highlight, underline, reverse).
Fast clock mode (3.58 vs. 1.02 MHz)
Bitplane mode

Color palettes

Additional ROM

1280H pixel mode

Display Address Translator (DAT)
Horizontal and vertical positioning
External sync (Genlock)

Alternate character set

Chroma killer

5 8 P AU H DWQ O Q

NewVic Mode

After power-up and reset, the C4567R6 performs as 1f it were the
"old" VIC chip. In this mode, none of the new features are accessible.
The old VIC 1II registers appear at addresses $D000-S$SD3FF, echoed 16
times, every 64 addresses, and any new registers within the 64 byte
block will not exist.

To put the C4567R6 into "NewVic" mode, the user must write first
an $A5 and then a $96 to the KEY register ($SDO2F). Once these wvalues
have been entered the C4567R6 will be in "NewVic" mode, and access to
the "NewVic" registers and modes will be possible.

To take the C4567R6 out of "NewVic" mode, simply write any value
to the KEY register. After doing this, all of the new modes will be
disabled. The registers that were programmed in "NewVic" mode will
retain their current wvalues. It should be noted, however, that since
all old modes are available in new mode, there is little reason to
exit new mode.

80 Column (character) or 640 Pixel (bitmap or bitplane) Mode.

You can put the C4567R6 into "80 Column Mode" or "640 horizontal
pixel mode" Dby setting the H640 bit in control register "B". The
normal horizontal rendering is 40 columns or 320 pixels.

In 80 column character mode, several things change. The Video
Matrix Dbecomes 2K Dbytes long, where it used to be 1K in 40 column
mode. The character <color RAM also Dbecomes 2K Dbytes long. The
locations of these areas do not change from the prior convention,
except that the low order video matrix address bit is not used in 80
column mode. Where the programmer used to have 16 choices for locating
the Video Matrix within a video bank, in 80 column mode there are only
8 choices.

Although the <color RAM doubles 1in size to 2K bytes, the area
provided for color RAM in the I/O map only allows for 1K of color RAM.
To read or write the second 1K of color RAM requires that you move
CIAl, CIA2, I/01, and I/02 out of the way. To do this, set the "COLOR
RAM @DCOQO™ bit in Control Register "A".

In 640 pixel bitmap mode, similar changes occur. The video matrix
and color RAM double 1in size and are positioned in the memory map
exactly as 1s done in 80 column character mode. The bitmap must now
also double in size from 8K to 16K bytes. Because the total memory
that the video matrix and the bitmap would require now exceeds the
normal 16K byte video bank size, the video bank size has been doubled

from 16K to 32K for the bitmap only. The least significant video bank
bit 1is ignored, and the high order character generator bank bit
selects which half of the 32K video bank that bitmaps will be fetched
from. The video matrix 1is still fetched from the normal 16K video
bank.

In 80 column or 640 pixel mode, the sprite pointers are at the
end of the 2K byte video matrix, where they used to be at the end of
the 1K byte video matrix, in 40 column or 320 pixel mode. The size,
location, and resolution of sprites are not affected by any of the
mode switches.

Interlace, and 400 Line Vertical mode

The C4567R6 can interlace scan lines to give a true NTSC, 525

line screen (625 lines on PAL versions), although the default,
however, is a 262 1line non-interlaced screen (312 1lines on PAL
versions). Set the INT bit in control register "B" to a "1" if you

want interlacing.

The C4567R6 can also give a 400 line vertical resolution, which
is useful in the new Bitplane mode. Set the V400 bit, and the INT bit
in control register "B" to a "1" to enable 400 line bitplanes. (see
Bitplanes, below) The V400 switch will have no effect if the display
is not interlacing. Also, although interlacing is permitted in all of
the o0ld video modes, the same data will appear on both odd and even
rasters, even i1if the V400 switch is on.

1280 Horizontal Pixel mode

The C4567R6 supports ultra-high resolution graphics by permitting
the programmer to use 1280 pixel lines. This is enabled by setting the
H1280 and H640 bits in control register "B" to a "1".

The 1280 pixels are acheived by time-multiplexing bitplane bits.
This 1s done by substituting the pixel clock for bitplane 7. This
means that for the first half of each pixel, the color palette will be
fed the normal color index. For the second half of the same pixel, it
will fed the normal index, plus 128. To utilize this feature, the user
must program the color palette to perform the multiplexing function.

The H1280 bit can also be set H640 off. This is a unique mode
that allows the wuse of 320 and 640 horizontal pixel bitplanes
simultaneously.

Character Attributes

In NewVic mode, the C4567R6 supports four new character
attributes which can be enabled by setting the ATTR bit in Control
Register "B". These are Blink, Highlight, Underlined, and Reverse
Video characters. Any combination of these attributes can be enabled
on a character by character basis, at any time. Certain combinations
will have varying effects. (See table below) Attributes can also be
applied to bitmap mode, and, to a limited extent, to the new bitplane
mode. (see Bitplanes, below)

Blink 1is enabled by setting bit 4 of the Color RAM location for
each character requiring this attribute. The Blink attribute will

either flash the character on and off, or will alternately enable and
disable the other attributes, if any are selected. The blink rate is
approximately 1 Hz.

Reverse Video 1s enabled Dby setting bit 5 of the Color RAM
location for each character requiring this attribute. Reverse Video is
achieved by simply complementing the character image data for each

character with this attribute. If the character is also underlined,
the underline will be reversed, as well. Highlighted characters also
will reverse. Blink, if enabled, will alternately enable and disable

this attribute.

Highlight 1is enabled by setting bit 6 of the Color RAM location
for each character requiring this attribute. Highlight is achieved by
adding 16 to the color index value. As in the past, the character
color is determined by the index value stored in bits 0-3 of the color
RAM. In many respects, bit 6 is merely another color select bit. What
differs 1is that the Blink attribute can be used to blink between the
"normal" color, and the "highlight" color. Both the character image,
and its background can have unique highlight colors.

To wuse the highlight attribute, effectively, color palette
locations 16 through 31 should be programmed to "highlight" colors.
(see Palette, below). Highlight colors don't have to be related to
normal colors, but can be anything.

Underline 1is enabled by setting bit 7 of the Color RAM location
for each character requiring this attribute. Underline is accomplished
by forcing "1" character image data on the eighth raster line for each
character with this attribute. If the Blink attribute 1is also
selected, the underline will blink.

Summary of Character Attributes and their Effects

Underline Hilite Reverse Blink Effect
off off off off normal character
off off off on blinking character
off off on off reverse video character
off off on on alternate reverse/normal
off on off off highlight character
off on off on alternate highlight/normal
off on on off highlight, reverse video
off on on on alternate highlight-reverse/normal
on off off off underlined character
on off off on normal char with blinking underline
on off on off underlined reverse-video
on off on on alternate underline-reverse/normal
on on off off highlight underlined character
on on off on alternate highlight-underline/normal
on on on off highlight underlined reversed
on on on on alternate hilite-underlined-rev/normal

Fast Clock

To permit the new system to run certain types of the old C64
software, the C4567R6 provides a normal (slow) CPU clock with a long
term (63us) average of 1.02 Mhz (exactly the C64 clock rate). This is
accomplished by setting up a pattern of 1.79Mhz (560ns) cycles to give

a total of 65 cycles be horizontal scanning line (also, like C64). In
addition/logic 1is provided on the C4567R6 to determine when the
microprocessor chip 1is executing an enhanced opcode, and, if so,
subtracts a clock cycle from it.

By setting the FAST bit in Control Register "B", you can instruct
the C4567R6 to clock the CPU at 3.58 Mhz, and permit the
microprocessor to execute 1its enhanced instructions at full speed.
This can increase CPU speed up to 400%.

BitPlane mode

In addition to the wusual video modes provided by the old VIC
chip, the C4567R6 provides a bitpiane mode, which allows up to eight
bitplanes to be used in the 320, or up to four bitplanes to be used in
the 640 horizontal pixel modes.

Enabling BitPlane mode is done by setting the BPM bit in Control
Register "B". Doing this will override all of the other video modes.
To specify which bitplanes (0-7) to use, set the corresponding bit for
each bitplane you want, in the Bitplane Enable register. Bitplane mode
may be used with sprites. Bitplane 2 is the foreground/background
plane used for sprite/background collision detection and priority.

The bitplanes, whether enabled, or not, provide the eight color
value bits wused to define what color will be displayed for any pixel
on the screen. Bitplane 0 provides the least significant bit of the

color wvalue, and Dbitplane 7 provides the most significant bit.
Bitplanes that are not enabled will contribute a "0" to their bit
position in the color select code, unless the complement bit for that
bitplane, in the complement register, 1is set.

Any Dbitplane's data can be inverted, whether or not the bitplane
is enabled by setting its respective bit in the Bitplane Complement
register. Inversion on unenabled bitplanes will cause them to
contribute a "1" instead of their usual "0".

In BitPlane mode, the C4567R6 does not use the Video Bank select
bits, 1like the old VIC chip did. 1Instead, vyou can specify which 8k
block (in 320 mode), or which 16k block (in 640 mode) of memory you
want a bitplane to come out of. Specify where you want the bitplanes
to be fetched from, wusing Bitplane Address registers 0 through 7.
Note, however, that the least significant bits of these registers are
ignored in 640 pixel mode, and that register 4 through 7 are never
used 1in 640 pixel mode. Even numbered bitplanes can only be fetched
from memory bank 0 (addresses O0-FFFF hex), and odd numbered bitplanes
can only Dbe fetched from memory bank 1 (addresses 10000-1FFFF hex) .
So, the bitplane pointers define which section within the confined
bank that bitplane data will be fetched from.

In the Bitplane address registers, there are two bit-fields. One
field of bits is for the even vertical scan, and the other field of
bits 1is for the odd scan. The odd scan bits are not used unless both
INT and V400 bits are set in control register "B".

Attributes <can be enabled in bitplane mode by setting the ATTR
bit 1in control register "B". If this is done, the most significant
nybble of bytes fetched for Dbitplane 3 will contain the attribute
specification for each 8 by 8 pixel cell, exactly as i1s done in
character modes. One exception is that the "hilite" attribute will be

disabled. The attributes are only applied to bitplane 2, which is also
the foreground/background plane for sprite collisions and priority
purposes.

To properly utilize this feature, Dbitplane 2 must be enabled to
provide attributed bitplane data, and bitplane 3 must be disabled,
since it will be providing attribute data. Data fetches for the
attribute data will occur, because bitplanes 2 and 3 are both fetched
in the same memory cycle. You may also enable any other bitplanes as
needed. Bitplane 2, and any other bitplane may be complemented, but
complementing Dbitplane 3 will only cause its bit weight to contribute
a "1", and will not invert the attribute data.

Note:

Addresses 1F800-1FFFF hex are the Color and Attribute RAM used in
the old video modes. You can use this area for bitplane if you do not
plan on switching between old and new video modes and expect the data
for both modes to be there.

Color Palette

The C4567R6, allows the programmer to use the sixteen standard
"C64" colors, or define up to 256 custom colors and/or use the palette
to perform boolean operations on the Dbitplane data. The C4567R6
incorporates a 16 word palette ROM and a has a 256 word palette RAM.
Each palette 1location is an index, which can specify one of sixteen
possible intensity values (4 Dbits) each, of Red, Green, and Blue
primary colors, plus a single control bit (FGBG) which can be used for
foreground/background control for video mixing applications, or to
drive a separate monochrome screen.

The first 16 locations of the palette default to the C64 colors
in ROM. The remaining 240 locations are programmable RAM. The first 16
locations can also be replaced with RAM, however, by setting the PAL
bit 1in control register "B". All old video modes, including sprites
and exterior, can only access the lowest 16 palette locations (except
hilite «cells), so you may want to reserve these indices for such
features.

Only Dbitplane mode can make full use of all palette locations.
Even when less than eight bitplanes are used, the bitplane complement
bits of the unused bitplanes can be used to specify which part of the
palette 1is to be used. This feature allows the programmer to define
multiple sub-palettes, which can be switched between gquickly, or to
specify an offset in the «color table for the bitplanes, allowing
separate colors for exterior and sprites.

To set the color palette, the user must simply write to the color
palette RAM. Addresses DI100-D1FF (hex) program the 256 Red values,
addresses D200-D2FF (hex) program the 256 Green values, and addresses
D300-D3FF (hex) program the 256 Blue values. All 256 locations of both
the blue and green palettes are only 4 bits wide, so the upper four
data bits do nothing. Bit 4 of every red palette location is the FGBG
programming bit, the remaining 3 bits are not used. The palette
locations are not readable by the CPU.

C4567R6 Registers

MEMORY MAP SELECT AND ENABLE REGISTERS

(EN BIT MUST BE 1 FOR SELECT TO BE 0)

PORT

"4510"

e e et i T

ENO | 0000

EN1

EN2

e s T T

0001

CHREN | HIRAM | LORAM |

e T Tt T T ettt e L e

VIC-II MODE REGISTERS

e ———————+ $D000+

00 SPRITE 0 X

S0X6 | SOX5 | S0X4 | sOX3 | sO0X2 | s0X1 | sOX0 |

S0X7
e T Tt T R s

01l SPRITE O Y

| s0ye | sO0y5 | s0vy4 | s0Y3 | sO0y2 | sO0Yl | sOYO0 |

S0Y7
A T e

02 SPRITE 1 X

| S1X5 | Ss1X4 | S1X3 | S1X2 | Ss1X1l | S1X0 |

S1X6
e T Tt Tttt

S1X7 |

03 SPRITE 1 Y

| S1y5 | s1ly4 | s1¥3 | sl1lyz | slyl | S1Y0 |

S1Y6
T s ST S T

S1Y7 |

04 SPRITE 2 X

| S2X6 | S2X5 | S2X4 | S2X3 | 82X2 | S2X1 | S2X0 |

S2X7
T T T T it e e L

05 SPRITE 2 Y

s2Ye6 | sS2Y5 | s2y4 | S2Y3 | s2y2 | S2Y1 | s2Y0 |

S2Y7
B it B et ettt B e

06 SPRITE 3 X

S3X6 | S3X5 | S3X4 | S3X3 | 83X2 | S3X1 | S3X0 |

l

S3X7
Tt e T it A Tt E L

07 SPRITE 3 Y

S3Y0

S3Y1

s3ye | S3Y5 | s3y4 | S3Y3 | S3Y2 |

S3Y7
Bt B e it it TR S e e

08 SPRITE 4 X

| S4X6 | S4X5 | S4X4 | S4X3 | S4X2 | S4X1 | S4X0 |

S4X7
Tt e i et T

09 SPRITE 4 Y

| S4Y0 |

S4Y1

| S4Y5 | s4v4 | S4Y3 | s4yz2 |

S4Y6
T et R A et E e

S4Yy7 |

0A SPRITE 5 X

| S5X6 | S5X5 | S5X4 | S5X3 | S5X2 | S5X1 | S5X0 |

S5X7
A R T T

0B SPRITE 5 Y

| S5Y0 |

S5Y1

| S5Y5 | s5Y4 | S5Y3 | S5Y2 |

S5Y6
e T et et e ettt e

S5Y7

0C SPRITE 6 X

| S6X6 | S6X5 | S6X4 | S6X3 | S6X2 | S6X1 | SeX0 |

S6X7
A R s T T

0D SPRITE 6 Y

| S6Y0 |

SeYl

SeYe | SeY5 | sey4d | S6Y3 | Se6Y2 |

S6Y7
T T T T it e e L

0E SPRITE 7 X

| S7X5 | s7X4 | STX3 | S7X2 | ST7X1 | S7X0 |

S7X6
T e e e A Tt e

STX7 |

OF SPRITE 7 Y

| S7Y0 |

S7Y1

| s7Y6 | S7¥Y5 | S7¥4 | ST7Y3 | S7Y2 |

S7Y7
Tt e e et e e atata

10 SPRITE 8 X

| S6X8 | S5X8 | S4X8 | S3X8 | S2X8 | S1X8 | SO0X8 |

ST7X8
B it B T st bk s e b

11 Y SCROLL

| BMM | BLNK | RSEL | YSCL2 | YSCL1l | YSCLO |

ECM

RC8
Tt e e it E P

RC6 RC5 RC4 RC3 RC2 RC1 | RCO | 12 RASTER CNT

e et e it T

RC7

13 LITEPEN X

| LPXO |

LPX1

| LPX3 | LPX2 |

LPX4

LPX6 | LPX5 |

LPX7
A Rt T T

14 LITEPEN Y

LPYO

LPY1

LPY2

T T et e e ettt B I

| LPY6 | LPY5 | LPY4 | LPY3 |

LPY7

15 SPRITE ENA

SE6 SE5 SE4 SE3 SE2 SE1l SEO |

A R T T

SE7

16 X SCROLL

| XSCL1 | XSCLO |

XSCL2

e T s Sttt

| MCM | CSEL

RST

17 SPR EXP Y

| SEXY5 | SEXY4 | SEXY3 | SEXY2 | SEXY1l | SEXYO |

SEXY6
e

SEXY7 |

| 18 VS/CB BASES

CB1l1

CB12

CB13

vsS10

Vsll

VSsS12

l

VS13
Tt et it B I

19 INTERRUPTS

LPIRQ | ISsC | ISBC | RIRQ |

e e et i T

IRQ

1A INT MASKS

MLPI | MISSC | MISBC | MRIRQ |
e s T T

1B BK/SPR PRI

BSPO

BSP1

BSP2

BSP3

BSP4

BSP5

BSP6
e T Tt T T ettt e L e

BSP7

1C MC SPR

| sCM5 | SCcM4 | SCM3 | sCM2 | sCM1 | sCMO |

SCM6
A Rt e T

SCM7 |

1D SPR EXP X

| SEXX5 | SEXX4 | SEXX3 | SEXX2 | SEXX1 | SEXXO0 |

SEXX6
e T et T e st

SEXX7 |

1E SPR-SPR COL

| SSC5 | SsC4 | SSC3 | sSsC2 | ssCl | sscO |

SSC6
T s ST S T

SSC7

1F SPR-BK COL

SBCO

SBC1

| SBC3 | SBCZ |

SBC4

| SBCS5 |

SBC6

SBC7
Tt e et it e I

20 EXT COLOR

BORD3 | BORD2 | BORD1 | BORDO |

B it B et e e ittt RS

21 BKO COLOR

BKOC3 | BKOC2 | BKOC1 | BKOCO |

it e e it e

22 BK1 COLOR

BK1C3 | BK1C2 | BK1Cl | B10CO |

R i B et st e e i

23 BK2 COLOR

BK2C3 | BK2C2 | BK2Cl | BK2CO |

T T T T

24 BK3 COLOR

BK3C3 | BK3C2 | BK3Cl | BK3CO |

e T et e e et L I

25 SPR MCO

SMOC3 | sSMOC2 | sSMOC1l | sSMOCO |

e Rt T T

26 SPR MC1

SM1C3 | sM1C2 | SMICl | SM1CO |

e T et T e st

27 SPRO COLOR

s0c3 | s0cz2 | s0Cl | sO0cO |

T s ST S T

28 SPR1 COLOR

sic3 | sic2 | sicl | sl1cOo |

e T T ettt e ittt

29 SPR2 COLOR

S2C3 | sz2c2 | S2C1 | sz2cO0 |

R it B et e ittt E S

2A SPR3 COLOR

S3C3 | s3Cc2 | sS3Cl | s3CcO0 |

Tt e T et et At

2B SPR4 COLOR

S4C3 | s4C2 | s4Cl | s4cO0 |

R i B it e Rttt RS

2C SPR5 COLOR

S5C3 | s5C2 | sS5C1 | sS5CO0 |

T e Rt T it

2D SPR6 COLOR

S6C3 | seCz2 | S6Cl | seCO |

e T et e e et L I

2E SPR7 COLOR

s7C3 | s7c2 | sS7Cl | sT7CO |

e Rt T T

VIC-III MODE REGISTERS

oo —4———————+ D000+

| 2F KEY

KEYO

KEY1

KEY2

KEY3

KEY4

KEY5

KEY6

KEY7
A Rt T T

30 CONTROL A

CRAM

@DCcoo

EXT

PAL

ROM

ROM

ROM

CROM

l
l

ROM

SYNC

@9000 @cooo @AOQ000 @8000

@E00O0
it e et ettt e LT

31 CONTROL B

| INT |

MONO

| H1280 |

V400

| BPM |

ATTR

FAST

H640
B it B et e e B e s

32 BP ENABS

BP7EN | BP6EN | BPS5EN | BP4EN | BP3EN | BP2EN | BP1EN | BPOEN |

fom———— fmm———— e tmm——— tom——— fom— fom———— fo—————
|BOAD15 |BOAD14 |BOAD13 | |BOAD15 |BOAD14 |BOAD13 |

| ODD | ODD | ODD | | EVEN | EVEN | EVEN |
tm———— to————— to—————— to—— - to—— to—— - to—— - to——
|[B1AD15 |R1AD14 |B1AD13 | | B1AD15 |B1AD14 |B1AD13 |

| ODD | ODD | ODD | | EVEN | EVEN | EVEN |
to—— to——— to———— tom— - tom to—— - to—— - to——
|[B2AD15 |B2AD14 |B2AD13 | |B2AD15 |B2AD14 |B2AD13 |

| ODD | ODD | ODD | | EVEN | EVEN | EVEN |
fo—m fomm - fmmm———— e e e R R
|[B3AD15 |B3AD14 |B3AD13 | | B3AD15 |B3AD14 |B3AD13 |

| ODD | ODD | ODD | | EVEN | EVEN | EVEN |
fom——— fom———— fom——— tmm——— e e to————— tom————
|B4AD15 |B4AD14 |B4AD13 | |BAAD15 |B4AD14 |B4AD13 |

| ODD | ODD | ODD | | EVEN | EVEN | EVEN |
fom———— to————— tom———— tmm——— R tom———— tm————— to—————
|BSAD15 |B5AD14 |B5AD13 | |B5AD15 |B5AD14 |B5AD13 |

| ODD | ODD | ODD | | EVEN | EVEN | EVEN |
fom———— fmm———— o tmm——— tom——— fom— fom———— fom————
|B6AD15 |B6AD14 |B6AD13 | |B6AD15 |B6AD14 |B6AD13 |

| ODD | ODD | ODD | | EVEN | EVEN | EVEN |
tm———— to————— to—————— to—— - to—— to—— - to—— - to——
|[B7AD15 |BR7AD14 |B7AD13 | | B7AD15 |B7AD14 |B7AD13 |

| ODD | ODD | ODD | | EVEN | EVEN | EVEN |
fom— to—m tomm tomm - tom tom— to—— to——
| BP7COMP | BP6COMP | BP5COMP | BP4COMP | BP3COMP | BP2COMP | BP1COMP | BPOCOMP |
fo———— fom———— fom———— tmm——— e to————— to————— to—————
| BPYS8 | BPX6 | BPX5 | BPX4 | BPX3 | BPX2 | BPX1 | BPXO
tm———— to—————— to———— to—— - to—— to—— - to—— - to—
| BPY7 | BPY6 | BPY5 | BPY4 | BPY3 | BPY2 | BPYl | BPYO
fom——— fom———— fom———— tmm——— e R to————— tom————
| HPOS7 | HPOS6 | HPOS5 | HPOS4 | HPOS3 | HPOS2 | HPOS1 | HPOSO
to———— to—————— to—————— to—— - to—— to—— - to—— - to——
| VPOS7 | VPOS6 | VPOS5 | VPOS4 | VPOS3 | VPOS2 | VPOS1 | VPOSO
fomm fomm fomm e e e R R

DAT MEMORY PORTS
tm———— to————— to———— to—— - to—— to—— - to—— - to——
|BOPIX7 |BOPIX6 |BOPIX5 |BOPIX4 |BOPIX3 |BOPIX2 |BOPIX1 |BOPIXO
fo———— fom———— fom———— tmm——— R to————— to————— tom
|BIPIX7 |B1PIX6 |B1PIX5 |B1PIX4 |B1PIX3 |BI1PIX2 |BI1PIX1 |BI1PIXO
to—— - to—— to—————— to—— - to—— to—— - to—— - to——
|B2PIX7 |B2PIX6 |B2PIX5 |B2PIX4 |B2PIX3 |B2PIX2 |B2PIX1 |B2PIXO0
fo—m fomm - fmmm e e e R R
|[B3PIX7 |B3PIX6 |B3PIX5 |B3PIX4 |B3PIX3 |B3PIX2 |B3PIX1 |B3PIXO
fom———— fmm———— e tmm——— tom——— fom— fo————— fom————
|B4PIX7 |B4PIX6 |B4PIX5 |B4PIX4 |B4PIX3 |B4PIX2 |B4PIX1 |B4PIXO
fo—m fo—m to—— tom - tom to—— to—— - to——
|[BSPIX7 |B5PIX6 |B5PIX5 |BS5PIX4 |B5PIX3 |BS5PIX2 |B5PIX1 |BS5PIXO
fom———— fom———— fmm———— tmm——— tom tom— fom———— fom————
|IB6PIX7 |B6PIX6 |B6PIX5 |B6PIX4 |B6PIX3 |B6PIX2 |B6PIX1 |B6PIXO
to—— to——— to———— to—— - to—— to—— - to—— - to——
|IB7PIX7 |B7PIX6 |B7PIX5 |B7PIX4 |B7PIX3 |B7PIX2 |B7PIX1 |B7PIX0
fo————— fom———— fom———— tmm——— e to———— to————— to—————
COLOR PALETTES
fom— to—m to—m tomm - tom to—— to—— - to——

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

BITPLANE
ADDRESS

BITPLANE
ADDRESS

BITPLANE
ADDRESS

BITPLANE
ADDRESS

BITPLANE
ADDRESS

BITPLANE
ADDRESS

BITPLANE
ADDRESS

BITPLANE
ADDRESS

BP COMPS

BITPLANE

BITPLANE

HORIZ POS

VERT POS

DO0OO+

40

41

42

43

44

45

46

47

BITPLANE

BITPLANE

BITPLANE

BITPLANE

BITPLANE

BITPLANE

BITPLANE

BITPLANE

| | | | FG/BG | RED3 | RED2 | REDI | REDO | 100-1FF RED

fom——— fom———— fom———— fo——— e to————— to————— to———— +

| | | | | GRN3 | GRN2 | GRN1 | GRNO | 200-2FF GREEN
tm———— to————— to—————— to—— - to—— to—— - to—— - to—— +

| | | | | BLU3 | BLU2 | BLUl | BLUO | 300-3FF BLUE
fomm - fomm - fomm fo——— fom—— to——— to——— fom—— +

| UNDER | HILIT | REVRS | BLINK | INDX3 | INDX2 | INDX1 | INDXO | D80OO-DBFF
Fm————— Fm————— Fm————— Fm—————— Fm————— Fm————— - Fm————— + (DCOO-DFFF)

VIDEO BANK SELECT AND ENABLE
(EN BIT MUST BE 1 FOR VB TO BE 0)

fom——— fom———— fom———— fom—— fom—— fo———— to——— fom—— +
| | | | | | | VBl | VBO | DDOO (WRITE)
tomm———— tm———— tm———— - to—m—— - fomm—— - to———— - tom—— - tom— - +
| | | | | | | EN1 | ENO | DD02 (WRITE)
fo———— fom———— fom———— fom—— tom——— fom———— fo——— fo——— +

Limitations of the C4567R6 and How to Avoid Them

Watch carefully, when particular mode Changes take effect. You
may change PAL, H1280, V400, BPM, ATTR, and H640 modes anytime.
However, the new mode selection will not take effect until after the
last 1line of the current character row. This is intended to simplify
split-screen programming. But, 1f vyou are using the DAT to access
bitmaps or bitplanes, you must wait long enough after selecting a new
H640 or V400 mode to guarantee that the C4567R6 is in the mode you
intended before doing, any DAT accesses. The DAT uses these bits to
determine how to draw the image.

If vyou want to wuse all four 640x400 bitplanes, you will be
limited to a maximum of 5 sprites having unique data. You can have
more sprites, if they are permitted to share data. This limitation is
due to the fact that sprite pointers and data must be fetched from the
16K video matrix which must also be shared with one of the bitplanes.
The bitplane will use 16000 of the 16384 bytes. This leaves 384 bytes,
which would support 6 sprite data blocks of 64 bytes, each. But the
sprite pointers must come out of the highest addressed block, thus
leaving only 5 sprite data blocks available.

If you really need 8 unique sprites, you can use four 640x384
pixel bitplanes. This is done by setting the row select bit to 24 row
mode. This will give you a total of 16 blocks of 64. This is more than
enough, so you can even have alternate sprite data blocks.

Note that Sprites and Sprite coordinates are unaffected by screen
resolution, meaning that in 640x400 screens, for example, the sprites
are still the same size on the screen and are still positioned as if
the display map were 320x200. In an 80-column text, or 640-wide
bitplane, screen a "dot" on a sprite will cover 2 pixels.

Note also that, in bitplane, mode, sprites will only collide with
"background" data which has bits "on" 1in Dbitplane 2. All other

bitplanes will NOT cause a sprite-to-background-data collision.
An Example of How to Program the Color Palette
for 1280 Pixel Resolution and Driving FGBG

In 1280 mode you must use 2 bitplanes to time-multiplex into 1.
So, for example, lets wuse BP0 for "early" bytes and BPl for "late"

N R N e I N N R +
/7 | 66 | 5 | 4 | 3 | 2 | 1 | 0 | early BPO
tmm——— e tm———— tm—— R R N R +
N R e e I N e R +
/7 1 6 | 5 | 4 | 3 | 2 | 1 | 0 | -early BPL
I R A A R R e I +

Fo—t—— et m b — b —— b~ ——f——t——+
|7E| 7L | 6E|6L|5E|5L|4E|4L|3E|3LI2E|2L|1E|1L|0E|QOL| final output
e R T e e e e e

The early pixels will be interleaved with the late ones, as shown. So,
if vyou want to alter 1 pixel, you must decide which bitplane it will
be in, and operate on its byte.

Make sure the H1280 control bit is set. If it is, BP7 will be
forced 1low for an early pixel, and high for a late pixel. Let's
program the palette to multiplex BPO early and BPl late and ignore BP2
and BP3. I want my background to be black, and image to be white, and,
at the same time have BP3 drive a 640 pixel monochrome screen with the
FGBG pin. (it too could be 1280 pixels).

Display Address Translator (DAT)

The C4567R6 contains a special piece of hardware, known as the
Display Address Translator, or DAT, which allows the programmer to
access the bitplanes directly. In the old VIC configuration, the
bitmap was organized as 25 rows of 40 stacks of 8 sequential bytes.
This 1is great for displaying 8 x 8 characters, but difficult for
displaying graphics.

