!n‘

AIM 65/40

o\

Rockwell
International

TABLE OF CONTENTS TABLE OF CONTENTS (Continued

1 Title Page Section Title Pass
Section Fage
Introduction 4,5 Executing and Compiling using SOURCE ssesssssisnses =27

1 ntrodu

1.1 AIM 65/48 FORTH User's Manual Description {:} 4.6 DO LOOPS T e PR 7
1.2 Reference DOCUNENLSccccscsssssscssssamscnscsanss

:.c.z W 22= T cocecenerrsovoprsrsinsnssviiivones 40
«6.2 +LOOP tetsriasssiiianenaaa, A=
Installation and Operation 4.6.3 LEAVE T OGS 4-32

4.7 Comparison and Logic OpPerations ...veevevennvennnnn.. 4-37
2.2.1 Entering FORTH sssssssssssssssnssssvesssnnanes 4=3 4.7.1 <« ¢« > and = 4-37

..lQ-.---.l.a‘u.s--.-c-...---.

B2 BIEING WUNE oo svossatastrn-aivesesoninshann NP 4.7.2 U<, 8< and g 4-37

2-1
- talling the FORTH ROMs WEssEsssASAREsEETRERRERB RS e |
%,; :::.rlnq.gnsltlng and Re-entering FORTHvceveenss 2=3

2.2.3 Re-Entering FORTEcciiiieeesensesssessees 296 BHI Lopleal OpItIon ocvyonvenriivirs i b
FORTH Concepts 4.8 Conditional Control Structures testesssssessnssnnsnss 4=39

sssrsacasssassssnrsnnes 3-1 4.8.1 IF ... ELSE ... THEN Trrecsctsiiicttiinnannses 4=39
3.1 I'lltllr:l of Jyonry ...':::::::,................--.-ao- 3-5 4.8.2 Nesting Control Structures Trssssennns see d-40
3.2 Debuggingeeee 4.8.3 Masking and Setting Bits P |

2 Steisniacy Opacatiois | 4.8.4 BEGIN ... Loops Seererteeseessiieceiiiieiiei.. =43
4.1 'lql. M[tmtle *sssssssssssnnsnssssssnsnsnnsnsnass #A=5 I 4.9 Data Btor.’. -‘-o'-o-.---.o-q.-..o-t--«o:-.o-».o---o-. 4-44
4.1.1 Examine Stack Contents with .5 4-6 [4.9.1 FPind Next Dictionary location with HERE 4-45

4.1.2 Print from the st:uh using . o
W ::;‘rin"::.szzzg'cé..:..::::. : H 494 Exclusive-OR Memory Using TOGGLE -..reeerrr. ooeg
4.1.5 Woltiply ¥ and DIVIGE / oovovovovnneoriees &=

:-: 4.9.2 Use PAD for Temporary Storage 4-46
e 1

I
4.1.6 Postfix Notation and Stack Operation 4—1:; 4.19 cConstants and Variables P 1 11

4.9.3 Increment Memory with +§

1 Number Base 4-1
S e W g | 4.10.1 CONSTANT Semereseecastnsretetsetrertnnrssnesas H=49
4.2 Stack mnlwl‘tiﬂﬂ sssssessssessssnsensnssnsnnnnnnsns 4-13 .10.2 VARIABLE

Vil A T T T e 4-50
st Bo¥ BURIBING WOEME o csnnsonsocmmnetnn i Aol

TR ? DROP EWAP and OVER ..ccsccscensss 4- 4.19.4 USER s 4-51
ot 32..'.n¢ Uupilclto with -DUP ..ivccvvsnccass 4-%2_ 4.10.5 ALLOT e e L LT T T PO 5
Delete the '.P Stack Item with DROP ...ccecse 4- |

Rotate Stack Items with ROT ...ccceccasssess ::}E 4.11 Changing the N ¢ BAGE
Copy a Stack Item with PICK ...ccccvcsssscss umbe

o---o-o-c---Jo---o-oo--a-oo---oo.--

tessrvssccsssssssrsenssnnnns =83

4 13i 4.12 oOutput
T Y S R] - |
4.3 Memory Operations i 13| 4.12.1 Print Right-Justified with R ,....c.vinue.. 4-58

! 4.12.1 Output Spaces with SPACE and SPACES 4-55%
4.3.2 8-Bit Store C! and Petch C@eceveceeees 4-J0 4.12.3 Output a Number to the Display/Printer

4.3.3 Initializing Memory with ERASE BLANKS , with EemIT jotrrsecenssssesccnssecsnssncncsse =56

esssssssssss 4-20 4.12.4 Output a String to the Display/Printer
and FILL R -21

m' SrssssnssasassRsREw 4 :! "i“ ﬂ” -o-o-oo--oo-oc---o-q--l-.ao---o-ot "s‘
3:3:4 m,":‘_'::::{ :it::..,,, vith CMOVE ...l.ll0 €22 4.12.5 Prepare to Output a String with ceviee 487

4.12.6 Set the Active Output Device with zouT

Words SEEmspNANASR A SO VSR E ST v e e aess ASBE

4.3.1 16-Bit Store 1 and Petch @ ...cecvecesnsess

| veees 4=58
) cesssensnssnscnnnanes A=22 4.12.7 Output a character to the Active Output
4.4 Defining Your Own Operations ... : 2}! Device with puT?......... 4-58
SN sEssssEsRREEEERERBERES 4-23 4.12.8 Output a stri the Active Dutput
‘ Colon-Definition ... Teteettieiiceiceiinanea., 4-59

Print a Message with .*cccvevecacens £-25)

4.4.1 | Y
4.4.2 Pind a Word in the Dictionary with * weeeees 4-2¢ it oiorisy &
4.4.3 s &2

Solled Commanting cocecsessssensssnansnssansesssss

(¥

TABLE OF CONTENT (Continued) TABLE OF CONTENT (Continued

5.1.2 Absolute ABS and Negate NEGATE ..c.ooeesaes 51 inition Exampleicccceeiiininn. 6-4

5.1.3 Simple Increment and Decrement 1+ , 2+ , 6.2 Assembler Op-codes 6-6
1- z- Tt e R R R] 5-2 ORGP < & | b Ll »

S.1.4 Minimum MIN and Maximum MAX ..eeeeesesesss 5=2 §.2.1 Single Mode Op-Codes
6:2:2 Multi-Node Op-Codes -iiiieiieeireiseiirs 607

Section Title page | section i raee %.
4.13 INPUL WOTBS ccceecisssssasssssrssssscsssssssssesacces 459 I Rl WO ovssasosnssossssisssissiatisseises 508 B
4.13.1 Input a Character from the Keyboard $.6.1 NOE® OB WLIST .cieccsvvscsccoscascnssosce " -
o2 e Sl i e) g Ao

4.13.3 Set the Active Input Device with 2IN 4-62 F +6.4 Application Librariesccceenn 5223 |
S AT ——— R 5:7 Immediate Mordsccccccccccccieniiiiiiienns 520
oo1ns TomeEre St feon I T) s coentig oue o owa/opecation mper oo S8 |
4.13.6 Test for Input with 7?TERMINAL ...eueevensssss 4-64 6 AIM 65 PORTH ASSEMBLER ==
Advanced Operations 6.1 The Assembly PIOCESSececcssesssenssacnsssanes 6=1 %ﬁ
5.1 Other Single-Precision Arithmetic Operations 5-1 6.1.1 CODE Definitionsccivevvenatvesneses 6-3 e
5.1.1 Modulus Operators MOD and /MOD ...essssess 5-1 ::i:g .g;;;zgii-rin. S Eans DOn=TiNe . puabneeieseanee . od %:

h

5.2 Unsigned, Mixed and Double-Precision Arithmetic 5-3
6.3 Addressing Modes
5.2.1 Entering Double-Precision Numbers 5-3 Seedrasinyerrdesnvecs i
5.2.2 Printlng Double-Precision Numbersccece.. 5-4 6.4 R6502 Conventionsceevevenseee 6-8

T

5.2.3 Other 32-Bit FORTH Operators ...cssssss Sig P
5.2.4 Unsigned Compare U< ..csssssssscssssces L 6.4.1 Stack Add

5.2.5 Unsigned Multiply U* and Divide U/ 5-7 G413 Metaks LA .o tseeeraaniasivippiivcid A

5.2.6 Mixed Mode Operations M* , M/ , and M/MOD .. 5-8 srresesscsccacsssassesasss 6518 ¢
5.2.7 S5caling ...cscccscscsncssssnsssssanssnanrsnrans 5-9 6.5 HORNE BOPLIBIRED iiiiiciinnssioasaisiiceasas 6-11

5.3 mtwt Nr“ttlm sasssmsssssssssssssssssEssRRssRERRE. 5-9 > | “”lf m‘.t.x. R T PTG Tt ey 7 -1
2 CHO MOBIOOES cveeenorsososso iintoi i tairre: 20NN

Selel 0. 0 'O 5-11 3 XSAVE .iiiiiiiiiiniiiieiianaaaeas e wels

sde al SlSSsEsESsAssEsEEEsAsEEERERERERES . 4 N Area_.._’..'.--._._.......-.".'..""'

5 sSssessshanis ‘.1:

6

6

5.3.1 S§->0 , <¢, #5 , SIGN , and #> ..ccvvens. 5-10 6
6

6 U R RSN SROReR 0 TR du e Simdi

5.4 BErINGS .escesssssssssncsssasansssssssssssssnassnnnes 5-12

e e

“s Conttol Flow L Ty
Address String Data with COUNTccceeee.. 5-13 seseresccscnssscescscs 614

5.4.1

5.4.2 Output String Data with TYPE ...cscesesesses 5-13 6.6.1 Co :
5.4.3 Input String Data with EXPECT ...eceeecessss 5-13 6.6.2 ca::::::::i ::::::g°;°------‘--------------... 6-15 i
5.4.4 BSuppress Trailing Blanks with =TRAILING 5-13 6.6.3 Conditional Nesting “es chasassess :-i: =
5.4.5 Interpret a Number with (NUMBER) ...sssesse. 5=14 6.6.4 Some i setesrsescsase O= i
5.4.6 Input a Number with NUMBER .coecevesssssssss 5=15 3 Booting Bamplés cocececcncscionivacpeses i B

6.7 Return of C 'eis - ey
5.5 Dictionary StrUCLUTE ..eesssssssssnsssssssnssansnanes 5-16 ol SEALDUCA T el LRSI VPP Y TR, o i B
5 6.8 Assembler Secur ——
5.5,1 FORTH Word BEFUCEUT® .ueveensssssssssscsssanss 5-16 ity revasEs sy ot Msssybii s SN
5,5.2 Handling FORTH Word Addressessesessesss 5-1 6.8.1 Assembler Tests ... ;
5.5.3 FORTH Word Handling Exampleseeesesssvses 5-19 6.8.2 Bypassing Security ::::::-.................... :-g:

6.9 Adding Assembly Code to Defining Wordc.o..v.. 6=25

iv -
| i

Section

TABLE OF CONTENTS (Continued)

Title

7 Handling Interrupts in FORTH

7.1
7.2

Programming

.‘1
8.2

Types of Interrupt HandlerS sesessssssssssssssansanss
Machine Level Interrupt Bandling ...cecevesssseseesscs

CODE-Definition FOIM .usesscssssnccasnonnnsnss
Code Fragment FOIM .sssssssssssnsassnnes .
Intorrupgnbisablo/lnablc WOrdS .ossssssansasse

Example TesssenssuscsasssnssssssEIRTRISERRREES
Interpretive Interrupt Bandling .cssssssssssssssssses

7.3.1
7.3.2
7.3.3
7.3.4

Interrupt Service Subrouting ..ccssssssscseses
Interrupt Processing WOTd .ossssssssansssssnns
Example ieissssissessanssnasssesassssevsensine
Points to Remember ..ccesscsssssncnssnesansense
the R6522 in FORTH

VIA Organization and Registers ...cesecsescscsccssncns
Simple 1/0 with the VIA cesesssssssssssssassaasnesens

8.2.1 Considerations ..cacessessssssncnsnnnsrssonons
§.2.2 EXAMPleS .cosesccnasssssasssssnmmananssssnanes

Recognizing Status SIgNAls cessscssssansssmrasannrecs

8.3.1 ConsiderationScsescsssssssrssssccnnsssss
8.3.2 EXBMPlES .coscscscsssssccsssssnnnansnransannns

Producing Output Strobes ...cceescsscscanssnsmnrnnnss
8.4.1 Considerations;...............:
8.4.2 Options:.
B.4.3 EXAMPleS .ccccscecssssssnsssssrmeassrneninnes

VIA INCErTUPES seesssssenssassaassssannmnssnssnsnnsns

8.5.1 Considerations:
8.5.2 EXamPleS ...cesscccessssssssansnsnanncciannss

Notes on Style and Program Development

9.1
9.2

GONErAl c.oesssccessssssacsesssssssssassssnnnssennass

Example PrOGFEM ..ccsssssscsssessscassnnrssnnsnsansns

Page

7-1
7-5
7-6

“© @
I
o m

(I }

-

@

[]

=
e ——

» o

- |
9=z

|
:
1

Section

10

TABLE OF CONTENTS (Continued)

Title

Preparing an Application Program for PROM Installation ...

10.1 General ProcedUr® ...sssssessscssssssssssssssssssnns
10.2 Example Startup Drivers ...cscccecssescsscsovsnnssns

1#.2.1 with I/0 and Monitor ROMs Installed
19.2.2 With I/0 ROM Installedcoccsssssssssssnss
10.2.3 Without I/0 ROM Installedcccescssesses

an Audio Cassette Recorder

Handling Program Source Code FileSccevnnvesssn
11.1.1 Listing Program Source Code® ...cvcsesssssnses
11.1.2 Reading Program Source Code ..

11.1.3 Compiling Program Source Codessssassssss
Handling Program Object Code FilesSeescsccsnoves

11.2.1 Dumping Program Object Codecconvcsesses
11.2.2 Loading Program Object Cod®ceccacssssces

Handling Data FileSccssssssssssssasssnssnasssss

11.3.1 Using Recorder Remote Controlcssessssses
11.3.2 Using AIM 65/40 FORTH FOrmatcecscssnssas
11.3.3 Using AIM 65/4@ Monitor FPormatc.ceessses

Interfacing to Mass StOrage ..ecevsscsscssssssscncnssnnnes

12.1

OVEIVIOW ..vcssssssssssssssssssssssssssssnsannsssnsns

12.1.1 Mass Storage Terminology .e.ievsessccscncsanss
12.1.2 Buffer Var .bl.. L T T

Setting up Block and Data Bufferscssssssssssss:

Croating BCrOONE .ssssisvisssissnssssssssssassssassss

12,3.1 Creating and Testing a One Screen Buffer
12,3.2 Creating and Testing a Two Screen Buffer

Interface Wordsccossevssssssssssssssssssssssanans
Using Mass StOLBg® ..cccsssssssnsssssssnnssnsnnsnssns

12.5.1 Data Storage and Retrieval -the Virtual RAM ..
12.5.2 Program Loading and Overlaysccccssssssss

Source Codo BAitings .cscevvcscscronescressnssncnnnna

Section
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

= O ™m m O N wmw »

zZ X MG

TABLE OF CONTENTS (Continued)

Title
AIM 65/49 FORTH Functional Summary ..eessccss
AIM 65/40 FORTH GlOSSAIY secsvescssnsnssnnssns
AIM 65/49 FORTH Assembler Functional Summary
AIM 65/49 FORTH Assembler GlOSSArY ..cscsssss
Error Messages ReCOVEIY .ccssssssssssssssnnss
Page Zero And One Memory Map .ececcssssssscss
USER Variables RAM Map ..cscscssssssvnsssncns
ASCII Character Setssssssssssssssssssses
FORTH String Words ...cccssnsncssnsnssnnnnsns
USER 24-Hour Clock Program in FORTH
Utility EXampleS ...ccccsscnsssssnsnssnsssns:
AIM 65/40 FORTH Versus FIG-FORTHccovevee
FORTH and the RM 65 FDC Moduleccvevvnes

Selected Bibliography ..esvcscccncnnsacsncns

wiil

——

Pag{ Figure

A=1

C=.
D=

7

-1
14-1
i~

h=

7=
7=2

‘!7-3

g 8-
B-2
Rz

1g-.
10-3
18-3

3 '.PIR-.!

M-

Fll=1
e

12-1
[T=1

N-ll J-2

7-3
=4

LIST OF PIGURES

Title
AIN 65/48 FORTH Memory BAD cssvesnssecansonss

VLIST of AIM 65/48 FORTH WordS ceucssccscnsenen. ..
Stack Diagram of Postfix EXamPle ..c.vvvecccccnnss

VLIST of AIM 65/48 PORTH Assembler Words esssssnss

Machine Level NMI Interrupt Bandling
Machine Level IRQ Interrupt Handling_..

Interpretive Interrupt BARALlINg ciaceecsasancennes

R6522 VIA Block Diagram Seessssscssesssssasannnnss
R6522 VIA Interrupt Enable Register (IER)
R6522 VIA Interrupt Flag Register (IFR)

Example Driver Compilation and Test sessssscsnanas
Startup Driver with I/0 and Monitor ROMs Installed
Startup Driver with I/O ROM Installed csssssssssne
Startup Driver without I/0 ROM Installed

AIM 65/49 Audio Tape Handling Wordsc.veeeeees
RM 65 FDC Module Disk BYSTOR seessnnsenssansononne

24-Hour Clock Program Using a Machine Level
Interrupt Handler e T T S A,

VLIST of 24-Clock Program Using a Machine Level
Interrupt Handler it Bt L T R,

24-Hour Clock Program Using an Interpretive
Interrupt Handler L N AR
VLIST of 24-Hour Clock Program Using an
Interpretive Interrupt Handler veseseEesEReRe e

LIST OF TABLES

Title

RE522 VIA Memory Assignments

Buffer Variables and Access Words

8-2 I
8-17 -
8-19 Eal

19-8 By
18-9
10-11
19-12 e
11-7

12-13 g

AIM 65/48 FORTH V1.4 ERRATA T3

-

HEX
={L3/ OUT=
fog 1ST
WL
lowi . f
The AIM 65/40 PORTH release V1.4 includes the following VLIST KEY DROP ; i
limitations: . ‘KEY }
L UKEY @ 1 LITERAL EXECUTE]
1 Compilation using SOURCE does not return control to DUP EMIT ;
r detection. . READ
the keyboard upon erro gxzv oEanT :or\ »
- “KEY CFA 1 LITERAL
2. The XOR word operates improperly. UKEY ' READ UKEY ' ; |
: -ABORT '
t - e |
3. The READ word does not display data inpu ERSSEEEECDuNT TYPE CLOSE Qul !
4. The key used to terminate VLIST is also entered as an IngU:CEG ERASE 5
ter. WARNING @ URBORT @
TPNE. ITRRE RS -1 MRRNING ' [* -ABORT CFA 3
A ' ;
§. Compilation using SOURCE will accept lines greater CITERAL INWORT 1 SPUEE
2 : FIN
than 79 characters in length. FINIS

UABORT ' WARNING *
CR ™ OK" FINIS ;
6 =0K* is not displayed upon completion of compilation

CODE XOR

TOP LDA, SEC EOR, PHA,
The following words should be entered into the text editor :nd ;?:aé; ’322» 253-3505“’

VLIST (see Section
hown (see Section 4.5). Run 2 2
compiled as sho _ These words will then be used g?zuéﬂﬁ @ URBORT @
4) to verify proper compilation i 'E’I‘D‘ .
s

in lleu of the XOR , FINISH , SOURCE and READ sy =Ca>
words. {52

AIM 65/4@ FORTH vi. 4
SOURCE IN=M

VLIST NOT UNIQUE

READ NOT UNIQUE
SOURCE NOT UNIQUE .
FINIS NOT UNIQUE .
XOR NOT UNIQUE

xi

SECTION

INTRODUCTION

FORTH is a unique programming system that is well suited to a
variety of applications. Because it was originally developed
for real-time control applications, PORTH has features that
make it ideal for machine and process control, data acquisi-
tion, energy and environmental management, automatic testing,
and other similar applications. The speed performance of
assembly language is required in many of these applications,
however a high-level language is often desired to improve
program development productivity and program reliability.
FPORTH is designed to satisfy both speed and programming
efficliency requirements.

.PORTH can be called a computer language, an operating system,

'an interactive compiler, a data structure, or an interpreter,
.depending upon your point of view. It was designed to combine
the strengths of both compilers and interpreters. The result

is a unique language based on pre-defined operations that
minimizes software development time and costs, supports
structurer programming and program modularity, compiles
interacrtively to ease debugging and to reduce programming
errors, compacts into small object code, and executes extremel:
fast. Additional words may be defined to allow usage by
innn-prograllors.

. AI¥ 65/4@ FORTH in ROM combines the benefits of FORTH and the
features of the AIM 65/40 Microcomputer with its resident
fpriﬁtex. display, keyboard, and interactive Monitor and Text
Editor firmware, to produce a stand-alone development and
run=-time system.

AIM 65/40 FORTH can also be used in a Rockwell RM 65 Single Section 6, AIM 65/40 PORTH Assembler, describ

Board Computer (RM65-1088), in either a run-time, or develop | operating procedures associated uith‘ ribes concepts and
ment, mode with user provided peripherals and input/output Assembler. the AIM 65/40 PORTH
software drivers. AIM 65/48 peripherals may easily be
connected to the RM 65 SBC module, either directly, or throuot

Section 7, Handlin
ng Interrupts i
an RM 65 Multi-Punction Peripheral (RM65-5223) module. Pts in FORTH, explains how to use

machine level and interpretive interrupts in FORTH.
1.1 AIM 65/4@ PORTH USER'S MANUAL DESCRIPTION Section 8, Programming the R6522 VIA lai

+ explains how to use FORTH
to program the R6522 Versatile Interface Adapter (VIA) These

This manual is designed to provide both introductory instruc- | techniques van easil
y be applied to other
peripheral devices.

tion and detail language reference information. 1If you are r-
to FORTH, be sure to read and follow the manual chapter-by-
chapter using the AIM 65/48 Microcomputer as a teaching aid 'n
order to learn the FORTH language and operation concepts. 1f
you already know the FORTH language you can probably skip
certain sections and still use the language, however it is
recommended to review all sections to become familiar with »
AIM 65/48 FORTH mechanization and unique features.

‘Se
ction 9, Notes on Style and Program Development , discusses

the general approach to pr
TR Rl Programming in PORTH and provides an

s r
ectinr 18, Preparing an Application Program for PROM

Insfallarinn, tells how to structure and locate a FORTH

a i ion

Ppiication program in a PROM which will operate in conju i
witr the AIM 65/42 FORTH ROMs. L
Section 1, Introduction, introduces the AIM 65/48 FORTH

languagé and the AIM 65/48 FORTH User's Manual. s

et
ection 11, Using an Audio Cassette Recorder, describes how to

d
umc and load source and object code for programs written in

section 2, Installation and Operation, explains how to installl FORTH

the AIM 65/48 FORTH ROMs and how to enter, exit and re-enter

AIM 65/48 PORTH. fection 12, Interfacing to Mass Storage, tells how to prepare

programs to store and retrieve program and data from mass
ftera?e Blocks, screens, and buffers are described
erhnicug to handle program overlays is also explained

Section 3, FORTH Concepts, provides a general overview into
FORTH concepts and advantages. This is a good chapter to r#a
if you are new to FORTH.

The

Appendix A, AIM 65/48 FORTH Func

al Summary summari
FORTH word operation by general . P

Section 4, Elementary Operations, leads you through clemantar
of usage.

and common PORTH operations. By following this section
step-by-step you will learn how FORTH operates to a snfficienfAppendix B, AIM 65/48 FORTH Glossazy, defin
level to implement simple applications in FORTH. in ASCIT sort order. ' =S Soh: FORTN wetd

Section §, Advanced Operations, takes you into more complex [APpendis C, AIM 65/40 FORTH Assembler Puncti
FORTH operations once you have become familiar with the ; onal Summary,

um i 3 FORTH a embler r P .
marize [85 b word (+] .r.tio“ by area Ot UIIQ. I
.1.-.ﬂtlry FORTH Dp.r.ti

ipeﬁdlx D, AIM 65/40 FORTH Assembler Glossary defines each
RTE Assembler word in ASCII sort order.

-3

Appendix E, Error Messages and Recovery, identifies each FORTH|
error number and/or message, defines the error meaning, and

describes the recovery action.

Appendix P, Page Zero and One Memory Map, defines the address,
variable name and general usage of page zero parameters. [

Appendix G, User Variables RAM Map, defines the address,
variable name and purpose of each user variable. The cold and
warm start initialization values are also listed.

Appendix H, ASCII Character Set, provides a list of 7-bit &SCJ
codes in decimal and hexadecimal corresponding to 32 control |
functions and the 96 upper and lower case alphabetic, numeric
and special characters.

Appendix I, FORTH String Handling Words, describes how to
create string handling functions in FORTH.

1
Appendix J, User 24-Hour Clock Program in FORTH, illustrates :
program written in FORTH colon- and CODE-definitions, i.e.,
PORTH high-level words and 6588 assembly language.

Appendix K, Utility Functions, explains how to determine the
time it takes for a FORTH word to execute.

Appendix L, AIM 65/4@8 FORTH Versus FIG-FORTH, identifies words
incorporated in each FORTH that are not included in the ~rherf

FORTH.

Appendix M, FORTH and the RM 65 FDC Module, lists a program
written in FORTH to compute and display a ROM check-sum.

= rre—

Appendix N, Selected Bibliography, lists references to many
popular and tutorial FORTH articles and books. .

1.2 REFERENCE DOCUMENTS
Rockwell

29650N30
Order No. 292

29658N31
Order No. 281

29650N86
Order No. 288

29651N88
Order No. 2184

R65080 Programming Manual
R6500 Hardware Manual
AIM 65/40 System User's Manual

AIM 65/40 FORTH Reference Card

==

i e A B

T

-y

SECTION 2

INSTALLATION AND OPERATION

The AIM 65/48 FORTH object code is provided in two Rockwell
R2332 4K-byte ROM devices. After installing the Roms in the

AIM 65/48 SBC Module, FORTH is ready for

use Fi

. igure 2-]1 shows

the overall FORTH memory map.
$2.1 INSTALLING THE FORTH ROMS

R Before removing the ROMs from the shipping Package, be sure to

observe the handling precautions listed in Section 2.1 of t

he
PAIM 65/48 System User's Manual. Since Mos

devices may be
damaged by the

inadvertent application of high voltages, be

Bsure to discharge any static electrical charge accumulated on
g¥our body by touching a ground connection (e.g,, a grounded

fequipment chassis) before touching the ROMs or the SBC module.

fThis precaution is especially important if You are working in a

iCarpeted area or in an environment with low relative humidity.

gEnsure that power is turned OFF to the AIM 65/40 microcomputer,

Larefully remove any ROM or PROM devices that may be installed

#n sockets Z78 and z71 of the AIM 65/40 SBC Module. Remove the

FORTH ROMs from the shipping Package. Inspect the ROMs to
and free of foreign material,
While Supporting the AIM 65/48 SBC module beneath the ROM

Bocket, insert ROM number R32p@ in Socket Z74a,

gnsure the pins are straight

being careful to
ibserve the device orientation. Now insert ROM number R32p1
Bnto Socket z71. Be certain that both ROMs are

pnserted into their Sockets. Make sure addresses $C@Q0-SDFFE

j@re selected on the AIM 65/49 SBC module (see &

completely

e AIM 65/40 System User's Manual). Then turn
M 65/40 microcomputer,

FFFF

Fogo
EFFF
EQQ@

DFFF

ceee
BFFF

AODO
AFFF

8@B
8@Aa
Bee
TFF
788
77F
760
15F
708
6FF
600
SFF
4A0
49F
200
1FF

lee
FP
Fo
EF
D7
D6
A9
AB
10

AIM 65/4@ I/0 ROM
and On-Board I/0

User
Available

AIM 65/480
FORTH ROMs

AIM 65/4@
Debug Monitor/
Text Editor ROMS

FORTH
User Dictionary
(Continues Upward
in Memory)

Figure 2-1.

Dummy Word
TASK
Terminal Input
Buffer (TIB)
User
Variables
FORTH User
Variables
Module
Default Buffers
— RM 65 Module
Variables
System variables
and Constants
R6502 CPU Stack
and FORTH Return
Stack
1/0 ROM
variables
T RM 65 Module
Variables

2-2

|

]

E 2.2 ENTERING, EXITING AND RE-ENTERING FORTH

2.2,1 Entering FORTH

Press 5 to enter and initialize FORTH when the AIM 65/48

Monitor prompt is displayed. AIM 65/48 will respond with

{5}
AIM 65/40 FORTH V1.4

The last line of data displayed ma

Y be printed upon FORTH entry
along with the {s5}.

To re-initialize FORTH while in FORTH,

type COLD followed by
Pressing the <RETURN> key.

AIM 65 will respond with

Start of FORTH Dictionary in

COLD
in RAM.

AIM 65/48 FORTH V1.4

Initializing PORTH with either of the above methods wi

11 remove
any user words previously defined and added to the FORTH
vocabulary or to any other application vecabul

§s.5).

See Appendix G

ary (see Section
User variables are initialized to the default values

described in Appendix F. The FORTH number base {s also

finitialized ro DECIMAL for input/output operations.

2.2.2 Exiting FORTH

The ESC key can be
pressed any time FORTH is in a4 command input mode,
w

i11 be immediately returned to the AIM 65/48 Monito
-

Control

r, however,

The
ignificance of this will be apparent as you become more
amiliar with FORTH.

values currently in the stack will not be saved,
See Appendix F

ontrol can also be returned to the AIM 65/40 Monitor from the
ORTH command input mode by typing

MON

AIM 65/40 FORTH Memory Map

followed by pressing the <RETURN> key. This causes an R6582
BRK machine instruction to be executed and AIM 65/49
microcomputer to display

MON

= B@ D9 92 @@ FD D9D BRK

More iuportnntiy, exiting FORTH in this manner preserves any
values on the stack.

2.2.3 Re-Entering PORTH

Once FORTH has been entered and control returned to the AIM

methons
65/49 Monitor, you can re-enter FORTH by either of two : o
without re-initializing the user variables or deleting
previously defined words.

You can re-enter FORTH by pressing 6 anytime the AIM 65/48
Monitor prompt is displayed. The system will respond with

6)

(axn 65/40 FORTH V1.4
The last line of data displayed may be printed upon FORTH
re-entry along with the (6}.

Note that re-entering PORTH with the 6 key w}ll delete any
values previously stored in the stack, however the I/0 number

base is retained (See Section 4.11.3).

If FORTH has been exited using the MON command, FORTH can be
re-entered by pressing G, typing D9D2 then pressing the
<RETURN> key.

Re-entering FORTH in this manner retains any numbers on the
stack saved by the FORTH MON exit to the AIM 65/49 Monitor
If FORTH is re-entered properly in this manner, FORTH disnlays

0K

SECTION
FORTH CONCEPTS

FORTH is quite different from more conventional languages suc
as BASIC, FORTRAN, or Pascal. It Creates a computing environ
ment with unique strengths, tools, and styles. Some of the
Structures of FORTH have little correspondence with those of
other languages. This overview of the language and the AIM
65/48 FORTH implementation Provides background for the
how-to-do-it chapters which follow.

3.1 FEATURES OF FORTH

FORTH is EXTENSIBLE,

meaning that you add your own operations
to the language.

New words (operations) are defined from old
words or assembly language, until a single word is the entire
desired program. The Program word can then be executed by
typing its name. Except that your words may be defined in RAM,
Or user provided PROM or ROM, while those of the FORTH system
itself are provided in the FORTH system ROMs, there is no
distinction between your new operations and those originally
part of the language. Extensibility allows users to define
libraries or even their own languages for particular applica-
tions, greatly facilitating maintenance as requirements change.

FORTH keeps all definitions in a DICTIONARY. The
includes virtually all the
of your applications,
any source
‘system or a
ary.

dictionary
object code of the system itself and
Only the AIM 65/48 Monitor, I/0 buffers,
code which may be in RAM, and the "user area® of
PPlication variable values are outside the diction-

Your own data structures may be in the dictionary or

outside it, at your option. The internal structure of the

- chtionary is uniform and

. [typically learn much more of the
Svaten

much simpler than the internals of
imost other languages; therefore, application Programmers

inner workings of the FORTH

FORTH object code is extremely COMPACT in memory, even compared
Short

assembled or compiled to machine language may take less Space

to machine language, pPrograms, however, that are
since the entire FORTH system in the 8K ROM normally stays in
The BK AIM 65/40 FORTH ROMs

terminal

memory as a run-time package.

include code for the FORTH compiler, an assembler,

run-time for most
FORTH's run-time
compilation techniques,

handling, etc. which are unnecessary at

applications. It is possible toc shrink

package to much less than BK by special

but the software for doing that is not included in this system.
FORTH's

i i i advantage for
code to build on itself, increasing the memory g

- 14 Efon
In any case hierarchical structure allows application
"

vi ittle 1 i ed.
larger programs, and with little loss in spe

FORTH code is recursive, suited to multi-tasking applications,
and can be programmed in RAM, PROM or ROM.

in the
FORTH is STRUCTURED.]
IF and ELSE control structures, and DO, UNTIL, an

There is no GOTO statement
language.
WHILE loops are provided; all of these can be nested to any
practical depth.