The DAT overcomes the original burden by allowing the programmer
to specify the (X,Y) location of the byte of bitplane memory to be
read, modified, or written. This 1is done by writing the (X,Y)
coordinates to the BPX and BPY register, respectively. The user can
then read, modify, or write the specified 1location by reading,
modifying, or writing one of the eight Bitplane registers. There is
one bitplane register for each bitplane.

The DAT automatically determines whether to use 320 or 640 pixel

mode, and whether to use 200 or 400 line mode. It will also use the
areas specified for the Dbitplanes, wusing the Bitplane Address
registers.

Horizontal and Vertical Positioning

The C4567R6 has two registers to allow the programmer to alter
the positioning of the display relative to the borders of his CRT

(television or monitor). Initially the positioning registers are set
to zero, to give C64 standard positioning. These registers are signed,
two's complement values which specify an offset from the default
positions.

Chroma Killer

The C4567R6 provides analog RGB video, with sync on all colors,
an analog luminance output, with sync, and an analog NTSC (or PAL on
PAL versions) chrominance output. It also provides a separate digital
video signal, and a separate digital sync. When using the C4567R6 with
a black and white television receiver, it may be best to suppress the
chrominance information. This can be done by setting the MONO bit in
control register "B".

Additional ROM

The C4567R6 does all decoding for ROMs. It supports a total of
32K of ROM, which is 12K over what the C64 is configured for. This 12K
of extra ROM 1is available in one 8K block at 8000 (hex), and one 4K
block at C000 (hex). To enable ROM at these areas, set the ROME8000 or
ROM@COOO bits in Control Register "A". (Note that there are other
chips 1in the C65 which extend this addressing limitation. The C65 has
a 1MB ROM built-in.)

Alternate Character Set

Ordinarily, the C4567R6 will always fetch ROM-based character
data from addresses DOO0O-DFFF. If the CROM@9000 bit is set in control
register "A", ROM-based character data will be fetched from addresses
9000-9FFF. This allows for an alternate ROM-based character set.

Future Document Topics

At a later time, this document may also describe the following
C4567R6 enhancements and features...

Weatherfax Mode

Multiple (2-8) playfields

Playfield prioritization

Multiple CRT configurations using the digital and analog video
Multiple sub-palettes

Mixing 1280 pixel and 640 pixel bitplanes

Using all 272 palette locations

Transparency, highlighting, and palette logic functions

Use of the priority/collision bitplane with the sprites

Use of external Video RAM

palette palette
addresses outputs

F
BBBBBBBEB G
PPPPPPPP RRRR GGGG BBBB B
76543210 3210 3210 3210 G

00000000 0000 0000 0000 0 Since BP7 is low,
00000001 1111 1111 1111 0 the early pixel matters.
00000010 0000 0000 0000 0 Only care about BP0 data,
00000011 1111 1111 1111 0 since it supplies the
00000100 0000 0000 0000 1 early data. Notice how
00000101 1111 1111 1111 1 the RGB output is all 1's
00000110 0000 0000 0000 1 only when BPO is a 1,
00000111 1111 1111 1111 1 regardless of what the
00001000 0000 0000 0000 0 other BP's are doing.
00001001 1111 1111 1111 0 This is how you program
00001010 0000 0000 0000 0 the palette to ignore
00001011 1111 1111 1111 0 certain bitplanes.
00001100 0000 0000 0000 1

00001101 1111 1111 1111 1 Did you see how FGBG is
00001110 0000 0000 0000 1 a 1 only when BP3 is a 1
00001111 1111 1111 1111 1 regardless of other BPs?
10000000 0000 0000 0000 0 Now BP7 is high. The late
10000001 0000 0000 0000 0 pixels are being output.
10000010 1111 1111 1111 0 Now, the RGB output is all
10000011 1111 1111 1111 0 1's only when BP1 (the
10000100 0000 0000 0000 1 late BP) is a 1, regardless
10000101 0000 0000 0000 1 of what the other BPs are
10000110 1111 1111 1111 1 doing. This is how to time
10000111 1111 1111 1111 1 multiplex between planes.
10001000 0000 0000 0000 0

10001001 0000 0000 0000 0 Notice, now, that FGBG is
10001010 1111 1111 1111 0 still a 1 only if BP3 1is
10001011 1111 1111 1111 0 a 1, regardless of the
10001100 0000 0000 0000 1 other BPs, like before.
10001101 0000 0000 0000 1 This makes FGBG immune to
10001110 1111 1111 1111 1 the mutiplexing. It also
10001111 1111 1111 1111 1 shows how you can mix

modes on the same screen!

Note that BP4, BP5, and BP6 will be zero unless I specifically ask
them to Dbe set to 1 in the Bitplane Complement register. So if they
are zero, I do not need to program the rest of the palette. But I
can program the other parts of the palette, and use the bitplane
complements for BP4, BP5, and BP6 to switch between sub-palettes!

VIC-ITI modes, enhanced VIC-ITI modes, and VIC-III modes.

The VIC-III supports, what are called, "VIC-II" video modes. It
also supports enhancements to the basic VIC-II modes. There are, also
a variety of all-new VIC-III modes. In order to utilize any enhanced
VIC-ITI mode, or any VIC-III mode, a special keying sequence is
required.

VIC-II modes
Standard Character Mode
Multi-Color Character Mode
Extended Color Mode
Bit Map Mode
Sprites

Enhancements available to VIC-II modes

80 column character modes (vs standard 40 columns)

640 x 200 pixel bit maps (vs standard 320 x 200)
Programmable colors

Character attributes -- Underline, Blink, Reverse, Hilight
Alternate character set

Interlace

VIC-III video modes

Bitplane modes
1280 pixel ultra-high resolution
400 line operation

Location of VIC-II video data in memory (Video Bank selection)

The VIC-II modes can only access a maximum of 16K bytes of
memory, out of a total of 64K of potentially available display memory.
To select which fourth of the 64K memory will be available for VIC-II
video accesses, the user must specify which Video Bank to use. This is
done Dby setting bits 0 and 1 in the Bank Select register (location
DD02 hex) as shown.

Bit Video Address

1 0 Bank Range

00 3 COOO-FFFF
01 2 8000-BFFF
10 1 4000-7FFF
11 0 0-3FFF

The same two bits must be set to a 1 in an enable register (location
DDO0 hex) in order for a 0 data bit to be recognized. Both of these
registers, though write only, may have bits shared, elsewhere in the
application system. If this 1s the —case, care must be taken to
preserve the other port bits not shown, here.

The Video Matrix

The Video Matrix is a Dblock of memory used to store
character-organized display data. Depending on whether the chip is in
40 column or 80 column display mode, it is 1024 or 2048 bytes long.
Since the VIC-II modes can only access 16K bytes of memory, this means
there are "16 or 8 places that the video matrix can appear within the
16K Video Bank, depending on whether 40 or 80 column mode is selected.
The location of the Video matrix is chosen by bits 4 through 7 of the
Memory Pointers register (address D018 hex). Bit 4 has no effect in 80
column mode.

The Character Memory Block

The Character Memory is a 2048 byte block of memory that contains
character 1mage data. Each character definition requires 8 bytes in
order to display a 8 x 8 Dbit character image. And there are 256
possible values for each character code, so 8 x 256, or 2048 locations
are required. For each character definition stored in the character
memory, the lowest of the eight memory addresses used by the character
represents the top one of eight scan lines of the character. The
leftmost pixel of each character is the most significant bit (bit 7)
of the respective character memory byte.

Since the VIC-II modes can only access 16K bytes of memory, there
are only eight choices where the Character Memory Block can be
located. That location is selected by bits 1-3 of the Memory Pointers
register (address D018 hex). Special combinations of Character Memory
Block and Video Bank selections determine whether the character image
data is fetched from RAM or from ROM, as shown below.

CB bit VB bit Image hex

321 10 source address

000 X X RAM (0-7FF) +VB

001 X X RAM (800-FFF) +VB

010 x 0 ROM DOOO-D7FF (COO0-C7FF if CROM@CO0O00)
010 x 1 RAM (1000-17FF) +VB

011 x 0 ROM DOOO-D7FF (CO00-C7FF if CROM@CO000)
011 x 1 RAM (1800-1FFF) +VB

100 X X RAM (2000-27FF) +VB

101 X X RAM (2800-2FFF) +VB

110 X X RAM (3000-37FF) +VB

111 X X RAM (3800-3FFF) +VB

Color/Attribute Memory

The VIC-II modes have a 1024 or 2048 byte color and attribute
memory, depending on whether 40 columns or 80 columns are selected.
This memory is used to determine what color and what attributes are to
be applied to each character in the video matrix. Color/Attribute RAM
is immovable. Physically, it is located at RAM locations 1F800-1FFFF.
The CPU, however can access the 1024 Dbyte portion at addresses
D800-DBFF. It can access the entire 2048 byte block from D800-DFFF if
the COLE@DCOO bit is set in control register A. The CPU can also access
Color/Attribute RAM directly at addresses 1F800- 1FFFF.

Standard Character Mode
Standard Character Mode is selected by writing 0 to the ECM and
BMM bits in Mode Register A (location D011l hex), writing 0 to the MCM

bit 1in Mode Register B (location D016 hex), and by writing 0 to
Control Register B (location D031 hex).

2.5. CSG F01llx -- C65 Disk Controller Chip gate array (preliminary)

2.5.1. Description
CSG4171-F011 Revision C

The CSG4171-F011 is a low cost MFM disk interface. It requires
the wuse of an external 512 byte RAM as a data cache buffer. This

interface can perform reads from and writes to MFM formatted
diskettes, as well as free-format full track reads and writes. It can
also format diskettes. Logic is also provided for timed head stepping
and for motor spin-up. The F011l provides for expansion drive

interconnect wusing a serial protocol for control and status signals.
It also incorporates an index pulse simulator for drives that do not
have an index sensor.

Unlike its predecessors, the "C" revision provides:

Active high local LED output.

Correct remote DSKCHG status.

Protection of control bits when changing drive selects.

IRQ cleared on reset.

Blinking of the local LED.

Swapping of buffer halves for CPU access.

Two new Digital Phase Locked Loop (DPLL) read recovery methods
in addition to the original Full Correction (FC) algorithm.
Improved capture range in Full Correction.

Decoding for external disk registers.

A one line to two line active low decoder for external hardware.

Q 0 Qo0 0w

S =

Read recovery options

The FO01ll now provides 3 methods for recovering MFM formatted disk
data. Each method has its own advantages and tradeoffs. This is how
they work...

The read-recovery, or dibit counter divides the dibit period into
sixteen partitions or counts assuming no read data pulses occur or
correctly positioned read pulses occur. When a read data pulse with
less-than-ideal positioning occurs, the dibit counter will modify its
count depending on whether Full Correction (FC), Digital Phase Locked
Loop (DPLL) or Alternate Phase Locked Loop (ALT) recovery methods are
selected.

| ———- DIBIT CELL -——==
R e e Rt e e e e
[1 | 101112131415]16]718|9|A|BIC|IDIE|F| | | |DIBIT COUNTER
R R o s s st A

| READ DATA PULSE

Fot—t—t—t—+-
[O I B
=ttt —t-

- e B A S R e +-
|
-+

tot -t
| I8I9IAIBICIDIEIF|] | | | | | INEW (FC) DIBIT COUNTER
e e Rt e e e et i
NEwW DIBIT CELL -—-—--—-—- |

In Full Correction (FC) the dibit counter is forced to count
eight after a read pulse 1is received. This is the equivalent of
forcing the read pulse to the center of the bit cell. This method
fully compensates for phase and frequency variation. It will tolerate
a considerable range of bit frequency error at the cost of permitting
a limited range of bit phase error.

| READ DATA PULSE

| ———- DIBIT CELL -————
ettt -ttt =+ —+—
[I | 101112131415/6|7|8|9|A|IB|IC|D|E|F]|] | | |DPLL RESULT

e R Rt S B S et e
|--= ADD 1 ---| |---- SUB 1 -—-—-|

In Digital Phase Locked Loop (DPLL) recovery, the dibit counter
is incremented if a read pulse occurs early (before a dibit cell
center), decremented 1f a read pulse 1is late (after a dibit cell
center), or counts normally if no read pulse occurs, or 1if a pulse
occurs within a dibit cell center. This method has the ability to
track a large range of bit phase error, Dbut, wunfortunately can only
handle a very narrow frequency error range.

[READ DATA PULSE

| ———- DIBIT CELL -
i e e e e e e e e e e e e M il s SR Sl S
| | | 101112131415/6|7|8|9|A|B|C|D|E|F| | | |ALT DPLL RESULT
s e e e e e e S e e e
[- +2 =] +1 -] |- -1 —=|- -2 ——|

In Alternate Digital Phase Locked Loop (ALT) recovery, the dibit
counter behaves exactly as it does in standard DPLL mode, except that
if a read pulse occurs more than 3 counts early, or 4 counts late, the
counter 1is incremented or decremented by 2. Like DPLL, this method can
tolerate a large range of bit phase error, but can also compensate for
a larger frequency error range.

2.5.2. Configuration

2.5.2.1. Pinout

Pin Name Active Dir Type Description
1 RD low input disk read-data
2 MOT low output disk motor on
3 SIDE low output disk side select
4 WPROT low input disk write protect
5 TKO low input disk track O
6 WGATE low output disk write gate
7 RW input cpu read/write
8 WD low output disk write data
9 AO input cpu address
10 Al input cpu address
11 A2 input cpu address
12 A3 input cpu address
13 INDEX low input disk index
14 GND
15 DO I/0 cpu data
16 D1 I/0 cpu data
17 D2 I/0 cpu data
18 D3 I/0 cpu data
19 D4 I/0 cpu data
20 D5 I/0 cpu data
21 D6 I/0 cpu data
22 D7 I/0 cpu data

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

2.5.2.2.

AO0-A4

RW

DO-D7

IRQ low out oc cpu interrupt request
vCC

VCC

RAS8 output ram address

RAT output ram address

RAG output ram address

RAS output ram address

RA4 output ram address

RA3 output ram address

RA2 output ram address

RA1 output ram address

RAO output ram address

CS low input cpu chip select

RRW output ram read/write

RCS low output ram chip select

RD7 I/0 ram data

RD6 I/0 ram data

RD5 I/0 ram data

RD4 I/0 ram data

RD3 I/0 ram data

RD2 I/0 ram data

RD1 I/0 ram data

RDO I/0 ram data

SERIO low I/0 exp serial control/status
LD low output exp direction of serio
CLK low output exp shift clock

LOCAL low input disk local drive available
TSTCLK input test test clock

EXTREG 1low output to external registers
A4 input cpu address

DRO low output disk drive select 0

Cs1 low input cpu chip select external logic
LED high output disk panel LED

DIR output disk stepping direction
STEP low output disk stepping command
PHO input cpu clock

DSKIN low input disk disk inserted

RES low input cpu reset

XTAL1 input crystal

XTAL2 output crystal

VENDOR low input vendor

VvCC

CSLO low output to external logic
CSHI low output to external logic
GND

GND

Signal Descriptions
Processor Interface Lines

These five address inputs select which internal or external
register is to be read or written by the processor.

The RW input determines whether a register will be written
(RW=1low) or read (RW=high) by the processor.

Eight Dbi-directional 1lines which transfer data to and from
the processor during register reads and writes. These are
normally inputs, but Dbecome driven outputs when CS and PHO

CS

Ccsl

PHO

IRQ

RES

RAO-RAS8

RDO-RD7

RRW

RCS

RD

WD

WGATE

WPROT

are true.

The Chip Select 1s a low-true input that determines that a
register read or write will occur when PHO becomes true.

External hardware chip select input. This low-true signal,
when asserted, will cause CSLO to go true (low) if A4 is low,
or CSHI to go true (low) if A4 is high.

A high-true input that must be driven high by the processor
to indicate that A0-A4, RW, and CS are valid.

The Interrupt Request is an open-drain output that will sink
current when an interrupt is requested by the F011l. IRQ will
go low (true) when the BUSY status bit changes from true to
false if IRQ is enabled.

The Reset is a low-true input used to reset internal events.
When RES goes low (true) any command in progress will be
terminated. RES will not, however, affect any control
register bits.

Buffer RAM Interface Lines

These nine RAM Address outputs must be connected directly to
nine of the external buffer RAM chip address inputs. These
may be scrambled for PCB simplification.

These eight bi-directional lines must be connected to the
eight bi-directional data lines of the external buffer RAM.
These may be scrambled for PCB simplification. RDO-RD7 are
inputs except when RRW and PCS are low. Then they become
driven outputs.

The RAM Read/Write output must be connected to the R/W input
of the external buffer RAM to control reading and writing.

The RAM Chip Select is a 1.0 Mhz clock of 50% duty cycle, and
is low at a time when RAO-RA8, RRW, and RCS are valid. It
must be connected to the CS input of the external buffer RAM.

Disk Drive Interface Lines
(A1l disk signals are low-true)

The Read Data input expects a series of low-going pulses
from the currently selected disk drive.

The Write Data output provides a series of low-going pulses
at all times to all drives. It represents the MFM encoded
data stream used for disk writes.

The Write Gate output, when true, causes the Write Data to
be written to the diskette in the currently selected drive.

The Write Protect input must indicate, when true, that the
present diskette in the local drive must not be written to.
The FO011 will not assert WGATE if WPROT is true, and will not
execute any write related commands.

LOCAL

DRO

DISKIN

MOT

LED

SIDE

STEP

DIR

TKO

INDEX

SERIO

LD

CLK

The Local Drive Available input must be grouded in systems
that have a resident local drive 0, and must be tied to Vcc
in systems that are diskless. This will permit drive 0 to be
configured externally.

This output, when 1low, indicates that the 1local drive
(Drive 0) 1is the currently selected drive.

The Disk In Input must indicate when a diskette is physically
in the local drive, and the drive 1is available for use.

The Motor On output, when true, turns on the motor of the
local disk drive only. (Also turns on local LED).

The LED output, when true turns on the panel Light-emitting-
diode of the local disk drive only. (Causes LED to BLINK).

The Side select output determines which side of the media
is to be read or written. It is high (false) for side 0, and
low (true) for side 1. This output reflects the status of the
SIDE control bit regardless of which drive is selected.

The Step output provides a low-going pulse when a head
stepping command 1s executed, regardless of which drive 1is
selected.

The Direction output indicates to the drives whether the
read/write head is to step toward track 0 (DIR=high) or away
from track O (DIR=1low) when a step pulse is received. This
output reflects the status of the DIR command register bit
regardless of which drive is selected.

The Track Zero input must determine when the read/write head
of the local drive 1s positioned over track zero. This input
will not suppress stepping pulses.

The Index pulse input must provide a low going pulse for each
spindle rotation of the local drive, 1f the local drive has
an index sensor. This input must be tied low if the local
drive has no index sensor.

Expansion Drive Interface Lines
(all expansion lines are low-true)

The Serial 1I/0 line is a bi-directional signal that is used
to pass control to all external disk drives, and to receive
status information from them. It is a driven, output when LD
is high, and an input, otherwise.

The Load Data output tells the external expansion drives
when to update control information shifted off of the serio
line, when to load status information for shifting, and when
to drive the SERIO line. (This is discussed later.)

The Clock output provides a 50% duty cycle clock at 250Khz

to Dbe wused by the external expansion drives for shifting
control and status information in and out.

Other Signals

XTALL
XTAL2

VENDOR

TSTCLK

CSLO

CSHI

EXTREG

2.5.3.

CONTROL

COMMAND

STAT A

STAT B

TRACK

SECTOR

SIDE

DATA

These two lines form two poles of a series-resonant crystal
oscillator circuit. XTALl is an input, and XTAL2 is an
output. An 8.0000Mhz crystal should be used.

The software Vendor identifier input determines whether the
FO1ll will ©be capable of generating protect marks within the
the sector headers. Production wunits will not have this
signal bonded, except those shipped to software vendors. This
pin should be grounded at all times.

The Test Clock input is used to reduce F01l1l test times. This
pin should be grounded at all times.

External hardware active-low chip select output. Goes low
when CS1 and A4 are both low.

External hardware active-low chip select output. Goes low
when CS1 is low and A4 is high.

External register active-low chip select output. Goes low
when CS is low and A4 is high.

Registers
C4171-F011C Registers
7 6 5 4 3 2 1 0
——————— R Rt e e ettt
IRQ | LED | MOTOR | SWAP | SIDE | DS2 | DS1 | DSO
——————— e e e e e e et
——————— B et e bt e e e skt PP
WRITE | READ | FREE | STEP | DIR | ALGO | ALT | NOBUF
——————— e et e e et
——————— Bt b i A e
BUSY | DRQ | EQ | RNF | CRC | LOST | PROT | TKQ
——————— e e et T et PP
——————— B ettt e e e et ettt
RDREQ | WTREQ | RUN | NGATE | DSKIN | INDEX | IRO | DSKCHG|
——————— e e e e e e e
——————— Bt e i e et e R PP
T7 | T6 | T5 | T4 | T3 | T2 | T1 | TO
——————— e i e et
——————— e e e e e et
S7 | S6 | S5 | S4 | S3 | S2 | Sl | SO
——————— B et e bt e e e skt PP
——————— e et e e e e et
S7 | S6 | S5 | S4 | S3 | S2 | Sl | SO
——————— Bttt e et it
——————— e e e et e et et
D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO

RW

RW

RW

RW

RW

RW

CLOCK | C7 | C6 | C5 | C4 | C3 | C2 | C1 | CO
+—————— F————— F—————— F—————— F—————— F—————— F—————— F——————
+—————— - F—————— F——— F—————— F—————— F—————— F——————

STEP | S7 | S6 | S5 | 5S4 | S3 | S2 | S1 | SO
+—————— F————— F—————— F—————— F—————— F—————— F—————— F——————
+——————- +-——————- - +——— - - - o

P CODE | P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO
F———— - F—————— F—————— F—————— F—————— - F——————

Control Register

Data from the control register is sent to both the local drive

(DRO) and all of the serially connected expansion drives (DR1-DR7).

The MOTOR and LED signals will be held for the local dri
drives are selected.

IROQ When set, enables interrupts to occur, when re
disables interrupts.

LED These two bits control the state of the

MOTOR outputs. When both are clear, both MOTOR and LE
be off. When MOTOR is set, both MOTOR and LED O
on. When LED is set, the LED will "blink".

SWAP swaps upper and lower halves of the data buffer
as seen by the CPU.

SIDE when set, sets the SIDE output to 0, otherwise

DS2-DS0 these three bits select a drive (drive 0 thru d

DS0-DS2 are low
output will go true

and the LOCAL input is true
(low) .

Command Register

WRITE must be set to perform write operations.

READ must be set for all read operations.

FREE allows free-format read or write vs formatted

STEP write to 1 to cause a head stepping pulse.

DIR sets head stepping direction

ALGO selects read and write algorithm. 0=FC read, 1=
O=normal write, l=precompensated write.

ALT selects alternate DPLL read recovery method. Th
must be set for ALT to work.

NOBUF clears the buffer read/write pointers

Status Registers

status
(DRO)

The appropriate
inputs if the local drive

bits are sampled from th
is selected. Otherwise,

ve while other

set clears and

MOTOR and LED
D outputs will
utputs will be

1.

When
the DRO

rive 7).
(low)

DPLL read,

e ALGO bit

e local status
those bits are

sampled from the serially connected expansion drive (DR1-DR7).

BUSY command 1s being executed

DRQ disk interface has transferred a byte

EQ buffer CPU/Disk pointers are equal

RNF sector not found during formatted write or read
CRC CRC check failed

LOST data was lost during transfer

PROT disk is write protected

TKO head is positioned over track zero

RDREQ sector found during formatted read
WTREQ sector found during formatted write

RUN indicates successive matches during find operation
WGATE write gate is on

DSKIN indicates that a disk is inserted in the drive
INDEX disk index is currently over sensor

IRO an interrupt has occurred

DSKCHG the DSKIN line has changed
this is cleared by deselecting drive

Track Register
Sector Register
Side Register

The Track, Side and Sector registers are used in FIND operations
to locate a given sector on a given track on a given side.
Data Register

The data register is the CPU gateway to the data buffer for both
read and write operations.
Clock Register

The clock register is used to define the clock pattern to be used
to write address and data marks. This register should normally be
written to FF (hex).
Step Register

The step register is used to time head stepping. This register is
compared to a counter, which is clocked at 16Khz, giving a time of
62.5 microseconds per count, allowing a maximum of 16 milliseconds of
step time per step operation.
Protect Code Register

The Protection Code register 1s a read-only register that
contains the protect code of the last sector read. If the last sector

read does not contain a Protect Mark in its header, then this register
will contain zero.

Legal commands are...

hexcode notes macro function

40 1,4,5 RDS Read Sector

80 1,2 WTS Write Sector

60 1,4,5 RDT Read Track

AQ 1,2 WTT Write Track (format)

10 3 STOUT Head Step Out

14 3 TIME Time 1 head step interval (no pulse)

18 3 STIN Head Step In

20 3 SPIN Wait for motor spin-up

00 3 CAN Cancel any command in progress

01 CLB Clear the buffer pointers

Notes: 1. Add 1 for nonbuffered operation

2. Add 4 for write precompensation
3. Add 1 to clear buffer pointers
4. Add 4 for DPLL recovery instead of FC recovery
5. Add 6 for Alternate DPLL recovery

2.5.4. Command Descriptions

Execution of any legal command will cause the BUSY status to be
set, and the IRQ, RNF, CRC, and LOST flags to be cleared. Execution of
the CANcel or CLearBuffer commands, or any write operation command
with, the WPROT status set, or any illegal command, will not cause a
normal BUSY condition. However, any write to either the Command
Register or the Control register will automatically cause BUSY to be
set for at least one round trip delay of transmission and reception of
the serialized control and status signals. When BUSY gets reset,
either by successful command completion, error termination, round trip
completion, or by user cancellation, the IRQ flag will be set, and an
interrupt generated, unless interrupts are disabled.

The wuser may CANcel any operation in progress at any time using
the CAN command to can it. Use of this command during write operations
is not advised.

Unbuffered operations

If the Dbuffer pointers are held clear by setting bit 0 in the
command register while issuing a command, unbuffered operations will
result. These are most useful for formatting a diskette. The DRQ flag
in status register A indicates when a transfer has occurred to or from
the disk.

For read operations, DRQ set, indicates that a byte of data has
been read from disk, and must be read by the CPU. Reading the data
with the CPU will clear the DRQ flag. If the data is not read by the
time another Dbyte i1s read from the disk, the o0ld data will be
overwritten and the LOST status flag will be set. The LOST flag will
remain set until the next command is written.

For write operations, the user should supply the first byte of
data either before, or shortly after issuing a write command. The DRQ
flag set indicates that the byte has been written to disk, and the CPU
must supply the next byte. When the CPU supplies a byte the DRQ flag
will be cleared. If the CPU does not supply a new byte in the time

that it is required by the disk interface, the previous byte data will
be written, and the LOST flag will be set. The LOST flag will remain
set until the next command is written.

Buffered operations

Buffered operations can be monitored by reading status register
A. The DRQ and EQ bits indicate the immediate status of the buffer
pointers. During any operation, the EQ bit, when set, indicates that
both the disk and CPU Dbuffer pointers are pointing to the same
location. This can mean that the buffer is full or empty, depending on
what operation is, or will be performed. The DRQ bit set indicates
that the disk was last to access the buffer, and clear indicates that
CPU was last to access the buffer.

For read operations, the disk interface will read bytes from disk
into the buffer. This will set DRQ and clear EQ. The CPU may read data
from the buffer at any time after this occurs, and can continue to
read data until EQ goes high, indicating that the buffer is empty. CPU
reads from the data buffer will clear DRQ. If data is read from disk,
setting DRQ, and EQ also gets set, this indicates that the buffer is
now full. One more byte read from disk will set the LOST flag. The
LOST flag will remain set until the next command is written. This
condition will not usually occur when performing sectored reads of 512
bytes or less, since that is the buffer size.

For write operations, CPU data may be written to the buffer
before executing a write command, but may also be supplied during the
transfer. If the EQ flag is set after the CPU writes to the buffer,
clearing DRQ, this indicates that the buffer is now full, and that the
CPU should wait before stuffing more data. The the EQ flag goes high
with DRQ high, this indicates that the disk interface has used all of

the available data in the buffer. If one more byte is written to the
disk, the LOST flag will be set, indicating old buffer data has been
written to disk. The LOST flag will remain set until the next command

is written.

Data Transfer Commands

Execution of any of the Data Transfer Commands must be performed
assuming that the correct drive has been selected, the proper side has
been selected, and the drive's motor is on and has had time to spin
up. The read/write head(s) must be positioned over the track that data
is to be transferred to or from. If the status of the buffer pointers
is not as expected or required, a buffer pointer clear should be
performed before writing data or issuing commands.

All write commands should be performed with all bits in the clock
register set to a "1" (FF hex). This register is used only for
formatting diskettes. For all write operations, the WGATE status flag
indicates when data is actually being written to the diskette.

Sectored or formatted operations

These operations differ from free-format commands in that the use
of sectors is expected. Sectors are of fixed length, and are located
and read or written automatically. The disk control logic will verify
that the track/sector/side read from the address marks on the disk

match the track/sector/side register contents before transferring any
data. If the address marks do not match the address information
supplied Dby the wuser within 6 index pulses, the command will
terminate, BUSY will be reset, and the RNF (record not found) flag
will be set. The RNF flag will remain set until the next command is
issued. The RUN flag, when set, indicates that so far, the sector
being accessed appears to be correct. This flag will reset when any
part of the address mark does not match the expected data, or a
successful completion occurs. Therefore, RUN can change states several
times over single track.

RDS Read a Sector

Writing a 40 (hex) to the"command register will cause the
controller to execute a buffered RDS (read sector) command. Writing a
41 (hex) will execute an unbuffered RDS command. Add 4 to either

command to select DPLL data recovery instead of the normal FC method.
Add 6 to either command to select Alternate DPLL recovery instead of
the FC method.

The RDREQ flag, when set, indicates that the requested sector has
been found, and is now being read into the buffer. RDREQ will reset
after the last byte of the sector is read.

WTS Write a Sector

Writing a 80 (hex) to the command register will execute a
buffered WTS (write a sector) command. Add 1 to this command for
unbuffered operation, and add 4 if write pre compensation is desired.

The WTREQ flag, when set, indicates that the requested sector has
been found, and is now being written from the buffer. WTREQ will reset
after the last byte of the sector is written.