FORTH uses a STACK and its associated POSTFIX NOTATION, also
(RPN} ,
codes are written after the operands which they use.
example, <2+2> in BASIC would be written <2 2 +> in FORTH.

does FORTH use a stack explicitly when most other languages

called Reverse Polish Notation in which the operation
For

Why

hide their stacks from the user and avoid postfix in favor of
more conventional notation?

Part of the answer is that the stack allows very low overhead
for linking between subroutines. FORTH reduces the cost of

subroutines to very little, and the whole language is built

m

uti calls. Roulines can accept and return any

(o]

=l
SUprl

i B
arguments, without the complexity or other overhead

r
parameter or local variable declarations.

gcation

Fegisters)

i§sembly language subroutines,
¥dnguage can do.

The stack encourages extremely MODULAR Program
be debugged with great reliability,
gramming environment.

ming, which can
Consider FORTH's Pro-
(i.e.,

nt.

Each module

word or Procedure)
Fhas only one entry and one exit poi

Usually all communi-

with the outside world is through the Stack,

S0 there
odules, variables, etc.,
Usually each module

are no side effects on other m unless
explicitly Programmed.
fthree to five 48-column

easier

is short; commonly
The smaller a module the
it is to test all paths through it,

lines. is,

K "
BFORTH is INTERACTIVE. Testing is immediate,

FORTH words can be executed directly as comma
Keyboard,

because almost all

nds from the

and will behave exactly the same in this mode as when

Any arguments required can
onto the stack before the test,
other Operations,
Wsually

fompiled into later definitions.

Einply be typed Or generated by
and results can be Printed immediately.

each component of the new definition can also be

ecuted interactively from the keyboard, to aig in debugging.

RORTH debugging seldom requires examining an

Y code except the
Bingle definition being tested.

Documentation of the behavior
form is required,
there

pf the defined words
gnputs,

in glossary
outputs, and actions,
fode to be listegq.
Buring FORTH Program
Werything you need

i.e.,
but Is no need for their
Fewer listings are therefore reguired
development than with other languages,

to work with is directly in front of you.

BORTH allows €asy MACHINE ACCESs,

unlike most other high-leve]
fanguages.

All of memory and I/0 (data ports and control

can be addressed,

although run-time Protection can
D@ implemented simply by

redefining appropriate system or user

§0rds to include run-time bounds or other checks during
Eesting, Except for direct access to machine-specific
fegisters (A, X, ¥, ete. in the 6502 CPU) which

require
FORTH can do anything machine

And FORTH runs fast enough that usually ne

fsembly language subroutines are n

ecessary, A

But 1f full machine speed is needed, AIM 65/4@ FORTH includes

an assembler. It also allows machine language subroutines to

be tested immediately as soon as the assembly source has been

typed in or otherwise entered, with no waiting for separate

and linking passes. It encourages structured

programming even in assembly language; IF...ELSE and BEGIN...

Users can define their own macros,

ORTH for

ided.

are prov
] of

address arithmetic and

t
-
1]
]
€
ot
b
"

COWer

e - e 3
582 codes and

= -
Al op

is

addressing modes are available. This one-pass assembler
1.5K i

bytes, illustrating the compactness

It

emented in about

1
FORTH's object code. is resident in the AIM 65/408 FORTE
s

et.

The routines created by this assembler have FORTH names and
behave exactly like regular FORTH definitions. The user

needn't know which words are programmed in assembly language.
Therefore, an application can first be written entirely in hig
speed is necessary, part

code with no changes

level using FORTH words, and, if more

can be converted to assembly language
required elsewhere.
is extremely TRANSPORTABLE between machines.

FORTH code

programs to be moved between different
B28@2, and PDP-11 with very little

The AIM 65/40 system follows the FORTH

common for substantial

computers such as 6502,
change or none at all.
Interest Group (FIG) language model, probably the mcst common
dialect of FORTH,

and one closely aligned with the Interna-

tional Standard for the language. The FIG model is available
on the common small computers and is rapidly being implemente
on others. Therefore the AIM 65/42 microcomputer can be used

to develop software for other computers, and it can use

published FIG-model code regardless of the machine on which if
was developed. Published programs are commonly written
entirely in FORTH with no machine code or other dependencies

but designed so that short, time critical words can be

rewritten in assembly language for optimization on any
particular host machine. These programs can first be run

then optimized only if needed.

unchanged,

It if

As in any Programming, good Style makes the application

debug and verify,

pProgram

easier to i i |
anad easier to read and modify when

requir) e s ied
Quirements change. Many recommended FORTH Practices are

familiar from
different,

other language environments, but some are

Practices such as top-down design and bottom-up

coding and testing, short modules, indentation of control

structu H :
tructures, and a glossary as the Principal documentation

during d) a ii
uring development, are discussed throughout this manual

3.2 DEBUGGING

The 2 i
FORTH environment's convenient and powerful debugaing and

€rror control features are an important advantage of the
o 1]
FORTH allows complete access to the machine, without

the restrictions of many other

system,

languages
Pascal which try to guard the programmer against mistakes.

Most users report that FORTH allows them to quickly produce and
modify programs which are exceptionally reliable.

such as BASIC and

Although AIM 65/4@ FORTH includes extensive compile-time
checking which detects most of the detectable errors
Appendix E), the most important error control
which the FORTH environment

(see
is in the tools

itself gives to the Programmer

fLike most i
Like most other modern languages, FORTH encourages

design technigues, which

"sStructured

Programming™ 1 1
g helps to control errors.

FORTH i i
I8 15 extremely modular, even compared to other structured

4 5
-a8Nguages; each software module can be tested and debugged

Independently. Usually all communication between a module and

the outside world is through an

internal stack. Each module
i i i '
Prelies on earlier modules which have already been debugged, and
1 2 anc
in turn, the y i : :
1€ new testi 1
' Sting helps catch any errors that may stil]

be hidden in the earlier work.

Testing is immediate and interactive; simply type arguments
Print the results, 1f

a special word can generate

onto the stack, execute the word, and
fmore elaborate test data

it,

is needed,

This ease of testing means that a large number of tests

jcan be run guickly.

Each module should be short, in the programming style prererred’

by most FORTH users, so that all possible paths of control can
be tested easily.

If correct results are not obtained, it is possible to step
through the definition by executing each component word
individually, checking the stack whenever desired. AIM 65/48
FORTH has a special word, .5 , which non-destructively prints=
the stack contents to help in this kind of debugging. Any
unexpected results can be localized to a particular component
word, which in turn can then be examined in detail. Because
FORTH words work identically when compiled, or when executed as
commands, the programmer can debug at either a batch or
interactive operation mode.

Because FORTH is extensible, words can be re-defined to perfcrs
their original functions and, in addition, give special debug
print-outs or do run-time error checks. These redefinitions
can be inserted into programs for testing and removed later;
nothing else in the program need be changed.

AIM 65/4@0 FORTH also includes a memory dump and other words forlt

examining or changing memory. These commands can be compiled
into programs or executed from the keyboard.

In contrast to most other operating systems, all of these tco
are part of the normal FORTH environment. No special syntax o
command language must be learned for debugging.

Each FORTH word is documented by a glossary (see Appendix B)
which lists the arguments it takes from the stack and the
results returned, and gives a short verbal description (usual
one to three sentences) of its action. Such a glossary

completely describes the word as it is seen by any other part

of the program. When a new word is being tested, all carlier
words should have these descriptions available. Therefore, :i

P operation, use

testing debugging,

examined this greatly

on one word at a time needs to be
8 down the need for Program

listings ring developme

One important debugging procedure applies only to FORTH. After

a word appears to work

jthat it does not take any unexpected numbers

correctly it must be tested to make sure
off the stack, or

return unexpected results, One way to check is to leave

';markezs. easily-recognized numbers, such as 1,

stack and then execute

2 and 3, on the
the word being debugged. After an

-5 to make sure that the markers are still on

ithc stack, below any arguments returned by the test word. This
check is important because otherwise the word may look like it

Works,

Seeminaly random places

programmer seldom needs to look at the source code of any othy 3

word; the glossary fully describes its functions. During

but causes later Program crashes at unexpected and

making the problem hard to debug.

SECTION

ELEMENTARY OPERATIONS

' This section provides a step-by-step description of elementary
ATV 65/48 FORTH operations, such as:

- Performing simple arithmetic and comparisons

« Entering and retrieving data from memory

» Using the stack

« Compiling interactively or in a batch mode from memory
+» Defining new FORTH words

« Performing looping and conditional sequences

A maior portion of FORTH is the FORTH dictionary itself. Each
oré¢ in the FORTH dictionary causes specfic actions or
Operations to be performed. The use of FORTH is explained
Primarily by describing how each word operates and how to use
it, either individually or with other words. Let's start by
jecing what is in the FORTH dictionary,

enter FORTH from the AIM 65/48 Monitor.

{5}
AIM 65/40 FORTH V1.4

List the contents of the FORTH dictionary by running a vVLIST ,
Byp-

VLIST

anc then press the <RETURN> key. The entire FORTH dictionary
i1 be displayed (and printed if the printer control is ON).
-%ere are 249 words in the AIM 65/40 FORTH dictionary (not
Bounting the assembler, see Section 6.1) so the printout will
take about one minute.

Terminate the listing at any time by pressing any key. The
entire VLIST is shown in Figure 4-1. WNote that the words /i~
not appear to be in any general order; the words are listed ny
their address in the AIM 65/40 FORTH ROMs.
ary structure is explained in detail in Section 5.5, but lcave
that for later.) These FORTH words are described in ASCII sor
order for convenient lookup in the glossary in Appendix B and
summarized by associated function in Appendix A.

AIM 65/4@ FORTH may be readily learned by performing the
following procedure. As each new FORTH word is encountered i
this section, read the explanation and perform the accompanvin
examples. Then read the word definition in the Appendix B
glossary. Repeat the examples, but vary one or more of the
parameters until you thoroughly understand the operation of

described FORTH word.

As you are learning FORTH, you may make errors that either

cause an error message to be displayed or cause the AIM &£5/47
to hang up or to run away, i.e., the display may go blank or
show random data. If an error occurs with a displayed error
message or number, refer to Appendix E for the error definits
and suggested recovery. If the program appears to hang up cr
run away, press the <RESET> key to reinitialize the AIM c5/4¢
microcomputer and to return control to the AIM 65/48 Monitor
You can then re-enter FORTH and try the example again. You =
have to back up a few steps, however, to recover the example

initialization.

In the following descriptions, a FORTH word comprising of
letters and numbers is written in upper case.
words contain special characters that may be confused with

sentence structure, e.g., plflodu, commas, or apostrophes, th
FORTH words are set off by spaces, e.g., .S
spaces are not part of the FORTH word and should not be

entered.

4-2

(The FORTH dictinnd

Since some FOR!

. These sinale
L

AGAIN
UNTIL
LOOP
THEN
§EGIN

-->
MESSAGE

DSB4 (LINE)>

CAS1
CASE

Figure 4-1.

FLUSH
BUFFER
UPDATE
M/HMOD
=/MOD
/

*®

M=

MIN
ABS

- -
coLD
QUIT
DEFINITION
FORTH

IMMEDIATE
?STACK
LITERAL
CREATE
ERROR
=FIND
(NUMBER)

-TRAILING
COUNT
<BUILDS
(; CODE>
HEX

1
COMPILE
?PRIRS
?COMP
{CSP
NFA

LFA
-DUP
PICK

>
u<

BLOCK
EMPTY-BUFFE
+BUF

*/

MOD

/MOD

n/

MAX

DABS

D+~

2F3 S->D

ABORT
<

ASSEMBLER
YOCABULARY
INTERPRET
DLITERAL
}EOHPILE]

CRBORT)>
NUMBER
WORD
HOLD
ERASE

EXPECT
.
TYPE
DOES>

VLIST of AIM 65/40 FORTH Words

CR4S - CA3S 4.1 SIMPLE ARITHMET
CA24 , CA18 ALLOT 1c
Eogc 1o " Ca0F 2+ ——

i- *
CoD2 1+ €3¢S B/SCR arithmetic, like that of advanced pocket s1id
C9BS B/BUF C9AS LINIT calculators, uses a stack S Swie
€995 FIRST c98S C/L to store operands and results
C97C MODE €972 HLD Operations such as + - * / (add, subt :
€969 CSP €968 DPL divid . ract, multiply, and
€957 BASE €94D STATE - ®) take thelr arguments from the stack, and '
€542 CURRENT €535 CONTEXT iresults to it ¢ 8RG ¥eturn thei
€928 OFFSET €91C SCR .
R .

Lin u b
COES PREV SeF UsE | To see how the stack works, give FORTH a cold restart by typt
cecs se C8BD UR/MW P e
C8B3 UABORT C8A1 UB/SCR
grad., oEp

=L INK 1 nd pressi th

€863 FENCE C8SE WARNING e N9 the <RETURN> key. AIM 65
casi uibh: cae uck, b

U?TERMINAL U=
€823 UEMIT €818 UKEY AIN 65/40 PORTH V1.4
C88E UCLOSE €882 U?0UT
E;:g H‘?!N E;Eg gL ‘Iou type the following five numbers
gk § 22 b
€798 CODE €777 VARIABLE 1 22 333 -44 5
C757 CONSTANT C73E ;
i 2 b o4 tarinace oo

H i e 1input
c6ce @ C6B7 TOBGLE st the Put by pressing the <RETURN> key. <RETUR

end of a 1§ N>

Cese + £687 BOUNDS ; ne signals that your input i
C676 20uP C665 DUP RETURN> is shown in th S Manpistes (e
C64D SWAP C644 2DROP . e initial examples, but is not sho
C63A DROP 629 OVER ater examples, except where needed el
C612 DNEGATE CSF8 NEGATE entry.) Be to clarify data or command
CSD1 D+ CSBD + Y. sure to insert one or more spaces betwee
c588 o< CSA9 NOT rumber. Now the numbers e
C533 0= C57D R k. 1 through 5 are separate numbers
CS6E RD CSSE DR ored on the stack with 5 at the to
€545 LERVE €S34 ;S $iput by 4 P. FORTH responds to your
E:gi 41 o o Y displaying (and printing if the Printer control
C4Ee woR gace oR 7% - OK means that the system has correctl L)
C4B7 AND C46E U/ convand and is waiting f ctly acted on your
C434 Us C4BF CMOVE - OF another command to be entered. (The
C3EC FINIS C3A4 SOURCE - % Mot shown in most of the examples, ho
s i G35 P1100 In 413 cpececions.) Abter cupmomy re pesemss.

- 1 . te
c3ez 20UT C2F4 71N fr-llovlng is print i > 1s Pressed, the
ggg EgT gggc GET printed (if the printer control is ON)

S Z?TERMINAL

€283 KEY C2R7 EMIT 1
€28C CLRLINE C241 ENCLOSE 22 333 -44 5 0K
CADF (FIND) C1B@ DIGIT
C1S€ (sLooP €125 (LOOP) histe that th

+) 125 < = at the pri
E%g; EEERNCH COE3 BRANCH 'tlt oo mdl’: :tor can be turned ON and OFF in FORTH using
cace EXECUTE CoAd CLIT 4 eys as in the AIM 65/48 Monitor.