RDT Read a track

Writing a 60 (hex) to the command register will initiate an
unformatted buffered disk read. Add 1 to the command for unbuffered
operation. Reading will begin immediately, and will continue until
user cancellation. The data recovery logic will use address and data
marks to align data to byte boundaries. Add 4 to either command to

select DPLL data recovery instead of the normal FC method. Add 6 to
either command to select Alternate DPLL recovery instead of the FC
method.

WTT Write a track

Writing an A0 (hex) to the command register will initiate a
buffered write track operation. Add 1 to this command for unbuffered
operation, and add 4 to enable write precompensation.

The Write Track feature 1is wusually only used for formatting
diskettes, and will most likely be used in the unbuffered mode, since
both data and clock must be supplied on a byte by byte basis. Write
normal data with the clock register set to FF hex. Write special marks
with missing clocks by writing an FB hex to the clock register.

Writing actually begins with the first index pulse after the
command is issued, and continues until the next index pulse.

STIN, STOUT Step In and Step Out

Writing a 10 (hex) or 18 (hex) to the command register will
initiate a Step-In or Step-Out operation, respectively. The stepping
pulse will be generated immediately, and BUSY will remain set for the
duration of the stepping time specified in the STEP register.

TIME General purpose timer

Writing a 14 (hex) to the command register will initiate a TIME
operation. BUSY will remain set for the duration of the time specified
in the STEP register. No stepping pulse will be generated.

SPIN Wait for motor spin-up

Writing a 20 (hex) to the command register will cause BUSY to be
set, and stay set for six index pulses. The RNF flag will be set at
the end of this operation.

CAN Cancel or "Can" the current operation

Writing a 0 to the command register will force cancellation of
any command in progress, and force BUSY to be reset after at least one
round-trip serial control and status transmission and reception.

CLB Clear buffer pointers

Writing a 1 to the command register will unconditionally reset
the buffer pointers. This should Dbe considered a Dbuffer clear
operation, although the contents of the buffer are not affected. The
BUSY flag will be set for at least one round-trip serial control and
status transmission and reception.

Full Track Writing and Formatting Diskettes

Writing full-track data and formatting are very similar. Both
will require that you generate the appropriate SYNC bytes, so that the
read data recovery logic can align the serial bitstream to byte
boundaries. Both descriptions, below, will assume that the spindle
motor 1is on, and up to speed, and that the read/write head is
positioned over the track and side to be written.

Track Writes

Full-track writes can be done, either buffered or unbuffered,
however, the CLOCK pattern register has no buffer, and writes to this
register must be done "one on one".

Write track Buffered

issue "clear buffer" command

Write

write FF
issue
write FF
wait for
write Al
write FB
wait for
write Al
wait for
write Al
wait for
write FF
write

you
Track
write FF
issue
write FF
wait for
write Al
write FB
wait for
write Al
wait for
write Al
wait for
write FF

"write track buffered"”

"write track unbuffered"

hex to clock register
command
hex to data register
first DRQ flag

hex to data register
hex to clock register
next DRQ flag

hex to data register
next DRQ flag

hex to data register
next DRQ flag

hex to clock register

your first data byte to the data register
may now use fully buffered operation.

Unbuffered

hex to clock register
command
hex to data register
first DRQ flag

hex to data register
hex to clock register
next DRQ flag

hex to data register
next DRQ flag

hex to data register
next DRQ flag

hex to clock register

loop: write data byte to the data register
check BUSY flag for completion

wait for next DRQ flag

Formatting

In order to be able to read or write sectored data on a diskette,

the diskette MUST be properly formatted. If, for any reason, marks are
missing or have improper clocks, track, sector, side, or length
information are incorrect, or the CRC bytes are in error, any attempt
to perform a sectored read or write operation will terminate with a

RNF error.

go to loop

a track

Formatting a track 1is simply writing a track with a strictly
specified series of Dbytes. A given track must be divided into an
integer number of sectors, which are 128, 2560, 512, or 1024 bytes
long. Each sector must consist of the following information.
clocks, are FF hex, where not specified. Data and clock values are in
hexadecimal notation. Fill any left-over bytes in the track with 4E
data.

quan data/clock description
12 00 gap 3%
3 A1/FB Marks
FE Header mark
(track) Track number
(side) Side number
(sector) Sector number

(length)

Sector Length

(0=128,1=256,2=512,3=1024)

2 (crc) CRC bytes

23 4E gap 2
12 00 gap 2
3 Al1/FB Marks
FB Data mark
128,
256,
512, or
1024 00 Data bytes (consistent with length)
2 (crc) CRC bytes
24 4E gap 3%

* you may reduce the size of gap 3 to increase diskette capacity,
however the sizes shown are suggested.

Generating the CRC

The CRC 1is a sixteen bit value that must be generated serially,
one bit at a time. Think of it as a 16 bit shift register that is
broken in two places. To CRC a byte of data, you must do the following
eight times, (once for each bit) beginning with the MSB or bit 7 of
the input byte.

1. Take the exclusive OR of the MSB of the input byte and CRC
bit 15. Call this INBIT.

2. Shift the entire 16 bit CRC left (toward MSB) 1 bit position,
shifting a 0 into CRC bit O.

3. If INBIT is a 1, toggle CRC bits 0, 5, and 12.

To Generate a CRC value for a header, or for a data field, vyou
must first initialize the CRC to all 1's (FFFF hex). Be sure to CRC
all bytes of the header or data field, beginning with the first of the
three Al marks, and ending with the before the two CRC bytes. Then
output the most significant CRC byte (bits 8-15) and then the least
significant CRC byte (bits 7-0). You may also CRC the two CRC bytes.
If you do, the final CRC value should be O.

Shown below is an example of code required to CRC bytes of data.

; CRC a byte. Assuming byte to CRC in accumulator and cumulative
; CRC wvalue in CRC (lsb) and CRC+1 (msb).

CRCBYTE LDX #8 ; CRC eight bits
STA TEMP
CRCLOOP ASL TEMP ; shift bit into carry
JSR CRCBIT ; CRC it
DEX
BNE CRCLOOP
RTS

; CRC a bit. Assuming bit to CRC in carry, and cumulative CRC
; value in CRC (lsb) and CRC+1 (msb).

CRCBIT ROR
EOR CRC+1 ; MSB contains INBIT
PHP
ASL CRC

ROL CRC+1 ; shift CRC word
PLP
BPL RTS
LDA CRC ; toggle bits 0, 5, and 12 if INBIT 1is
EOR #3521
STA CRC
LDA CRC+1
EOR #3510
STA CRC+1
RTS RTS

2.5.5. FO011 Disk Expansion Port Serial Protocol

B e T T e T
|LED|MOT|STP|DIR|SID|DS2|DS1|DSO|SPR|DKI|DKC|IND|PRT|TKO| SERIO
e i e T e i st e e

Legend:

Outputs... Inputs...

LED Panel LED On TKO Track Zero
MOT Spindle Motor On DKI Disk Inserted
STP Step Pulse DKC Disk Changed
DIR Step Direction IND Index

SID Side Select PRT Write Protect
DS2-DS0 Drive Unit Select SPR Spare input

The SERIO pin is bi-directional/and is used for both transmission
of drive control signals, and reception of drive status signals. The
FO011 will drive SERIO when LD is high. The selected remote unit must
drive SERIO when LD is low. All SERIO bits are low-true. SERIO will
float high for non-existant drives, making all inputs look false.

All remote units must clock in serial data on the falling edge of
CLK. The remote units must wupdate their control information on LD
falling if the DS bits match the given unit. All remote units may load
their status inputs when LD is high. Remote units shift out serial
status on the rising edge of CLK. The F011l will not change LD
coincident with CLK, nor will it drive SERIO when LD is changing.

2.5.6. FO011 Disk Timing

UNBUFFERED WRITE

+—+ +—+
[[CTAK
————— + -t e
+————- + -
I | | DRO

DTAK

it et S

+_________

LOST

_____________________________+

UNBUFFERED READ

DTAK

————— mmmmm—m— b mm— o e m o

+_____________________

to—m——t

DRQ

to————t

———t

DTAK

+-+

+__________

LOST

____________________________+

BUFFERED READ

DTAK

——t fmm—————F =t f——-—

T e e

+__________

———————

+__________

to———1

DRQO

to———t

fo———+

t-———+

t-———1

+o———1

————t

EQ

+____

fo———t

+-———+

CTAK

4+ —
+ —

+ —
4+ —

LOST

_________________+

BUFFERED WRITE

| CTAK

———t+ =t +-—-

———b e b

to———t

DRO

___+__________

t-———1

———————

———— to———t to———t o=

l I | | | | EQ
t-——— t-———+ fommmm e e +
-+ -+ -+ -+
[I] DTAK
——————— I e T e T S
+ ________________________
| LOST
______________________ + —_———— e ——

2.6. F01l6 Expansion Drive Controller
2.6.1. Description

The CSG4101-F016 is a disk expansion interface that is compatible
with the CSG4181-F011B disk controller. With the use of the F01l6, up
to seven external drives can be added to a base F011B system. Drive 0
is the main wunit and is controlled entirely by the F011B. Drives 1
thru 7 are external drives, an each must be connected to the FO011B
with a separate FO016.

% NOTE THAT THE C65 DOS SUPPORTS ONLY ONE EXTERNAL FO01l6 EXPANSION DRIVE *

CS3G4101-F01l6 Pinout:

Pin Name Active Dir Type Description
1 DS low output drive selected
2 MOT low output motor on
3 SIDE low output side select
4 WPROT low input write protect
5 TKO low input track 0
6 INDEX low input index
7 DR2 low input pullup drive assign dipswitch
8 DR1 low input pullup drive assign dipswitch
9 DRO low input pullup drive assign dipswitch
10 GND power
11 RES low input master reset
12 LED low output panel LED
13 DIR output stepping direction
14 STEP low output stepping command
15 SPARE input
16 DSKIN low input disk inserted
17 SERIO low I/0 bidir serial data
18 CLK input serial data clock
19 LD input shift/load command
20 vCC power

Signal descriptions:

RES The Reset 1is a low-true input used to reset internal flip-
flops. The DS (drive selected) output will go false (high)
when RES 1s asserted (low).

WPROT The Write Protect input must indicate, when true, that the
diskette 1in the attached drive must not be written to (the

DR

DSKIN

MOT

LED

SIDE

STEP

DIR

TKO

INDEX

SERIO

LD

CLK

2.6.2.

drive itself will inhibit writing, as well).

This output, when low, indicates that the attached drive 1is
the currently selected drive. This signal will become false
(high) upon RESet and when another drive is selected.

The Disk In Input must indicate when a diskette is physically
in the attached drive, and the drive is available for use.

The Motor On output, when true, turns on the motor of the
attached disk drive.

The LED output, when true turns on the panel Light-emitting-
diode of the attached disk drive.

The Side select output determines which side of the media is
to be read or written. It is high (false) for side 0, and low
(true) for side 1.

The Step output provides a low-going pulse when a head step
operation is required, assuming DS is true (low).

The Direction output indicates to the drives whether the read/
write head is to step toward track 0 (DIR=high) or away from
track 0 (DIR=low) when a step pulse is received, assuming DS
is true (low).

The Track Zero input must determine when the read/write head
of the attached drive is positioned over track zero.

The Index pulse input must provide a low going pulse for each
spindle rotation of the attached drive, if it has an index
sensor. The F016 will latch index pulses until they are sent
out wvia the SERIO line. This input must be tied low if the
attached drive has no index sensor.

The Serial I/0 1line is a bi-directional signal that is used
to receive control information from the main disk controller,
and return status information to the main controller, assuming
the DS output is true (low). It is a driven output when LD and
DS are low, and an input, otherwise.

The Load Data input tells when to update control information
shifted over the SERIO line, when to load status information
for shifting, and when to drive the SERIO line.

The Clock input is used for shifting control and status
information.

Expansion Port Timing

(used by all F016 chips)

s R e e et T et R
|LED |MOT | STP |DIR|SID|DS2|DS1|DS0O|SPR|DKI |DKC|IND|PRT|TKO| SERIO
B T e s e S e e it T

Legend:

Outputs... Inputs...

LED Panel LED On TKO Track Zero
MOT Spindle Motor On DKI Disk Inserted
STP Step Pulse DKC Disk Changed
DIR Step Direction IND Index

SID Side Select PRT Write Protect
DS2-DS0 Drive Unit Select SPR Spare Input

The SERIO pin is bi-directional, and 1is used for Dboth
transmission of drive control signals, and reception of drive status
signals. The F011B will drive SERIO when LD is high. Any selected F016
will drive SERIO when LD is low. All SERIO bits are low-true. SERIO
will float high for nonexistant drives, making ail inputs look false.

All FOl6 chips clock in serial data on the falling edge of CLK.
They wupdate their control information on LD falling if the DS bits
match the DS0-DS2 switch settings. All F016 chips load their status

inputs when LD is high, and shift out serial status on the rising edge
of CLK.

2.7. DMAgic DMA CONTROLLER F018 (Preliminary)

2.7.1. FO018 DESCRIPTION

DMAGIC 1is a «custom DMA Gate array IC wused in the C65. It
functions as a DMA controller with a few tricks up its sleeve.
Specifically, DMAgic provides the following commands:

* COPY -- Copy a block of memory to another area in memory.

* MIX -- Perform a boolean Minterm mix of a source block of
memory with a destination block of memory.

* SWAP -- Exchange the contents of two blocks of memory.
* FILL -- Fill a block of memory with a source byte.
Special features include:
* List-based fetching of DMA command sequences.
* Ability to CHAIN multiple DMA command sequences.
* Absolute Address access to entire System Memory (8MB).
* Blocks can be up to 64K bytes long.
* Windowed Block capability using MODulus function.

* DMAgic operations yield to VIC video and external DMA accesses.

* DMAgic operations can optionally yield to system interrupts.

* Interrupted DMAgic operations can be continued/resumed, or
cancelled.

* Data ReQuest handshaking support for 10 devices.

* Independent memory/mapped IO selection for source and destination.
* Independent memory tranfer DIRection for source and destination.

* Independent MODulus enable for source and destination.

* Independent HOLD (fixed pointer) for source and destination.

The DMA controller has 4 registers:

0 DMA List address low, Triggers DMA (write only)

1 DMA List address high (write only)

2 DMA List address bank (write only)

3 DMA Status (b7=busy, b0O=chained) (read only)

(a read will restart an INTerupted DMA operation)

Note: Minterms & Subcommand will not be implemented until FO018A, at

which time the register map will be reorganized & support for
the REC added.

dma ctlr = $D700 ;DMA Controller

2.7.2. FO018 REGISTERS.

F018 DMA CONTROLLER

REG R
NAME # B7 B6 B5 B4 B3 B2 B1 BO
tom—— fom——— fom——— tom—— fom—— fom fom——— fomm——
I | I I B | I
COMMAND 0 | SADA | SADA | SADA | SADA | INT | CHAIN | OPERATION
I | I I I I | I
e fom—— fom——— fom——— fo——— fomm—— fom——— fom———
to——— - to—m—— - fomm— - fom——— - tomm— - fomm fomm fomm
I | I I I I | I
CNT LO 11 C7 | C6 | C5 | C4 | C3 | C2 | Cl1l | CO
(CoL) I | I I I I | I
to——— - fo——— - fom—— - fom——— - fom—— - fomm tomm—— tm———— -
I | I I I I | I
CNT HI 2 | C15 | Cl4 | C13 | Cl2 | Cl1 | C1l0 | C9 | C8
(ROW) I | | I I | | I
to——— - fo——— tom——— - tom——— - tom——— fomm to—m—— tm———— -
fo—m - o fo——— - o o tom - fomm - fomm -
I | | | I | | I
SRC LO 3 | SA7 | SA6 | SAS5 | SA4 | SA3 | SA2 | SAl | SAO
(FILL) I | | I | | | I
tomm - tom tom to— to—— fom— - fo—m to—m -
I | I I I I | I
SRC HI 4 | SAlS | SAl4 | SAl13 | SAl2 | SA11 | SAl1OQ0 | SAS | SAS8

SRC BANK 5

—
~
O
o
—
o
=
O
g
s
@]
=
o
n
>
'_l
©
n
e
'_\
fee
n
>
=
-

to——— - fo——— - fomm— - fom——— - tom——— - fomm tomm——
fo—m - to——— - o o o fomm - fomm -
I | | I I | |
DEST LO 6 | DA | DAG6 | DAS | DA4 | DA3 | DA2 | DAl
| | | | I I I
fomm - to———— - tom to—— - to—— tom fo—m
I | | I I | |
DEST HI 7 | DA1S | DAl4 | DA13 | DAl2 | DA11l | DA1OQ | DAY
I | | I I I |
to——— - fo——— - fomm—— - fom——— - fomm— - fomm fomm
I _ I I I I |
DEST BANK 8 | I/0 | DIR | MOD | HOLD | DAL19 | DA1S8 | DAl7
I | | I I I |
to——— - fo—m— - fomm—— - tomm— - tom—— - fomm to—m——
to——— - to——— - fom——— - tom——— - tom—— - fomm tomm——
I | I I I I I
MOD LO 9 | M7 | M6 | M5 | M4 | M3 | M2 | M1
I | | I I | |
to—m— - to——— fomm—— - tom——— - fomm— - fomm fomm
| | | I I I I
MOD HI 10 | M15 | M14 | M13 | M12 | M11 | M10 | M9
I | | I I | |
tom—— fom—— fom——— fom——— fom—— fom fom———
OPERATIONS: 00 COPY
01 MIX (MINTERMS ACTIVE)
10 SWAP
11 FILL (SRC LO = FILL BYTE)

PARAMETERS : INT

(@]

NO INTERRUPTION
IRQ/NMI INTERRUPTION

=

CHAIN 0 LAST COMMAND IN LIST

1 PERFORM NEXT COMMAND
BOOLEAN MINTERMS : DA
0 [1

fmm———— fmm——— +

I R I

0 | SADA | SADA |

[0 1 |

SA fomm - B +
| o I

1 | SADA | SADA |

| 2 |3 |

fom— fomm = +

THE ABOVE COMMANDS ARE NOT YET IMPLEMENTED, AND SOME OF THE REGISTER
BITS DEFINED ARE DIFFERENT IN THE PILOT VERSIONS.

2.8.

2.8.1.

The C65 RAM Expansion Card (REC)
RAM for the C65 computer.
but

space,

C65 RAM EXPANSION FUNCTIONAL SPECIFICATION

RAM Expansion Controller

Functional Specification

*** THIS IS PRELIMINARY AND WILL BE CHANGING ***

provides 1 megabyte of expansion
The C65 4510/VIC-III provides 1MB of address
rudimentary banking capability is provided by the REC to

allow several different memory configurations for both the CPU and the
VIC-III via available chip selects.

The REC presumes the following system memory map:

The
the

from

$00000-$1FFFF
$20000-$3FFFF
$40000-S7FFFF
$80000-SFFFFF

REC
four

contains
low—-order

128
128
256
512

a four-bit write-only register.
bits of the data bus.

K internal RAM
K for internal
K reserved for
K reserved for

System ROM
cartridge expansion
RAM expansion

these bits into the reset (

/

//

]/

/17
3210
x0xx
x100
x110
x101
x111

0xxx
1xxXx

CPU

VIC

~ vIC
~ vIc

bank select
access enable
address range
Bank select

low) state.

Data is read

Reset forces all of

The four bits are defined as:

Internal

Expansion
Expansion
Expansion
Expansion

CPU sees

bank
bank
bank
bank

0, physical
0, physical
1, physical
1, physical

Expansion RAM bank 0
Expansion RAM bank 1

/* Inputs */

PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN

O J o O w N

e e O
S Wk o

= MEMCLK ; /*
= ICAS ; /*
= AEC ; /*
= B3 ; /*
= Al9 ; /*
= Al8 ;

= Al7 ;

= Al6 ;

= A7 ;

= RW ;

= 1SID ; /*
= B2 ; /*
= Bl ;

System memor
Correct timi

address
address
address
address

y clock
ng for

The VIC is in town

bit to contr
high order a

Chip select

ol CPU
ddress

for SID.

$S00000-$1FFFF
$CO000-SDFFFF
SEOOO0O-SFFFFF
$SCO0000-$DFFFF
SE0Q000-SEFFFF

(note that DMA and VIC-DAT access see this too):

*/

CAS signal */

*/

accesses */
lines */

Used as a decode */

bits to control VIC accesses */

PIN 23 = BO ;
* Qutputs */
PIN 15 = 'CASOB
PIN 16 = !CASOA
PIN 17 = 'CAS1B
PIN 18 = ICAS1A
PIN 19 = |EXPAN
PIN 20 = MAS8 ;
PIN 21 IBRDGO
PIN 22 = EX_LA
VIC = IAEC ;
RAST IMEMCL
CAST = MEMCL
EXVIC = BO ;
VICSELO = Bl ;
VICSELl = B2 ;
CPUBANK = B3 ;
EX LATCH = CAS &
/* latch
BRDGOE = EXPAND
EXPAND = !VIC &
VIC &
MAS8 = VIC &
VIC &
!VIC &
VIC &
/* bank 0 drams
CASOA = CAS &
CASOB = CAS &
/* bank 1 drams
CAS1A = CAS &
CAS1B = CAS &
2.9. 8580 SID RE
7 6
IR fm——
0 | 7 | Fo
1 F15 | Fl4
2 PW7 | PW6
3 |
4 | NOISE| PULS
5 | ATK3 | ATK2
6 | STN3 | STN2
foo—— U
7 7 | Fo6
8 | F15 | Fl4
9 | PW7 | PW6
10 | |

/* Cases for the DRAMS */

/* Signal to system to allow internal ram out */
/* High order Memory address line DRAMS */

/* Enable for the Gardei Bridge */
/* Strobe for user write to control latch */

; /*

data on cas fall to avoid

D ;
E >
TCH ;
K ;
K
SID & A7 & !RW
& Ale & !VIC ;
Al9
EXVIC ;
RAST 6 ;Alob
CAST & VICSELO
RAST & AlS8
CAST & Al7 ;
*/
EXPAND & (!VIC
EXPAND & (!VIC
*/
EXPAND & (!'VIC
EXPAND & (!VIC
GISTER MAP
5 4
_+ ______ + ______
| F5 | F4
| F13 | Fl2
| PW5 | Pw4
| I
B SAW | TRI
| ATK1 | ATKO
| STN1 | STNO
_+ ______ + ______
| F5 | F4
| F13 | Fl2
| PWS5 | Pw4
| |

/~k

/*
/*

/*
/*
/~k
/*

& !CPUBANK
& !CPUBANK

& CPUBANK &
& CPUBANK &

location of control register */
the phi-2 hold time problem */

CPU accessing E bank side */

ram area */
external vie accesses allowed */

Ras
Cas
ras
cas

& 'Al6 # VIC &
Al6e # VIC &

&

time,
time,

keep upper */
programable */
time */
time */

IVICSELL) ;
IVICSELL) ;

'Al6 # VIC & VICSEL1l);
Al6 # VIC & VICSELL);

3 2

—————— N
F3 | F2 |
F11 | F10 |
PW3 | PW2 |
PW1l | PW10 |
TEST | RING |
DCY3 | DCY2 |
RLS3 | RLS2 |
—————— fo—————
F3 | F2 |
F11 | F10 |
PW3 | PW2 |
PW1l | PW10 |

PHS

FREQUENCY LO VOICE-1
FREQUENCY HI

PULSE WIDTH LO

PULSE WIDTH HI
CONTROL REGISTER
ATTACK / DECAY
SUSTAIN / RELEASE

FREQUENCY LO VOICE-2
FREQUENCY HI

PULSE WIDTH LO

PULSE WIDTH HI

11 | NOISE| PULSE| SAW | TRI | TEST | RING | SYNC | GATE | CONTROL REGISTER

12 | ATK3 | ATK2 | ATK1 | ATKO | DCY3 | DCY2 | DCYl | DCYO | ATTACK / DECAY

13 | STN3 | STN2 | STN1 | STNO | RLS3 | RLS2 | RLS1 | RLSO | SUSTAIN / RELEASE
to———— to———- to————- - to————- o to————- tomm——- +

14 | F¥7 | F6 | F5 | F4 | F3 | F2 | F1 | FO | FREQUENCY LO VOICE-3

15| F¥15 | F14 | F13 | F12 | FI11 | F10 | F9 | F8 | FREQUENCY HI

16 | PW7 | PwWeo | PW5 | PW4 | PW3 | PWZ2 | PWl | PWO | PULSE WIDTH LO

17 | | | | | PWl1l | PW10 | PW9 | PH8 | PULSE WIDTH HI

18 | NOISE| PULSE| SAW | TRI | TEST | RING | SYNC | GATE | CONTROL REGISTER

19 | ATK3 | ATK2 | ATK1 | ATKO | DCY3 | DCY2 | DCY1l | DCYO | ATTACK / DECAY

20 | STN3 | STN2 | STN1 | STNO | RLS3 | RLS2 | RLS1 | RLSO | SUSTAIN / RELEASE
t-————- - t-————- to—————- t-————- t-————- t-————- t-———— +

21 | | | | | | FC2 | FCl | FCO | FREQUENCY LO FILTER

22 | FC10 | FC9 | FC8 | FC7 | FCo6 | FC5 | FC4 | FC3 | FREQOENCY HI

23 | RES3 | RES2 | RES1 | RESO |FILTEX| FILT3| FILT2| FILTO| RESONANCE / FILTER

24 | 3 OFF| HP | BP | LP | VOL3 | VOL2 | VOLl | VOLO | MODE / VOLUME
F-————- to———- to————- tom———- to————- tm———— to————- t-————- +

25 | PX7 | PX6 | PX5 | PX4 | PX3 | PX2 | PX1 | PX0O | POT X MISC.

26 | PY7 | PY6 | PY5 | PY4 | PY3 | PYZ2 | PYLI | PYO | POT Y

271 07 | ©O06 | O5 | 04 | O3 | 02 | O1 | OO0 | OSCILLATOR 3

26| E7 | E6 | ES | E4 | E3 | E2 | EI | EO | ENVELOPE 3
to———— to———- to————- - to————- o to————- tomm——- +
Notes:

1. CIA#1 ports PRA6 and PRA7 select which control port POT line
is routed to SID.

2. While there are 2 SIDs in the C65, the POT lines are still
routed to SID#1 for C64 compatibility reasons.

3.0. System Software
3.1. BASIC 10.0

C64DX BASIC 10.0
3.1.1. INTRODUCTION

This section lists BASIC 10.0 commands, statements, and functions
in alphabetical order. It gives a complete list of the rules (syntax)
of BASIC 10.0, along with a concise description of each.

COMMAND AND STATEMENT FORMAT

The commands and statements presented in this section are
governed by consistent format conventions designed to make them as
clear as possible. In most cases, there are several actual examples to
illustrate what the actual command looks like. The following example
shows some of the format conventions that are used in the BASIC
commands:

EXAMPLE : DLOAD <"program name"| (file name var)> [,U#] [,D#]
| | | |
| | | |

keyword argument (if any) optional arguments

The parts of the command or statement that the user must type in
exactly as they appear are in capital letters. Words that don't have

to be typed exactly, such as the name of the program, are not
capitalized. When quote marks (" ") appear (usually around a program
or file name), the user should include them in the appropriate place
according, to the format example.

KEYWORDS, also called RESERVED WORDS, appear 1in uppercase
letters. THESE KEYWORDS MUST BE ENTERED EXACTLY AS THEY APPEAR.
However, many keywords have abbreviations that can also be used.

Keywords are words that are part of the BASIC language that the
computer understands. Keywords are the central part of a command or
statement. They tell the computer what kind of action to take. These
words cannot be used as variable names.

ARGUMENTS (also called parameters) appear 1in lower case.
Arguments are the parts of a command or statement; they complement
keywords by providing specific information about the command or
statement. For example, a keyword tells the computer to load a
program, while the argument tells the computer which specific program
to load and a second argument specifies which drive the disk
containing the program is in. Arguments include filenames, variables,
line numbers, etc.

SQUARE BRACKETS [] show OPTIONAL arguments. The user selects any
or none of the arguments listed, depending on the requirements.

ANGLE BRACKETS <> indicates that the user MUST choose one of the
arguments listed.

VERTICAL BAR | separates items in a list of arguments when the
choices are limited to those arguments listed, and no other arguments
can be used. Then the vertical bar appears in a list enclosed in
SQUARE BRACKETS, the choices are limited to the items in the list, but
still have the option not to use any arguments.

ELLIPSIS ..., a sequence of three dots, means that an option or
argument can be repeated more than once.

QUOTATION MARKS " " enclose character strings, filenames, and
other expressions. When arguments are enclosed in quotation marks in a
format, the quotation marks must Dbe included in a command file or
statement. Quotation marks are not conventions used to describe
formats; they are required parts of a command or statement.

PARENTHESES () When arguments are enclosed in parentheses in a
format, they must be included in a command or statement. Parentheses
are not conventions used to describe formats; they are required parts
of a command or statement.

VARIABLE refers to any valid BASIC variable name such as X, AS,
or T%.

EXPRESSION means any valid BASIC expression, such as A+B+2 or
L5F (X+3) .

3.1.2. ALPHABETICAL LIST OF COMMANDS, FUNCTIONS, and OPERATORS

* Token = AC multiplication
+ Token AA addition

A 1

> Vv

(PI)

ABS
AND
APPEND
ASC
ATN
AUTO

BACKGROUND

BACKUP
BANK
BEGIN
BEND
BLOAD
BOOT
BORDER
BOX
BSAVE
BUMP
BVERIFY
CATALOG
CHANGE
CHAR
CHRS
CIRCLE
CLOSE
CLR

CMD
COLLECT
COLLISION
COLOR
CONCAT
CONT
COPY
Cos

CUT
DATA
DCLEAR
DCLOSE
DEC

DEF
DELETE
DIM

DIR
DISK
DLOAD
DMA

DMA

DMA
DMODE
DO
DOPEN
DPAT
DSAVE
DVERIFY

Token
Token

Token =
Token =
Token =

Token

Token =

Token =
= AF

Token

Token =
Token =

Token

Token =
Token =

Token
Token
Token

Token =

Token

Token =

Token

Token =

Token

Token =

Token
Token
Token
Token

Token =

Token
Token

Token =
Token =
Token =
Token =
Token =
Token =
Token =
Token =
Token =

Token

Token =
Token =

Token
Token
Token

Token =

Token

Token =
Token =

Token
Token

Token =

Token
Token
Token

Token =
Token =

Token

Token =

AB
AD
B3
B2
Bl
AE
FF

B6

FE, OE
Co6

c1

DC

FE, 3B
Fo6

FE, 02
FE, 18
FE, 19
FE, 11
FE, 1B
FE, 3C
E1

FE, 10
CE, 03
FE, 28
FE, 0C
FE, 2C

= EO

c7
E2

= A0

9C
9D
F3
FE, 17
E7
FE, 13
92
F4
BE
E4
83
FE, 15
FE, OF
D1
96
F7
86
EE
FE, 40
FO
FE, 1F
FE, 21
FE, 23
FE, 35
EB
FE, OD
FE, 36
EF
FE, 14

subtraction
division

less-than

equal

greater-than
exponentiation
return value of PI

absolute function

logical AND operator

append file

string to PETSCII function
trigonometric arctangent function
auto line numbering
background color

backup diskette

memory bank selection

start logical program block
end logical program block
binary load file from diskette
load & run ML, or BASIC autoboot
border color

draw graphic box

binary save to disk file
sprite collision function
verify memory to binary file
disk directory

edit program

display characters on screen
PETSCII to string function
draw graphic circle

close channel or file

clear BASIC variables, etc.
set output channel

validate diskette (chkdsk)
enable BASIC event

set screen colors

concatenate two disk files
continue BASIC program execution
copy a disk file

trigonometric cosine function
cut graphic area

pre-define BASIC program data
mild reset of disk drive

close disk channel or file
decimal function

define user function

delete BASIC lines or disk file
dimension BASIC array

disk directory

send disk special command

load BASIC program from disk
define & execute DMA command

AL

set graphic draw mode

start BASIC loop

open channel to disk file
set graphic draw pattern
save BASIC program to disk
verify BASIC memory to file

ELLIPSE
ELSE
END
ENVELOPE
ERASE
ERRS
EXIT
EXP
FAST
FILTER
FIND

E'N

FOR

FOREGROUND

FRE
GCOPY
GENLOCK
GET

GO
GOSUB
GOTO
GRAPHIC
HEADER
HELP
HEXS
HIGHLIGHT
IF
INPUT
INPUT#
INSTR
INT

JOoYy

KEY
LEFTS
LEN

LET
LINE
LIST
LOAD
LOCATE
LOG
LOOP
LPEN
MIDS$
MONITOR
MOUSE
MOVSPR
NEW
NEXT
NOT

OFF

ON

OPEN
OR
PAINT
PALETTE
PASTE
PEEK
PEN

PIC
PLAY

Token =

Token

Token =
Token =
Token =
Token =
Token =
Token =
Token =
Token =
Token =
= A5

Token
Token

Token =
Token =

Token
Token
Token

Token =

Token

Token =

Token

Token =

Token

Token =

Token
Token
Token

Token =
Token =

Token

Token =
Token =
Token =
Token =
Token =
Token =
Token =
Token =
Token =
Token =

Token

Token =
Token =

Token
Token
Token
Token
Token
Token

Token =

Token
Token

Token =

Token
Token
Token

Token =
Token =

Token

Token =

FE, 30
D5
80
FE, OA
FE, 2A
D3
FD
BD
FE, 25
FE, 03
FE, 2B

81
FE, 39
B8
FE, 32
FE, 38
Al
CB
8D
89
DE
Fl
EA
D2
FE, 3D
8B
85
84
D4
B5
CF
F9
C8
c3
88
E5
9B
93
E6
BC
EC
CE, 04
CA
FA
FE, 3E
FE, 06

= A2

82

= A8

FE, 24
91
9F
BO
DF
FE, 34
E3
c2
FE, 33
FE, 37
FE, 04

draw graphic ellipse

if/then/else clause

end of BASIC program

define musical instrument

delete disk file

BASIC error function

exit BASIC loop

exponentiation function

set system speed to maximum

set audio filter parameters

hunt for string in BASIC program

define user function

start BASIC for/next loop

set foreground color

available memory function

graphic copy

set video sync mode

receive a byte of input

program branch

program subroutine call

program branch

set graphic mode

format a diskette

display BASIC line causing error

return hexadecimal string function

set highlight color

if/then/else conditional

receive input data from keyboard

receive input data from channel (file)

locate a string within a string

integer function

joystick position function

define or display function key

leftmost substring function

length of string function

variable assignment

draw graphic line, input line

list BASIC program

load program from disk
(currently unimplemented)

natural log function

end of do/loop

lightpen position function

substring function

enter ML Monitor mode

set mouse parameters

set sprite position and speed

clear BASIC program area

end of for-next loop

logical complement function
(subcommand)

multiple branch or subcommand

open I/0 channel

logical or function

graphic flood-fill

set palette color

draw graphic area from cut buffer

return memory byte function

set graphic pen color

graphic subcommand

play musical notes from string

POINTER
POKE
POLYGON
POS

POT
PRINT
PRINT#
PUDEF
QUIT
RCLR
RDOT
READ
RECORD
REM
RENAME
RENUMBER
RESTORE
RESUME
RETURN
RGR
RIGHTS
RMOUSE
RND
RREG
RSPCOLOR
RSPPOS
RSPRITE
RUN
RWINDOW
SAVE
SCALE
SCNCLR
SCRATCH
SCREEN
SET

SGN

SIN
SLEEP
SLOW
SOUND
SPC
SPRCOLOR
SPRDEF
SPRITE
SPRSAV
SQOR
STEP
STOP
STRS
SYS

TAB

TAN
TEMPO
THEN

TO

TRAP
TROFF
TRON
TYPE
UNTIL
USING

Token =

Token

Token =
Token =
Token =
Token =
Token =
Token =
Token =
Token =
Token =
Token =

Token

Token =
Token =

Token
Token
Token

Token =

Token

Token =

Token

Token =

Token

Token =

Token
Token
Token

Token =
Token =

Token

Token =
Token =
Token =
Token =
Token =
Token =
Token =
Token =
Token =
= A6

Token
Token

Token =
Token =

Token
Token
Token

Token =

Token

Token =
= A3

Token
Token
Token
Token
Token
Token
Token

Token =
Token =

Token

Token =

CE, 0A
97
FE, 2F
B9
CE, 02
99
98
DD
FE, 1E
CD
DO
87
FE, 12
8F
F5
F8
8C
D6
8E
cc
(of)
FE, 3F
BB
FE, 09
CE, 07
CE, 05
CE, 06
8A
CE, 09
94
E9
ES
F2
FE, 2E
FE, 2D
B4
BF
FE, OB
FE, 26
DA

FE, 08
FE, 1D
FE, 07
FE, 16
BA

= A9

90
c4
9E

co
FE, 05

= A7

A4
D7
D9
D8
FE, 27
FC
FB

address of string var function
change memory byte
draw graphic polygon
text cursor position function
return paddle position
display data on text screen
send data to channel (file)
define print-using symbols
(currently unimplemented)
(currently unimplemented)
(currently unimplemented)
read program pre-defined program data
set relative disk file record pointer
BASIC program comment
rename disk file
renumber BASIC program lines
set DATA pointer, subcommand
resume BASIC program after trap
end of subroutine call
(currently unimplemented)
rightmost substring function
read mouse position
pseudo random number function
return processor registers after SYS
return sprite color function
return sprite position function
return sprite parameter function
run BASIC program from memory or disk
return text window parameter function
save BASIC program to disk
(currently unimplemented)
erase text or graphic display
delete disk file
set parameters or open graphic screen
set system parameter, subcommand
return sign of number function
trigonometric sine function
pause BASIC program for time period
set system speed to minimum
perform sound effects
skip spaces in printed output
set multicolor sprite colors
(currently unimplemented)
set sprite parameters
set or copy sprite definition
Square root function
for-next step increment
halt BASIC program

string representation of number function

call ML routine

tab position in printed output

trigonometric tangent function

set tempo (speed) of music play

if/then/else clause
(subcommand)

define BASIC error handler

BASIC trace mode disable

BASIC trace mode enable

display sequential disk file

do/loop conditional

define print output format

USR Token = B7 call user ML function

VAL Token = C5 numeric value of a string function
VERIFY Token = 95 compare memory to disk file

VIEWPORT Token = FE, 31 (currently unimplemented)

VOL Token = DB set audio volume

WAIT Token = 92 pause program pending memory condition
WHILE Token = ED do/loop conditional

WIDTH Token = FE,1C (currently unimplemented)
WINDOW Token = FE, 1A set text screen display window

XOR Token = CE, 08 logical xor function

3.1.3. BASIC 10.0 COMMAND AND FUNCTION DESCRIPTION

ABS -- Absolute wvalue function
ABS (expression)

The ABSolute value function returns the unsigned value of the numeric
expression.

X = ABS (1) Result is X = 1
X = ABS(-1) Result is X = 0
AND -- Boolean operator

expression AND expression

The AND operator returns a numeric value equal to the logical AND of
two numeric expressions, operating on the binary value of signed
16-bit integers in the range (-32768 to 32767). Numbers outside this
range result in an 'ILLEGAL QUANTITY' error.

X = 4 AND 12 Result 1is X=4
X = 8 AND 12 Result is X=8
X = 2 AND 12 Result 1s X=0

In the <case of logical comparisons, the numeric value of a true
situation 1s -1 (equivalent to 65535 or SFFFF hex) and the numeric
value of a false situation is zero.

X = ("ABC"="ABC") AND ("DEF"="DEF") Result is X=-1 (true)
X = ("ABC"="ABC") AND ("DEF"="XYZ") Result is X= 0 (false)
APPEND -- Open a disk file and prepare to append data to it
APPEND# logical file number, "filename" [,Ddrive] [<ON|,>Udevice]

Opens filename for writing, and positions the file pointer at the end
of the file. Subsequent PRINT# statements to the logical file number
will cause data to be appended to the end of this file. If the file
does not exist, it will be created.

APPEND#1, "filename"
APPEND#1, (file$), ON U (unit)

ASC —-- PETSCII value function
ASC (string)

This function returns the PETSCII numeric value of the first
character of a string. The PETSCII value of an empty (null) string is
zero. This function is the opposite of the CHRS function. Refer to the
Table of PETSCII Character Codes.

X = ASC("ABC") Result is X=65
X = ASC("") Result is X=0
ATN -- Arc tangent function

ATN (expression)

This function returns the angle whose tangent is the value of the
numeric expression, measured 1in radians. The result is in the range
of -PI/2 to PI/2 radians.

X = ATN(45) Result is X=1.54050257

To get the arc tangent of an angle measured in degrees, multiply the
numeric expression by PI/180.

AUTO -- Enable or disable automatic line numbering
AUTO [increment]

Turns on the automatic line numbering feature which eases the job of
entering programs by typing the line numbers for the user. As each
program line 1is entered by pressing <RETURN> the next line number is
printed on the screen, with the cursor in position to begin typing
that line. The increment parameter refers to the increment between
line numbers. AUTO with no increment given turns off auto line
numbering. AUTO mode is also turned off automatically when a program
is RUN. This statement is executable only in direct mode.

AUTO 10 automatically numbers line in increments of ten.

AUTO 50 automatically numbers line in increments of fifty.
AUTO turns off automatic line numbering.
BACKGROUND -- Set the background color of the display

BACKGROUND color

Sets the screen background color to the given color. The color given
must be in the range (0-15). See the Color Table.

BACKUP -- Backup an entire disk from one drive to another
BACKUP Dsource drive TO Ddestination drive [<ON|,>Udevice]

This command copies all the files on a diskette to another on a dual
drive system only. It cannot backup diskettes using CBM serial bus
type drives, for example. If the destination diskette is unformatted,
BACKUP will automatically format it. BACKUP copies every sector, so

any data already on the destination diskette will be overwritten. To
copy specific files from one drive to another, use the COPY command.

NOTE: This command can only be used with a dual disk drive, such as
the built-in C64DX drive and optional F0l6-type expansion drive. To
backup diskettes wusing different drives, such as the built-in drive

and a 158l-type serial bus drive, use a utility program.

BACKUP DO to D1 Copies all files from the disk in
drive 0 to the disk in drive 1.

BACKUP DO TO D1, ON U9 Copies all files from drive 0 to
drive 1 in disk drive unit 9.

BANK -- Set the memory bank number for PEEK, POKE, SYS, WAIT, LOAD, SAVE
BANK memory bank
[*** THIS COMMAND MIGHT CHANGE ***]

This command should be used before and BASIC command that has an
address parameter. The address parameters are limited to the range
(0-65535, S$0000-$FFFF hex). The BANK command tells the computer which
64K byte memory bank the location you want is in.

The memory bank parameter 1is number from 0-255. Refer to the System
memory map to see what is in each bank. A BANK number greater than
127 (i.e., has 1ts most significant bit set) means "use the current
system configuration", and must Dbe used to access an I/0 location.

BASIC defaults to BANK 128.

For examples, see PEEK, POKE, etc.

BEGIN/BEND -- Extend an IF clause over more than one line

BEGIN/BEND are used to define a block of code which is considered by
the IF statement to be one statement.

The normal usage of IF/THEN/ELSE would be along the following lines:
IF boolean THEN statement(s) : ELSE statement (s)

The main restriction 1is that the entire body of the IF/THEN/ELSE

construct <can only occupy one line. BEGIN/BEND allows either the

'"THEN' or the 'ELSE' clause to run on for more than one line.

IF boolean THEN BEGIN: statements...

statements. ..

statements. .. BEND : ELSE BEGIN
statements. ..

statements. .. BEND

Remember, however, that this is only a way to extend the body for more
than one line: all other 'IF/THEN' rules apply. For example:

100 IF x=1 THEN BEGIN : a=5
110 : b=6

120 : c=7

130 BEND : print "ah-ha!"

In the above example, "ah-ha!" would be printed ONLY if the expression
'x=1' is TRUE, because the print statement is on the same logical line
as the THEN clause.

It is bad practice to GOTO a line in the middle of a BEGIN-BEND block.
If BEGIN or BEND is encountered outside of an active IF statement, it
is ignored.

BLOAD -- loads a binary disk file into memory
BLOAD "filename" [,Bbank] [,Paddress] [<ON]|,>Udevice]

Used to load a machine language program or other binary data (such as
display pictures or sprite data) into memory. If a load address 1is
not given, the load address given in the disk file will be used. If a
bank number is not given, the bank given in the last BANK statement
will be used. If a load overflows a bank (that is, the load address
exceeds 65535 (SFFFF)), an 'OUT OF MEMORY' error is reported. Also see
the LOAD command.

BLOAD "sprites", P(dec("600")), BO

BOOT -- Load and execute a program

BOOT
BOOT SYS
BOOT filename [,Bbank] [,Paddress] [,Ddrive] [<ON|,>Udevice]

BOOT without a filename given causes the computer to look for a BASIC
program called AUTOBOOT.C65* on the indicated diskette, LOAD it and
RUN it (just like RUN "AUTOBOOT.C65*").

BOOT with a filename given will cause the executable binary file to be
BLOADed and executed beginning at the load address. If a load address
is not given, the file will be loaded and execution begun at the
address stored on disk.

BOOT SYS is a special command that copies the "home" sector (the very
track and sector) of the C64DX built-in drive into memory at address
$400 to $5FF (one physical sector, 512 bytes) and perform a machine
language JSR (Jump SubRoutine) to it. It has the same function as
turning on your C64DX while holding down the ALT key. It is used to
boot an alternate operating system from either a CBM 3.5" diskette or
an MSDOS (720K) diskette. If used in a BASIC program, and it fails,
the system can Dbe corrupted. BOOT SYS does *not* use the normal DOS
to access the disk.

BOOT Loads & runs BASIC program called
AUTOBOOT.C65* on system disk.

BOOT U9 Loads & runs BASIC program called
AUTOBOOT.C65* on disk unit 9.

BOOT "ml1" Load & executes machine language
program called ML, starting at address
stored on disk.

BORDER —-- Set the exterior border color of the display
BORDER color

Sets the screen border color to given color. The color must be in the
range (0-15). See the Color Table.

BOX -- Draw a 4-sided graphical shape
BOX x0,vy0, x1,y0, x0,vyl, x1,yl [,solid]

Requires two line segments to be specified, the order of which
determines the shape drawn. The shape 1is drawn in the currently
specified PEN color, on the currently specified SCREEN. The above
command will draw the following shape:

But if the order of the coordinates were given as:
BOX x0,y0, x1,y0, x1,yl, x0,yl

a "bowtie" shape would be drawn. See the sample program at SCREEN.

BSAVE -- Save an area of memory in binary disk file

BSAVE "[@]filename", Pstart adr TO Pend adr [,Bbank] [,Ddrive]
[<ON |, >Udevice]

BSAVE copies an area of memory into a Dbinary disk file called
"filename", starting at start adr and ending at end adr-1 (i.e.
end adr must Dbe one more than actual last address saved). If a bank
number is not given, the bank given in the last BANK statement will
be used. end adr must be greater than start adr, and area to be saved
must be limited to the indicated memory bank. You cannot save data
from more than one bank at a time. start adr is saved on disk as the
load address. 1If filename already exists on the designated diskette,
memory is NOT saved and a 'FILE EXISTS' error is reported. Preceding
the filename with an '@'-sign will allow you to overwrite an existing
file, but see the cautions at DSAVE.

BSAVE "sprites"™, P(dec("600")) TO P(dec("800"™)), BO

BUMP -- Sprite collision function
BUMP (type)

This function return a numeric summary of sprite <collisions
accumulated since the last time the BUMP function was used.

You can use the COLLISION command to set up a special routine in your
program to receive control whenever a sprite BUMPs into something, but
a particular COLLISION does not have to be enabled to use BUMP. See
the COLLISION command.

To evaluate sprite <collisions, where a BIT position (0-7) in the
numeric result corresponds to a sprite number (0-7):

BIT position: 4 3210
L
00101

o —
o — O
o — U

BUMP value in binary: = 5 decimal
BUMP (1) returns a value representing sprite-to-sprite collisions.
BUMP (2) returns a value representing sprite-to-data collisions.

X = BUMP (1) Result is X=3 if sprites 0 & 1 collided,
as shown above. (binary 101 = 5 decimal).

Note that more than one collision can be recorded, in which case you
should evaluate a sprite's position wusing the RSPPOS function to
figure out which sprite collided with what. BUMP is reset to zero
after each use.

BVERIFY -- Compare a binary disk file to an area of memory
BVERIFY "filename" [, Paddress] [,Bbank] [,Ddrive] [<ON|,>Udevice]

BVERIFY compares a binary disk file called "filename" to an area of
memory. In direct mode, 1if the areas contain the same data the message
"OK" 1s displayed, and if the data differs the message 'VERIFY ERROR'
is displayed.

In program mode, an error 1s generated 1f a mismatch is found
otherwise the program continues normally. The comparison starts with
the address given, else it starts at the address stored on disk. The
comparison ends when the last byte is read from the disk file.

If a bank number 1s not given, the Dbank given in the last BANK
statement will be used. The ending address 1s determined by the
length of the disk file. The comparison halts on the first mismatch or
at the end of the file. The area to be compared must be confined to
the indicated memory bank.

BVERIFY "sprites", P(dec("600")), BO

CATALOG -- see DIR (DIRECTORY) command

CHANGE -- Find text in a BASIC program and change it.
CHANGE :stringl: TO :string2: [,line range]
CHANGE "stringl" TO "string2" [,line range]

This is a direct (edit) mode command. CHANGE looks for all occurrences
of stringl in the program, displays each line containing stringl with
the target string highlighted, and prompts the user for one of the
following:

Y<RETURN> Yes, change it and look for more
N<RETURN> No, don't change it, but look for more
*<RETURN> Yes, change all occurrences from here on
<RETURN> Exit command now, don't change anything

Any character can be used for the string delimiter, but there are side

effects: see comments at FIND command. If the line number range is not
given (see LIST for description of range parameter), the entire
program is searched.

CHAR -- Draw a character string on a graphic screen
CHAR column, row, height, width, direction, "string" [,charsetadr]
[*** THIS IS SUBJECT TO CHANGE ***]

CHAR displays text on a graphic screen at a given location. The
character height, width, and direction are programmable. The
parameters are defined as:

column: Character position:
For 320 wide screens, 0-39
For 640 wide screens, 0-79
TOow: Pixel line:
For 200 line screens, 0-199
For 400 line screens, 0-399

height: Multiple of 8-bit character height:
1= 8 pixels high, 2= 16 pixels, etc.
width: Multiple of 8-bit character width:
1= 8 pixels high, 2- 16 pixels, etc.
direction: Bit mask: BO= up
Bl= right
B2= down
B3= left

The string can consist of any printable character, as defined by the
VIC character set. Non-text characters are ignored. If the address
of the character set is not given, the upper/lower ROM character set
is used ($29800) .

CHAR 18,96, 1,1,2, "C65D", DEC("9000"™)

The above example will draw the characters "C65D" in the center of a
320x200 pixel screen using the system's uppercase/graphic character
set.
CHRS$ -- Character string function

CHRS (value)
This function returns a string of one character having the PETSCII
value specified. This function is the opposite of the ASC function.
It's often wused in PRINT strings to output data that is not visible,
such as control <codes and escape sequences. Refer to the Table of
PETSCII Character Codes.

PRINT CHRS (27)"Q"; CHR$ (27) 1is the escape character.
This statement performs the
clear-to-end-of-line escape function.

CIRCLE -- Draw a circle on a graphic screen

CIRCLE x center, y center, radius [,solid]

The CIRCLE command will draw a circle with the given radius centered
at (x center,y center) on the current graphic screen. The circle will
be filled (i.e., a disc) if SOLID is non-zero.

CIRCLE 160,100,50

The above example will draw a circle in the center of a 320x200 pixel
screen (160,100) having a radius of 50 pixels. The aspect ratio of the
screen may cause it to appear as an ellipse, however. See also the
ELLIPSE command.

CLOSE -- Close a logical I/O channel
CLOSE logical channel number

This command closes the input/output channel associated with the given
logical channel number, established by an OPEN statement. In the case
of buffered output (such as the serial bus or RS232) any data in the
device's Dbuffer will be transmitted Dbefore the channel is closed.
Refer to specific I/0 operations for details.

The 1logical channel number 1s required; to close all channels on a
given device, use the DCLOSE command. Note that RUN, NEW, and CLR
commands will initialize the 1logical channel tables but will not
actually close any channels.

CLR -- Clear program variables
CLR

This statement initializes BASIC's variable list, setting all numeric
variables to zero and string variables to null. It also initializes
the DATA pointer, BASIC runtime stack pointer (i.e., clears all
GOSUBs, DO/LOOPs, FOR/NEXT loops, etc.), and clears any user functions
(DEF FNx). Any OPEN channels are forgotten (but a CLOSE is not
performed; don't use if there are any open disk output files). A CLeaR
is automatically performed by a RUN or a NEW command.

CMD -- Set default output channel

CMD logical channel number [,string]
CMD changes the default output device, normally the screen, to that
specified. The logical channel number can be any previously OPENed
write channel, such as one to a disk file, printer, or RS232.
When redirected wvia CMD, all output which normally would go to the
screen (such as PRINT commands, LIST output, DIRECTORY lists, etc.)

is sent to another device or file.

The redirection 1s terminated by CLOSE-ing the CMD channel or

executing a PRINT# to the CMD channel. Some output devices require a
PRINT# to Dbe performed before the CMD channel is closed, such as
printers, to cause the device's Dbuffer to be flushed (i.e.,
displayed) .

Any system error will redirect output back to the system default,
normally the screen, but will not flush nor close the output channel.

If the optional string is given, it is output immediately after the
CMD device 1is established. This feature is normally used to set up
printers (eg., set printer modes via escape codes) or to identify the
output (eg., title printouts).

OPEN 4,4 OPENS device #4, which is the printer.
CMD 4 All normal output now goes to the printer.
LIST The LISTing goes to the printer.
PRINT#4 Set output back to the screen.
CLOSE 4 Close the printer channel.
COLLECT -- Check (validate) disk, delete bad files and free lost sectors

COLLECT [Ddrive] [<ON|,>Udevice]

Refer to the DOS 'V'alidate command. This command will cause the DOS
to recalculate the Block Availability Map (BAM) of the diskette in the
indicated drive, allocating only those sectors being used by wvalid,
properly closed files. All other sectors are marked as "free" and
improper files are automatically deleted.

Note: COLLECT should be used with extreme care, and MUST NOT be used
on diskettes with special boot sectors or direct access (eg., random)
files. In any case, be sure the diskette has been BACKUP-ed first.

COLLISION -- Setup subroutine to handle special events
COLLISION type [,linenumber]
[*** THIS MIGHT CHANGE ***x]

COLLISION 1is wused to handle "interrupt" situations in BASIC, such as
sprites Dbumping into things or lightpen triggers. When the specified
situation occurs, BASIC will finish processing the currently executing
instruction and perform an automatic GOSUB to the linenumber given.

When the subroutine terminates (it must end with a RETURN) BASIC will
resume processing where it left off. Interrupt handling continues
until a COLLISION of the same type but without any linenumber is
specified. More than one type interrupt may be enabled at the same

time, Dbut only one interrupt can be handled at a time (i.e., no
recursion and no nesting of interrupts). The type interrupt can be:

1 = Sprite to sprite collision

2 = Sprite to display data collision

3 = Light pen

Note that what caused an interrupt may continue causing interrupts for
some time unless the situation 1is altered or the interrupt is
disabled. This is especially true for BASIC, which is slow to respond
to interrupts. Use the BUMP and RSPPOS functions to evaluate the
results of sprite collisions, and the LPEN function to evaluate the
position of a light pen.

10 COLLISION 1,90

20 SPRITE 1,1 : MOVSPR 1,100,100 : MOVSPR 1,0#5
30 SPRITE 2,1 : MOVSPR 2,100,150 : MOVSPR 2,180#5
40 DO : PRINT : LOOP

50 END
90 PRINT"BUMP! ";:RETURN

In this example, sprite-to-sprite collisions are enabled (line 10),
and two sprites are turned on, positioned, and made to move (lines

20 & 30). One sprite moves up and the other moves down while the
program does nothing other than print blank lines to the screen (line
40). When the sprite collide, the subroutine at line 90 is called, it

prints "BUMP!", and the computer goes back to printing blank lines.

COLOR -- Enable or disable screen color (character attribute) control
COLOR <ON|OFFEF>

COLOR turns on or turns off the screen editor's attribute handler.
When colors are turned off, whatever character attributes are being
currently displayed (text color, underline, flash, etc.) are "stuck".
The main purpose for doing this 1s to speed up screen handling
(writing to the screen or scrolling the screen) about two times, since
the screen editor no longer has to manipulate the attributes. Note
that only FOREGROUND colors (and special VIC attributes) are affected.

To change screen colors, use the following commands:

FOREGROUND color# Set Foreground color (text)
HIGHLIGHT color# Set Highlight color (text)
BACKGROUND color# Set VIC background color
BORDER color# Set VIC border color
CONCAT -- Concatenate (merge) two sequential disk files

CONCAT "filel"[,Ddrivel] TO "file2"[,Ddrive2] [<ON]|,>Udevice]

CONCAT merges two SEQuential files, appending the contents of "filel"
to "file2". Upon completion, "file2" contains the data of both files,
and "filel" is unchanged. Both files must exist on drives of the the
same unit, and pattern matching is not allowed.

Some disk drives handle CONCAT differently; refer to the DOS manual
for specific details.

CONT -- Continue program execution
CONT

CONTinue is used to re-start a BASIC program that was halted by a STOP
or END statement, or interrupted by the <STOP> key. The program will
resume at the statement following the STOP or END instruction, or at
the statement after the one that was interrupted by the <STOP> key.
CONT 1is typically used during program debugging. You can look at and
alter variables while the program is halted.

Programs halted as a result of an untrapped error condition cannot be
CONTinued. Programs that have Dbeen edited 1n any way cannot be
restarted. Any error condition that occurs since the program was
halted will prevent it from being restarted. Programs that cannot be
restarted via CONT can be restarted with a GOTO, as long as you don't
need to resume execution in the middle of a line of commands and you

recall where the halt occurred.
Note that the <STOP> key can interrupt some commands in mid-execution,

such as file I/0, drawing commands, etc. In such cases, programs may
not run correctly after a CONTinue.

COPY —-- Copy disk files

COPY ["filel"][,Dd1] TO ["file2"][,Dd2] [<ON|,>Udevice]
COPYs a disk file to another disk file. On single drive units, the
filenames must be different. On dual drive units, copying can be
done between two drives on the same unit, and the filenames can be the
same or different. Pattern matching can be used. Copying files from
one unit to a different wunit cannot be done: use a copy utility
program 1in such cases. Only legal type files can be copied; direct
access data, boot sectors, and partitions cannot be copied.
Refer to the DOS manual for your disk drive specific details.

COPY "filel"™ TO (F2$%) Copies "filel" to another file
whose name is in F2$ on the

same drive. Names must differ.

COPY "filel",DO TO D1,U9 Copies "filel" from unit 9
drive-0 to unit 9 drive-1.

COPY DO TO D1 Copies all files from drive-0
to drive-1 on the same unit.

COPY "???.src",DO TO "*",D1 Copies all files on drive-0
matching the pattern to a file
of the same name on drive-1.

COS —-- Cosine function

COS (expression)

This function returns the cosine of X, where X is an angle measured
in radians. The result is in the range -1 to 1.

X = COS (pi) Result is X=-1
To get the cosine of an angle measured in degrees, multiply the
numeric expression by pi/180.
CUT -- Cut a graphic area into a temporary structure
CUT x,vy,dx,dy

[*** NOT YET IMPLEMENTED ***]

DATA -- Define program constant data to be accessed by READ command
DATA [list of constants]

DATA statements store lists of data that will be accessed during

program execution by a READ statement. The DATA statement can appear
anywhere in the ©program, and it is never executed. BASIC keeps a
pointer to the earliest un-READ DATA statement, and data is read
sequentially from first item in a DATA statement to the last item,
from the earliest DATA statement in the program to the last DATA
statement in the program.

The 1list of constants can contain both numeric data (integer or
floating point) and string data, but cannot contain expressions which
must be evaluated (such as 142, DEC("1234"), or CHRS$(13)). Items are
separated by commas. String data need not be enclosed in quotes unless
it contains certain characters, such as spaces, commas, colons,
graphic characters, or control codes. If two commands have nothing
between them, the data will be READ as 0 if numeric or a null string.

The RESTORE command allows you to position BASIC's data pointer to a
specific 1line number. If the program tries to read more DATA than
exists in the program, an 'OUT OF DATA' error results. If a READ
statement's variable type does not agree with the DATA being read, a
'TYPE MISMATCH' error results.