Figure 4-1 VLIST of AIM 65/48 FORTH Words (Con’t)

4-4

Notice that the "blinking™ cursor indicates the input charactef .verify this by typing § aud <AEYURID & i
- © show th

ica : : e
position. A typing error during FORTH command or data entry M contents of the stack new !
can be corrected by pressing the key as necessary.
J -44
{ 333
4.1.1 Examine Stack Contents with .S ; 22 :
1 OK

The word .S (pronounced dot-s) may be used at any time to

The next dot (and <RETURN>) will print the
commands separated by spaces,
this

examine the contents of the stack without altering the values -44. Multiple

can be typed on one line like

or removing the numbers from the stack. Try it by typing

.5 <RETURN>
. « <RETURN>]

The numbers entered in the prior section will be displayed (inj

€0 display two numbers from the stack,

some examples the displayed data is underlined to distinguish €.9.,

it from entered data)
+ « <RETURN> 333 22 oK

5
-44
333
22

1 0K

" only 1 is left on the stack. oOutput it with L

« <RETURN>

bl

The .S word is very useful when learning AIM 65/48 FORTH orl
) Which displays
debugging a FORTH program to determine the stack contents

immediately prior to and/or after executing a FORTH word. :
. OK

4.1.2 Print from the Stack using .

ifying to examine or print the stack contents when there are gl

no
O8rs on the stack will

The print command removes a number from the stack and displa result in an error message. Try .S
hich will show

it (and prints it if the printer is ON) in the current I/0

number base. In FORTH, the print command is represented by &
: i -S <RETURN>
period and is called “"dot™. Type EMPTY

lote that the word

e - will now cause 3 stack underflow and
?111 display an indeterminate value along with a stack empty
The 5 will be printed and removed from the stack. - raaadliet AL
| Y + @ (typical number)
« 50K] « 7 STACK EMPTY

nilar FORTH operations trying to

Pull a number from an empty
tack will result in this error message.

well as others, are described

This error message,
in Appendix E,

Notice that the data was d printed if the printes 4.1.4 Add + and Subtract -

Is installed and enabled n the same line as t commands, ' ¥ A

i.e., the FORTH word . in this case. Many times it is Let's now perform some simple arithmetic. Put two numbers on
desired to display and print data on a new line. The FORTH fthe stack, say

word CR issues a carriage return to the display and printer;

Repeat the previous examples but insert CR before the . word a 12889 135 <RETURN>

and note that the command is displayed (and printed) on a

separate line prior to the data. Also command CR after thel§ fow type the add

~

and observe the

Perform a cold restart before continuing.

jehe + takes whatever two numbers are on top

E of the stack and
dds them. It removes

those numbers (by convention, most FORTH
@perations destroy their arguments on the stack)

AIM 65/48 FORTH V1.4

» and replaces

4.1.3 Clearing the Stack fthem with their sum. Type |

It is sometimes desirable to delete data from the stack withof « <RETURN>

performing a COLD restart. The stack may be cleared by trying

to execute a word that is not currently defined in the FORTH ;f verify this. The sum will be displayed as

dictionary. This causes an error condition in which FORTH

echos the missing word followed by a "?" (see Appendix E for «» 12944 OK

error descriptions) and then clears the stack. Initially, thg

word Q 1is not defined in the FORTH dictionary and can be | before, multiple operations can bhe placed on one line, e.g.,

conveniently used to clear the stack.

(-
L]
o
-]
L]
("]
w
*
~N
o
m

TURN> 12944 OK
Note alsc I C i aw i not | c . -
Note S0 that commanding a word that is not in the dictiona Tubtract works in a similar manner. Try
will also delete data that you may want on the stack -- so bel
careful with your word entries or you may have to re-enter dafi 12889 135 - . <RETURN> 12674 OK

] /|
or repeat prior steps. }
epeat these last two examples but, insert CR

Bfter the word .

before and

Enter some numbers on the stack and display the stack contentf to display the result on a separate line.

678 356 #:1.5 Multiply * and Divide /

«5

356 p :

678 OK @Pltiply and divide also work in a similar manner. Try the i

gollowing
j

Type Q now and verify that the stack is cleared.

|

38 78 * ., <RETURN> 2964 OK !
f .
Q ?
.S

EMPTY OK

d=
]
w

The word * multiplies the top two items on tl

leaves only the result on the stack. The word

.ack and

divides the

second item on the stack by the top item. Try
13836 58 « <RETURN>

which displays E
13836 50 . 2680 OK

Note also that the divide limited the result to an integer
value (the full answer is 260 with a remainder of 36). Other
operations allow the remainder to be saved (see Section 5.1).
In all FORTH arithmetic and comparison words requiring two dati
items, the operator behaves as if it were between the top two '
values on the stack. Thus, 13836 58 / behaves as if it were
13836 / 58.

Each number on the stack is 16 bits wide, therefore these
single numbers have the range -32768 to 32767 since the most
significant bit (bit 15) is used for the arithmetic sign.
is enough for many applications, but AIM 65 FORTH also has
double-precision (32-bit) numbers which are discussed in
Section 5.1.

This

4.1.6 Postfix Notation and Stack Operation

Note that in the preceding examples, the operators (+ ,
* and /) were typed after their arguments, not between then.
This style of arithmetic notation is called POSTFIX or Rever=e

Polish Notation (RPN). It can represent complex formulas 3

without any use of parentheses. For instance

(42-59)*(128-1898/3)

would appear in postfix as
42 50 - 128 1099 3

Note that the operands (the numbers) are in the same order in
the postfix and infix (ordinary arithmetic) expressions. Don't
forget to type and <RETURN> to display/print the result.

4-10

operation which takes a number from the stack.

do nnt reside there directly -- although some data such as

1i you are new to postfix, you may want to follow this example
by using stack diagrams, as shown in Figure 4-2. This
illustratlion shows the successive states of the stack after
iach number or operation has been processed. Each column show
the stack at one time. The number on top is the most
iecessible number on the stack, ready to be used first by any

We say that
thi= number is at the TOP of the stack.

‘g the execution of the postfix formula shown above, 42 is
placec on the stack (first column of Figure 4-2) -- then 50 is
entered. The subtraction destroys those arguments and leaves

the difference, -8. You can follow the rest of the process
ilarly,

ﬁ-eratinn 42 58

128 1099 =l
Btack
feac ’ I
§ (Top .43‘ 58 l -ll 128{ 1090\ =5 3! acs‘ -135 !ll.‘
2 42 -8{| 128] 1ﬁba1 12811 -8 l
|_128! | -ol
“ |
Pigure 4-2. Stack Diagram of Postfix Example

acr column in Figure 4-2 shows the stack at the time after

jact successive number or operation of the formula has been

?1 essed. Note that any numbers which may have been below
hese numbers on the stack will be undisturbed. Repeat the
above example but insert .S after each number and operator to
xamine the stack contents after each operation.

v numbers go on the stack. Strings or other data structures

ginrers (addresses), length and offset information, ASCII
jalue=, are frequently on the stack.

=11

How many numbers can reside on the stack.at one time? AIM
65/4@ FORTH limits the stack depth to 65 16-bit values, in
order to keep the parameter stack in page zero to maximize 650l
CPU execution speed. Except for certain recursion problems,
very few programs ever need a stack depth of more than about
20.

4.1.7 Decimal and Hexadecimal Number Base

Up to now we have been working in DECIMAL . FORTH allows
input and output data to be represented in different number

bases. We will consider only two pre-defined bases now --
DECIMAL and HEX . FPORTH is initialized to DECIMAL (base 1§
during initial entry or upon commanding COLD . DECIMAL is
best used when working with numeric calculations. BEX

operates in hexadecimal (base 16) and is most useful when
working with addresses or logical operations on individual
bits.

Type DECIMAL or HEX to change FORTH to the desired base
before entering or displaying data in that base. FORTH will
stay in the selected base until the base is changed or until
FORTH is reinitialized (to DECIMAL). Note that DECIMAL &1
HEX affect the input and output data representation and not
internal data handling.

Reinitialize FORTH and put the following numbers on the stack
and print them using different combinations of DECIMAL and
HEX .

COLD <RETURN> (Initializes DECIMAL
AIM 65/4@ FORTH V1.4

Press <RETURN> after the word
examples e

in each of the following

wil. be displayed in HEX

SWAP and OVER .

16 . 16 OK
16 HEX . 18 OK

: 10 DECIMAL . 16 OK

. 255 . 255 OK
255 HEX . FF OK
DECIMAL 32767 . 32767 OK
32767 HEX . 7FFF OK
DECIMAL -32768 . -32768 OK
-32768 HEX . -8998 OK

Note that DECIMAL numbers =1 to -32768 entered on the stack

in 2's complement form with a
Jeading minus sign,

B
oy

We will examine other number bases later (see Section 4.11.3).

4.2 STACK MANIPULATION

fince Bmost FORTH words use the stack to held input or output
numbers, let's explore some FORTH words that are used to
fEarrange or copy numbers near the top of the stack. Wwhile
‘these functions are sometimes necessary, you should avoid using
ther where possible. FORTH code is more readable when less
ftack manipulation is used. Common stack manipulation words
are discussed here, however, to give you additional experience
ir working with the stack before Proceeding into other FORTH

word descriptions,

4.2.1 DUP , DROP ¢ SWAP and OVER

ilie most common stack manipulation words are DUP , DROP ,

_ Let's explore these, but first place some
arkers on the stack for reference

DECIMAL 333 222 111 <RETURN>

we accidently pull too many numbers from the stack we will

kpow where we are. Type .S to check
+8 <RETURN>
111
222
333 OK

4-13

DUP pushes a copy of the top number onto the stack to create s Notice that the top two number are reversed. Now try OVER

new top number. In segquence iwhich copies the second item to the top
123 DUP . . <RETURN> 4 OVER .S <RETURN>
789
duplicates 123 on the stack then displays both numbers ?23 L
1 111 |
123 DUP . . 123 123 OK 222 f
333 oK

DROP deletes the top number from the stack. Try this with

4.2.2 Test and Duplicate with -pup

456 789 DROP . <RETURN>

related word -DUP duplicates the top number
which deletes 789 and displays only if i] i
Pnly if it is non-zero; otherwise -DUP does nothing.

456 789 DROP . 456 OK fontinuing from the prior example, type

SWAP exchanges the top two numbers on the stack. Put two ~DUP .S <RETURN>

b the stack
numbers on t show that the top number was duplicated.

456 789 <RETURN>

789
1 789
Use .S to look at the stack 456
789
111
;EQCRETURN> 222
33
456 i
111 - ' :
359 E8t's remove and display the top four numbers from the stack
333 OK pefore continuing
Now swap the numbers on top the stack and examine the stack E CR <RETURN>

with
ghich displays
SWAP .S <RETURN>

| 789 789 456 789 OK
which prints

Now, enter
456 :
1?? i) 8 -DUP CR .S <RETURN>
222 | -
333 OK @khich displays
)
111
4 222

333 OK

Notice that the top number was not duplicated. -DUP is ut{.lch outputs
usually used before an IF (see Section 4.8.1). In the |

non-zero case, some action is usually performed using the :::
value; the extra copy made by -DUP is therefore removed by 3 708
the IF processing. In the zero case, no additional action in| ;;;
performed, thus, the extra copy of the top number is not 3 333 oK
needed. 3 3

remove and display the top three numbers
4,2.3 Deleta th2 Top Stack Item with J.:J1

CR . . . <RETURN>
888 680 788 OK

The word DROP deletes the top item on the stack, Drop the

zero now and check the statk contents 425 Cops a Stacs Itaa wita prcK
DROP .S <RETURN> @ FiCF looks down any depth into the stack and copies the nth
;i% iher from the top (not counting the n itself) and places it
333 ok BN top.
1 PICK

4.2.4 Rotate Stack Items with ROT

the same as DUP , and

ROT rotates the top three items, moving the third item to the

2 PICK
top, the previous top item to the second, and the previous

second item to the third. @IS the same as OVER . put several numbers on the stack and
check them
For example,
49 58 62 780 88 .S <RETURN>

88@ 709 680 .S <RETURN> A g:

600 | 3

790 E 68
800 _ 58

111 - 49

222 : il
333 oK | 4 <

Now rotate and print with iow pick the 4th item (i.e., 58), and look at the results

ROT .S <RETURN> i ;'PICK «5 <RETURN>

80
£ 60
J. 50
' 40
111
222
333 ok

4-17

A PR S SN S

4.3 MEMORY OPERATIONS enter FORTH with

Several FORTH words e data between the stack and memory, of ¢ {6}
2 ¢ . - AIM 65/46 FORTH V1.4
from memory to memory.

4.3.1 16-Bit Store | and Fetch]

DECIMAL
16688 HEX 992 | OK

The FORTH word

© store a decimal number in an address entered in hexadecimal.

display the data in decimal by

(pronounced “"store®) takes an address from the top of the stal

9¢@ @ DECIMAL Cr
16868 Ok

.

and the 16-bit value beneath it and stores the value into thel
address (and address +1),

Bbich fetches the contents of addresses $9¢¢ and $991 and
fores it on the stack

A corresponding word

‘ + Switches to the decimal mode, and
jIEputs the data in decimal when

« is commanded.

e

fetch and display the value in hexadecimal by
(pronounced "fetch®™) takes an address from the top of the

Stack, fetches the 16-bit data from that address (and address
+1) and replaces the address on top of the stack with the dali
from memory. Both the address and the data are specified in
the current number base. TInitialize FORTH and try

HEX 988 @ CR
3E88 OK

.

#3.2 8-Bit Store C! and Byte Petch cCg

COLD
AIM 65/4¢ FORTH V1.4
HEX OK
30FF 968 ! OK
9¢0 @ CR .
38FF OK

imilar words allow byte length data to be store

d and fetched.
word

Cl

fc-store”) stores the least significant B-bits of the second
t8m on the stack into the address determined
P of the stack. The word

which stores 3@FF into addresses $900 and $901 with |

[

by the number on
fetches the contents of addresses $900 and $901 with @ and

displays it with . . Return back to the AIM 65/48 Monitor
examine addresses $99@ and $981 with the M command and note

that data is stored in low-byte, high-byte order ' Me-_fetch®

ce

) accesses the 8-bits stored at the address on top of
stack and stores it on top of the stack
ess). Try

ESC
{M1B980 FF 38 XX XX XX XX XX XX XX

(replacing the

HEX OK PILL
41 988 C! OK -
F4 981 C! OK dditi

Bumbe r
which stores 41 and F4 into addresses $90¢ and $901, _: et
respectively. Display the contents of those address with 3

HEX 90¢ 1¢8 FF F
988 C8 9FF CR CR

988 Ceé 981 Cce CR . . FF FF OK

F4 41 OK

4.3.3 Initializing Memory with ERASE , BLANKS and FILL

9068 @ 9FE @ CR
=1 =1 ax

Three words allow a block of memory to be initialized to

various values.
@tice that the 2's compler |
ERASE fills memory with zeros ($88) starting at a specified g=bit numbers were accesse
address (second on the stack) and continuing through the numbe

te also that HEX is not

of bytes specified (top number on stack)
mode, but was includec

M TNl S sk

HEX 988 188 ERASE OK BRitor somewhere along the

key (causing DECIMAL mode

Spot check with g mode when you exited F

mode if you re-entered

¥ L

990 @ 9FE @ CR . .

e 3.4 Dumping Memory with DpuMp

Note that if the contents of S$S9FF were fetched, a non-zero

number may be displayed since '@' fetches two bytes ($9FF and %°°k of memory can be display

$APP) and address SA@P was not erased. The last byte could (JSdress (second on the stack) an

have been checked with jBPed (top of the stack) are spe
HEX

gFgKC@ CR . _ 960 14 F8 FILL OK (Fi

BLANKS works like ERASE except that memory is initialized

ASCII blank ($28) instead of zeros. Try 908 14 DUMP <RETURN> (

HEX 908 108 BLANKS OK 8 display
909 C@ 9FF Ce CR . . !
20 20 OK

908 FB F9 FB F8 F8 FB
998 FB8 FB F8 FB F8 Fg

. 910 F8 F8 F8 F8 FF FF
K

4.3.5 Moving a Block of Memory with CMOVE

It is often useful to move a block of data from one area of
memory to another. This can be done with the word CMOVE
which takes three arguments on the stack: a from-address, a
to-address, and a byte count. It moves the given number of
bytes starting with the first address to the area of memory
starting at the second address. Try

989 89 8@ FILL OK

988 8@ FF FILL OK

988 A@P 8 CMOVE OK

980 A@8 8 CMOVE OK

A@@ 19 DUmP
AG@ B0 80 80 80 80 80 80 8P
A@8 FF FF FF FF FF FF FF FF

OK

CMOVE works from the left to right, so be careful if the
"from" and "to" memory areas overlap.

4.4 DEFINING YOUR OWN OPERATIONS

FORTH allows you to create your own operations. These new

FORTH words become an integral part of the language, just like
Your new words

those which are pre-defined in AIM 65/4@ FORTH.

can take any number of arguments from the stack, and return amg

number of results.

The names of your operations can have up to 31 characters.
They can use any ASCII characters except blank, delete and
carriage return.
number, or even be non-displaying or non-printing control
characters, although such names are discouraged.

already used by the system may be redefined as something el=s;
When a nag
inaccessible for laty
references to that
redefine a name if v i

therefore there is no reserved word list in FORTH.
is redefined, the old definition becomes
use in the program (although all earlier
name will remain as before). So, do not

want to use the old definition later.