DATA 100, 200, FRED, "HELLO, MOM", , 3.14, ABCl123, -1.7E-9

DCLEAR -- Clear all open channels on disk drive
DCLEAR [Ddrive] [<ON|,>Udevice]

DCLEAR sends the indicated disk drive an 'I'nitialize command. This
clears all open channels, closes all open files, and causes the DOS to
re-read the diskette's Block Allocation Map (BAM). Note that DCLEAR
DOES NOT <close open channels on the computer's side (see the DCLOSE
command) . There are some other side affects caused by this command
with different types of drives -- refer the DOS manual for your disk
drive for specific details.

DCLOSE -- Close a disk file, or close all channels on a device

DCLOSE [#logical file number] [<ON|,>Udevice]
DCLOSE 1is intended to «close a file opened with the DOPEN command.
Specific files can be closed by specifying a logical file number, or
all files on a particular drive can be closed by not specifying a

particular logical file number.

It is possible to close channels on non-disk devices with this command
by specifying only the device number.

DCLOSE#1 Closes the file associated with logical
logical file number 1.
DCLOSE Closes all files currently open on the
default system drive.
DCLOSE U(U2) Closes all channels open to device U2.
DEC -- Decimal value function

DEC (hex string)

This function return the decimal value of a string representing a

hexadecimal number in the range "0000™ +to "FFFF". The result is in
the range 0-65535. If the string contains a non-hexadecimal digit or
is more than four (4) characters 1in length an 'ILLEGAL QUANTITY'
error i1s reported.

VIC = DEC("D0O00™) Result is VIC=53248,
the address of the VIC chip

DEF FN -- Define function
DEF FN name (numeric variable) = numeric_expression
Define a user-written numeric function. The DEF FNx statement must be

executed before the function can be used. Once a function has been
defined, it can be used like any other numeric variable. The function
name is the letters FN followed by any 1legal floating point
(non-integer) variable name. A function can Dbe defined only in a
program.

The numeric variable is a "dummy" variable. It names the variable the
numeric expression which will be replaced when the function is used.
It's not required to be used in the numeric expression, and its value
won't be changed by the function call.

The numeric expression performs the calculations of the function. It
is any legal numeric expression that fits on one line. Variables used
in the expression have their value at the time the function is used.

Functions can be used only by the program which defines them. If one
program chains to another program, the first program's functions
cannot be used (usually a 'SYNTAX ERROR' results). Similarly, if the
program 1s moved 1n any way after the function is defined, the
function cannot be used.

10 DEF FN R(MAX) = INT(RND(O0)*MAX)+1
20 INPUT "MAXIMUM"; MAX
30 PRINT FN R (MAX)

In this example, we've defined a function which will return a pseudo
random number between 1 and whatever MAX is. 1Instead of using the
expression INT (RND(0)*MAX)+1l every time a random number is needed, we
can now use FN R(MAX). When we use FN R(x), the value of 'x' will be
substituted everywhere MAX is used in the function definition.

10 DEF FN I (X) = X+1

20 DEF FN L(Z) = LEN(AS)

30 DEF FN AVG(N) = (TOT*CNT+N)/ (CNT+1)
DELETE -- Delete lines of BASIC program, OoOr

Delete disk files

DELETE [startline] [-[endline]]
DELETE "filespec" [,Ddrive] [<ON|,>Udevice] [,R]

There are two forms of DELETE. The first form is used in direct mode
to remove lines from a BASIC program:

DELETE 75 Deletes line 75
DELETE 10-50 Deletes line 10 through 50 inclusive.

DELETE -50 Deletes all lines from the beginning of
the program up to and including line 50.

DELETE 75- Deletes all lines from 75 to the end of
the program.

The second form is used in program or direct mode to delete a disk
file. See the SCRATCH command.

DELETE "myfile" Deletes the file MYFILE on the system drive.
DIM -- Declare array dimensions
DIM variable(subscripts) [,variable(subscripts)]...

Before arrays of variables can be used, the program must first execute
a DIM statement to establish DIMensions of that array (unless there
are 11 or fewer elements in the array). The statement DIM is followed
by the name of the array, which may be any legal variable name. Then,
enclosed 1in parentheses, put the number (or numeric variable) of
elements 1in each dimension. An array with more than one dimension is
called a matrix. Any number of dimensions may be used, but keep in
mind that the whole list of variables being created takes up space in

memory, and it is easy to run out of memory if too many are used. To
figure the number of variables created with each DIM, multiply the
total number of elements in each dimension of the array. Note: each

array starts with element 0, and integer arrays take up 2/5ths of the
space of floating point arrays.

More than one array can be dimensioned in a DIM statement by

separating the arrays by commas. If the program executes a DIM
statement for any array more than once, the message 'REDIM'D ARRAY' is
reported. It 1s good programming practice to place DIM statements

near the beginning of the program.

10 DIM AS$(40),B7(15),CC%(4,4,4)
| | I

41 elements 16 elements 125 elements
DIRECTORY -- List the files of a diskette
DIR
DIRECTORY ["filespec"] [,R] [,Ddrive] [<ON]|,>Udevice]

A directory 1is a 1list of the names of the files that are on a
diskette. The directory listing consists of the name of the diskette,
the names, sizes, and filetypes of all the files on a diskette, and
the remaining free space on the diskette. The filespec is used to
specify a pattern match string to view selected files. ©Not all disk
drives support the same options or filespecs; refer to your DOS manual
for details. The C64DX allows you to print DIR listings without having
to 'load' the directory; see example below.

The commands DIR, DIRECTORY, and CATALOG have the exact same function.
They can be used in direct or program mode.

DIRECTORY List all files on the diskette
in the default system drive
DIR "*.src", U9 Lists the all the files ending with

".src" on unit 9.

DIR "*,=p",R List all the deleted but recoverable
PRG-type files on the system drive.

OPEN 4,4:CMD 4:DIR:CLOSE 4 Print DIR listing to printer unit 4.
The following program can be used to load the directory into variables

for use within a program. In this case, the filename is simply printed
to the screen:

10 OPEN 1,8,0,"$0:*,P,R" open dir as a file
20 : IF DS THEN PRINT DS$: GOTO 100 abort i1if error
30 GET#1,XS$,XS$ trash load address
40 DO read each line
50 : GET#1,X$,X$: IF ST THEN EXIT trash links, check EOF
60 : GET#1,BLS,BHS get file size
70 : LINE INPUT#1, F$ get filename & type
80 : PRINT LEFTS (FS$S,18) print filename
90 LOOP loop until EOF
100 CLOSE 1 close dir

DISK -- Send a disk command

DISK "command string" [<ON|,>Udevice]

The DISK command is used to send special commands to the DOS via the
disk drive's command channel. The DISK command is analogous to the
following BASIC code:

OPEN 1,n,15: PRINT#1,"command string": CLOSE 1
Not all disk drives understand the same commands. Refer to your DOS

manual for commands and command syntax for your drive. Note that the
drive number, if any, must be included in the command string.

DISK "U0>10" Renumber system drive to 10.

DISR "UO>V"+chr$[0) Turn off write verify

DISK "S0:file",U(n) Scratch "file" on unit n
DLOAD -- Load a BASIC program file from disk

DLOAD "filename" [,Ddrive] [<ON]|,>Udevice]

This command copies a BASIC program from disk into the BASIC program
area of the computer. It can then be edited, DSAVEd, or RUN.

Used 1n program mode, 1t overlays the current program in memory and
begin execution automatically at the first line of the new program.
Variable definitions will be left intact, but any open data files and
the disk command channel will be automatically closed. This is called
CHAINING.

See also RUN. Use BLOAD to load binary or machine language data.

DLOAD "myprogram" Searches the default system disk drive
for the BASIC program "myprogram",
loads it, and relinks it.

DLOAD (F$),U9 LOADs a program whose name is in F$
from disk unit 9.

DMA -- Perform a DMA operation
DMA command [,length,source(l/h/b),dest(1/h/b),subcmd,mod(1/h) [,...]]
[*** THIS COMMAND IS SUBJECT TO CHANGE ***]

The DMA command defines and executes a Direct Memory Access operation.
The parameters are used to construct a DMA list, which is then passed
to the DMA processor for execution. Refer to the DMA chip
specification for details. Chained DMA commands are not allowed, but
multiple DMA commands can Dbe given and the DMA handler will set up
and execute each one, one at a time. Refer to the system memory map to
find out where things are.

Because this command directly accesses system memory, extreme care
should be taken in its use. Changing the wrong memory locations can
crash the computer (press the reset button to reboot).

DMA 3, 2000, AsC("+"), 0, DEC("800M™), O Fill screen with '+'
pMA O, 2000, DEC("800"™), 0O, DEC("8000™), 1 Copy screen to $18000
DMODE -- Set graphic display mode

DMODE jam, comp, inverse, stencil, style, thickness
[*** THIS COMMAND IS SUBJECT TO CHANGE ***]

Jjam 0
complement 0
inverse 0-
stencil 0
style 0
thickness 1

DO/LOOP/WHILE/UNTIL/EXIT -- Program loop definition and control

DO [UNTIL boolean expression | WHILE boolean expression]
statements [EXIT]

LOOP [UNTIL'boolean_expression | WHILE boolean expression]

Performs the statements Dbetween the DO statement and the LOOP
statement. If no UNTIL or WHILE modifies either the DO or the LOOP
statement, execution of the intervening statements continues
indefinitely. If an EXIT statement is encountered in the body of a DO
loop, execution 1s transferred to the first statement following the
nearest LOOP statement. Do loops may be nested, following the rules
defined for FOR-NEXT loops. If the UNTIL parameter is used the program
continues looping wuntil the boolean argument is satisfied (becomes
true). The WHILE parameter is Dbasically the opposite of the UNTIL
parameter: the program continues looping as long as the boolean
argument is TRUE. An example of a boolean argument is A=1, or G>65.

DO UNTIL X=0 or X=1 This loop will continue
statements until X=0 or X=1. If
LOOP X=0 or 1 at beginning

the loop won't execute.

10 A$="": DO GETKEY AS$: LOOP UNTIL AS$="Q" This will loop until
the user types 'Q'

10 DOPEN#1,"FILE" This program will
20 C=0 count the number of
30 DO: LINEINPUT#1,AS$: C=C+1: LOOP UNTIL ST lines in FILE

40 DCLOSE#1
50 PRINT"FILE CONTAINS";C;" LINES."

DOPEN -- Open a disk file
DOPEN#1f,"filename[,<S|P>]"[,L[reclen]] [,W] [,Ddrive] [<ON]|,>Udevice]

This command OPENs a file on disk for reading or writing. If is the
logical file number, which vyou will use in PRINT#, INPUT#, GET#,
RECORD#, and DCLOSE# commands to reference the channel to your file.
The filename is required. The defaults are to OPEN a SEQuential file
for Reading, in which case the file must exist or a 'FILE NOT FOUND'
error results. To create an file and write to 1t, wuse the 'W'rite
option. 'FILE EXISTS' error 1is report 1if an output file already
exists. To read or write a RELative file, use the 'L'ength option. The
'reclen' record length is required only when creating a relative file.
For more information regarding Relative files, see the RECORD command
and refer to your DOS manual. See also APPEND.

See the OPEN command for a discussion about channel and device
numbers.

DOPEN#1, "readfile" Opens sequential READFILE for reading.
DOPEN#1, "writefile",W Creates & opens seq WRITEFILE for writing.
DOPEN#1,"file,P",U(u) Opens a PRoGram type file for reading on unit U

DOPEN#1, (rf$),L Open existing relative file whose name's in RF$
DOPEN#a, "rel"™,L80 Create a relative file with record length of 80
DPAT -- Set graphic draw pattern

DPAT type [, # bytes, bytel, byte2, byte3, byte4]

[*** THIS COMMAND IS SUBJECT TO CHANGE ***]

type 0-63
bytes 1-4
bytel 0-255
byte2 0-255
byte3 0-255
byted 0-255
DSAVE -- Save a BASIC program into a disk file
DSAVE "[@]filename" [,Ddrive] [<ON|,>Udevice]

This command copies a BASIC program in the computer's BASIC memory
area into a PRoGram-type disk file. TIf the file already exists, the
program is NOT stored and the error message 'FILE EXISTS' is reported.
If the filename 1is preceded with an '@', then if the file exists it
will Dbe replaced by the program in memory. Because of some problems
with the 'save-with-replace' option on older disk drives, using this

option is not recommended if you do not know what disk drive is being
used. Use the DVERIFY to compare the program in memory with a program
on disk.

To save a binary program, use the BSAVE command.

DSAVE "myprogram" Creates the PRG-type file MYPROGRAM
on the default system disk and copies
the BASIC program in memory into it.

DSAVE "@myprogram" Replaces the PRG-type file MYPROGRAM
with a new version of MYPROGRAM. If
MYPROGRAM doesn't exist, it's created.

DSAVE (F$),U9 Saves a program whose name is in F$
on disk unit 9.
DVERIFY -- Compare a program in memory with one on disk
DVERIFY "filename" [,Ddrive] [<ON|,>Udevice]
This command 1is Jjust like a DLOAD, but instead of LOADing the BASIC
program file into computer memory the data is read from disk and
compared to computer memory. If there's any difference at all a
'VERIFY ERROR' is reported.
Note: If the BASIC program 1in memory is not located at the same
address as the version on disk was SAVEd from, the files will not
match even if the program is otherwise identical. The comparison ends
when the last byte is read from the disk file.

Use the BVERIFY command to compare memory with binary files.

DVERIFY "myprogram"

Good: SEARCHING FOR 0O:myprogram Bad: SEARCHING FOR 0O:myprogram
VERIFYING VERIFYING
OK ?VERIFY ERROR

ELLIPSE -- Draw an ellipse on a graphic screen
ELLIPSE x center, y center, x radius, y radius [,solid]

The ELLIPSE command will draw an ellipse with the given radii centered
at (x_center,y center) on the current graphic screen. The ellipse will
be filled (i.e., a disc) if SOLID is non-zero.

ELLIPSE 160,100,65,50
The above example will draw an ellipse in the center of a 320x200
pixel screen (160,100) having radii of (65,50) pixels. The aspect

ratio of the screen may cause it to appear as an circle, however. See
also the CIRCLE command.

ELSE -- See IF/THEN/ELSE

END -- Define the end of program execution

END
The END statement terminates program execution. It does not close
channels or files, and it does not clear any variables or reset any

pointers. An END statement does not need to be put at the last line of
a program.

The CONTinue command can be used to resume execution with the next
statement following the END statement. See also the STOP command.

ENVELOPE -- Define musical instrument envelopes
ENVELOPE n, [, [atk] [, [dec] [, [sus] [, [rel] [,[wf] [,pw] 11111

Nt e e e et et eeeeenn Envelope number (0-9)
atk 0 ... Attack rate (0-15)
dec Decay rate (0-15)
SUS v vt e oenennn Sustain rate (0-15)
rel Release rate (0-15)
L Waveform: 0 = triangle

1 = sawtooth

2 = pulse (sqgquare)

3 = noise

4 = ring modulation
) Pulse width (0-4095)

[*** THIS COMMAND IS SUBJECT TO CHANGE ***]

A parameter that is not specified will retain its current value. Pulse
width applies to pulse waves (wf=2) only and is determined by the
formula (pwout = pw/40.95 %), so that pw = 2048 produces a square wave
and values of 0 or 4095 produce constant DC output. The C64DX

initializes the ten (10) tune envelopes to:

n A D S R wf pw instrument
ENVELOPE o, 0, 9, 0, 0, 2, 15306 piano
ENVELOPE 1,12, 0,12, 0, 1 accordion
ENVELOPE 2, 0, 0,15, 0, O calliope
ENVELOPE 3, 0, 5,5, 0, 3 drum
ENVELOPE 4, 9, 4, 4, 0, O flute
ENVELOPE 5 0, 9, 2, 1, 1 guitar
ENVELOPE 6, 0, 9, 0, 0, 2, 512 harpsichord
ENVELOPE 7, 0, 9, 9, 0, 2, 2048 organ
ENVELOPE 8, 8, 9, 4, 1, 2, 512 trumpet
ENVELOPE 9, 0, 9, 0, 0, O xylophone

ERASE -- Delete disk files
ERASE "filespec" [,Ddrive] [<ON|,>Udevice] [,R]

This command 1is identical to DELETE and SCRATCH. See the SCRATCH
command for details.

ERASE "myfile" Deletes the file MYFILE on the system drive.

ERRS -- Error message function
ERRS (error number)

This function returns a string which 1is the BASIC error message
corresponding to the given error message. If the given number is too
small (less than 1) or too large (greater than 41) an 'ILLEGAL
QUANTITY' error is reported.

This function is usually used to display a BASIC error condition in a
TRAP routine, using the BASIC error word ER as the error number.
Note that when ER=-1, no BASIC error has occurred and ERRS$(-1) results
in an 'ILLEGAL QUANTITY' error.

See the example at TRAP.

EXIT -- See DO/LOOP/WHILE/UNTIL/EXIT

EXP -- Function to return e’x

EXP (number)
This function returns the numeric value of e (2.71828183), the base of
natural logarithms) raised to the power of given number. If the

number is greater than 88.0296919 an 'OVERFLOW' error is reported.

X = EXP(4) Result is X=54.5981501

FAST -- Set system speed to 3.58MHz

FAST is the default state of the system. FAST is used to restore this
state following direct access of "slow"™ I/0 devices such as the SID
sound chips.

FETCH -- (see the DMA command)

FILTER -- Define sound filter parameters
FILTER [freq] [, [lp] [, [bpl [, [hp]l [,res] 11]
freqg Filter cut-off frequency (0-2047)
lp ..ot Low pass filter on (1) off (0)
bp Band pass filter on (1), off(0)
hp High pass filter on (1), off(0)
res Resonance (0-15)

[*** THIS COMMAND IS SUBJECT TO CHANGE ***]

Unspecified parameters result in no change to the current value. The

filter output modes are additive. For example, how low pass and
high pass filters can be selected to produce a notch (or band reject)
filter response. For the filter to have an audible effect at least

one filter output mode must be selected and at least one voice must be
routed through the filter.

FIND -- Find text in a BASIC program.

FIND :string: [,line range]
FIND "string" [,line range]

This 1s a direct (edit) mode command. FIND looks for all occurrences
of string in the program and displays each line containing string,
with string highlighted. Use the <C=> key to slow the display, or the
<NO-SCROLL> key to pause the display. Press <STOP> to cancel.

Any character can be used for the string delimiter, but there are side
effects. Using a non-quote delimiter will <cause the string to be
tokenized, and FIND will find only tokenized strings in the program
that match. Using a quote character as the delimiter will cause the
string to be interpreted as plain PETSCII, and any matches found will
therefore Dbe plain PETSCII. Searching for some tokens such as DATA
statements may require the use of colons as delimiters due to the
special affect these commands have upon the interpreter.

If the 1line number range is not given (see LIST for description of
range parameter), the entire program is searched.
FN xx -- User defined function

FN xx (expression)

The result of this numeric function is determined by the BASIC program
in a DEF FN statement. See the example at DEF FN.

FOR/TO/STEP/NEXT -- Program loop definition and control

FOR index = start TO end [STEP increment]

|
NEXT index [, index]

This command group performs a series of instructions a given number of
times. The loop 1index 1is a floating point (non-integer) variable
which will initially be set to the start value and be incremented by
the STEP increment when the NEXT statement is encountered. The loop
continues until the index exceeds the end value at the NEXT statement.

The start, end, and increment values can be numeric variables or

expressions. If the STEP increment is not specified, it is assumed to
be one (l1). The STEP increment can be any value, positive, negative,
or non-integer. If the STEP increment is negative, the loop continues

until the index is less than the end value at the NEXT statement.

Note that, regardless of the start, end, or increment values, the loop
will always execute at least once. The index can be modified within
the loop, but it is bad practice to do so. It is also bad practice to
GOTO a 1line inside a loop structure, or to similarly jump out of a
loop structure (which can cause an 'OUT OF MEMORY' error).

Loops may be nested. If too many are nested, an 'OUT OF MEMORY' error
is reported (depends upon stack size, room for about 28 nested loops).

The index variable can be omitted from the NEXT statement, in which
case the NEXT will apply to the most recent FOR statement. If a NEXT
statement is encountered and there is no preceding FOR statement, the

error 'NEXT WITHOUT FOR' is reported.

10 FOR L = 1 TO 10

20 PRINT L

30 NEXT L

40 PRINT "I'M DONE! L = "L

This program prints the numbers from one to ten, followed by the
message I'M DONE! L = 11.

10 FOR L = 1 TO 100

20 FOR A = 5 TO 11 STEP .5
30 NEXT A

40 NEXT L

This program illustrates a nested loop.

FOREGROUND -- Set the text color of the display
FOREGROUND color

Sets the text color to the given color index. Color must be in the

range (0-15). See the Color Table. COLOR must be ON (see the COLOR
command) .
FRE -- Free byte function
FRE (x)
This function returns the number of available ("free") bytes in a

specified area.

PRINT FRE (0) Shows the amount of memory left in the program area,
C64DX bank 0

X = FRE (1) X= the amount of available memory in variable area
C64DX bank 1. This causes a "garbage collect" to

occur, a process which compacts the string area.

X = FRE (2) X= the number of expansion RAM banks present.

GCOPY -- Copy a graphic area

[*** NOT YET IMPLEMENTED ***]

GENLOCK -- Enable or disable video sync mode & colors

GENLOCK ON [,color#]...
GENLOCK OFF [,color#,R,G,B]...

To enable video sync mode and specify which colors are affected, use
the GENLOCK ON command, and list the palette color indices (0-255)
which will display external video.

To disable video sync mode and restore the associated palette colors
use the GENLOCK OFF command, and list the color index and its RGB
values to restore them (see the SET PALETTE command for details). Also

see the PALETTE RESTORE command.

GET -- Get input data from the keyboard
GET variable list

The GET statement is a way to get data from the keyboard one character
at a time. When the GET is executed, the character that was typed is
received. If no character was typed, then a null (empty) character is
returned, and the program continues without waiting for a key. There
is no need to hit the <RETURN> key, and in fact the <RETURN> key can
be received with a GET. The word GET is followed by a variable name,
usually a string variable. If a numeric were used and any key other
than a number was hit, the program would stop with an error message.
The GET statement may also be put into a loop, checking for an empty
result, that waits for a key to be struck to continue. The GETKEY
statement could also be used in this case. This statement can only be
executed within a program.

10 DO: GET AS$: LOOP UNTIL AS$ ="A"

This line waits for the A key to be pressed to continue.

GETKEY -- Get input character from keyboard (wait for key)

GETKEY variable list
The GETKEY statement is very similar to the GET statement. Unlike the
GET statement, GETKEY waits for the user to type a character on the
keyboard. This lets it be used easily to wait for a single character
to be typed. This statement can only be executed within a program.

10 GETKEY AS

This line waits for a key to be struck. Typing any key will continue
the program.

GET# -- Get input data from a channel (file)

GET# logical channel number, variable list
Used with a previously OPENed device or file to input one character at
a time. Otherwise, it works like the GET statement. This statement can

only executed within a program.

10 GET#1,AS

G064 -- Exit C64DX mode and switch to C64 mode
GO64

This statement switches from C64DX mode to C64 mode. The question 'ARE
YOU SURE?' (in direct mode only) is posted for the user to respond to.
If Y and return is typed then the currently loaded program is lost and
control 1is given to C64 mode. This statement can be used in direct
mode or within a program.

GOSUB —-- Call a BASIC subroutine
GOSUB 1line

This statement 1is 1like the GOTO statement, except that the computer
remembers from where it came. When a line with a RETURN statement is
encountered, the program Jjumps back to the statement immediately
following the GOSUB. The target of a GOSUB statement is called a
subroutine. A subroutine is useful 1if there 1is a section of the
program that can Dbe used by several different parts of the program.
Instead of duplicating the section over and over, 1t can be set up as
a subroutine and called with a GOSUB statement from different parts of
the program. This also make the main part of your program much more
readable. See also the RETURN statement.

Variables are shared with the main program and all subroutines. You
can pass information to, and get information back from, subroutines
by using variables as messengers.

GOSUB statements <can be nested. That 1is, one subroutine can call
another subroutine, and the computer automatically keeps track of
all the calls. It's important not to jump into or out of subroutines
since this can confuse the computer. If too many GOSUBs are nested
(usually cause by Jumping out of them) an 'OUT OF MEMORY' error is
reported because the computer ran out of room to keep track of all
the calls.

10 DIR : GOSUB 100 show directory, check status
20 GOSUB 200 print gap
30 LIST "PROGRAM": GOSUB 100 show listing, check status
40 GOSUB 200 print gap
50 etc...
90 END
99 :
100 REM SUBROUTINE TO CHECK DISK STATUS
110 IF DS THEN GOSUB 200: PRINT "DISK ERROR: ";DS$
120 RETURN
199
200 REM SUBROUTINE TO PRINT A SPACER ON THE SCREEN
210 PRINT
220 FOR I=1 TO 39: PRINT"-";: NEXT
230 PRINT
240 RETURN
GOTO -- Transfer program execution to specified line number

GOTO line number
GO TO line number

After a GOTO statement i1s executed, the next line to be executed will
be the one with the line number following the word GOTO. When used in
direct mode, GOTO 1line number allows starting of execution of the
program at the given line number without clearing the variables.

10 PRINT"COMMODORE"
20 GOTO 10

The GOTO in 1line 20 makes line 10 repeat continuously until STOP is
pressed.

GRAPHIC -- select graphic mode

GRAPHIC CLR
GRAPHIC command# [,args]

Basically this is a modified C64-type SYS command, minus the address.
In the C64DX system, this will represent the ML interface, not the
BASIC 10.0 interface which is implemented in the development system.

[*** THIS COMMAND IS SUBJECT TO CHANGE ***]

GRAPHIC CLR initializes (warm-starts) the BASIC graphic system. It
clears any existing graphic modes, screens, etc. and allows a program
to commence graphic operations from scratch.

HEADER -- Format a diskette
HEADER "diskname" [,Iid] [,Ddrive] [<ON]|,>Udevice]

The HEADER command prepares a new diskette for use, sometimes called
FORMATting a diskette. There are two types of "newing" a diskette -- a
long form and a gquick (or short) form. You must use the long form when
preparing a new diskette for its first use. Thereafter you can use the
quick form.

WARNING: Formatting a diskette (long or short) will destroy all
existing data on the diskette! In direct mode, you are asked to
confirm what you are doing with 'ARE YOU SURE?'. Type 'Y' and press
return to ©proceed, or TYPE ANY OTHER CHARACTER AND PRESS RETURN TO
CANCEL the command. In program mode there is no confirmation prompt.

The long HEADER form requires a diskname and an ID. The diskette will

be completely (re)sectored, zeros written to all blocks, and a new
system track (directory, BAM, etc.) will be created.
HEADER "newdisk",I01 prepares a new diskette

The short HEADER form is performed when the ID option is omitted. The
diskette is assumed to have been previously formatted, and only a new
system track (directory, BAM, etc.) is installed. This is roughly
equivalent to deleteing all the files, but much quicker.

HEADER "makelikenew" re-news an working diskette

The diskname 1is limited to 16 characters and the ID string to two

characters. The same rules apply for the diskname as for a filename.
Some Disk Systems wuse the 1ID string to tell if you have swapped a
diskette in a drive, so it's recommended that the ID string be unique

for each of your diskettes. Some more examples:

HEADER "QUICK"

HEADER "MYDISK", I23

HEADER "RECS", I"FB", U9
HEADER (FILES), I(IDS), U(UNIT)

HELP -- Show the BASIC line that cause the last error

HELP

The HELP command is wused after an error has been reported in a
program. When HELP is typed, the line where the error occurred
listed, with the portion containing the error highlighted. Print

ERRS$ (ER) for the -error message, and print EN or EL for the error
number and error line, respectively. HELP can be used in direct mode
or in program mode. Note that, in the case of many I/O errors, there

is no associated BASIC error. Check ST or DS$ errors in these cases.

HEXS$S -- Hexadecimal value function
HEXS (decimal expression)

This function returns a 4-character string that represents the
hexadecimal wvalue of the numeric decimal expression. The expression
must be in the range (0-65535, S0000-$FFFF hex) or an 'ILLEGAL
QUANTITY' error is reported.

PRINT HEXS$ (10) The string "000A" is printed.
PRINT RIGHTS (HEXS (10),2) The string "0A" is printed.
HIGHLIGHT -- Set the text highlight color of the display

HIGHLIGHT color

Sets the highlight color to the given color index. The color value
must be in the range (0-15). See the Color Table. COLOR must be ON
(see the COLOR command). The highlight color is used in HELP messages

and FIND/CHANGE strings.

IF/THEN/GOTO/ELSE -- Conditional program execution
IF expression <GOTO line | THEN then clause> [:ELSE else clause]

IF...THEN lets the computer analyze a BASIC expression preceded by IF
and take one of two possible courses of action. If the expression is
true, the statement following THEN is executed. This expression can be
any BASIC statement. If the expression is false, the program goes
directly to the next line, unless an ELSE clause is present. The ELSE
clause, 1f present, must be in the same line as the IF-THEN part. When
an ELSE clause is present, 1t is executed when the THEN clause isn't
executed. In other words, the ELSE clause executes when the expression
is FALSE. See BEGIN/BEND to spread the IF statement out over several
lines. An ELSE statement is matched to the closest THEN statement in
the case of nested IF/THEN statements.

The expression being evaluated may be a variable or formula, in which
case it 1is considered true if nonzero, and false if zero. Usually
expressions involve relational operators =, <, >, <=, >=, <>,

50 IF X>0 THEN PRINT "X>0": ELSE PRINT "X<=0"
If X 1is greater than 0, the THEN clause is executed, and the ELSE

clause isn't. If X 1s less than or equal to 0, the ELSE clause 1is
executed and the THEN clause 1isn't.

INPUT -- Get input from the keyboard
[LINE] INPUT ["prompt"<,1;>] variable list

The INPUT statement pauses the BASIC program, prints the prompt string
if present, prints a question mark and a space, and waits for data to
be typed by the user, terminated by a return character. If the prompt
string ends with a comma instead of a semicolon, a question mark and
space is not printed.

Input is gathered and assigned to variables in the variable list. The
type of wvariable must match the type of input typed or a 'TYPE
MISMATCH' error 1is reported. Separate data items typed by the user
must be separated with commas. String data with imbedded spaces or
commas must be surrounded with gquotes. If insufficent data to satisfy
the wvariable-list is typed, two question marks are displayed by the
computer to prompt for additional data to be input. If the computer
does not understand the input (such as the user typing cursor up or
down keys) the computer responds with the message 'REDO FROM START?'
and waits for acceptable data to be entered. Input is limited to 160
characters (two screen lines in 80-column mode), which is the size of
the input buffer.

The INPUT statement can only be executed from within a program.