For instance, an operation name could be a

Even names

-ﬂames which are descriptive of the function they perform make
1 # code easier to read. Good choice of names is important for
ter use of the code, especially by other programmers.

nev words are defined, they are added to the FORTH vocab-
Ular: (described in more detail in Section 5.6). These
definitions are normally stored in RAM starting at address
1'BBE and build upward in memory. (They can also be stored in
PROM/70M as described in Section 18.) The PORTH word VLIST

allovs you to check what words have been added to the PORTH
gcabulary

44.. Colon-Definition

‘FPOS@ we want an operation to take the number on top of the
srk, multiply it by 5, and print the result. Let's pick the
fame TEST-OP . We could define it simply as

: TEST-OP 5 * ., ; <RETURN> OK

5 fer we will rewrite this definition, using indentation and
nmenting conventions for more readable code). Enter the
“ﬁon—dct!nltlon as follows

4. Start the definition with a colon which tells PORTH to
look ahead in the input stream for the word name.
Follow the colon with a space.

b. Enter the word name (up to 31 characters).
word here is TEST-OP .

The FORTH

‘e. Enter the definition of the word.
following

TEST-OP does the

1. Puts 5 on the stack

2. Multiplies the top two numbers, i.e., the number
on top of the stack when TEST-0P is executed by

i f the 5 put on the stack by TEST-OP .
3. Prints the result, f.e., the top number on the
stack.

4-23

d. End the definition with a semi-colon (be sure to ORT: will respond with OK for a found word and put the
insert a space first). A FORTH definition may be

9rd's parameter field address on the stack (See Section 5.5
continued on as many lines as needed. i or description of the parameter field address). If not found

he n=am: is echoed with a "?" and the stack is cleared.
This TEST-OP operation takes one number from the stack, as 3

have seen. It does not return any result (but if the . wers

Check TEST-OP now (and print the address in the dictionary)
omitted, the product would stay on the top of the stack). o

HEX OK
that no formal parameters are used to show the inputs and ' TEST-OP <R > OX
outputs of an operation. These are implicit -- TEST-OP Lakes .8
one argument because it puts one number (5) on the stack then 82¢ Ok

performs a multiply which uses two numbers (the 5 and one
other). Check the operation of TEST-OP by placing a value o
the stack and executing TEST-OP , e.9.

e car also run a VLIST to determine if TEST-OP is in the
lcticnary and to verify the address returned by ' . This is
in this case since only two colon-definitions have been
jddec. to the dictionary and these two entries are printed

mmediately, Press any key to terminate VLIST.

6 TEST-OP <RETURN> 38 OK
8 TEST-OP <RETURN> 48 OK

If the word being defined is already in the vocabulary

VLIST
dictionary, the message <name> NOT UNIQUE will be displayed.| :gg ;:::‘op D:g T:ST'C'"
The NOT UNIQUE message is displayed only as a reminder that D9D1 MON D9C1 HANG
you have redefined a word which was previously defined and ha oK (a key was pressed here)

no effect ow Ehe compllation process. both versions of TEST-OP are listed, only the version

: TEST-OP 18 * . ; it addre=gs 82C is valid since it was defined last.

TEST-OP NOT UNIQUE OK

and try

+4.7 Print a Message with ."

6 TEST-OP <RETURN> 68

{ou ‘'can print a message of up to 127 characters with the wor
8 TEST-OP <RETURN> 88

(dot-quote) . Start the message one or more spaces after
he " ." word. Terminate the message with " (a double

Note that only the new definition of TEST-OP is found and BE‘5). e sure to leave a space after the .° .

executed.

defins a new word to use
4.4.2 Pind a Word in the Dictionary with '

B : MULTIPLY
i - ="5 %
Use the word ' (pronounced "tick™) to find 1f a word is CR .® ANSWER="5 i <RETURN> OK

already contained in the dictionary and to return its paramets Shat It
field address (PFA). !

DECIMAL

198 MULTIPLY
ANSWER=54@ OK
1345 MULTIPLY
ANSWER=6725 OK

Type the word <name> after the word e e,

' <name>

4-24 4-25

4.4.4 Commenting

Because the inputs and outputs are not explicit in FORTH codeg
it is very important to show them in the documentation. It is

recommended that they be included as comments in the code and
also in a separate glossary of operationms.
should include the inputs, outputs and a short description of
what the operation does -- usually two or three sentences ar
enough. I

Comments in FORTH are enclosed in parentheses. A space must
follow the left parenthesis because the left parenthesis is
itself a FORTH operation. The closing right parenthesis need
not be preceded by a space however, since it is a delimiter 3
not an operation. A <RETURN> also acts like a right paren-
thesis to terminate a comment.
on as many lines as needed; however, the comment must start
with a left parenthesis followed by a space on each new Jinag

A conventional form of comment first lists the inputs, then
three dashes, then the outputs. A period may be used to

separate the last output word from the words of any descripti

of the function of the operation.
definition could look like

Therefore the TEST-OP

: TEST-OP
S ¥ .3

B == MULT BY 5 AND PRINT)

A common style is to have only the colon, the word being
defined, and the comment on the first line, then indent
subsequent lines three columns.
put it on the second line.
including comments and spaces so they can be used freely to
improve readability.

If the comment is too long,

When there is more than one input or output in a command, rthe

right-most numbers are toward the top of the stack.
for a definition of a multiply operation might therefore be

1 MPY (N1 N2 ——-
* CR .}

MULTIPLY & PRINT

4-26

EBach glossary entg

FORTH comments can be includeg

There is no object code penalty &

A commen

itrieving data flles on mass storage.
ilscussed in Bection 12.

.that an empty comment must consist of a left parenthesis,
spaces, and a right parenthesis. The reason is that the

éinq word (WORD in FORTH) skips over leading occurrences

3f tne delimiter. So if you leave only one space as in !

ot

the first character encountered by WORD is the right

parenthrsis, therefore the system skips it and continues
gokina for another right parenthesis.

'ji AEXECUTING AND COMPILING USING SOURCE

¢ now you have been operating in a manner where FORTH
jperations are compiled or executed immediately upon entry in
! %nterpretiue mode. If a new FORTH word is formed using a
golon-definitinn (see Section 4.4) the word is immediately
pupiles and entered into the PORTH vocabulary upon completion

trv., Upon commanding the new FORTH word, the defined
unction 1s' executed.

fORTE words can also be compiled and executed in a batch mode.
i this mode, the FORTH words are compiled or executed upon
ntry from memory or mass storage. The source program for
slon-definitions is not lost upon compilation with this
"f:.iuua, therefore, changes can easily be made without
gguirinc re-entry of the whole program.

jére are two methods of batch compiling in AIM 65/4¢ FORTH.
?ﬂ!lrst method uses AIM 65/48 microcomputer Monitor/Editor
@apabilities to enter and edit source programs in FORTH and to
gad and save source and object programs. Entering and
Bepilinc source code using the AIM 65/48 Text Editor is
ﬁaa*ned in this section, while loading and saving FORTH

ource and object programs using an audio cassette recorder is
@scribed in Section 11.

he second method of batch compiling uses the standard FORTH
gchniocue of multiple RAM buffers and 1824 byte screens. This
ique is commonly used for manipulating, saving, and

This methed is

4-27

Perform the following steps to enter and compile FORTH =ource
code using the AIM 65/4F Text Editor:

a. If you are in FORTH, return to the AIM 65/40 Monitor
by pressing <ESC>,

(EsC)

b. Initialize the AIM 65/4 Editor above the maxinu
expected address for tl compiled FORTH colon-defini
tions (remember that new words entered into the FORTH
vocabulary start at address $88B and build upward).

(e}
EDIT FROM=2888 TO=3FFF IN=<RETURN>

Type your FORTH source code in colon-definitions,
for example,

: TEST-OP N
5".]

MUL by 5 AND PRINT

d. Type any comment words to be executed during
compilation. These words can serve as progress
markers during compilation of large programs, e.g..,
" 1" , ." 2% , etc. You may want to indicate
completion of compilation with a different word or
message. For example, enter

Terminate your prograr with the FORTH word PINIS whis

indicates the end of the source program. Then type

<RETURN> twice to end the text input

FINIS

END

£.

9.

CAUTION

If FINIS is not included, your source

Program may be altered when compilation
is attempted.

Quit the Text EBditor and return to the AIM 65/48
Monitor.

={0}

Enter or re-enter AIM 65/4¢ FPORTH with the 5 or 6 key.
If previous words have been compiled and the Text
Buffer relocated below the previous source code using
the Monitor C command, you may want to re-enter FORTH
with the 6 key to save previous definitions. If you
re-enter FORTH and compile the pProgram, the latest
word definitions will be used upon execution. 1In this
case, the "ISN'T UNIQUE" message will be displayed as
each word previously defined is compiled -- otherwise,
enter FORTH with the 5 key to recompile the whole
program.

{5}
AIM 65/40 FORTH V1.4

NOTE

If words are repeatedly compiled with-
out reinitializing FORTH or FORGETing
previously defined words, the vocabu-
lary may build up too high in memory
and overwrite your source code. A com- |
mon technique for preventing this is

to FORGET <name> at the beginning of
the source code in the Text Buffer.

The dummy word TASK has been defined
for just this purpose., FORGETing TASK
then redefining it will remove all pre-
viously defined words from the vocabu-
lary, e.g.,

FORGET TASK : TASK ;

Execute the BSOURCE word to indicate that the FORTH
program is to be input non-interactively, i.e., not |
from the keyboard. Be sure to press <RETURN> after
SOURCE . When IN= {is displayed, press M to tell Al
65/40 FORTH that the input is from the Text Editor.

h.
SOURCE <RETURN> IN=M DONE
OK

In this example the word DONE was displayed to
indicate completion of input from the Text Buffer.

If the input is from the Editor, note that the scurce
code is always compiled from the top of the Text
Buffer. Should you desire to compile starting with &
different line, you can use the AIM 65/40 Monitor C
function (Recover Text Buffer) to move the top of Tex
Buffer.

If an error is detected during compilation, an arrach

message is displayed and control returns to the F0RTj
command level.

Consult Appendix E for the defirition

of the error message an¢
action. Run a VLIST to
defined and entered int:
the incorrect code.

required corrective
the words properly
dictionary to help locat

If an error is detected during compilation from the
Editor, the Monitor variable MEMRW ($82EF) will point
to the last byte of source code read by FORTH. The
bad source code can then be easily located in the Tex
Buffer by checking memory around that address.

Check VLIST to verify the new word was entered in the
FORTH vocabulary

VLIST
817 TEST-OP 899 TASK
D9DC .8 D9D1 MON
D9C1 HANG D97A VLIST
D943 7 OK | <SPACE> was pressed here

Use the newly defined FORTH word to verify proper
operation..

2 TEST-OP <RETURN> 1@ OK
17 TEST-OP <RETURN> 85 OK
567 TEST-OP <RETURN> 2835 OK

You may want to define new FORTH words in terms of
this word

: MUL TEST-OP ; <RETURN> OK

Verify the new word is in the PORTH vocabulary with VLIST

VLIST =
828 MUL - 817 TEST-OP
809 TASK DIDC .S

DSD1 MON D9C1 HANG

D97A VLIST OK | <SPACE> was pressed here)

Verify proper operation of the new word

2 MUL <RETURN> 10 OK
87 MUL <RETURN> 435 OK

4-3

4.6 DO LOOPS

junen=s from the stack,

4.6.1 DO ... LooOP
The DO and LOOP statements allow repeated execution of 4
block of code. For example, the following definition creates
word SERIES , which prints a series of 25 numbers, zero
through 24:

§ loor upper

T sets up the loop (at run-time), it always takes two
The top stack number (@) is the
tial “index value of the loop, and the second argument (25)

the final value plus one. If the initial value is zero, as

ofter the case, the second argument is the number of times

und the loop. Also, ordering the loop limits this way makes
limit more accessible from outside a definition.

ses how this is done in the definition of NSERIES,

=

SERIES . PRINT A SERIES
CR 25 @ DO I . LOOP ;

Text Editor s
ferent values. Ui
this. Por examp

enter th source code
e it and experiment w

scribed n Section 4.

You may want t
can easily cha
the procedure

(ESC)
(e}

EDIT FROM=288@ to=3FFF IN=<RETURN>
FORGET TASK : TASK ;
SERIES (---. PRINT A SERIES)
CR-25 @ DO I . LOOP ;

." DONE*
FINIS

END
={Q])
(5}

AIM 65/49 FORTH V1.4
SOURCE IN=M DONE
OK

Now execute

SERIES _
#12345678919 11 1213
17 18 19 28 21 22 23 24 OK

14 15-16

Note that after the whole string is displayed the first line
redisplayed.

DO and LOOP must always be used as a pair. The code =ectij
which they enclose can be of any length. This code is rvery
repeatedly, and an index value I is available.

AD

X a B
B

i--r index
ppatically.
5 it onto

value is kept by the system and incremented

The FORTH word I retrieves this index and

the stack. In the example above, the index

Je i< zero the first time through the loop, then it is 1, 2,
-rouqF 24. In this example, the index is printed each
§. SERTES takes no arguments from the stack and returns no

ommended code-writing style for using DO and LOOP
ave the entire loop in a single line if possible; if not,
~should be indented to the same column as its correspond-

is

‘D0 This style makes the program's structure easier to
definition
fi

NSERIES (N =—— . VARIABLE SERIES)

CR9DOI . LOOP ;

7 NSERIES , which is almost like BERIES , except that
ﬁf-é one argument from the stack, the number of times

id the loop. You can use the Editor Text Buffer to enter
source code then complile both SERIES and NSERIES.

(ESC)
{T}
FORGET TASK : TASK ;
={B}
FINIS
=U}/1
." DONE"
={R} IN=<RETURN>

: NSERIES (N ---. VARIABLE SERIES)

CR 8 DO I . LOOP ;

." DONE"
<RETURN>
={Q}

AIM 65/40 FORTH V1.4
SOURCE IN=M DONE

Now execute NSERIES

18 NSERIES
2123456789 O0K

Redefine SERIES now in terms of NSERIES , as

: SERIES (===. PRINT A SERIES)
2@ NSERIES ;

This redefinition will cause a "NOT UNIQUE" warning rness:.-.ge"
be printed. The warning can be ignored in this case; remenmbs
it's purpose is to let you know that the word has also been
defined previously. As mentioned before, FORTH allows any

to be redefined -- even the system words such as DO {r=elf
Any further use of the word will refer to the latest ,
definition, but all earlier uses still refer to the definitis
which was in effect when the earlier references were crmpiled

Execute SERIES now.

#123456789 198 11 12 13 14 15 16
17 18 19 OK

[§idisplayed.

| the examples above, notice that the only difference between
ERIF< and NSERIES is that the latter does not place a loop
atminating value on the stack. Instead, it uses whatever was
5 the stack when NSERIES was executed. The NSERIES
ifazple also shows that the arguments to DO , the loop
gitial and terminating values, need not be literal numbers;
ead they can be computed or obtained in any way. DO
pesn't care how its arguments got onto the stack. This
gature helps keep FORTH code modular and reduces side effects

gher ‘changes are made.

0 I.. LOOP , and the other control structures which will be
BEroduced later, can only be used inside colon-definitions,
#.; they cannot be executed directly as commands at the
@rninal. DO and LOOP are in a special class of words

llec immediate words. These are not compiled like other
ords used in colon-definitions, but instead they execute at
gEpile time to handle special compilation functions, e.g., to
gepile an internal branch back from the LOOP to its
arrespnnding DO. Immediate words are discussed in Section 5.

xamplc of DO ... LOOP

is a one millisecond time delay

t MS (N === . MILLISECOND DELAY)
@ DO 5 @ DO LOOP LOOP
CR ." TIME-UP" CR ;

word will cause delays of n milliseconds when used by
§ttinc n on the stack and then typing the word.
millisecond delay, simply enter

To execute a

9 MS
th¢ end of the delay, the message

TIME-UP

Try it with larger delays, e.g
{sually notice the delay time.

1000, to

4.6.2 +LOOP _ | COMPARTSON AND LOGIC OPERATIONS

The DO ... LOOP index always increments by 1. Another word,)@ DO loop is one form of structured control in FORTH.
+LOOP , allows other increments. Each time around the loop, it th if structures described later (IF ... THEN , ELSE ...
takes a number off the stack for the increment, DO ... 2 JHE! p BEGIN ... UNTIL , BEGIN ... WHILE ... REPEAT ,
+LOOP would increment by 2. The increment can be computed ~ni@and HEGIN ... AGAIN) may test Boolean values (truth

it can change during loop execution. It can also be negative, lurs) to control program execution. Comparison and logic
The following word causes an odd number in the range 1 to N to ord: place Booleans on the stack and then the control words
be printed. 5@ rhesg values.

: ODD-SERIES (N === . PRINT ODD SERIES)

1CRDOI . 2 +LOOP ; , 2 ond

Execute ODD-SERIES with 25 as the input number (don't foraet
to put the input number on the stack or a STACK EMPTY error mij

mp)a PORTH comparison words are < (less than), > (greater
ian) and = (equal). Each of these operations takes two

occur. guments from the stack (destroying those arguments) and
urns one result (a Boolean) to the stack. The second item
253020;8?2:813 15 17 19 21 23 OK the stack is compared to the top item in accordance with the
§T% word. If the comparison is true, a true ("17) is
4.6.3 LEAVE furned; 1f false, a false ("8°) value.

LEAVE is another word used with DO loops. If LEAVE is
executed within a loop, it will set the limit to the index !
value, causing the loop to exit when LOOP or +LOOP is next jér comparison operations are U< , #< and @= . U<

7.2 U<, 8< and @=

executed. LEAVE (and also the index I) can only be used nsigned less than) compares the top two stack numbers as
inside a DO loop. isioned 16-bit integers (see Section 5.1). @< (zero less)

d 0= (zero equals) differ from the others in taking only
@ arciment from the stack; it is tested for being less than
gro (o: equal to zero, respectively). @< leaves a true on
¢ stack if the number is less than zero, otherwise a false is
t, @#= returns a true if the number equals zero, otherwise
false is returned. @= works the same as

tten a8 two words; similarly for @< The one-word forms
mora gfficient, however.

13 equivale to a logici iot", because | rerses the

ut! value of ® top stack 1 (it changes : © 1, and
' anv other nc gero value | 1ro) .

4-36 4-37

Experiment with the comparison operations

HEX

18 20 < . <RETURN> 1 OK
20 18 = . <RETURN> @ OK

S #= . <RETURN> @ OK

55 - 9= . <RETURN> 1 OK
18 =18 < . <RETURN> @ OK
18 -19 U< . <RETURN> 1 OK
1 @= = . <RETURN> 1 OK
8 @= @= . <RETURN> 1 OK

Note that the Boolean false value is always zero and any
non-zero value (not only '1') is taken as a Boolean true.

However, the value returned by these comparisons is always

or 1.

4.7.3 Logical Operations

Logical operations AND , OR , and XOR (exclusive OR) ar
provided. These are bit-wise operations. Each takes two
arguments from the stack and returns one result. Each of the
16 bits of the result is obtained by applying the logical
operation to the corresponding bits of the arguments.
positions are treated independently.

HEX

F7 #1 AND . <RETURN> 1
#8 81 OR . <RETURN> 9
F7 #1 XOR . <RETURN> F6

The word NOT 1Is provided as a synonym for @= (see Sectigl
4.7.2) to improve readability in logic expressions.
NOT 1is not a bit-wise operation; it is only a Boolean
inversion and just returns the right-most bit of the word
negate all the bits of a word (i.e., to take its one's
complement) , use

=1 XOR
For example

HEX
AAAA -1 XOR . <RETURN> 5555
AAAA FPFF XOR . <RETURN> 5555

All big

Note thil

thess logical operations can also be applied to truth values
fturned by comparisons; in this case, only the right-most bit
if each word is important. PFor example, suppose that a word
HOT has already been defined to return a value of true if a

5ot detects a temperature higher than a pre-set limit, false
ptherwise. Also suppose that a voltage value is previously
tored on the stack. The test

8 7HOT OR

-?:return true if the voltage (on the stack) is greater than
iF the temperature is high, or both. In this example the
tage value on the stack is first compared to 8 by use of the

lational operator. This results in a Boolean value left on
#tack. Then ?HOT puts another Boolean on the stack and

i@ twe Boolean values are OR'ed together.

pte that
7HOT 8 > OR

i)1d be erroneocus in this case, because the Boolean left on
@ stack by ?7HOT would be compared with the 8 and the result
tha+ comparison (always false) would be OR'ed with the

[tacs that was on the stack before this phrase was extended.

§ CONDITIONAL CONTROL STRUCTURES

'}-olloulng FORTH control structures test a Boolean result
perated by the comparison or logical operations, and direct
4 flon of program execution accordingly.

J I_r L lw‘ - .. “n

;jth other control structures, the IF and THEN must be
ged as a pair; if they are not, error message #19 or #20 will
ngrated (see Appendix E) at compile-time.

of FORTH programming may occur between the

Any correct
IF and the

The IF takes one argument, a Boolean value , from the stach

If it is true (non-zero), the code between IF and THEN
executed; if false (zero), that code is skipped.
case control resumes with the THEN . For instance,

In either

GET-VOLTAGE 8 > ?HOT OR
IF SHUT-DOWN THEN

will execute the (predefined) operation SHUT-DOWN if the
previously defined word GET-VOLTAGE returns a value oreate
than 8 or 7HOT returns true (or both).

An optional . ELSE clause allows a block of code to be cxecut
For example, the simple control lo

only i{f a test is false.

l@0@0 @

DO
GET-VOLTAGE 8 > ?7HOT OR (Danger?)
IF GO-SLOWER ELSE GO-PASTER THEN

LOOP

repeatedly tests whether temperature or voltage exceed their
limits, and executes predefined operations GO-SLOWER or
GO-FASTER accordingly.

4.8.2 Nesting Control Structures

The previous example shows that control structures can be |
nested; an IF ..., ELSE ... THEN is inside a DO ... LOOP
Any of FORTH's control structures can be nested within aﬁ}'
other to any practical depth.

operations into two or more shorter ones.
great depth of nesting is not normally used.
the examples above, operating like GO-SLOWER and GO-FASTER
may themselves contain complicated control, it is best to
define them as separate words to avoid cluttering a single
with many levels of nesting.

down coding as GET-VOLTAGE , GO-SLOWER , GO-FASTER and

may not exist in final form yet as the programmer exper{mahts

with the overall design of the control loop.

4-40

(Loop 18988 mine

The recommended coding technig
is to keep each definition short and simple, breaking romplel
Por this reason,
For J'"'H'ance,‘

Also, this is an example of q

‘course GET-VOLTAGE , GO-FASTER and 7?7HOT must exist i
form at least before the loop would compile in a defini

on. < If not, the first unknown word name encountered would
e the error message

<{name>?
3 be loutput.

gther recommended coding style is to indent 1IF ... THEN or
+.- THEN ... ELSE like DO ... LOOP . Keep the whole

fucture on one line if it is short enough, otherwise, indent
. 1F , ELSE (if present) and THEN to line up vertically
h nev level of nesting structure should be indented at leas

‘ 8 pace,

Masking and Setting Bits

operations used for masking -- selecting certain bits

hiir ‘a 16-bit word, and turning them OFF or ON, or

mplementing or testing them -- were largely covered in

stion 4.7.3. This section further explores these operations
sanv of the control applications to which the AIM 65/49

froromputer is well suited.

Sk values are best presented in hexadecimal. In hexadecimal,

@ values P8@F through FFFF can be input; a minus sign can

80 be used to input numbers 880@ to FFFF (-808@ to -1). The

E (period) works for output, but if the first bit is set, use

phrase

D.

0. double-precision print) instead, to avoid having the

mbe 1 interpreted as negative. This makes the top stack item
ouble integer, whose most significant 16 bits are zero, and
v=eg the double integer print word to output the resulting
itive 32-bit integer.

4-41

In the following examples we will be changing or testing *he
last three bits of a word; i.e., the mask value will be 2¢07
(last three bits set, all others off). This value could be

written simply as 7, but the leading zeros are conventlonally

used on address and mask values for program clarity. The =as
of course need not be a literal value as shown in these
illustrations; it could be computed, perhaps by previous
logical operations, or input from the terminal, etc.

To turn ON the last three bits of the word on top of the stack

(leaving all other bits unchanged), execute

#9087 OR
The OR operation, as described earlier, does a logical OR of
each bit independently. The sign bit is treated like any
other. (In these examples, we will assume that HEX
executed to set the number base to 16.)
Similarly to turn OFF the last three bits, use

FFFB AND
To test If any of the last three are ON, use

2087 AND

The stack top will now be zero if none of the last three hits
were ON, and non-zero otherwise. This value can be used »s i
Boolean by IF , UNTIL , or WHILE , but be careful if the

value is used as input to another AND or OR ; input to thes

operations should be a Boolean zero vs. one, not zero vs.
non-zero. If such further logic is to be done, use

4-42

has begs

lch leaves the truth-value unchanged but converts the
g/nnn-zero result into a more correct zero/one Boolean. Use

8087 AND @= @=
: 2887 XOR

ﬁuplement (reverse values of) the last three bits of the
§tark word.

gonnlement all bits. Use
: FFFF XOR
'f}%unld also be written

-1 XOR

2us2 the numeric representations FFFF and -1 are the same in
0it |2's-complement arithmetic.)

i th: operations AND , OR , and XOR , any truth-value
ctions of one, two or more arguments can be built.

F'_IIGII e mE

| BEGIN ...-UNTIL loop, the UNTIL takes a Boolean value

j the stack. If false, it loops back to the BEGIN ; if
1ﬂit terminates the loop, i.e., the loop continues UNTIL
gidition is true. The following loop executes until ?HOT

ifus (non-zero) .

BEGIN
PERFORM-AN-ACTION
7HOT (STOP IF HOT)

UNTIL

BEGIN ... WHILE ... REPEAT loop is almost opposite; it

continue to pxecute the statement(s) between WHILE and
f2A? while the condition between BEGIN and WHILE is

- WHILE tests the Boolean; if true, it does nothing,
tvine control to remain in the BEGIN ... REPEAT loop; if

4-43

false, it branches out of the loop (to beyond the REPEAT |,
The REPEAT always branches back to the BEGIN . The
following loop is almost the same as the UNTIL loop above

BEGIN
7HOT @=
WHILE
PERFORM-AN-ACTION
REPEAT

The difference is that the words contained between WHILE &
REPEAT loop can execute zero times, but the words in the
BEGIN ... UNTIL loop will always execute at least once sing
the test is made at the end of the loop, not the beginning.
Note the use of @= (equivalent to a logical NOT) to revs
the truth-value returned by ?HOT.

A BEGIN ... AGAIN structure creates an infinite loop. Adk
takes no arguments from the stack -- it always causes contrs
to return to its corresponding BEGIN . This structure coul
be used in a real-time control program to execute a final

procedure until interrupted. It is also possible to exit th
loop with a ;S word. '

All of these structures can be nested within any others.
Again, avoid long or complicated definitions. Short
definitions make programs easier to read, debug, and modify,

4.9 DATA STORAGE

How can you get an address of available memory to use for da
storage?

Let's review the memory map (see Figure 2-1). The AIM 65/4f
FORTH system occupies BK of ROM (C@@@-CFFF). This area
contains definitions of the words already defined by the

system. Your own word definitions start in RAM memory at '
AIM 65/40 FORTH uses parts of RAM menmgl
$8-SAB (see Appendix P) and $790-$7FF (see Appendix G) for It

and continue upward.

variables and buffers.

#r the current dic

g way to find available memory for data structures is to use

top of your RAM memory and work down, since your word
(niticns start at $8B and work up. For instance, if you

(8 165 of RAM, addresses such as $3FPF@-S3FFF might be used

data. depending on the size of your program (i.e., the
r and size of your word definitions). As described below
ysten uses the first 68 (decimal) bytes of available

tionary memory (after your latest definition) as its own
atchpad area; do not put data too close to the end of your

nitions,

ther approach is to allocate memory for data within the
lonary == the words CONSTANT , VARIABLE and ALLOT ,
sribe in the next chapter, do this.

§ Find Next Dictionary Location with HERE

i

, HERE returns the address of the next available
fonary location. HERE can be used to determine the size,
e¢ the memory required of a colon-definition.

Sbrocedure {8 to type:

HERE puts current dictionary address on stack)

@r the colon-definition

: <name> --

jary addre 3 on sta , swap to subtract
the large , and th print the size of

smaller address f

@defined word.

HERE SWAP - .

L

iter the following example of a square function. Note the
Pst availabla dictionary location before and after entry of

the SQUARE colon-definition. The length of the colon- n example, add a word to the FORTH dictionary thatt::n be
definition in the dictionary is $13. ! to rheck where HERE and PAD are located, as o r
s are either added or deleted from the dictionary. Then

HEX OK & first to check itself. Let's also define it in the Text
HERE DUP . <RETURN> 88B OK - ater.
: SQUARE DUP * . ; OK or ir case we want to modify it 1
HERE DUP . <RETURN> BlE OK
SWAP - . <RETURN> 13 OK ' (E}
g EDIT FROM=388@ TO=3FFF IN=<RETURN>
Check the operation of the SQUARE word. SIMNEE TABK | TARK 1

t CK-PAD (--—-. CHECK PAD & HERE)

DECIMAL
4 SQUARE <RETURN> 16

4.9.2 Use PAD for Temporary Storage

A common location for temporary storage is the address retups
by the word PAD , and the memory above. PAD returns a }

starting address 68 bytes beyond the next available dictiona sggc:s{;::m“ ¥4
location (which is returned by the word HERE). The space oK

between HERE and PAD is used by AIM 65/48 PORTH itself f: CR-PAD

temporary memory; the byte at PAD and the locations above | HERE=837

are free for your temporary use. Let's restart and check : PAD=878B OK

starting address of the FORTH dictionary using HERE and

the memory fetch and store words can be tested, using PAD
starting address of the temporary storage area using PAD .

wailable memory. Try the sequence

CoLD

AIM 65/480 FORTH V1.4 DECIMAL OK

PAD HERE HEX .S . PAD 2@ BLANKS OK
8ee 15 PAD | OK

84F oK - 15 PAD 18 + C| OK

PAD 2§ HEX DUMP

1 879 F @ 20 20 20 20 20 20
Verify that the PAD starts 68 bytes above the start of thel 881 20 20 F 20 20 20 20 20

FORTH dictionary . %89 202020 20 45D3 SA 8

2:CIML S ' @ outpnt shows the blanks (ASCII $28), the 15 (S$888F) stored

B word (with the bytes reversed by the 6582 CPU so it looks

Since PAD 1s located relative to the current top of the fif @ 0F20' ,and the 15 (SF) stored as a byte 18 bytes later. The

dictionary it will chlng‘o when any new words are defined, or
when words already in the dictionary are forgotten. (Usually
this is not a problem because any particular test or run would

move data into its temporary storage at PAD , and not rely o
data stored there previously.

18 +

I use of an offset to an address; this technique can be
1500 ro create data structures such as arrays, records and

'-.'." etc.

4.9.3 Increment Memory with +!

Two miscellaneous memory words are +1 (pronounced "plus
store") and TOGGLE . +! takes a stack value and a memory
address and adds the value to the contents of the address; fi

example, it is used for incrementing counters in memory.

Define the word BUMP to increment the contents of address
5902 by one, eight times, and prints the contents of $908 afy
each increment.

HEX
: BUMP
CREB @ DO 1 950
+! 9589 C& . LoOP ;

Initialize $980 to zero and execute BUMP
@ 988 CI

BUMP
12345678 0K

Try it again but first initialize $982 to $10
12 988 cC!

BUMP
11 12 13 14 15 16 17 18 OK

Define another function UPBY6é to increment the memory
contents by six and display the results

: UPBY6
CR 8 @ DO 6 909
+! 990 C@ . LOOP ;

Clear $980 contents and try it.
@ 998 C! OK

UPBY6
6 C 12 18 1E 24 28 38 OK]

4.9.4 Exclusive-OR Memory Using TOGGLE

TOGGLE takes an address and a one-byte mask as arguments; it

does an exclusive-~OR between the byte and the address contents

updating the latter,

flment with TOGGLE by first initializing $90@ to SF@

HEX OK
F@ 908 C! OK
the value
908 55 TOGGLE OK
ithe result

998 Ce& . <RETURN> A5 OK

%at both +! and TOGGLE could be performed otherwise

multiple FORTH words, however, these words are

fhlent .
ICONSTANTS AND VARIABLES
CONSTANT

prd CONSTANT creates a new FORTH word which returns a

ito the stack whenever it is executed. FPor example,

58 CONSTANT X

5 2 constant named X . When this new word is executed,

8l return 50 to the stack., Print the value of X with

o

X . <RETURN> 58

jants are commonly used to give names to values which are

il parameters in programs.

fame result could also have béen accomplished by using a

Bn-definition,

X 50 ;

the former is more efficient in both memory use and

fime speed.