LINE INPUT allows the program to input a string which includes any
PETSCII character (including colons, commas, imbedded spaces, etc.)
up to but not including a null or return character. There should be
only one string-type variable name in the variable list in this case,
but 1f there are more the computer prompts as usual with two question
marks for more data to assign to the additional variables.

10 INPUT "WHAT'S YOUR FIRST NAME AND AGE"; NAS,A
20 PRINT "YOUR NAME IS ";NAS;" AND YOU ARE";A;" YEARS OLD"

The above INPUT is the traditional BASIC form.

10 LINE INPUT "WHAT'S YOUR ADDRESS"; ADS
20 PRINT "YOUR ADDRESS IS: ";ADS

The above INPUT allows an entire line of data to be assigned to a
string variable, including commas and other common punctuation marks.

10 INPUT "ENTER YOUR NAME HERE: ", NAS
The above INPUT suppresses the traditional '? ' prompt by using a

comma instead of a semicolon after the prompt string. To suppress the
'?'" without a prompt string, make the prompt string null.

INPUT# -- Input data from an I/0 channel (file)

[LINE] INPUT#logical channel number, variable list
The INPUT# command works 1like the INPUT command, except no prompt
string 1is allowed and input 1s gathered from a previously OPENed
channel or file. This command can only be used in a program.
The logical channel number is the number assigned to the device (file)

in an OPEN (or DOPEN) statement. Items in the variable list must agree
with the type of data input, or a 'FILE DATA ERROR' will resuit.

On the C64DX, an End Of File (EOF) condition or bad I/O status will
terminate input, as 1f a return character was received. It's good
practice to examine the I/0O status byte (and the DS disk status for
file I/0) after every I/0 instruction to check for problems or errors.

10 DOPEN#1, "FILE" This program will
20 C=0 count the number of
30 DO: LINE INPUT#1,AS: C=C+1: LOOP UNTIL ST lines in FILE

40 DCLOSE#1

50 PRINT"FILE CONTAINS";C;" LINES."

INSTR -- Get the location of one string inside another string

INSTR (string 1, string 2 [,starting position])
This function searches for the first occurrence of string 2 in
string 1 and returns its location. A value of zero (0) is returned if
no match is found, if either string is null (empty), or if string 2

is longer than string 1.

If the starting position is given, the search begins at that location,
otherwise the search begins at the first character of string 1.

The strings can be literals, variables, or string expressions.

X = INSTR("123456™,"4") Result is X= 0

X = INSTR("123456","X") Result is X= -1

X = INSTR("123123","2") Result is X= 123

X = INSTR("123123","2",3) Result is X=-124
INT -- Greatest integer function

INT (expression)
This function returns the greatest integer less than or equal to the
numeric expression.
JOY —-- Joystick function
JOY (port)

This function returns the state of a Joystick controller in the
specified port.

When port=1 returns position of joystick 1
When port=2 returns position of joystick 2

The value returned is encoded as follows:

Fire = 128 + 1

A value of zero (0) means that the joystick is not being manipulated.
A wvalue of 128 or more means that the fire button is being pressed.
The possible vales returned are:

0 No activity 128 fire
1 up 129 fire + up
2 up + right 130 fire + up + right
3 right 131 fire + right
4 right + down 132 fire + right + down
5 down 133 fire + down
6 down + left 134 fire + down + left
7 left 135 fire + left
8 left + up 136 fire + left + up
KEY -- Enable, disable, display, or define function keys
KEY ON
KEY OFF

KEY [key#, string]

There are 14 function keys available on the C64DX (seven unshifted and
seven shifted). The wuser can assign a string consisting of BASIC
commands, control codes, escape functions, or a combination of each to
function key. The data assigned to a key is typed out when that key is
pressed, Jjust as 1f the characters were typed one by one on the
keyboard. The user can enable ("turn on") or disable ("turn off") the
function keys. When they are disabled, pressing a function key return
that key's normal character code instead of the string assigned to it.
This includes the HELP and (shifted) RUN keys. It is also possible to
redefine the HELP and (shifted) RUN keys, as function keys 15 and 16,
respectively. The system has default assignments for all function
keys. KEY with no parameters displays a listing of the current
assignments for all the function keys.

The maximum length for all the definitions together is 240 characters.
If an assignment would be too big to fit, an 'OUT OF MEMORY' error is
reported and the assignment is not made.

KEY 2, "DIR U9"+CHRS$ (13)

This causes the computer to display the directory from disk unit #9
when function key 2 is pressed. This is equivalent to typing 'DIR U9'
and pressing the <RETURN> key directly. The CHR$(13) is the character
for <RETURN>. Other often wused control codes are CHRS(141) for
'shifted RETURN', CHRS$ (27) for 'ESCape', and CHR$(34) to incorporate a
double quote into a KEY string.

KEY 2, "DIR"+CHRS (34)+"*=P"+CHRS (34)+CHRS (13)
This 1s equivalent to typing DIR"*=P" and pressing <RETURN> at the
keyboard. Note the way quotes can be incorporated into an
assignment. When function key 2 is pressed, a directory of all program
files on the default system disk will be displayed.

KEY OFF

This turns off function key strings. Pressing a function key now would
return the character codes associated with F-keys as on the VIC-20 and

C64 computers. KEY ON would re-enable function key strings, unchanged
from their ©previous assignments. To restore the system default
assignments, reset the computer.

LEFTS -- Get the leftmost characters of a string

LEFTS (string,count)

This function returns a string containing the leftmost 'count' number

of characters of the string expression. Count 1s an numeric
expression in the range (0-255). If count is greater than the length
of the string, the entire string will be returned. If count is zero,

a null (empty) string will be returned.

AS = LEFTS ("123ABC", 3) Result is A$="123"

LEN -- Get the length of a string
LEN (string)

This function returns the number of characters in a string expression.
Nonprinting characters and blanks are counted.

A = LEN ("ABC") Result is A=3

LET -- Assign a value to a variable
[LET] variable = expression

The LET command 1is optional, since the -equal sign by itself is
understood by the computer to mean assignment. Multiple assignments
on LET statements are not allowed.

10 LET A=1: LET B=A+1l: LET C$=" THREE"
20 : D=1: E=D+1: F$=" THREE"
30 PRINT A;B;C$
40 PRINT D;E;F$

Output: 1 2 THREE
1 2 THREE
LINE -- Draw a line on a graphic screen

LINE x0, y0, x1, vyl

LINE draws a line on the currently defined graphic screen with the

currently defined draw modes. The 1line is draw from (x0,y0) to
(x1,vy1).
LIST -- List a BASIC program from memory or disk

LIST [startline] [- [endline]]

LIST "filename" [,Ddrive] [<, |ON>Udevice]

LIST 1is used to view part or all of a BASIC program in memory or all
of a BASIC program on disk (without affecting the program that is

currently in memory) .

The display can be slowed down by holding down the <C=> key or it can
be paused Dby pressing the <NO-SCROLL> key or <CONTROL><S>. A listing
that is paused can be restarted by pressing <NO-SCROLL> again or by
pressing <CONTROL><Q>. The display can be stopped by pressing <STOP>.

If the word LIST is followed by a line number, the computer shows only
that line number. If LIST is typed with two numbers separated by a
dash, the computer shows all lines from the first to the second line
number. If LIST is typed followed by a number and just a dash, it
shows all lines from that number to the end of the program. And if
LIST is typed, a dash, and then a number, all lines from the beginning
of the program to that 1line number are LISTed. By using these
variations, any portion of a program can be examined or easily brought
to the screen for modification. LIST can be used in direct mode or in
a BASIC program.

LIST Shows entire program.

LIST 100- Shows from line 100 until the end of the program.
LIST 10 Shows only line 10.

LIST -100 Shows lines from the beginning until line 100.

LIST 10-200 Shows lines from 10 to 200, inclusive.

LOAD -- Load a program or data into memory from disk
LOAD "filename" [,device number [,relocate flag]]

This command loads a file into the computer's memory. The filename

must be given, and pattern matching may be used. In the case of dual
drive systems, the drive number must be part of the filename. If a
device number is given, the file is sought on that unit, which must be
a disk drive. If a device number is not given, the default system

drive 1is used. See also DLOAD and RUN commands.

The relocate flag is used to LOAD binary files. If the relocate flag
is present and non-zero, the file will be copied into memory starting
at the address stored on disk when the file was SAVEd. See BLOAD. Do
not wuse the relocate flag to 1load BASIC programs: they will be
automatically relocated to the start of the BASIC program area and
relinked.

To compare a program 1in memory to a disk file, use the VERIFY or
DVERIFY command. To compare a binary file, use BVERIFY.

See the discussion at DLOAD regarding CHAINING programs.

LOAD "PROG" Loads BASIC program PROG from the system drive.
LOAD FILES,DRV Loads a program whose name is in the variable
called F$ from the unit whose number is in DRV.
LOAD "0:PROG" 8 Loads BASIC program PROG from unit 8, drive O.
LOAD "BIN", 8,1 Loads a binary file into memory.
LOCATE -- [*** NOT YET IMPLEMENTED ***]
LOG -- Get the natural logarithm of a number

LOG (number)

This function returns the natural logarithm of a numeric expression. A
natural log is a log to the base e (2.71828183). See the EXP function.
To convert to log base 10, divide by LOG(10).

A = LOG(123) Result is A=4.81218436
A = LOG(123) / LOG(10) Result is A=2.08990511
LOOP -- See DO/LOOP/WHILE/UNTIL/EXIT
LPEN -- Get the position of a lightpen

PEN (position)

This function returns the current position of a lightpen on the
screen. When position=0, the X position 1is returned, and when
position=1 the Y position is returned. Note that lightpen coordinates,
like sprite coordinates, are offset from the normal graphic coordinate
map. This means you have to calculate where the lightpen is with
respect to the screen display. The electronics of each lightpen also
introduces a skew which must be factored into your calculations.

The X resolution is limited to every 2 pixels, and will always be an
even number 1in the approximate range (60-320). The Y position is in
the approximate range (50-250). 1If either the X or the Y position is
zero, the lightpen is off-screen.

Note that a lightpen COLLISION need not be enabled to use LPEN. A
bright Dbackground color, such as white, is usually required to
stimulate the light pen. Lightpens only work in game port 1.

10 TRAP 40 We're done if STOP key

15 BACKGROUND 1 Make background color white
16 FOREGROUND 0 Make text color black

20 COLLISION 3,100 Enable lightpen interrupt
30 DO:LOOP Hang here until done

40 END Done
100 COLLISION 3 Got one, don't want more
110 PRINT LPEN(0),LPEN (1) Display lightpen position
120 COLLISION 3,100 Re-enable interrupt

130 RETURN

MIDS$ -- Substring function
MID$ (string, position [,length])

This function can appear on the left or the right side of an
assignment statement:

Case 1: string var = MIDS (string expression, position [,lengthl])

This form returns a piece of another string. The function returns a
string of the specified length taken from the string expression
beginning at the indicated position. The position must be in the range
(1-255), one (1) being the first character. The length can be any
number in the range (0-255), or it can be omitted. If the position
specified is greater than the number of characters in the
string expression, a null (empty) string is returned. If the length is

greater than the number of characters from the given position to the
end of the string expression, or the length is omitted, then all the
rightmost characters beginning at the position are returned.

AS$ = MIDS ("TICTACTOE", 4, 3) Result is AS="TAC"

AS = MIDS ("TICTACTOE", 4) Result is AS$="TACTOE"

AS = MIDS ("TICTACTOE",10,1) Result is AS="" (empty)
Case 2: MIDS$ (string var, position [,length]) = string expression

This form replaces a portion of the string contained in string var
with data from another string expression, beginning at the specified
position 1in the string var. If the length is given only, that many
characters from the string expression are taken, otherwise all the
characters in the string expression will replace characters in the
string var beginning at the position specified. The there are too many
characters to fit in the string var, an 'ILLEGAL QUANTITY' error is
reported. If the length given is zero, no characters will be replaced.

AS="TICTACTOE": MIDS (AS$,4,3)="123456" Result is A$="TICI123TOE"
AS="TICTACTOE": MIDS (AS,4) ="123456" Result is AS$="TIC123456"
AS="TICTACTOE": MIDS (AS,5) ="123456" Result is 'ILLEGAL QUANTITY'
MONITOR -- Enter the built-in machine language monitor

SEE SECTION 3.2 ON THE C64DX MONITOR.

MOUSE —-- Enable or disable the mouse driver

MOUSE ON [,port [,sprite [,position]]]

MOUSE OFF
port = joyport 1, 2, or either (both) (1-3)
sprite = sprite pointer (0-7)
position = initial pointer location (x,VY)
normal, relative, or angular coordinate
defaults to sprite 0, port 2
Eardrare add min/max x/y positions
[*** THIS COMMAND IS SUBJECT TO CHANGE ***]
Mouse ON enables the Dbuilt-in mouse driver. The user must load a
pointer into the proper sprite area ($600-$7FF). The driver assumes

the "hot point"™ 1is the top left corner of the sprite, and does not
allow this point to leave the screen.

Mouse OFF will +turn off the driver and the currently associated
sprite.

Use the RMOUSE function to get the current pointer position and button
status. See the sample program at RMOUSE.
MOVSPR -- Position sprite or set sprite in motion

MOVSPR sprite <,x,y>

Use the SPRITE command to turn on a sprite and MOVSPR to position it.

Sprites are numbered 0-7. The sprite's position can be specified using
one of the following coordinate types:

[+/-1x, [+/-]1y = [relative] position
x#y = angle and speed
X;y distance and angle

Angles are specified as 0-360 degrees, with 0 being straight up.
Speeds are specified as a number of pixels per frame, 0-255. Sprites
are moved through each pixel so that collisions are accurately
detected.

NEW -- Delete program in memory and clear all variables
NEW [RESTORE]

This command erases the entire program in memory and clears all
variables and open channels (but it does NOT properly close open
disk write files -- used DCLOSE or DCLEAR beforehand). NEW also resets
the runtime stack pointer (clears GOSUB & FOR/NEXT stacks), the DATA
pointer, and the PRINTUSING characters.

The BASIC program in memory is lost unless it was previously SAVEd to
disk. If vyou have not entered or loaded any BASIC programs since
typing NEW, the RESTORE option will recover the BASIC program in
memory. But if the BASIC environment has been changed in any way, the
program may not be restored correctly. If BASIC can tell something's
wrong, it will report 'PROGRAM MANGLED'.

NEW can be wused 1in direct (edit) mode or in a program. When it's
encountered in a program, the program terminates.

NEXT -- See FOR/NEXT/STEP and RESUME

NOT -- Get the complement of a number
NOT (expression)

The NOT function returns the complement of an integer in the range
(-32768 to 32767). The function operates on the binary value of signed
16-bit 1integers. An expression outside of this range will cause an
'ILLEGAL QUAUTITY' error.

X = NOT (5) Result is X=-6
X NOT (-6) Result is X=5

NOT is often used in logical comparisons (such as an IF statement) to
invert the result, since -1 (true) is the result of NOT(0) (false),
and 0 (false) is the result of NOT(-1) (true).

X = NOT ("ABC"="ABC") AND ("DEF"="DEF") Result is X= 0 (false)
X = NOT ("ABC"="ABC") AND ("DEEF"="XYZ") Result is X=-1 (true)
OFF -- Subcommand used with various BASIC commands.

ON -- Computed GOTO/GOSUB

ON expression <GOTO|GOSUB> line number list

This 1s a wvariation of the IF <expression> GOTO statement that
branches to one of several line numbers based upon the value of an
expression. The integer value of the evaluated expression determines
which line number in the line number list gets control.

If the expression evaluates to one, the first line number in the list
gets control, if it's two the second line number gets control, and so
on. Fractional parts of the value are truncated (for example, 2.9
becomes 2). If the value is zero or greater than the number of items
in the 1list the computer takes none of the branches and continues on
with the next statement. If the wvalue 1is negative, an 'ILLEGAL
QUANTITY ERROR' is reported.

The ON/GOSUB statement must call the first line number of a subroutine
and the subroutine must end with a RETURN statement. After executing
the subroutine, <control is returned to the statement following the
ON/GOSUB statement.

10 INPUT"ENTER A NUMBER 1-3: ",X
20 ON X GOTO 100, 200, 300

30 PRINT"TOO LOW OR TOO HIGH": RUN
100 PRINT"ONE": RUN

200 PRINT"TWO": RUN

300 PRINT"THREE": RUN

OPEN -- Open a channel to a device or disk file

OPEN logical chnl num, device number [,secondary adr
[,<filespec|command>]]

Before a program can access a device or a file, an I/O channel must be
opened to it to communicate through. When something is opened, you
associate a logical channel number with it, and it is with this number
that all other I/0O statements access the device or file. The OPEN
command can be used in direct (edit) mode or in a program.

The channel number, device number, and optional secondary address are
integers from 0-255. Refer to the device's manual for more
information about what (if any) secondary addresses it uses.

channel: 0-127 return = output return character only
128-255 return = output return + linefeed
device: 0 Keyboard
1 Default system drive

whatever its number is (see SET DEF)
RS232
Screen
-7 Serial bus
(usually reserved for printers)

SN

8-31 Serial bus
(usually reserved for disk drives)

The filespec is the file name in the case of disk files (refer to your
DOS manual for details). Typically, the filename is a string having

the the following form:
[[@|S]drive:] filename [,type] [,mode]

An example would Dbe O0:MYFILE,SEQ,READ to open the sequential file
MYFILE for reading on drive 0. Disk drives usually support some kind
of filename pattern matching. Most disk drives support the following
file types and modes (can be abbreviated to first character):

types: 'S'equential
'P'rogram
'R'elative
'U'ser

modes: 'R'ead
'W'rite
'L'ength (for relative type files)

Some channels or devices accept a command string instead of a filename
when they are opened. An example would be the disk command channel or
the RS232 open/setup command. Refer to the device's documentation.

OPEN 1,8,15,"1" Open CBM disk command channel & send
it the 'I'nitialize command.
OPEN 4,4,7 Open CBM printer channel in upper/lower

case mode.
OPEN 128,2,2,CHRS$(14) Open a 9600 8N1l RS232 channel and
translate CR into CRLF on output.

See also DOPEN, DCLOSE, CLOSE, CMD, GET#, INPUT#, and PRINT#
statements and I/O status variables ST, DS, and DSS.
OR —-- Boolean operator
expression OR expression

The OR operator returns a numeric value equal to the logical OR of two
numeric expressions, operating on the binary value of signed 16-bit
integers in the range (-32768 to 32767). Numbers outside this range
result in an 'ILLEGAL QUANTITY' error.

X =4 OR 8 Result is X=12
In the <case of 1logical comparisons, the numeric value of a true

situation 1is -1 (equivalent to 65535 or SFFFF hex) and the numeric
value of a false situation is zero.

X = ("ABC"="ABC") OR ("DEF"="DEF") Result is X=-1 (true)

X = ("ABC"="ABC") OR ("DEF"="XYZ") Result is X=-1 (true)

X = ("ABC"="XYZ") OR ("DEF"="XYZ") Result is X= 0 (false)
PAINT -- Fill a graphics area with color

PAINT x,y, mode [,color]

X, Y coordinate to begin fill at
mode 0: fill area to edge = color
1: fill area to edge=same as color at x,y

PAINT fills an enclosed graphic area starting at the given coordinate
with the color of the currently defined PEN. The mode parameter
identifies the region to be filled.

[*** THIS COMMAND IS NOT YET IMPLEMENTED ***]

PALETTE -- Define a color

PALETTE [screen#|COLOR], color#, red, green, blue
PALETTE RESTORE

screen# 0-1
color# 0-255

red 0-15
green 0-15
blue 0-15

The PALETTE command can be used to define a color for a logical
graphic screen, set an absolute color, or restore the C64DX VIC-III
default colors. PALETTE can be used in direct mode or in a program.
The VIC-III pre-defines the first 16 colors to the usual C64-type
colors, but vyou <can change them with the PALETTE COLOR command or
restore them all with the PALETTE RESTORE command.

See the sample program after the SCREEN command.

PASTE -- Put a CUT graphic area on the screen
PASTE x,y

[*** NOT YET IMPLEMENTED ***]

PEEK -- Function returning the contents of a memory location
PEEK (address)

This function returns the contents of a memory location. The address
must be an integer in the range of 0-65535 ($0-SFFFF) and the value
returned will be an integer in the range of 0-255 ($0-$FF).

Use the BANK command to specify which 64K memory bank the address is
in. ©Note that a BANK number greater than 127 (i.e., a bank number
with the most significant Dbit set) must be used to address an I/0
location, such as the VIC chip or color memory. Refer to the system
memory map for details. PEEK uses the DMA device to access memory.

Use the POKE command to change the contents of a memory location.
BANK 0: X = PEEK (208) Reads the keyboard buffer index. If
it's empty, X will be zero, otherwise X
will be the number of characters in it.

PEN -- Specify a pen color for drawing on graphic screen

PEN pen, color

pen 0-2
color 0-255

Before vyou can draw anything on a graphic screen,
BASIC what color your PENs are.
colors are using the PALETTE command, then use PEN to associate those
colors with a PEN. Whatever graphic commands you use after a PEN
command will use the PEN you specified.

you have to tell
You should first define what your

PEN 0,1 Put color 1 "ink" into draw pen O

See the sample program after the SCREEN command.

PIC -- Graphic picture subcommand
PLAY -- Play a musical string
PLAY "[Vn,On,Tn,Un,Xn,elements]"

[*** WILL CHANGE TO ADD 2ND SID SUPPORT ***]

The PLAY command lets you select a voice, octave, instrument, volume,

filter, and musical notes. All these parameters are packed into a
string (spaces are allowed for readability).
On = Octave (n=0-6)
Tn = Tune envelope # (n=0-9)
0= piano (defaults)
1= accordion
2= calliope
3= drum
4= flute
5= guitar
6= harpsichord
7= organ
8= trumpet
9= xylophone
Un = Volume (n=0-9)
Vn = Voice (n=1-3)
Xn = filter on (n=1), off (n=0)
Elements:
A,B,C,D,E,F,G Notes, may be preceded by:
F o e e e Sharp
1 Flat
N Dotted
W e e e e e e e Whole note
5 N Half note
[Quarter note
T e et e e e Eighth note
S e e Sixteenth note
R oo, Rest
N Wait for all voices playing to end

(a measure)

Once the music string starts PLAYing,

the computer will continue with

the next statement. The music will continue to play automatically.
Using the 'M'easure command will cause the computer to wait until the
music has up to that point has been played out.

Use the TEMPO command to alter the tempo (speed) of PLAY. ©Note that
the VOLume command can change a PLAY string's volume setting.

POINTER -- Get the address of a variable descriptor
POINTER (variable name)

This function returns the address of an entry in the variable table.
If the wvalue returned is zero, the variable is currently undefined.
The wvariable table is normally in the second RAM bank (BANK 1). See
the section on variable storage for details.

Note that, while the location of a string descriptor will not change,
the location of the actual string in memory changes all the time.
Also, when working with an array name you must specify a particular
element, to which POINTER will return a pointer to that element's
descriptor and not to the array descriptor.

10 AS="FRED" Define AS

20 DESC=POINTER (AS) Lookup AS$ in variable table

30 BANK1l: PRINT PEEK (DESC) Displays the length of AS$
PORE -- Write a byte to memory location

POKE address, byte [,byte ...]

POKE 1is wused to write one or more bytes into one or more memory
locations. The address must be an integer in the range of 0-65535
($0-SFFFF) and the value to be written must be an integer in the range
of 0-255 ($0-SFF). If more than one byte is given, it will be written
into successive memory locations.

Use the BANK command to specify which 64K memory bank the address 1is

in. ©Note that a BANK number greater than 127 (i.e., a bank number
with the most significant bit set) must be used to address an I/O
location, such as the VIC chip or color memory. Refer to the system

memory map for details. Also note that, unlike previous CBM computers,
POKEs to a ROM location will not "bleed through" into a corresponding
RAM location. POKE uses the DMA device to access memory.

Use the PEEK function to read a byte from a memory location.

Because this command directly accesses system memory, extreme care
should be taken 1in its use. Altering the wrong memory location can

crash the computer (press the reset button to reboot).

BANK 0: POKE 208,0 Resets location 208 ($000DO),
clearing the keyboard buffer.

BANK 128: POKE DEC("D023"),1,2,3 Sets the VIC extended background
colors to 1, 2, and 3 respectively

POLYGON -- Draw a regular n-sided figure on a graphic screen

POLYGON x,y, xradius,yradius, [solid], angle,drawsides,sides, subtend

X, ¥ = center of polygon

x,yradius =

radii of polygon

solid = solid flag (0-1)

angle = starting angle (0-360)

drawsides = # of sides to draw (3-127)

sides = # sides of polygon (drawsides<=sides)

subtend = subtend flag (0-1)
POS -- Get the column number of the cursor

POS (0)

This function returns the current text column the cursor is in, with
respect to the currently defined window (see RWINDOW). It's usually
used to format text printed to the screen. The argument (0) is not
used for anything. POS will not work as expected 1f text output is

redirected to a disk file or the printer.

10
20
30

MAXCOL = RWINDOW (1)
FOR ADR=DEC ("600") TO DEC("7FF")
PRINT HEXS$ (PEEK (ADR)) ;" ";

40 IF POS(0) > (MAXCOL-5) THEN PRINT

50 NEXT
This example 1illustrates one way to format output to the screen,
keeping the last item on a line from being split between two lines,

regardless of the window size
4 characters wide).

(as long as the window size is at least
It dumps the data for the first sprite in hex.

POT -- Paddle function
POT (paddle)
This function returns the state of a game paddle (POTentiometer)
controller in one of the two game ports.
paddle=1 Position of paddle #1 (port 1, paddle "A")
paddle=2 Position of paddle #2 (port 1, paddle "B")
paddle=3 Position of paddle #3 (port 2, paddle "A")
paddle=4 Position of paddle #4 (port 2, paddle "B")
The value returned by POT ranges from 0 to 255. Any value greater than

255 means that the fire button 1is also pressed. Paddles are read
"backwards" from normal things like volume knobs or faucets. A value
of 255 means the paddle has been turned counterclockwise as far as it

will go ("off"), and a value of 0 means the paddle has been turned
clockwise as far as it will go "on").

Note that some paddles are "noisy" and their output must be averaged
or "damped" to prevent whatever they are controlling from jittering.

10 SPRITE 1,1 Turn on a sprite

20 DO Begin a loop

30 X=POT (3) Read paddle "A" in port 2

40 MOVSPR 1,300-(X AND 254),200 Move the sprite

50 LOOP UNTIL X>255 Loop until button pressed

60 SPRITE 1,0 Turn off sprite
This sample program turns on a sprite and lets you move it
horizontally with a paddle. If you press the paddle's fire button, it

turns off the sprite and the program ends. The calculations in line 40
do several things all at once -- they mask the fire button and "damp"
the output to reduce jitter by masking the least significant bit (the
X AND 254 part) and invert the output so that turning the paddle to
the right makes the sprite go right (subtracting result from 300).

PRINT -- Display data on text screen
PRINT [expression list] [<,|;>]

PRINT will evaluate each item 1in the expression list and pass the
results to the system screen editor to display on the screen. If a
screen window is defined, the output will be confined to the window.
PRINT can be wused to send control codes and escape sequences to the
screen editor to do such things as set windows, change TAB stops,
change text colors or set reverse field, or choose cursor styles. See
the section on Editor modes for details.

PRINT can be followed by any of the following:

Numeric or string expressions 12, "HELLO", 1+1, "S"+STRS (I)
Variable names A, B, AS, XS
Functions ABS (33), HEXS$(160)
Punctuation marks He
Nothing
Numeric values are always followed by a space. Positive numbers are

preceded by a space, and negative numbers are preceded by a minus sign
('"-'"). Scientific notation is used when a number is less than 0.01 or
greater than or equal to 999999999.2

A semicolon (';') or space between list items causes the next item to
be printed immediately following the previous item. A comma (',")
causes the next item to be printed at the next comma stop (similar to
TAB stops, but every 10 spaces). These rules apply to the next print
statement, if the expression list ends with either a semicolon or a
comma, otherwise a return 1s ©printed. Note that floating point
variable names should not be separated from the next variable name
with a space, and constants should not be preceeded or followed by a
space.

For formatted PRINT output, see the PRINT USING command.

PRINT "HELLO" HELLO

AS$="THERE": PRINT "HELLO ";AS$ HELLO THERE

A=4:B=2: PRINT A+B 6

J=41: PRINT J;: PRINT J-1 41 40

C=A+B:D=B-A: PRINT A;B;C;D 4 2 6 -2

C=A+B:D=B-A: PRINT A,B,C,D 4 2 6 -2
A=1:B=2:AB=3: PRINT A B 3

PRINT 1 2 3, 1 2 3 +1 123 124

PRINT 0.009, 0.01 9E-03 .01

PRINT 999989999; 999999999.2 999999999 1E+09

The CMD command can be used to redirect PRINT output to a device or
file. Also see the POS, SPC, TAB functions, CHAR and PRINT USING.

PRINT# —-- Send data to an I/0O channel (file)

PRINT#logical channel number [,expression list] [<, |;>]
This command is used to send (transmit) data to a device or file. The
logical channel number 1is the number assigned to the device (file)
in an OPEN (or DOPEN) statement. The output is otherwise identical to
that of a PRINT statement, including the comma and semicolon
conventions. ©Note that certain screen-oriented functions, such as TAB

and SPC do not have the same effect as they do with screen I/0.
It's good practice to examine the I/0 status byte (and the DS disk
status for file I/0) after every I/0 instruction to check for problems

Or errors.

For formatted output, use the PRINT# USING command.

10 OPEN 1,8,15 Initialize disk drive

20 PRINT#1,"1" (same as DCLEAR)

30 CLOSE 1

10 DOPEN#1,"NEWFILE",W Create a SEQ file

20 FOR I=1 TO 10

30 PRINT#1, I, STRS(I) Write numbers 1-10 to it
40 NEXT

50 DCLOSE#1

10 OPEN 2,2,2,CHRS (12) Open 1200 baud RS232 channel

20 PRINT#2, "ATDT,5551212" Send modem a Hayes dial command
PRINT USING -- Output formatted data to the screen, device, or file
PRINT [#logical channel number,] USING format; expression list [<,|:>]

Read about the PRINT and PRINT# commands first for information
regarding the syntax of the expression list and, for device output,
establishing the logical channel number.

The items in the expression list must be separated by commas (',"').
The format 1is defined in a string literal or string variable and is

described below. See the PUDEF command for specifing special
formatting characters. The various formatting characters are:

CHARACTER SYMBOL NUMERIC STRING
Pound sign # X X
Plus sign + X

Minus sign - X

Decimal Point . X

Comma , X

Dollar Sign S X

Four Carets nnnn X

Equal Sign = X

Greater Than Sign > X

The pound sign ('#') reserves room for a single character in the
output field. If the data item contains more characters than the
number of pound signs in the format field, the entire field will be
filled with asterisks ('*'").

10 PRINT USING "###4#";X

For these values of X, this format displays:

A = 12.34 12
A = 567.89 568
A = 123456 ol

For a STRING item, the string data is truncated at the bounds of the
field. Only as many characters are printed as there are pound signs
in the format item. Truncation occurs on the right.

The plus ('"+') and minus ('-') signs can be used in either the first
or last position of a format field but not both. The plus sign is
printed if the number is positive. The minus sign is printed if the

number is negative.

If a minus sign is used and the number is positive, a blank is printed
in the character position indicated by the minus sign.

If neither a plus sign nor a minus sign is used in the format field
for a numeric data item, a minus sign is printed before the first
digit or dollar symbol 1if the number 1is negative and no sign is
printed if the number is positive. This means that one more character
is printed i1if the number is positive. If there are too many digits to
fit into the field specified by the pound sign and +/- signs, then an
overflow occurs and the field is filled with asterisks ('*').

A decimal point ('.') symbol designates the position of the decimal
point in the number. There can be only one decimal point in any format
field. If a decimal point is not specified in the format field, the
number 1is rounded to the nearest integer and printed without any
decimal places.

When a decimal point is specified, the number of digits preceding the
decimal point (including the minus sign, 1if the number is negative)
must not exceed the number of pound signs before the decimal point. If
there are too many digits an overflow occurs and the field is filled
with asterisks ('*').

A comma (',') allows placing of commas in numeric fields. The position
of the comma in the format list indicates where the commas appears in
a printed number. Only commas within a number are printed. Unused

commas to the left of the first digit appear as the filler character.
At least one pound sign must precede the first comma in a field.

If commas are specified in a field and the number is negative, then a
minus sign 1s printed as the first character even if the character
position is specified as a comma.

FIELD EXPRESSION RESULT COMMENT

H# L H -.1 -0.1 Leading zero added

.4 1 1.0 Trailing zero added

HHH# -100.5 -101 Rounded to no decimal places

#H4 . 10 10. Decimal point added

#SH# 1 $1 Leading dollar sign
FHH# -1000 * ok ok k Overflow because 4 digits and
minus sign don't fit in field

A dollar sign ('$') symbol shows that a dollar sign will be printed in
the number. If the dollar sign is to float (always be placed before
the number), specify at least one pound sign before the dollar sign.
If a dollar sign is specified without a leading pound sign, the dollar
sign is printed in the position shown in the format field. If commas
and/or a plus or minus sign is specified in a format field with a
dollar sign, the program prints a comma or sign before the dollar
sign. The four up arrows or carets symbol is used to specify that the
the number is to be printed in E format (scientific notation). A pound
sign must be wused 1in addition to the four up arrows to specify the

field width. The arrows can appear either before or after the pound
sign in the format field. Four carats must be specified when a number
is to be printed in E format. If more than one but fewer than four

carats are specified, a syntax error results. If more than four carats
are specified only the first four are wused. The fifth carat is

interpreted as a no text symbol. An equal sign ('=') is used to
center a string in a field. The field width is specified by the number
of characters (pound sign and =) in the format field. 1If the string
contains fewer characters than the field width, the string is centered
in the field. 1If the string contains more characters that can be fit
into the field, then the rightmost characters are truncated and the
string fills the entire field. A greater than sign ('>') 1is used to

right justify a string in a field.

5 X=32: Y=100.23: AS="TEST"
10 PRINT USING "s##.## ";13.25,X,Y
20 PRINT USING "###>#";"CBM",AS

When this is RUN, the following output appears on the screen:

$13.25 $32.00 Sx**xx*
CBM TEST

S **** jig printed instead of Y because Y has 5 digits, which exceeds
the format specification. The second line asks for the strings to be
right justified, which they are.

PUDEF -- Redefine PRINT USING symbols
PUDEF definition string

PUDEF allows redefinition of wup to 4 symbols in the PRINT USING
statement. Blanks, commas, decimal points, and dollar signs can be
changed into some other character by placing the new character in the
correct position in the PUDEF definition string.

Position 1 is the filler character. The default is a space character.
Place another character here to be used instead of spaces. Similarly,

Position 2 is the comma character. Default is a comma.
Position 3 is the decimal point.
Position 4 is the dollar sign.

10 PUDEF "*" PRINTs * in the place of blanks.
20 PUDEF " Q@" PRINTs @ in place of commas.

QUIT -- [*** UNIMPLEMENTED ***]
RCLR -- Get the current screen color
RCLR (source)
[*** CURRENTLY UNIMPLEMENTED ***]

This function returns the color assigned to source as an number in the
range of 0-15. The color sources are:

= background

= foreground

= multicolor 1
multicolor 2

= border

= highlight color

a b w NP O
Il

RDOT -- Get the current position or color of the pixel cursor
RDOT (source)
[*** CURRENTLY UNIMPLEMENTED ***]

This function returns information about the current pixel location.

0 = current X position
1 = current Y position
READ -- Read data from DATA statements

READ variable list

READ statements are used along with DATA statements. READ statements
read data from DATA statements into variables, Jjust like an INPUT
statement reads data typed by the user. READ statements can be used in
direct or program mode, but DATA statements must be in a program.

The variable types in the variable list must match the type of DATA
being read, or a 'TYPE MISMATCH' error is reported. If there are
insufficient data in the program's DATA statements to satisfy all
of the variables 1in the READ statement, an 'OUT OF DATA' error 1is
reported.

The computer maintains a pointer to the next DATA item to be read by a
READ statement. 1Initially this pointer ©points to the beginning of
the program. As each wvariable 1in a READ statement is filled, the
computer moves the DATA pointer to the next DATA item. If all of a
READ statement's variables are filled before all of the data has been
read from a DATA statement, the next READ statement will begin reading
data at the point where the previous READ stopped.

The DATA pointer can Dbe changed by the RESTORE command. It can be
reset back to the beginning of the program, or pointed to a specific
line number. See RESTORE.

10 DATA 100, 200, FRED, "HELLO, MOM", , 3.14, ABC123, -1.7E-9
20 READ X,Y

30 READ NAMES, MSGS, NULLS
40 READ PI, JUNKS, S
50 RESTORE

RECORD -- Specify a relative disk file record number

RECORD #logical_channel_number, record [,byte]
This command allows you to access any part of any record in a RELative
type disk file. 1If the byte parameter is omitted, the access pointer
is pointed at the first byte of the specified record number.
Before you can use RECORD, you must OPEN a file. See OPEN and DOPEN

for instructions. Also refer to your DOS manual for an explanation of
RELative type files.

10 INPUT"ENTER RELATIVE FILENAME: ",F$ get name of existing file

20 DOPEN#1, (F$),L: PRINT DSS$ open it & display disk status
30 R=1: INPUT"ENTER RECORD NUMBER: ",R get a record number

40 B=1: INPUT"ENTER BYTE (RETURN): ",B get byte number, if any

50 RECORD#1, R,B position file pointer

60 INPUT#1, RECS read the record

70 PRINT RECS display the record

80 PRINT "CONTINUE? (Y/N)"
90 GETKEY AS$: IF AS$S="Y" THEN 30
100 DCLOSE#1 close the file

REM -- Place an explanatory remark or comment in a program

REM plain text message
The REMark command is Jjust a way to leave a note to whomever is
reading a LISTing of the program. It might explain a section of the
program, give information about the author, etc.
REM statements 1in no way effect the operation of the program, except
to add length to it (and therefore slow it down a little). No other

executable statement can follow a REMark on the same line.

10 REM THIS PROGRAM WAS WRITTEN ON 2/14/91 BY F.BOWEN
20 REM SAMPLE PROGRAM

30 :
40 DIR :REM DISPLAY THE DISK DIRECTORY
50 LIST "SAMPLE PROGRAM" :REM DISPLAY THIS PROGRAM
60 END
RENAME -- Rename a disk file
RENAME "oldname" TO "newname" [,Ddrive] [<ON|,>Udevice]

The RENAME command changes the name of a file in the disk directory.
Pattern matching 1s not allowed, and "newname" must be a valid
filename that does not already exist on the disk. The file being
renamed does not need to be open.

RENAME "TEST" TO "FINALTEST"
RENAME (OLDS) TO (OLDS$+".OLD") ON U(DEV)

RENUMBER -- Renumber the lines of a BASIC program
RENUMBER [new_starting line [, [increment] [,old starting line]]]

Renumber is used to resequence the line numbers of a BASIC program in
memory. All or part of a program can be renumbered. The RENUMBER
command first scans the ©program to make sure all the line numbers
referenced in commands (such as GOTO, GOSUB, TRAP, etc.) exist, that
new line numbers are in the legal range, and that changing the program
would not overflow the available memory. An 'UNRESOLVED REFERENCE',
'LINE NUMBER TOO LARGE', or 'OUT OF MEMORY' error is reported if
there's a problem, and RENUMBER 1is automatically canceled without
having changed anything.

If the program passes all the checks, RENUMBER changes the specified
line numbers and updates all references to the old numbers throughout
the program and relinks the program.

The new starting line 1is the number of the first line in the program
after renumbering. It defaults to 10. The increment is the spacing
between line numbers (eg., 10, 20, 30 would mean an increment of 10).
It also defaults to 10. The old starting line is the line number in
the program where you want renumbering to begin.

RENUMBER can be used in direct (edit) mode only. Note that line number
zero (0) is a valid line number.

RENUMBER Renumbers the entire program. After
renumbering, the first line will be 10
the second 20, etc. through the end
of the program.

RENUMBER , 1 Renumbers the entire program as above,
but in increments of one. The first
line will be 10, the second 11, etc.

RENUMBER 100, 5, 80 Starting at line 80, renumbers the
program. Line 80 becomes line 100,
and lines after that are numbered in
increments of 5, through the end of
the program.

RENUMBER ,, 65 Starting at line 65, renumbers lines
in increments of 10, starting at line
10 through the rest of the program.
RESTORE -- Position READ pointer at specific DATA statement
RESTORE [line]
The computer maintains a pointer to the next DATA item to be read by a
READ statement. 1Initially this pointer points to the beginning of

the program. The DATA pointer can be changed by the RESTORE command.

Using RESTORE without specifying a line number will reset the DATA

pointer Dback to the Dbeginning of the program. If a line number is
specified, the DATA pointer is pointed to that line. The line does not
have to <contain a DATA statement. When the computer executes the

next READ statement, it will look for the next DATA item starting at

the line the DATA pointer is at.

See the READ command an example.

RESUME - Resume program execution after error TRAP
RESUME [line|NEXT]

Used to return to execution after TRAPping an error. If a line number
is given, the computer performs a 'GOTO line' and resumes execution at
that 1line. RESUME NEXT resumes execution at the statement following
the one that cause the error. RESUME without any parameters will
resume execution at the statement that cause the error.

If the computer encounters a RESUME statement outside of a TRAP
routine or if a TRAP was not in effect a 'CAN'T RESUME' error is
reported. RESUME can only be used in program mode.

10 TRAP 90

20 FOR I=-5 TO 5

30 PRINT 5/I

40 NEXT

50 END

60 :

90 PRINT ERRS (ER): RESUME NEXT

RETURN -- Return from subroutine or event handler

RETURN
This statement is associated with the GOSUB (GO SUBroutine) statement.
When a subroutine is called by a GOSUB statement, the computer
remembers where 1it's at before it calls the subroutine. When the
computer encounters a RETURN statement, it returns to the place it

last encountered a GOSUB and continues with the next statement.

If there wasn't a previous GOSUB, then a 'RETURN WITHOUT GOSUB' error
is reported.

RETURN is also wused by event handlers, set up by the COLLISION
command. See COLLISION.
RGR -- Get the current graphic mode
RGR (0)

[*** CURRENTLY UNIMPLEMENTED ***]
This function returns current graphic mode. A result of zero means the
display is text, a non-zero result means it's graphic.
RIGHTS$ -- Get the rightmost characters of a string

RIGHTS (string,count)

This function returns a string containing the rightmost 'count' number
of characters of the string expression. Count is an numeric expression

in the range (0-255). If count 1is greater than the length of the
string, the entire string will be returned. If count is zero, a null
(empty) string will be returned.

AS$S = RIGHTS ("123ABC", 3) Result is A$="ABC"

RMOUSE -- Get the mouse position and button status
RMOUSE [Xposition [,Yposition [,button]]]

X,Yposition = current position of mouse pointer sprite

Button = current status of mouse buttons
0 = no button
1 = right button

128 = left button

129 = both buttons
RMOUSE is a command which retrieves a mouse's current position and the
state of its buttons, and places this information into the specified
numeric variables. If a mouse is not installed, "-1" is returned for
all variables. If both ports are enabled, Dbuttons from each port are
merged. Use the MOUSE command to turn a mouse on or off.

10 MOUSE ON, 2, 1 Turn mouse on, port 2, sprite 1
20 DO Begin loop
30 RMOUSE X, Y, B Get mouse position & buttons
40 PRINTUSING"### ";X,Y,B Show " " "
50 LOOP UNTIL B=129 Loop until user presses both buttons
60 MOUSE OFF Turn mouse off
RND -- Get a pseudo-random number
RND (type)
The RND function returns a pseudo RaNDom number between 0 and 1. The

random sequence returned is determined by the type parameter:

type = 0 Returns a random number based upon the system clock.

type Negative numbers "seed" the random number generator,
defining a new but reproducible random sequence.

type > 0 Positive numbers draw the next random number from the
sequence defined by the last "seed" value.

A
o

This lets a programmer use a reproducible sequence while debugging
(fixing) a program, so that random errors can be easily reproduced.
Once the program has been fixed, it can be "seeded" such that a random
sequence is used every time the program is run.

10 DO

20 INPUT "SEED"; S

30 IF S=0 THEN END

40 FOR I=1 TO S

50 PRINT INT(RND(1l)*6)+1, INT(RND(1l)*6)+1
60 NEXT

70 LOOP

The above program will demonstrate the results of seeding the random
number generator. It lets you specify a positive or negative seed
value, and then prints the first S random pairs of that sequence.
Enter a zero to end the program. The calculations in line 50 make the

random numbers be integers from 1 to 6, like dice. Type in a negative
dice from that sequence. Every time you enter "-1", for example, you
will roll the same numbers:

first roll 2 and 6
second 6 and 1
third 1 and 1
fourth 1 and 4
fifth 5 and 5

Games and statistical programs should use RND(0) for true randomness
or seed the generator with a random number, such as RND(-TI).

The general form for getting random integers using RND is:

INT(RND(O) * MAX) + 1
where MAX is the highest number you can get. This gives you numbers as
low as 1 and as high as MAX. For dice, MAX is 6 (or 12 if you want
to simulate rolling two dice at once). For cards, MAX is 52.

INT(RND(O) * 16)
This form will return integers from zero to 15, which is useful for
generating random colour values, for example.
RREG -- Get register data after a SYS call

RREG [a_reqg] [, [x_regl]l [,I[ly_regl]l I[,[z_reg]l [,status] 11]]

Following a SYS call, the RREG command retrieves the contents of the
microprocessor's registers and puts them into the specified numeric
variables. See the sample program at SYS.
RSPCOLOR -- Get multicolor sprite colors

RSPCOLOR (multicolor#)

Returns the current colors for multicolor sprites. Color values range
from 0-15. Use RSPRITE function to get the foreground sprite color.

multicolor#
multicolor#

1 gets multicolor #1
2 gets multicolor #2

See SPRITE and SPRCOLOR.

RSPPOS -- Get the location and speed of a sprite
RSPPOS (sprite,parameter)

The RSPPOS function returns the current X or Y position of a sprite
and 1its speed, set by the MOVSPR command. A sprite does not have to
be on to use RSPPOS. The sprite number must be in the range of 0-7,
and the parameter is:

0 to get current X position
1 to get current Y position
2 to get current speed (0-255)

RSPRITE -- Get information about a sprite
RSPRITE (sprite,parameter)
The RSPRITE function returns the current state of a sprite, set by the

SPRITE command. The sprite number must be in the range of 0-7, and the
parameter is:

0 to see i1f it's turned on (1)=yes (0)=no
1 to get sprite foreground color (0-15)
2 to get priority over background (l)=yes (0)=no
3 to get X-expansion factor (1)=yes (0)=no
4 to get Y-expansion factor (1)=yes (0)=no
5 to get multicolor factor (l)=yes (0)=no
RUN -- execute BASIC program
RUN [line #]
RUN "filename" [,Ddrive] [<On|,>Udevice]

RUN executes the BASIC program that 1s currently in memory. The
program has to be LOADed (DLOAD) or manually typed in before it can
be executed. 1If a line number is specified, execution begins at that
line. If a filename is specified, the program is automatically loaded
from disk into memory and executed. RUN can be used in a program.

RUN clears all variables and open channels (but it does NOT properly
close open disk write files -- used DCLOSE or DCLEAR beforehand). RUN
also resets the runtime stack pointer (clears GOSUB & FOR/NEXT stacks)
the DATA pointer, and the PRINT USING characters. To start a program
without initializing everything, use GOTO.

RUN Starts the program at the first line.
RUN 100 Starts the program at line 100.
RUN "TEST" Loads the program TEST from the, default system

disk and starts the program at the first line.

RWINDOW —-- Get information about the current text window
RWINDOW (parameter)

This 1s a function that returns information about the current console
text display. The parameter is specified as:

0 to get the maximum line # in the current window
1 to get the maximum column # in the current window
2 to get the screen size, either 40 or 80 columns
SAVE -- Save a BASIC program in memory to disk
SAVE "[[Q@]drive:]filename" [,device number]

This command copies a BASIC program in the computer's BASIC memory
area 1into a PRoGram-type disk file. 1If the file already exists, the
program is NOT stored and the error message 'FILE EXISTS' is reported.
If the filename is preceded with an '@0:"', then if the file exists it

will be replaced by the program in memory. Because of some problems
with the 'save-with-replace' option on older disk drives, using this
option 1s not recommended if you do not know what disk drive is being
used (DELETE the file before SAVEing). Pattern matching 1s not
allowed. In the case of dual drive systems, the drive number must be
part of the filename.

Use the VERIFY or DVERIFY command to compare the program in memory

with a program on disk. To save a binary program, use the BSAVE
command.
SAVE "myprogram" Creates the PRG-type file MYPROGRAM

on the default system disk and copies
the BASIC program in memory into it.

SAVE "@0:myprogram" Replaces the PRG-type file MYPROGRAM
with a new version of MYPROGRAM. If
MYPROGRAM doesn't exist, it's created.

SAVE F$,9 Saves a program whose name is in F$
on disk unit 9.

SCALE -- Set the logical dimension of the graphic screen

[*** NOT YET IMPLEMENTED ***]

SCNCLR -- Clear a text or graphic screen
SCNCLR [color]

This command will clear the current text window if [color] omitted,
otherwise it will clear the current graphic screen using the given
color value. See also SCREEN CLR.

SCNCLR Clears the text screen. If a window is defined
it clears only the window area.

SCNCLR O Clears the current graphic screen with color O.

SCRATCH -- Delete files from disk directory
Recover accidentally deleted files

SCRATCH "filespec" [,Ddrive] [<ON|,>Udevice] [,R]

SCRATCH, ERASE, or DELETE are different names of the same command.
They are used to delete a file from a disk directory, or optionally to
recover 1if ©possible an accidentally deleted file. The diskette must
not be 'write protected', or a 'WRITE PROTECT ON' error is reported.

WARNING: Deleting a file will destroy all existing data in that file.
Be extremely careful 1f vyou are using pattern matching, which can
delete any or all files. In direct mode, you are asked to confirm what
you are doing with 'ARE YOU SURE?'. Type 'Y' and press <RETURN> to
proceed, or type any OTHER CHARACTER and press <RETURN> to cancel the
command. In program mode there is no confirmation prompt.

Upon completion, in direct mode only, the computer will display the
number of files deleted.

Refer to your disk manual for other details. Different disk drives
implement slightly different pattern matching rules or support
features such a specially protected files.

If the 'R'ecover option is present and the DOS supports it, a deleted
file can be recovered if nothing else has been written to the diskette
since the file was accidentally deleted. You will still be asked to
confirm the operation, and upon completion the computer will display
the number of files restored.

SCRATCH "oldfile" Deletes the file OLDFILE from the disk
in the default system drive.

SCRATCH "file.*" Deletes all files beginning with FILE.

SCRATCH (F$), U(DD) Deletes the file whose name is in F$
from the disk in device DD.

SCRATCH "SAVEME", R Attempt to recover the program SAVEME.
SCREEN -- Graphic command
The SCREEN command is used to initiate a graphic command. It always

precedes another command word which identifies the graphic operation
to be performed:

SCREEN CLR - Set graphic screen color
SCREEN CLR color#

Clears (erases) the currently opened graphic screen using the given
color value. Use SCNCLR to clear a text screen. See also SCNCLR.

SCREEN DEF - Define a graphic screen

SCREEN DEF screen#, width, height, depth

screen# 0-1

width 0=320, 1=640, 2=1280

height 0=200, 1=400

depth 1-8 bitplanes (2-256 colors)

Defines a logical screen (numbered 0 or 1), specifies its size and how
many colors (bitplanes) it has. It does not allow access to the
screen and it does not display the screen. The screen must be defined
before it is opened for viewing and/or drawing to.

SCREEN SET - Set draw and view screens

SCREEN SET DrawScreen#, ViewScreen#

draw screen # 0-1
view screen # 0-1

This command specifies which logical screen is to be viewed and which

logical screen 1is to be accessed by the various draw commands. The
screen must be defined and opened first. Both the draw and the view
screen can be, and usually are, the same logical screen. For double

buffering, they are different.

SCREEN OPEN - Open a screen for access
SCREEN OPEN screen# [,error variable]

screent 0-1
error variable [*** NOT YET IMPLEMENTED ***]

This command actually sets up the screen and allocates the necessary
memory for it. If it's the view screen it will be displayed. If it's
the draw screen, it can now be drawn to. If there is not enough memory
for the screen, 'NO GRAPHICS AREA' is reported and the screen is not
opened.

SCREEN CLOSE - Close a screen
SCREEN CLOSE screen#
screen# 0-1
This command closes a logical screen, ending access to it by the draw
commands if it's the draw screen and restoring the text screen if it's
the view screen. SCREEN CLOSE deallocates any memory reserved for the

screen.

SAMPLE GRAPHIC PROGRAM:

1 TRAP 170 in case of error want text screen
10 GRAPHIC CLR initialize graphics
20 SCREEN DEF 1,0,0,2 define a 320x200x2 graphic screen
30 SCREEN OPEN 1 open it
40 PALETTE 1,0, o, 0, O define screen 1 color 0 = black
50 PALETTE 1,1, 15, 0, O define screen 1 color 1 = red
55 PALETTE 1,2, 0, 0,15 define screen 1 color 2 = blue
60 PALETTE 1,3, 0,15, O define screen 1 color 3 = green
70 SCREEN SET 1,1 make it the view screen
80 SCNCLR O clear screen with palette color 0
90 BORDER 0 set border color to color 0
100 PEN 0,1 make draw pen = color 1 (red)
110 LINE 100,100, 150,150 draw a diagonal red line
120 PEN 0,2 make draw pen = color 2 (blue)
130 BOX 50,50, 50,80, 80,50, 80,80 draw a blue box
140 PEN 0,3 make draw pen = color 3 (green)
150 CHAR 25,50, 1,1,2, "WORDS" draw green text
160 SLEEP 5 pause for 5 seconds
170 SCREEN CLOSE 1 close graphic, get text screen
180 PALETTE RESTORE restore normal system colors
190 BORDER 6 restore normal border color
200 END
SET -- Set various system parameters
The SET command is used to set a system parameter. It always precedes

another command word which identifies the parameter to be changed:
SET DEF - Set default system disk drive
SET DEF device

The BASIC DOS commands default to disk unit 8. Use SET DEF to change

which device these commands default to. This command does not renumber
a disk device, use SET DISK for that. Commands which specify a device
will still access the device they specified. A program can be made
more "user friendly" by either not specifying a drive (thus using the
user's preferred drive) or by specifying device 1. Device number 1
means "use the system default drive, whatever its number is."

10 DIR gets directory of device 8
20 DIR U1l gets directory of device 8
30 DIR U10 gets directory of device 10
40 SET DEF 10 change the default drive to unit 10
50 DIR gets directory of device 10
60 DIR Ul gets directory of device 10
70 DIR U8 gets directory of device 8
SET DISK - Change a disk device number

SET DISK oldnumber TO newnumber

Use this command to renumber (change) a disk drive's unit number. Not

all drives can Dbe renumbered -- refer to your disk drive manual for
details. This command sends to the disk's command channel the
conventional CBM serial disk drive "M-W" command. See also the DISK

command, which lets you send any command to a disk drive.

SET DISK 8 TO 10 Change unit 8's number to 10
Because the Dbuilt-in C64DX drives always take precedence over serial
bus drives, this is one way to get the built-in drive "out of the way"
so that you can access a serial bus drive #8.
SGN -- Get the sign of a number

SGN (expression)

The SiGN function returns the sign of a numeric expression as follows:

If the expression is < 0 (negative) returns -1
If the expression is = 0 (zero) returns O
If the expression is > 0 (positive) returns 1

SIN —-- Sine function
SIN (expression)

This function returns the sine of X, where X is an angle measured in
radians. The result is in the range -1 to 1.

X = SIN (pi/4) Result is X=0.707106781
To get the sine of an angle measured in degrees, multiply the numeric
expression by pi/180.
SLEEP -- Pause program execution of a specified period of time
SLEEP seconds

Temporarily suspends execution of your program for 1 to 65535 seconds.

SLOW —-- Set system speed to 1.02MHz

SLOW is wused primarily to directly access "slow mode only" devices
such as the SID sound chips. FAST is the default system speed.

SOUND -- Produce sound effects
SOUND v, £, d [, [dir] [, [m] [,[s] [,[w] [,p] 1111
v = voice (1-06)
f = frequency (0-65535)
d = duration (0-32767)
dir = step direction (0 (up), 1(down), or 2(oscillate)) default=0
m = min frequency (0-65535) default=0
s = sweep (0-65535) default=0
4 = waveform (0O=triangle, l=saw, 2=square, 3=noise) default=2
o) = pulse width (0-4095) 50% duty cycle=default=2048

The sound command is a fast and easy way to create sound effects and
musical tones. The first three parameters are required to select the
voice, frequency, and duration of the tone. The duration is specified
in "jiffies" (60 jiffies = 1 second).

Optionally, you <can specify a waveform and, for square waves, the

pulse width. The SOUND command can sweep a voice through a series of
equally-spaced frequencies. The direction of the sweep, minimum and
maximum frequencies <can be programmed. If time expires before the

sweep 1is done, the sound stops. If the minimum or maximum frequency is
reached before time expires, the sound repeats.

For programming details, refer to the SID hardware documentation. Use
the VOLume command to change the volume of the sound. Note that the
TEMPO command affects PLAY strings only, not SOUND effects.

FREQout = (£ * 0.0596) Hz
PWout = (p / 40.95) %

FEach voice can be programmed separately and played simultaneously for
a wide variety of sound effects. Once a sound effect is initiated,
BASIC execution continues with the next statement while the sound
plays out, allowing you to combine and control graphics, animation,
and sound from a BASIC program. The examples below include information
about how to generate ©precise tones for exact times, but for most
casual users trial and error are perfectly acceptable! (Note that the
values used are for 60Hz (NTSC) systems):

Using voice 1, emit a square-wave, 440Hz tone for 1 second. Note that
440Hz = 7382 * 0.0596 using the above formula.

SOUND 1, 7382, 60
Using voice 2, sweep from 100Hz (m=1638) to 440Hz (f=7382) 1in
increments of 1Hz (s=17). The time required to do this can be
calculated as t=(f-m)/s, so t=336 jiffies.

SOUND 2, 7382, 336, 0, 1678, 17

Using voice 3, make a neat sound using an oscillating sweep (dir=2)

and a sawtooth waveform (w=1l) for 3 seconds (t=180).

SOUND 3, 5000, 180, 2, 3000, 500, 1

SPC -- Space PRINT output

SPC (number)
The SPaCe function 1s used to format PRINTed data to the screen, a
printer, or a file. It specifies the number of spaces to be skipped,
from 0 to 255. A semicolon (';') is always assumed to follow SPC, even

if it appears at the end of a print line.

The SPC function works a little differently on screen, printer and

disk output. On the screen, SPC skips over characters already on the
screen, which is not the «case with printer and disk output. On
printers, if +the last character on a line is skipped, the printer

will automatically perform a carriage return and linefeed.

PRINT "123";SPC(3);"456" Displays '123 456"

PRINT "X";SPC(5) :PRINT"X" Displays 'X X!
See also the TAB function. A better way to format PRINT output is with
PRINT USING.
SPRCOLOR -- Set multicolor sprite colors

SPRCOLOR [sprite mcl] [,sprite mc2]

Use the SPRITE command to set up a multicolor sprite, and use SPRCOLOR
to set the additional colors. Note that these colors are common to all
multicolor sprites. The color values must be in the range (0-15). Use
the RSPCOLOR function to get the current multicolor sprite colors, and
RSPRITE to get the current sprite foreground color.

SPRDEF -- Define a sprite pattern

[*** NOT EXPECTED TO BE IMPLEMENTED ***]

SPRITE -- Turn a sprite on or off, and set its characteristics
SPRITE number [, [on] [, [color] [, [priority] [, [x exp] [, [y _exp] [,mode]

The SPRITE command allows you set all of the characteristics of a
sprite. Use the MOVSPR command to position it or set it in motion.
Use the SPRCOLOR to set the multicolor sprite colors, if you are using
multicolor sprites.

All the parameters except the sprite number are optional. If you don't
specify a parameter then it won't be changed.

number = sprite number (0=-7)
on = enable (1) or disable (0)
color = sprite foreground color (0-15)

priority= sprite to display data priority:
0 means sprite goes over screen data

X,y _exp =
mode =
The SPRITE
must

and BSAVE commands.

sprite expansion on
sprite mode:

command does not define a sprite.
be loaded into the sprite area first
[*** THIS MAY CHANGE ***]

1 means sprite goes under screen data
(1) or off (0)

0 high resolution
1 multicolor

The sprite definitions
($S600-$7FF) . Use the BLOAD
A sprite is 24 pixels

wide and 21 pixels high. Each sprite definition requires 63 ($40 hex)
bytes:

$600 Sprite 0 definition

$640 Sprite 1 definition

$680 Sprite 2 definition

$6CO Sprite 3 definition

$700 Sprite 4 definition

$740 Sprite 5 definition

$780 Sprite 6 definition

$7CO0 Sprite 7 definition
Use the RSPRITE function to read a sprite's characteristics, or the
RSPPOS function to read a sprite's position. The RSPCOLOR function

is used to get the current multicolor sprite colors.