4-49

I 18.° Defini rds
If it is ever necessary to change the value of a CONSTANT } Defining Wo
after entry in the dictionary it can be done using the ,

ONSTANT and VARIABLE are both in a special class of words
following technique i

. 9 ("defining words®. Defining words add new words to the
, 52 A dttionary. The only other defining word we have seen so far
<new value> <name : ;

the colon used to begin colon definitions. As with the
For example, to change the 5§ in the prior example to 78, UiEESien. the names created by CONSTANT and VARIABLE can be up
r

3l characrers long and can redefine other names.

78X 4 AIM 65/4@ FORTH system includes eight defining words which
' sommonly used: the colon, CONSTANT + VARIABLE , USER ,
check it now with BABULAR: , CODE , <BUILDS ... DOES> , and ;CODE . Each
Hning word is equivalent to a data type or class of
X . <RETURN> 78 §ations. Later we will learn how the user can create
Note that trying to change the value of a constant, by pottl felf new data types (new defining words) by using the

a new definition of the constant in the dictionary after '
compiling a word using it, will not work since cxlutlng.IL
to the prior value will not change. However, when rnmp11£
from the Text Editor, the value can be changed in the S
code to allow the constant and the using words to be recompl
for proper linkage.

@lalsoperations <BUILDS -+« DOES> or ;CODE .

—_—

5.8 defining word which creates a different kind of
abléy A user variable, like an ordinary variable, returns
ddress of where a value is Stored. But user variables

thelr values in a special "user area” which is always in
fo= address $768 through $77F; not in the dictionary

i may be in ROM). (The name “"user area" originated on
s multi-user FORTH systems.

4.16.2 VARIABLE

VARIABLE is like CONSTANT , but the word it creates retus
the address of a value instead of the value itself. Therel

Each user has a unique memory
new values can be stored into the variable. Try

t0r system’'variables, e.g., the number base currently in
Gt for that user, and the Programmer's own variables.,) The

S8 VARIABLE Y (Defi e variable Y, initiall yariables are defined in Appendix G.
te 5) .
Y @ . <RETURN> 58 (PFetc and print ¥

60 Y I (Stor 6@ into Y)

¢ 'lke CONSTANT and VARIABLE , takes one argument from
Y @ . <RETURN> 68 (Petc and print ¥

Bt ck+_hut‘zh.~a¥guleﬂt~11—ﬂut“tn“Tﬁltltl value; instead it

i offset from $76@ into the user area. For example,

[

Although this example illustrates the use of the word vaﬁf
to initialize the value (to 58), the better practice is *o8
always create the variable as zero or some dummy value, ar
initialize if necessary in an initialization section of the
code. If the program is later moved to ROM, the uariablmt
location will have to be in RAM, where it cannot be initiall
at compile time (see Section 4.10.4).

96 USER A
98 USER B

tes two variables, A and B, with offsets of 96 and 98

i, respectively, from the user varlublgs_baso address at
?795;. USER 1is configured to allow offsets of p-255

). Offsets between $56 and $7E should be used however,

4-51

to place the USER variables at $756 through $77E. Note that BUlc return the address of the start of th
offset values below 86 (§56) and above 126 ($7E) may cause - 8lo

conflict with other system user variables or the Terminal Tnput 1

Buffer (see Appendix G). Be sure that your assignment 21lows . _: phlln manner, arrays can be generated and manipulated.
one word (two bytes) for each user variable. 9 define an array of 3gg bytes, use

FIRST-NAME

4.19.5 ALLOT { # VARIABLE ARRAY 298 ALLOT

FORTH programs can use arrays, records, virtual arrays (if mas § fetcn the nth value of this array, one can use
storage is available), and other data structures. The most
elegant way to create such structures is described in the 1 t GETN ARRAY SWAP 2 + 4 e,

chapter on user-defined data types. But a simple method which
is sometimes good enough uses VARIABLE and another word,

ALLOT .

41 GETN
ALLOT takes one argument from the stack and leaves space for
that many bytes in the dictionary. For example, A place the

value of the 4lst element onto the stack,

@ VARIABLE RECORD

CHANGING THE NUMBER BASE
creates a variable called RECORD ; two bytes are available

the value. Suppose 18 bytes are needed. Then lave already seen the words DECINAL and HEX , which set
r

‘number base to 18 and 16, respectively, FPORTH can work in
nunber base (even above 16) but in practice only 14, 16, 2,
perhaps 8 are commonly used.

@ VARIABLE RECORD 98 ALLOT

would create the variable RECORD and leave the 98 extra byt

e S base can be changed by storing the desired base
into the user variable BASE

Suppose RECORD were to be seed for s costomes mame nt B e + Which is available as part

- r

address; the programmer could create such operations as

2 BASE |
LAST-NAME § + ;

FIRST-NAME 20 + ; . 3 _
MIDDLE-INITIAL 38 + ; ' ! FORTH terminal input and output ¢t

ADDRESS1 31 + ; o
ADDRESS2 51 + ; ¢ a word to do this,

binary. The user could

Then h .' t BINARY 2 BASE
RECORD FIRST-NAME ! '”;he’ later just execute
BINARY
4-52

4-53

=T

The words DECIMAL and HEX similarly change BASE ; for
convenience, these words are already defined in the system =:
supplied.

Bossible source of confusion is the fact that in'binary,
dsbers 2, 3 and 4 (as well as @ and 1) are correctly
fognized on input. This happens because the numbers g-4 a

@ commonly used that they were made int
Note that BASE only affects input and output. Internal #nory space. Since these common nunb:r: :"“:;::; - :“"
¥ . re words in

computation is always in binary so there is no computation- B8 dictionary, they are recogniaed regardlsis of th
speed penalty for using different bases. Also note that fhe B in effect. the number
base will remain as set until changed again. | f

t

12 OUTPUT WORDS
You can easily determine the current I/0 number base with

2.. Print Right-Justified with «R

'. ve already seen the word ., (dot) used for Printing
Pers, Other operators are available to output single-

ion and double-precision numbers left-justified and
it-iustified,

BASE @ DUP DECIMAL .

The word @ puts the value of BASE on the stack. DUP
duplicates the base value for the later restore. DECIMAL
converts the I/0 number conversion base to decimal and .
prints the base and removes it from the stack.

& worc .R prints a 16-bit number right-justified in a fiela

% given width. It takes two arguments, the number and the
irec field width; the latter is on top of the stack. For

If you need to check the base often, you can define a
colon-definition word to do it, such as

mple .
: BASE? BASE @ DUP DECIMAL . BASE | ;

4734 CR 18 .R CR
When a colon-definition is compiled, the base in effect at 4734
compile time is the one that counts. Notice that the fnllayis

code is erroneous and fails to compile:

Ats 4734 right-justified 26 columns. Note the use of CR
FAuse OK to print on the fol .
. ollowing line.
t MASK HEX @@FF OR ; -
SGeTs (ir. Section 5.2,2) you will see that the corresponding
ble-precision (32-bit) output word D, prints a
dle-precision signed number left-justified, while D.R

S 2 double-precision signed number right-justified.

Output Spaces with SPACE and SPACES

The 89FF is unrecognized because the base is decimal at cnm.
time; the word HEX does not change the base immediately [as
was intended), but compiles as part of the definition of
1 it would change the base when MASK was executed. The b -
correct code is i

HEX (Word SPACE outputs one space, and SPACES takes one
;'_Iél?::['llr!‘ OR ; ment from the stack and outputs that number of spaces; such

4-54
4-55

3

CR . TEXT1"™ 4 SPACES TEXT2" CR sh disolave 16 byte st ‘ting from HEX address 98¢
TEXT TEXT2

4.12.3 OQutput a Number to the nlsglazzgglut.r with EMIT

Use the word EMIT to take the top stack number as an AQPI
value and output it to the display/printer. FPor example

wil. convert whatever is in these locations to ASCII and
it == which will display random characters and spaces
xnnwn data is placed in these locations.

‘afrer flrst entering in string of data from the keyboard
AM (let's use the PAD area for temporary storage) using
gorc EXPECT (see Section 4.13.2).

DECIMAL 65 EMIT
DECIMAL PAD 48 CR EXPECT
<character string> <RETURN> (if less than 28 characters)

outputs A to the display/printer. PAD 48 CR TYPE

|t with a message of up to 4@ characters. Note that if the
ng is less than 48 characters, whatever is in memory
”it'tho last entered character through the 48th character
converted and displayed/printed.

Use EMIT in conjunction with the input word KEY (see
Section 4.13.1) to display/print an entered character. Try {
with :

KEY <RETURN> <input character>

EMIT .
.5 Prepare to Output a String with COUNT

g -

Note that the input character (Erom the keyboard) is not
displayed/printed by the word KEY —- only by EMIT. Now, dafi;
one word to do both]

etime: a string is st¢ 8 a length byt llowed by the
-}itself. and only 1t /dress of the s 3 (of the
byte) is on the st this is an alt te form for

: ?KEY KEY CR EMIT CR ; ing a string.

i;uerr from this form, the word COUNT takes the address
srurr the arguments required by TYPE. Therefore,

Check it with

?EKEY <RETURN> A
A

:unr <RETURN> § COUNT TYPE

OK
2 string given the address of its length byte. Try the

Now try a few other characters of your own choice -- try lowe g

case letters also.

4.12.4 Output a String to the Display/Printer with TYPE

To print an ASCII string given its address and length r1ﬂnq%
on top of the stack), use TYPE . Try |

HERE COUNT CR TYPE
TYPE

te advanced output operations are discussed in Section 5.3,
tput Formatting®™. These allow you to create your own output
tmats which may include decimal points, dollar signs, commas,
., 'More on string handling is discussed in Section 5.4.

HEX 9@8 18 TYPE

4-56 4-57

]

4.12.6 Set the Active Output Device with 20UT 2.6 Output a String to the Active Output -Device with WRITE
- -

.';d WRITE outputs a string of characters to the active
ut device like TYPE outputs a string to the display

The word 7?70UT allows you to set the active output device ta
device other than the display/printer. ?20UT calls the AINM

65/49 Monitor Subroutine WHEREO (see Section 7.7 in the 21v nter. Put the starting address of the string an:Ithed ¢
65/48 System User's Guide). After ?0UT , enter the Input -4 facter length (top of the stack) on the stack followed by
for the desired device as follows -?{ to use it.

?0UT <RETURN> <output device code> : by putting nmessage in as you did with EXPECT

Jutputting it the printe:
where the output device code can be
DECIMAL

CRETURN> or <SPACE> = display/printer ‘ PAD 40 CR EXPECT <RETURN> <input string>

P = printer 70UT <RETURN> OUT=P

F = floppy disk (user defined) PAD 48 CR WRITE CR

8 = Serial (user defined)

: : ::::od::::::to FORAEIsE [N st/ Sachak) ice the commands will not be echoed to the display until

V = user defined

Other = display/printer ?0UT <RETURN> OUT=<RETURN>

See Section 11 for audio cassette recorder I/0 procedures.
Bection 6.1 of the AIM 65/49 System User's Manual for user :
defined I/0 guidelines. Refer to Sections 9 and 18 of the LI
65/40 System User's Manual for audio cassette recorder and
teletype interface information.

anterec

INPUT WORDS

28 handles input by taking all characters (tokens) separated
paces and first trying to look them up in the dictionary.
'Qi token is not in the dictionary, the system tries to make
umber of it, using the number base currently in effect.

in i/ the token contains a non-digit character, the system
port: an error condition by typing the token followed by a
gition mark, indicating an unrecognized word (see Appendix

Once the active output device is selected, ?0UT does not
to be used again until the output device is to be changed.

4.12.7 oOutput a Character to the Active Output Device with P

The word PUT operates like the EMIT word but outputs the
character on top of the stack to the active output device

rather than the display/printer. Input a character and ontpg

it to the printer only with it programs can use the FORTH system itself for terminal

70UT <RETURN> OUT=P ifut, You type the numbers onto the stack and execute

Sbx SRETURN> <input character> perations to use them. Many programs run without a terminal

oo ' special input is needed. You seldom need to write

'”T;tlona to accept input from the keyboard, except for

fikny programs which do not run under the FORTH interpreter
+2.. which do not give the 'OK' to the user). When special
pput is required, several primitive operations are available.

Notice that the character is printed and not displayed.

4-58 ' 4-59

displa: an entered number in decimal, use

4.13.1 1Input a Character from the Keyboard with KBY

The word KEY accepts a single character from the keyboard ! KEY <RETURN> <input character> DECIMAL
returning its ASCII value to the top of the stack. It is ti
opposite of EMIT (see Section 4.12.3). It is often i==d
accept a single-letter menu choice from the user. The =ntr
procedure is

.'-' d can easily be defined to display the entered number i
th bases

: ASC
KEY DUP DUP CR EMIT HEX . DECIMAL . ;

KEY <RETURN> <character> :
inptt procedure is
Note that the entered character is not displayed/printed.
Upper or lower case letters may be entered, however, FORTH
words must be in upper case.

ASC <RETURN> <character>

it with a couple of numbers.
Clear the stack with an undefined word, enter a character, ar

A A will not be displayed/printed
check the entered value on the stack. : . :st‘:l<::mu> (
~ ASC <RETURN> 1
2 4 1 31 49
- 8.4 i ASC <RETURN> ?
HEX KEY <RETURN> A Type A) : 2 37 63
.8
“ periment with a few other numbers a mpare your results

i h Ai Y
Notice the hexadecimal representation of the ABCII code for & | Appendix H

.d = 3
i = U RLRCURG Semelu e vl 8 : 3.2 Input a String from the Keyboard with EXPECT
value again

DECINAL .S word EXPECT accepts a one-line string from the terminal.
= PECT takes two arguments from the stack, a starting address
: and a maximum length of the input string; it returns no
ult to the stack. When executed, EXPECT waits for the
nal input; it keeps accepting characters until you press
ETRN>, or until the maximum length is reached. Note that
PECT terminates the input string with a null byte ($0@8); be
yre there is room for it in the input area.

Use EMIT now to output the numbers to the display/printer.
EMIT <RETURN> A

You can use the words KEY and . along with the I/0 base to
easily convert the ASCII code for an entered character into th
number base of your choice. This is especially useful if yol

CT to prepare to input 15 characters,
do not have an ASCII/HEX/DECIMAL conversion table handy. Fiauple, Goe ZXPE PERPS

nter the data, then dump the input data in hexadecimal which
Bleients the ASCII code for the input data (see Appendix H).
r you type EXPECT , FORTH will walt for your input -- 15
ackers maximum. Press <RETURN> to end the input early.
otice that the last byte dumped is the null byte.

To enter a number and display it in hexadecimal, use

KEY <RETURN> <input character> HEX .

4-69 ! 4-61

tectlon 11 for audio cassette recorder I1/0 handling. See

PAD 18 Ch EXPECT 6.1 of the AIM 65/40 System User's Manual for “":'
1234567890123450K 1/0 considerations., See Section 9 of the AIM 65/

PAD 16 HEX DUMP
86B 31 32 33 34 35 36 37 38

873 39 39 31 32 33 34 35 g
OK

um User's Manual for audio cassette recorder and teletype

gfacc information.

« active input device is selected, ?IN does not have to

In this example, the temporary storage area specified by PAl
; ‘ ed acain until the input device is to be changed.

(see Section 4.9.2) was used to store the input data.

ice with GET
Use TYPE to display the input data as it was entered: Input a Character from the Active Input Device with GE

DECIMAL OK ‘¥2¢ , the word GET inputs one character. Unlike KEY,
;;g‘;:’s='g;:5°‘ yer, GET inputs the character from the active input device

gr than just the keyboard. For example, GET can be used
Using the two Preceding examples as a guide, set up an input ,-_‘_ .'. follows
49 characters and display it in HEX and in ASCII. Then :
establish a permanent input buffer area in RAM where you wapi

it instead of PAD and try it again.

4.13.3 Set the Active Input Device with ?IN i
’ .5 Input a String from the Active Input Device with READ

In addition to the keyboard, AIM 65/48 FORTH allows you t%
specify a different active input device. The word 2IN ring
this by calling the AIM 65/49 Monitor subroutine WHERET (see
Section 7.7 in the AIM 65/48 System User's Guide). use 71y
as follows

?IN <RETURN> IN= <RETURN>
GET <RETURN> <input character>

nput a character from the keyboard.