10
P (DEC ("640"))
SPRITE 1, 1, 2
MOVSPR 24,
SPRSAV 1, 2
SPRITE 1, 7
MOVSPR 320,

20
30
40
50
60
70

50

2, 229
P (DEC ("680"))
SPRITE 1, 0
SPRITE 2, 0

80
90

SPRSAV -- Copy a sprite

SPRSAV source,

Use
into a string variable,

sprite. You can have
time, all stored in
sprites from BASIC by

shape like a frame from
SPRSAV 0, AS
SPRSAV AS, 2

SPRSAV 1, 2
STASH --

(see

SQR —-- Square

BLOAD"sprite 1 data",

BSAVE"sprite 2 data",
TO P (DEC("6CO0"™))

this command to copy a sprite's data

Load sprite 1's definition

make it red

Put it at top-leftmost corner
Copy sprite 1 definition to 2
Turn on sprite 2 make it yellow
Put it at bottom-rightmost corner
Save sprite 2

Turn it on,

Turn off sprite 1
Turn off sprite 2

definition
destination

(shape) to another sprite or
or copy a shape from a string variable into a
many different sprite shapes in memory at one

strings. This makes it possible to animate

quickly "flipping through" shapes, using each

a movie film.

copy the data (shape) of sprite 0 into AS
copy the data (shape) in AS$ into sprite 2
copy the data (shape) in sprite 1 to sprite 2

the DMA command)

root function

SQR (number)

This function returns the SQuare Root of the given numeric expression.
The numeric expression must not be negative or an 'ILLEGAL QUANTITY'
error i1s reported.

A = SQR(10) Result is A = 3.16227766
STEP -- See FOR/NEXT/STEP
STOP -- Halt program execution

When STOP 1s executed, the computer immediately stops running the
program and reports 'BREAK IN LINE xx'. No variables are cleared and
files are not closed.

This command is usually used while debugging (fixing) a BASIC program,
since it lets you stop at a specific place, examine variables, change
variables, and restart the program where it was halted (see CONTinue
command) or some other line (see GOTO). In many cases, you can even
change the program and use GOTO to resume execution with variables
and open channels intact.

SWAP —-- (see the DMA command)

STR$ —-- Get the string representation of a number
STRS (number)
The STRing function returns a string identical to PRINT's output of

the given numeric expression. See PRINT for details regarding the
format of numeric output. STR$ is the opposite of VAL.

AS = STRS(123) Result is AS$ = " 123"
AS = STRS$ (-123) Result is AS$ = "-123"
A$ = STRS$(.009) Result is A$ = " 9E-03"
SYS -- Call a ROM routine or user machine language routine
SYS address [, [al [,[x] [,[y]l [,[z] [,s] 111]

This statement performs a call to a machine language routine at the
specified address (range 0-65535, $3000-$FFFF) 1n a memory bank set
up previously by the BANK command.

The microprocessor's registers are loaded with the values specified in

the parameters following the address (if given) and a JSR (Jump
SubRoutine) instruction 1s performed. When the called routine ends
with an RTS (ReTurn from Subroutine), the microprocessor's registers
are saved and control is returned to the BASIC program. The

microprocessor's registers can be examined with the RREG command.

Because this command instructs the computer's microprocessor (CPU) to
perform something, extreme care should be taken in its use. It can
easily crash the computer if you do something wrong (press the reset
button to reboot). Also see the BOOT SYS command.

BANK 128: SYS DEC("FF5C") Call the Kernel's PHOENIX routine.

BANK 128: SYS DEC("FF81") Reset the Screen Editor

10 BANK 128

20 BLOAD"user routine", P (DEC("1800")) Load a user routine

30 SYS DEC("1800"), areg, xreg Call it with args in A and X
40 RREG areg, xreg, , , Sreg Get args back in A, X, and S
50 carry = (sreg AND 1) Get carry flag from S

60 PRINT "ACCUMULATOR = ";HEXS (areq) Display registers

70 PRINT "X REGISTER = ";HEXS (xreqg)

80 PRINT "CARRY FLAG = ";carry

See the USR function for another way to call machine language
routines.

TAB —-- Space PRINT output
TAB (number)

The TAB function 1is wused to format PRINTed data to the screen, a
printer, or a file. It's primarily for screen text output, moving
the cursor to the specified column (plus one) as long as the current
print position is not already beyond that point (for example, if the
current print position is the first column, TAB(l) would print
subsequent text beginning in column 2). If the current print position
is already beyond the column specified by the TAB function, nothing is
done. For disk and printer output, TAB works exactly like the SPC
function (see SPC).

A semicolon (';') is always assumed to follow TAB, even 1if it appears
at the end of a print line.

PRINT "TEXT";TAB(10);"HERE" Result is 'TEXT HERE'
PRINT "TEXT";SPC(10);"HERE" Result is 'TEXT HERE'
The above examples illustrate the difference between TAB and SPC. See

also the SPC function. A better way to format PRINT output is with
PRIUT USING. Don't confuse the TAB function with the TAB character,
CHRS$ (9), which 1is wused to format data using the programmable TAB
stops.
TAN -- Tangent function
TAN (expression)

This function returns the tangent of the numeric expression, measured
in radians. If the result overflows, TAN(pi/2) for example, an
'"OVERFLOW' error is reported.

X = TAN(1) Result is X=1.55740772
To get the tangent of an angle measured in degrees, multiply the

numeric expression by pi/180.

TEMPO -- Set the tempo (speed) of a PLAY string

TEMPO rate

Use this command to adjust the tempo (speed) of music playback by the

PLAY command. The rate determines the duration of a whole note. The
default is 12, making a whole in 4/4 time last 2 seconds. The formula
is:

duration = 24/rate

The higher the rate, the faster the note. The range is (1-255).

THEN -- See IF/THEN/ELSE
TO -- See FOR/NEXT/STEP. Also used as a subcommand.
TRAP -- Define an BASIC error handler

TRAP [line number]

When turned on, TRAP intercepts all BASIC execution error conditions
except 'UNDEF'D STATEMENT ERROR'. Even the STOP key can be TRAPped.

When an error occurs, BASIC saves the error's location, line number,
and error number. If TRAP is not set, BASIC returns to direct mode
and displays the error message and line number. If TRAP is set, BASIC
performs a GOTO to the line number specified in the TRAP statement and
continues executing.

Your BASIC error handling routine can examine the error number,
message, and the line number where the error occurred and determine
the proper course of action. The system error words are:

ER Error Number
EL Error Line (line where the error occurred)
ERRS$ () Error Message
If ER 1is -1, then a BASIC error did not occur. The error routine

should check the disk status words, in case they were the cause of
the error:

DS Disk Error Number
DS$ Disk Error Message

Refer to the list of BASIC and Disk error messages in the appendix.

Note that an error in your TRAP routine cannot be trapped. The RESUME
statement can be used to resume execution -- see RESUME.

TRAP with no line number specified turns off error TRAPping.

10 TRAP 90 enable trapping
20 FOR I=-5 TO 5

30 PRINT 5/1I error when I=0

40 NEXT

50 TRAP turn trapping off
60 END

70

90 PRINT ERRS (ER): RESUME NEXT error routine

TROFF -- Turn off trace mode
TRON -- Turn on trace mode

TROFF
TRON

Trace mode 1is wused while debugging (fixing) a BASIC program. TRON
enables tracing, and TROFF disables tracing. When the program is run
and trace mode 1s on, the line number of the command that is being
executed 1s displayed on the screen. If there are three commands on
the 1line, the line number will be displayed three times, once each
time one of the commands is executed. Trace mode lets you know what
the computer is doing.

Trace mode works even when a graphic screen is being displayed, Dbut
the 1line number is still displayed on the text screen so you won't be
able to see it until the graphic screen is turned off. If your program
is doing alot of PRINT statements, the display can seen a little
confusing.

Trace mode can be set in direct mode to trace the entire program, or
it can be turned on and off from within your program to let you trace

only selected portions of the program.

Trace mode has no effect on commands entered in direct (edit) mode.
The NEW command disables trace mode, but RUN and CLR do not.

10 FOR I=-5 TO 5

15 TRON

20 PRINT 5/1

25 TROFF

30 NEXT
TYPE -- Display the contents of a sequential disk file

TYPE "filename" [,Ddrive] [<, |ON>Udevice]

Use this command to print the contents of a PETSCII data file on the
screen. The file must contain lines no longer than 255 characters long
and terminated by a return character (CHR$(13)). Lines too long result
in a 'STRING TOO LONG' error.

TYPE "readme" display the contents of the README file on the screen

The command sequence below will print the contents of the README file
on a CBM serial bus printer in upper/lower case mode.

OPEN 4,4,7: CMD4: TYPE"readme": CLOSE4

UNTIL -- See DO/LOOP/WHILE/UNTIL/EXIT

USR - Call a user defined machine language function
USR (expression)

When this function is used, the program jumps to a machine language

subroutine whose starting address must be POKEd into system memory
(BANK 128) at address 760 (low byte) and 761 (high byte), or $2F8 hex.
The floating point value of the numeric expression is passed to the
routine in the Floating point ACCumulator (FACC), and the wvalue to
be returned is taken from the FACC when the routine ends.

If the USR vector 1is not set up prior to making the USR call, an
'UNDEF'D FUNCTION' error is reported. The routine must be located in
the system bank. The BANK command does not affect USR.

Using this method of <calling a machine language routine requires a
fair amount of set wup and a good knowledge of the lower level math
routines built into BASIC. See the SYS command, which is more commonly
used to call a machine language routine.

The following program illustrates the basic steps required for
installing a USR routine and calling it:

10 BANK 128 System bank for poke & load
20 UV = DEC("1800") Where my routine is

30 BLOAD "my user routines",P (UV) Load my routine

40 POKE DEC("2F8"), UV AND 255, UV / 256 Set up USR address

50 x = USR(123): PRINT X Call my routine with the

the value 123, get back and
print whatever my routine
leaves in FACC

The following program actually works. It points the USR vector to the
BASIC math Jump table entry for the routine which inverts the sign
of the number in the FACC. Type in positive & negative numbers:

10 BANK 128 System bank for poke
20 POKE DEC("2F8"), DEC("33"), DEC("7F") Set up USR address
30 DO: INPUT"SIGNED NUMBER"; N Get number input
40 : PRINT USR(N) Display USR output
50 : LOOP UNTIL N=0 End if user types zero
USING -- See PRINT USING
VAL -- Get the numerical value of a string

VAL (string)

The VALue function converts a string into a number. The conversion
starts with the first character and ends at the end of the string or
the first character that is not allowed in normal number input. Spaces
are ignored. If the first character of the string is not a legal
character, a zero 1s returned.

The VAL function works the same way the INPUT and READ commands do.
VAL is the opposite of STRS.

X = VAL ("™ 123") Result is X = 123
X = VAL("-123") Result is X = -123
X = VAL(" S9E-02") Result is X = .09

VERIFY -- Compare a program or data in memory with a disk file

VERIFY "filename" [,device number [,relocate flag]]

This command is Jjust like a LOAD command, except instead of putting
the data read from a file into memory, the computer compares it to
what is already in memory. If there's any difference at all a 'VERIFY
ERROR' is reported.

The filename must be given, and pattern matching may be used. In the
case of dual drive systems, the drive number must be part of the
filename. If a device number is given, the file is sought on that
unit, which must be a disk drive. 1If a device number is not given,
the default system drive is used. See also DVERIFY.

Note: If the BASIC program 1in memory 1is not located at the same
address as the version on disk was SAVEd from, the files will not
match even if the program is otherwise identical.

The relocate flag is used to VERIFY binary files. If the relocate flag
is present and non-zero, the file will be compared to memory starting
at the address stored on disk when the file was SAVEd. The memory bank
used is the bank given in the last BANK statement. The ending address
is determined Dby the length of the disk file. The comparison halts
on the first mismatch or at the end of the file. The area to be
compared must be confined to the indicated memory bank. Do not use
the relocate flag to verify BASIC programs. See also BVERIFY.

VERIFY "myprogram"

Good: SEARCHING FOR 0O:myprogram Bad: SEARCHING FOR 0O:myprogram
VERIFYING VERIFYING
OK ?VERIFY ERROR
VERIFY "PROG" Compares BASIC program in memory to file PROG

on the default system disk.
VERIFY FILES$, DRV Compares program in memory to a program whose
name 1s in the variable FILES on the unit

whose number is in DRV.

VERIFY "0:PROG", 8 Compares memory to BASIC program PROG on unit
8, drive O.

BANK 128 Compares a Dbinary file into memory. The

VERIFY "BIN", 8,1 address used comes from the disk file, Dbut
you must specify the memory bank.

VIEWPORT -- [*** CURRENTLY UNIMPLEMENTED ***]

VOL -- Set audio volume level
VOL volume
[*** THIS COMMAND WILL CHANGE ***]
This statement sets the volume level for SOUND and PLAY statements.
VOLUME can be set from 0 to 15, where 15 is the maximum volume. A

volume of 0 turns sound output off. VOLume affects all 3 voices.
Note that PLAY strings can change the volume, too.

WAIT -- Pause BASIC program until a memory state satisfied
WAIT address, and mask [,xor mask]

The WAIT statement causes program execution to be suspended until data
at a specified memory location matches a given bit pattern. It's used
to pause your program until an event occurs.

The event could be an I/0 state (such as a fire button or peripheral
port change), a hardware state (such as the raster position or RS232
status), or memory change caused by an interrupt event (such as a
keyboard scan) .

The WAIT statement tells the computer to read (PEEK) a memory location
(0-65535) and AND the wvalue it got with the number in and mask

(0-255) . If the result is zero, repeat the operation until the result
is not zero. This is like the following BASIC instructions, but much
faster:

DO: result = PEEK(address): LOOP UNTIL (result AND and mask) <> 0

This works if the state vyou are WAITing for is non-zero (a one or
"high" state). If you want to wait for a zero state (a "low" state),
you need to use the xor mask option to "flip" the bits of the result.

Note that 1it's ©possible to "hang" your program indefinitely if the
state you are waiting for never happens or you specify the wrong data.
Press the STOP and RESTORE keys at the same time to get control back.

Be sure to use the BANK command before you tell the computer to WAIT
to specify which 64K memory bank the address is in. Note that a BANK
number greater than 127 (i.e., a bank number with the most significant
bit set) must be used to address an I/0O location, such as the VIC
chip. Refer to the system memory map for details.

10 BANK 128 Wait for the VIC raster to be
20 WAIT DEC("DO11"), 128 offscreen (want RC8 = 1)
10 BANK 128 Wait for the VIC raster to be

20 WAIT DEC("DO11"), 128, 128 onscreen (want RC8 = 0)

10 BANK 128

20 WAIT DEC("D3"), 1 Wait for user to press <SHIFT> key
30 WAIT DEC("D3"), 2 Wait for user to press <C=> key
40 WAIT DEC("D3"), 4 Wait for user to press <CTRL> key
50 WAIT DEC("D3"), 8 Wait for user to press <ALT> key
WHILE -- See DO/LOOP/WHILE/UNTIL/EXIT
WIDTH -- [*** CURRENTLY UNIMPLEMENTED ***]
WINDOW -- Set a text window

WINDOW left column, top row, right column, bottom row [,clear]

This command defines a logical text screen window. All text I/0 will

be <confined to this window. The row parameters must be in the range
(0-24), and the column parameters must be in the range (0-79) for

80-column screens or (0-39) for 40-column screens. The parameters are
always referenced to the physical screen (i.e., you cannot define a
window within a window). If the clear flag is given, the new window

area will be cleared after it's set up.
Use the RWINDOW function to get the current window size.

You are responsible for saving and restoring screen data in all
windows because the WINDOW command simply sets the window margins. The
WINDOW command does not draw a border around a window. All color
commands and screen modes (such as scroll disable, TAB stops, etc.)
are global.

Two consecutive "home" characters will reset the window definition
back to the physical screen.

WINDOW 0,0,39,24 Define a window in 80-column mode
that is the left half of the screen.

WINDOW 40,0,79,24 Define a window in 80-column mode
that is the right half of the screen.

WINDOW 0,0,79,12 Define a window in 80-column mode
that is the top half of the screen.

WINDOW 0,13,79,24 Define a window in 80-column mode
that is the bottom half of the screen.

WINDOW 20,6,59,12,1 Define a window in 80-column mode in
the center of the screen and clear it.
The window 1is 12 characters high and
40 characters wide.

PRINT CHRS$S (19)CHRS (19) ; Reset the window back to full screen
in either 40 or 80-column mode and put
the cursor in top left corner.
XOR -- Exclusive-Or function
XOR (number, number)
The XOR function returns a numeric value equal to the logical XOR of
two numeric expressions, operating on the binary value of the unsigned
16-bit integers in the range (0 to 65535). Numbers outside this range

result in an 'ILLEGAL QUANTITY' error.

X = XOR(4,12) Result is X= 8
X = XOR(2,12) Result is X=14

3.1.4. VARIABLES

The C64DX uses three types of variables in BASIC:

floating point X
integer X%
string X$

Normal NUMERIC VARIABLES, also called floating point variables,
can have any from up to nine digits of accuracy. When a number becomes
larger than nine digits can show, as in +10 or -10, the computer
displays it in scientific notation form, with the number normalized to
1 digit and eight decimal places, followed by the letter E and the
power of ten by which the number is multiplied. For example, the
number 12345678901 is displayed as 1.23456789E+10.

INTEGER VARIABLES can Dbe used when the number is a signed whole
number from +32767 to -32768. Integer data is a number like 5, 10, or
-100. 1Integers take wup less space than floating point wvariables,
particularly when used in an array.

STRING VARIABLES are those wused for character data, which may
contain numbers, letters, and any other character that the computer

can make. An example of string data is "Commodore C64DX".

VARIABLE NAMES may consist of a single letter, a letter followed

by a number, or two letters. Variable names may be longer than 2
characters, but only the first two are significant. An integer is
specified Dby wusing the percent (%) sign after the variable name.

String variables have a dollar sign ($) after their names.
EXAMPLES :
Numeric Variable Names: A, A5 , BZ
Integer Variable Names: A%, A5%, BZ%

String Variable Names : AS$, A5S, BZS

ARRAYS are lists of variables with the same name, using an extra

number (or numbers) to specify an element of the array. Arrays are
defined using the DIM statement, and may be floating point, integer,
or string variable arrays. The array variable name is followed by a
set of parentheses () enclosing the number of the variable in the
list.

EXAMPLE:

A(7), BZ%(11l), AS(87)

Arrays can have more than one dimension. A two dimensional array
may be viewed as having rows and columns, with the first number
identifying the row and the second number identifying the column (as
if specifying a certain grid on the map).

EXAMPLE:
A(7,2), BZ%(2,3,4), 2S(3,2)

RESERVED VARIABLE NAMES are names that are reserved for use by
the computer, and may not be used for another purpose. These are the
variables DS, DS$, ER, ERRS$, EL, ST, TI, and TIS$. KEYWORDS such as TO
and IF or any other names that contain KEYWORDS, such as RUN, NEW, or
LOAD cannot be used.

ST 1is a status variable for input and output (except normal
screen/keyboard operations). The value of ST depends on the results of
the last I/0 operation. 1In general, 1if the value of ST is 0 then the
operation was successful.

TI and TIS$ are variables that relate to the real-time clock built
into the C64DX. The system clock is reset to zero when the system is
powered up or reset, and can be changed by the user or a program.

TIS$S="hh:mm:ss.t" Allows optional colons to delimit parameters and
allows input to be abbrieviated (eg., TI$="h:mm"
or even TIS=""), defaulting to "00" for

unspecified parameters. 24-hour clock (00:00:00.0
to 23:59:59.9).

TI 24-hour TOD converted into tenths of seconds.

The wvalue of the clock is lost when the computer is turned off.
It starts at zero when the computer is turned on, and is reset to zero
when the value of the clock exceeds 23:59:59.0.

The variable DS reads the disk drive command channel, and returns
the current status of the drive. To get this information in words,
PRINT DS$. These status variables are used after a disk operation,
like DLOAD or DSAVE, to find out why the error light on the disk drive
is blinking.

ER, EL, and ERRS$ are variables used in error trapping routines.
They are usually only useful within a program. ER returns the last
error encountered since the program was RUN. EL is the line where the
error occurred. ERRS 1is a function that allows the program to print
one of the BASIC error messages. PRINT ERRS (ER) prints out the proper
error message.

3.1.5. OPERATORS

The BASIC OPERATORS include ARITHMETIC, RELATIONAL, and LOGICAL
OPERATORS. The ARITHMETIC operators include the following signs:

+ addition

- subtraction

* multiplication

/ division

~ raising to a power (exponentiation)

On a line containing more than one operator, there is a set order
in which operations always occur. If several operators are used
together, the computer assigns priorities as follows. First
exponentiation, then multiplication and division, and last, addition
and subtraction. If +two operators have the same priority, then
calculations are performed 1in order from left to right. TIf these
operations are to occur in a different order, BASIC 10.0 allows giving
a calculation a higher priority by placing parentheses around it.
Operations enclosed in parentheses will be calculated before any other
operation. Make sure that the equations have the same number of left
and right parentheses, or a SYNTAX ERROR message is posted when the
program is run.

There are also operators for equalities and inequalities, called
RELATIONAL operators. Arithmetic operators always take priority over
relational operators.

= is equal to
< is less than

> is greater than

<= or =< is less than or equal to
>= or => is greater than or equal to
<> or >< is not equal to

Finally, there are three LOGICAL operators, with lower priority
than both arithmetic and relational operators:

AND

OR

NOT
These are most often used to join multiple formulas in IF...THEN
statements. When they are used with arithmetic operators, they are
evaluated last (i.e., after + and -). If the relationship stated in

the expression is the true the result is assigned an integer of -1 and
if false an integer of 0 is assigned. There is also an XOR function.

EXAMPLES:
IF A=B AND C=D THEN 100 requires both A=B & C=D to be true
IF A=B OR C=D THEN 100 allows either A=B or C=D to be true
A=5:B=4:PRINT A=B displays O
A=5:B=4:PRINT A>3 displays -1

PRINT 123 AND 15:PRINT 5 OR 7 displays 11 and 7

3.1.6. ERROR MESSAGES

3.1.6.1. BASIC ERROR MESSAGES

The following error messages are displayed by BASIC. Error
messages can also Dbe displayed with the use of the ERRS$() function.
The error number refers only to the number assigned to the error for
use with this function. In direct mode, DOS error messages (DS$) are
automatically displayed. They are described in the section after this
one.

ERROR# ERROR NAME DESCRIPTION
1 TOO MANY FILES There is a limit of 10 files OPEN at one
time.
2 FILE OPEN An attempt was made to open a file using

the number of an already open file.

3 FILE NOT OPEN The file number specified in an I/O
statement must be opened before use.

4 FILE NOT FOUND No file with that name exists on the
specified drive.

5 DEVICE NOT PRESENT The required I/0 device not available.

6 NOT INPUT FILE An attempt made to read data from a file
that was opened for writing.

7 NOT OUTPUT FILE An attempt was made to write data to a
file that was opened for reading.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MISSING FILE NAME

ILLEGAL DEVICE NUMBER

NEXT WITHOUT FOR

SYNTAX ERROR

RETURN WITHOUT GOSUB

OUT OF DATA

ILLEGAL QUANTITY

OVERFLOW

OUT OF MEMORY

UNDEF'D STATEMENT

BAD SUBSCRIPT

REDIM'D ARRAY

DIVISION BY ZERO

ILLEGAL DIRECT

TYPE MISMATCH

STRING TOO LONG

FILE DATA

FORMULA TOO COMPLEX

Filename was missing in command.

An attempt was made to use a device
improperly (SAVE to the screen, etc) or
an illegal device number was specified.

Either loops are nested incorrectly, or
there is a variable name in a NEXT
statement that doesn't correspond with
one in FOR.

A statement 1is unrecognizable by BASIC.
This could be Dbecause of missing or
extra parenthesis, parameters, delimiters,
or a misspelled keyword.

A RETURN statement was encountered when no
GOSUB statement was active.

A READ statement was encountered with no
DATA left unREAD.

A number used as an argument is outside
the allowable range (too big or too small)

The result of a computation is larger than
the largest number allowed (1.701411834E+38)

There is not enough memory for the program,
or variables, or there are too many DO, FOR
or GOSUB statements in effect.

A line number referenced doesn't exist.

The program tried to reference an element
of an array out of the range specified by
a DIM statement, a missing DIM statement
or a mistyped function name.

An array can only be DIMensioned once.
Division by zero is illegal.

Command is only allowed to be used in a
program.

A numeric variable was used in place of
a string variable or vice versa.

An attempt was made to assign more than
255 characters to a string, or enter more
than 160 characters from the keyboard, or
to input more than 255 characters from a
file.

The wrong type of data was read from a
file.

An expression is too complicated for BASIC

to process all at one time. Break it into
smaller pieces or use fewer parentheses.

26 CAN'T CONTINUE The CONT command does not work if the
program was not RUN, there was an error
or a line has been edited.

27 UNDEFINED FUNCTION An attempt was made to use a user defined
function that was never defined.

28 VERIFY The program on disk does not match the
program in memory.

29 LOAD There was a problem loading.

30 BREAK The program was halted by the STOP key or
a STOP statement.

31 CAN'T RESUME A RESUME statement was encountered without
a TRAP in effect, or an error occurred in
the trap handler itself.

32 LOOP NOT FOUND The program encountered a DO statement and
cannot find the corresponding LOOP.

33 LOOP WITHOUT DO A LOOP was encountered without a DO
statement active.

34 DIRECT MODE ONLY A command was used in a program that can
only be used in direct mode.

35 NO GRAPHICS AREA A graphics command was used before a
graphics screen was defined and opened.

36 BAD DISK A BOOT SYS command failed because the disk
could not be read.

37 BEND NOT FOUND A BEND statement not found for BEGIN.
38 LINE NUMBER TOO LARGE A line number cannot exceed 64000.

39 UNRESOLVED REFERENCE Renumber failed because a referenced line
number does not exist.

40 UNIMPLEMENTED COMMAND The given command is not currently
implemented in this computer.

41 FILE READ There was a problem reading data from a
disk file. Similar to LOAD ERROR.

3.1.6.2. DOS ERROR MESSAGES

The following error messages are returned through the DS and DS$
variables. If a disk command is type in direct mode, these messages
will Dbe displayed automatically. NOTE: DOS message numbers less than
20 are advisory and are not necessarily errors. DOS messages may vary
slightly depending upon the drive model. Refer to your DOS manual for
details.

ERROR # DESCRIPTION

02:

03:

04:

05:

20:

21:

22:

23:

24 :

25:

26:

27

OK (no error)

FILES SCRATCHED (not an error)
The following number (track) tells how many files were deleted
by the scratch command.

PARTITION SELECTED (not an error)
The requested disk partition (subdirectory) has been selected.

FILES LOCKED
The requested file(s) have been locked.

FILES UNLOCKED
The requested file(s) have been unlocked.

FILES RESTORED
The requested file(s) have been recovered (undeleted).

READ ERROR (block header not found)

The disk controller is unable to locate the header of the
requested data block. Caused by an illegal sector number, or
the header has been destroyed.

READ ERROR (no sync character)

The disk controller is unable to detect a sync mark on the
desired track. Caused by misalignment of the read/write head,
no diskette 1s present, or unformatted or improperly seated
diskette. Can also indicate a hardware failure.

READ ERROR (data block not present)

The disk controller has been requested to read or verify a
data block that was not properly written. This error occurs in
conjunction with the BLOCK commands and indicates an illegal
track and/or sector request.

READ ERROR (checksum error in data block)

This error message indicates that there is an error in one or
more of the data bytes. The data has been read into the DOS
memory, but the checksum over the data is in error. This
message may also indicate grounding problems.

READ ERROR (byte decoding error)

The data or header has been read into the DOS memory, but a
hardware error has been created due to an invalid bit pattern
in the data Dbyte. This message may also indicate grounding
problems.

WRITE ERROR (write-verify error)
This message is generated if the controller detects a mismatch
between the written data and the data in the DOS memory.

WRITE PROTECT ON

This message 1s generated when the controller has been
requested to write a data block while the write protect switch
is depressed.

READ ERROR
This message 1s generated when a checksum error is in the
header.

28:

29:

30:

31:

32:

33:

34:

39:

40:

471 :

50:

51:

52:

53:

WRITE ERROR
This error message is generated when a data block is too long.

DISK ID MISMATCH

This message 1s generated when the controller has Dbeen
requested to access a diskette which has not been initialized.
The message can also occur 1if a diskette has a bad header.

SYNTAX ERROR (general syntax)

The DOS cannot i1nterpret the command sent to the command
channel. Typically, this is caused by an illegal number of
file names, or patterns are illegally used. For example, two
file names appear on the left side of the COPY command.

SYNTAX ERROR (invalid command)
The DOS does not recognize the command. The command must start
in the first position.

SYNTAX ERROR (invalid command)
The command sent is longer than 58 characters.

SYNTAX ERRROR (invalid file name)
Pattern matching 1s invalidly wused 1in the OPEN or SAVE
command.

SYNTAX ERROR (no file given)
The file name was left out of the command or the DOS does not
recognize it as such.

SYNTAX ERROR (invalid command)
This error may result 1f the command sent to the command
channel (secondary address 15) is unrecognized by the DOS.

UNIMPLEMENTED COMMAND
Command is not implemented at this time.

FILE READ
The file cannot be read.

RECORD NOT PRESENT

Result of disk reading past the last record through INPUT# or
GET# commands. This message will also occur after positioning
to a record beyond end of file 1in a relative file. If the
intent is to expand the file by adding the new record (with a
PRINT# command), the error message may be ignored. INPUT and
GET should not be attempted after this error is detected
without first repositioning.

OVERFLOW IN RECORD

PRINT# statement exceeds record boundary. Information 1is
truncated. Since the carriage return which is sent as a record
terminator is counted in the record size, this message will
occur 1f the total characters in the record (including the
final carriage return) exceeds the defined size.

FILE TOO LARGE
Record position within a relative file indicates that disk

overflow will result.

BIG RELATIVE FILES DISABLED