-rd READ allows a string of characters to be input

--: to EXPECT except that the string can be input from
ctive input device instead of just the keyboard. Use the
218 to first select the active input device. Try

?IN <RETURN> IN= <input device code> DECIMAL OK

7IN I:- <RETURN>
16 CR READ
:wmi #1234567898123456)

<RETURN> or <SPACE> = keyboard o

The acceptable codes are

X DUMP

F = floppy disk (user defined) ’":6;6 g: 32 33 34 35 36 37 38

S = serial (user defined) ! 873 39 3@ 31 32 33 34 35 36

T = audio cassette recorder (AIM 65/48 format) oK

U = user defined B : .

:t;o:.:rks;ﬁ::: - ate that the input t displayed durl atery 'm: :h“ =
eminating null is aced in the inpt ea as wit

XPECT

4-63

4-62

TYPE can also be used here to display the input dat: tha ' SECTION
form it was entered i

ADVANCED OPERATIONS
PAD 15 CR TYPE

1234567899123450K
4.13.6 Test £ Charact Input with ?TERMINAL il OTHFR SINGLE-PRECISION ARITHMETIC OPERATIONS
«13. er racter Inpu {
The word ?7TERMINAL tests the terminal keyboard and ~ves & g l-n other FORTH arithmetic words that perform simple
true flag (1) on the stack if any key is depressed. An =x ! ‘qns. While these words are not required for many
of a word that waits for a key depression is enrary arithmetic operations, they simplify implementat

ars complex functions.
: ANY~KEY? BEGIN ?TERMINAL UNTIL ;

1 Modulus Operators MOD MOD and /MOD

: ord MOD takes a dividend (second on the stack) and a
is0r (top of the stack), and leaves only the remainder o
gislon on the stack; for example,

22 7 MOD . <RETURN> 1

orc "/MOD" ("divide-mod") leaves both the quotient (top of
stack) and the remainder (second on the stack), for example

22 7 /MOD CR . .
31

2 [Absolute ABS and Negate NEGATE

'r the absolut ? of a number ® the word ABS. Por
ple, take the te values of b h a positive and a
gativa number

22 ABS ., <RETURN> 22
=22 ABS . <RETURN> 22

’.3_ se the sign of a nu he word NEGATE. Negate
a#lltln and a negat! for example,

=33 NEGATE . <RETURN> 33
33 NEGATE . <RETURN> =33

UNSTGNF MIXED AND DOUBLE-PRECISION ARITHMETIC

5.1.3 Simple Increment and Decrement 1+ , 2+ , 1- , -'

'0RTH gtack is 16 bits wide, and the numbers we have seen
far are signed values internally formatted in 2's complement
arithmetig, In this number representation, bit 15 (the

Four words are included for convenience of incrementing or
decrementing a value on the stack by one or by two. They an

1+ {:onc-p:l.u Increment by 1 §t significant bit) contains the arithmetic sign, and bits @
f: :-:ﬂi: i:l:g:::::::tbgyzl 4 contain the numeric magnitude value. A '@' in the sign
2- ("two-min | Decrement by 2 Indicates a positive number while a '1' indicates a

stive number. A positive signed 16-bit number may range
(Sgegg) to 32,767 ($7FFF) while a signed negative number
yarv from -1 (SPFFF) to -32,768 ($80@8). Signed values are
‘mo=r, often for arithmetic calculations. ;

Try the following examples,

1 1+ . <RETURN> 2
2 2+ . <RETURN> 4
3 1- . <RETURN> 2
5 2- . <RETURN>

3 3its can also hold an unsigned number, where bit 15 is

itpreted as an additional order of magnitude rather than the
hmetic sign. 1In this case, bit 15 represents a value of

1 {215) with the sign implicitly positive. The value of a
unsigned number may, therefore, range from @ ($8808) to
(SFFFF' , Unsigned values are used most often for

5.1.4 Minimum MIN and Maximum MAX

When you wish to limit the range of number between a lower §
upper value, the words MAX and MIN will compare the
of the top two numbers on the stack and leave only the grea
or smaller number, respectively.

1 2 MIN . <RETURN> 1
=18 5 MIN . <RETURN> -10

2. Entering Double-Precision Numbers

§5/47 PORTH also supports 32-bit (double-precision) 2's
plement numbers. These are represented as two 16-bit

er= on the stack, with the high-order number on top.
ble-precision allows positive or negative decimal integers
he range -2147483648 to 2147483647 to be used.

4 7 MAX . <RETURN> 7
=18 5 MAX . <RETURN> 5

A word that will limit numbers to a range between 1 and 9 us
the following colon-definition:

: RANG MAX 9 MIN :
"3 "3 B8 interprets an input number as double-precision if there

fdecimal point anywhere in it. The location of the decimal
it does not affect the input number (although the number of
521 _l'i_lgl_:u is saved in the system variable DPL in case you
8d tc know it, see Appendix G). For example, '555555555.°
) 555555555 are input as the same number -- only DPL is
(18 is larger than 9) ffersnt. Input the following numbers in double-precision

For example:

6 RANGE <RETURN>
1 RANGE <RETURN>
@ RANGE <RETURN>
9 RANGE <RETURN>
1@ RANGE <RETURN>

(@ is smaller than 1)

WO ==

tnat and display the contents of DPL to check the number of
goinz1 places ih the input number:

10@. DPL @ . <RETURN> @ DECIMAL
156.7 DPL @ . <RETURN> 1 456. CR D.
365.12 DPL @ . <RETURN> 2 456
496.436752 DPL @ <RETURN> 6 ;;i::. CR D.
-879. CR D.
Double-precision numbers are integers, with the decimal pol -879
used only as a flag to indicate double-precision; the "i;::i" CR D

pProgrammer must keep track of any implicit decimal point

information. is ofter. desirable to print the data right-justified. The

"*:D.R ("d-dot-r") prints a double-precision number,
jt-justified in a variable width field. The top number on
stack is the column in which the least significant digit of
datz is to be printed, while the second number is the
ple-precision number (the data) to be printed. Try the

inple data one more time, but right-justify it in the

stolimn field as follows (if the number prints in the wrong
mn. you forgot to switch back to decimal)

Input the following small numbers in double-precision fors

and print out the two 16-bit numbers that make up the numbe
Notice that the most significant 16-bits is zero for positiy
numbers and is -1 ($FFFF) for negative numbers (consistent
2's complement notation).

456. . . <RETURN> @ 456
23145. . . <RETURN> 8 23145
-879. . . <RETURN> -1 -879

-1289.4 . . <RETURN> -1 -12894 456. 38 CR D.R

456
Change to hexadecimal and repeat the examples. Notice the 23145. 3@ CR D.R $5ias
difference since each hexadecimal digit represents four Hin -879. 38 CR D.R
bits. -879
-1289.4 38 CR D.R
-12894
456 '
+ « « CRETURN> @ 456 B i
23145, . . <RETURND> 2 3145 ¢ 'a word to print multiple 4 ecision numbers

-879. . . <RETURN> -1 -879 t-fisrified 15 columns.
-1289.4 . . <RETURN> -2 -2894
: PRINT-RIGHT (N---.)

5.2.2 Printing Double-Precision Mumbers § DO CR 38 D.R LOOP CR ;

Now that you understand how double-precision numbers are stg)
on the stack, let's look at two PORTH words that print the d
in double-precision format. The word D. (pronounced “d-dal
prints the top two numbers on the stack as a 32-bit number
left-justified. Repeat the previous examples in decimal

#r rtha data on the stack and print it with PRINT-RIGHT .

the numbers and the number of items on the ltack_boforu
inc PRINT-RIGHT .

456. 23145, -879. -12894,
4 PRINT-RIGHT
-12894

-879
23145
456

5.2.3 Other 32-Bit FORTH Operators

There are several other double-precision FORTH words which :

analogous to the single-precision operations.

Double-precision ad D+ 'd-plus® operates in the same
manner as + , usl g the 1p two d ible-precision rnumhers g

the stack as inputs and le: ring one Jouble-precision numher,

3456. 6576. D+ D. <RETURN> 18832

DABS ("d-abs"™) returns the absolute value of a double-
precision number similar to the single-precision word ABS.

-76543. DABS D <RETURN> 76543

DNEGATE ("d-negate") changes the sign of the double-precisic

number on the stack, allowing subtraction.

-768945. DNEGATE D. <RETURN> 768945

The word S5§->D ("s-to-d") converts a single-precision numb
on the top of the stack to double-precision number.

6758 DUP CR .
6758

§->D CR D.
6758

The operation D+- ("d-plus-minus®) applies the sign gi :
single-precision number on top of the stack to the ;
double-precision number beneath it. Note that a minus rusb
on top always changes the sign of the double-precision nunby
below. Note also that the single-precision number is remous
by the D+- operation.

56789 =-78 D+- D. <RETURN> -56789

08pare word < . Using <

5.2,4 Unsigned Compare U<

ddition and subtraction are the same for signed or unsigned

jusbers so there are no special operations for these.
fesnarison 1s different, however,

80 an unsigned compare word
¢ ("u-less-than") should be used instead of the signed

in a comparison where one number
®ds 32,767 will result in an incorrect answer. The

BRparison
¥

20000 498088 < . <RETURN> @

-n]_p‘taoolnnn false), because 40,000 as a signed 16-bit
mbe is negative and is therefore less than 20,000. The

‘B risor
20000 40800 U< . <RETURN> 1

[#91d= 1 (Boolean true) which is the correct result. Use U<

conpare addresses, unless you are sure both of them will be
oW 1,768, or both above {it.

f+5 Unsigned Multiply U* and Divide U/

other unsigned operations are provided. The unsigned
Eiply word u* ("u-times”) multiplies two unsigned

t-precision numbers to give an unsigned double-precision
er. Por example,

4000¢ 40808 U* CR D
1600000000

unsiaoned divide word U/ ("u-divide™) divides a unsigned
fle-precision number (second on stack), by an unsigned
“precision number (top of stack), to give an unsigned
recision quotient (top of stack) and unsigned
£riclalon remainder (second on stack).

The foll Ing example gives a positive guotlent and unsigne § worc M/MOD ("m-divide-mod") divides a positive
remainde | guble-precisior number (second on stack) by a positive
§ gle-precisinr number (top of stack), returning an unsigned
120031 4 u/ <RETURN> 30007 . ~precisior remainder (second on stack) and an unsigned

preci=ion quotient (top of stack). Examine with
Note that another example,

5400@8. 5000 M/MOD D . <RETURN> 10 4080

140035, 4 U/ <RETURN> -39528 3
' |Scaling
appears to give a negative quotient and unsigned remainder,
the single-precision format a number between 32,768 and 63§ i é,you are working with 16-bit integers and want to
is displayed as negative unless printed as a double-precle iply one by a scaling factor such as the sine of 45
number. The following example forces the gquotient to a grees, Since we are using only integers, this sine value

double-precision number and prints it along with the resals 971) could be represented as multiplied by 19088, i.e.,

: . | We want to multiply our number by 7871 and divide it by
148835. 4 U/ @ D. . <RETURN> 35008 3 §f b~ the problem is that the intermediate product is too
' je tc represent as 16 bits --- so FORTH provides an
-“}lqn */ ("times-divide”™) which multiplies the third term
the =tark by the second item and then divides the result by
lor of stack item, while keeping a 32-bit intermediate -
duct This is illustrated by

5.2.6 Mixed-Mode Operations M* , M/ , and M/MOD

Some mixed-mode operations are also available. The n~perats
M* ("m-times®) multiples two signed numbers and returnsiy
signed double-precision product. Two examples illustrate t
operation. '
12345 7071 leeed */ . <RETURN> B729

4532 8765 M* D. <RETURN> 39722980

4876 -5467 M* D. <RETURN> -26657092 her ‘gperation */MOD ("times-divide-mod") performs the

@ operation but also returns the remainder as the second
&r or the stack. Repeat the last example but also print

fgma inder

The operator M/ ("m-divide®) divides a douhle-precision
number (second on stack), by the single-precision number (&
top of the stack), and returns a signed single-precision
remainder (second on stack) and signed single-precision o 12345 7071 18008 */MOD . <RETURN> 8729 1495
quotient (top of stack). Try this example: p

" QUTPUT FORMATTING
564755. 508 M/ . . <RETURN> 1129 255 -
nungric output commands described in Section 4.11.1 are

ugh for most programs. However, some applications need

clal formats such as decimal points and dollar signs with
nted numbers, or colons within numbers to indicate degrees,
lites. and seconds. FORTH includes special output operations
ch let you define your own numeric formats.

5.3.1 8->D , <§ , SIGN and &

s,

To use these operations, first get a double-precision nunhe
the stack. Then a special operation <# ("less-sharp”) mu
be used to start numeric conversion. Digits are converted
the right, i.e., least significant digit first. ASCII char

ters such as decimal points and dollar signs can be added <i:

needed. Then another special operation #>
greater®™) must close the conversion.

("sharp-

For example, the following definition creates and tests a woul
This exampl
{llustrates a fairly simple case with no added character,

«PRINT , which works like the print command

.PRINT

S->D SWAP OVER DABS
<# #5 SIGN #>

TYPE SPACE ;

Enter a number to test .PRINT

12345 .PRINT <RETURN> 12345
First, S->D converts the top stack number to double-
precision. The SWAP OVER , in effect, makes an extra ~OpY

the high-order 16-bit part below the double-precision number s
the stack; this is required to preserve the sign informatiap
since the numeric conversion itself requires a positive nusbe

-- hence the DABS.

The <#§ 1

sets up the output conversion followed by the

("sharp-S8") which converts all digits of the number to ASCIH
SIGN word then places an ASCII minus sign 1f necessary
it uses the extra copy of the high-order part of the double-

The

precision number to detect if that number was originally
negative.

The #> closes the conversion, and leaves stack arguments s

up for TYPE -- i.e., the number of characters to type on
of the stack, and the address of the first one below it,

SPACE word leaves one space after the number to separate !

from the next one.

S5-1¢9

{ and HOLD

s an example showing creation of a word D$. which

a double-precision number with decimal point and dollar

~ Besides the above operations, it also uses § ("sharp®)

gh places a single digit into a string being created. It
yse= HOLD which takes an ASCII value from the stack and

thar. character into the number being formed.

]

y

fllowing colon-definition shows how to convert digits,
yldually, placing additional characters such as decimal
s an¢ dollar signs where desired within a number.

DECIMAL

: D§. (D *--LLBS
SWAP OVER
<§ # # 46 HOLD (46 is the decimal point)
#5 36 HOLD SIGN #> (36 is the dollar sign)
TYPE SPACE ;

followinc examples show that the leading zeros are handled

prlv

555. D§$. <RETURN> $5.55
5, D§. <RETURN> $9.85

mal point were desired, one
ary before the "46'.

places after the d

__nqnl # would be nec

§ define anéther word that uses D§. to print multiple

H PRI“-DQ -
CR @ DO D$. CR LOOP ;

put four numbers on the stack and print them

123. 45678.
3456. 23456.
4 PRINT-DS.
§234.56
$34.56
§456.78
§1.23

(Print four numbers)

5-11

The following word prints a mixed number when the lnteger

double-precision number is on top of the stack and the posi

of the decimal point is held in the user variable DPL .

HEX

1 XN.

SWAP OVER DABS (Set form for sign and
conversion)

(Convert digits to right of
decimal point)

(Convert decimal point and
and remainder of dioirs)

(Print results)

<§ DPL @ -DUP
IF @ DO # LOOP THEN
2E HOLD #8 SIGN #>

TYPE SPACE ;
DECIMAL

Verify proper conversion with an example such as:
34.786 XN. <RETURN> 34,786
S.4 BTRINGS

FORTH does not have a standardized package of =trino-handlils
operators, but it does have primitive operations from whic
string routines can be built. Por many applications the
primitives themselves are enough. A series of string hand
functions that can easily be constructed in PORTH is descrl
in Appendix I.

Because there is no ready-made standard, you can d.cidc'h%
represent strings internally. Two formats are already in |
within the system. In one, a length byte is followed by th
string itself; string length cannot exceed 255 characters,
address of the string is the address of the length byte (th
is used to store names of words in the dictionary). In the
other format, only the string itself is stored in memory; |
address is the address of its first character. The lenath
stored separately, and kept above the string address on 'h¢
stack.

5-12

?L; Address String Data with COUNT

i COUNT word returns the address (second on stack) of a
facter string and the number of characters, e.g., bytes, in
8tiing (top of the stack). The character string can be up
25¢ h’tll in length. COUNT operates on the address
e fﬁg the first byte of the character data which must

‘the number of bytes of the character data.

2 Output String Data with TYPE

¥ord TYPE takes the address of the first data byte
fbuufp stack) and the data byte count (top of stack) and
£s it to the active output device. TYPE is usually

#ded by COUNT which sets up the data address and byte
in.a compatable format.

| Input String Data with EXPECT

word EXPECT (see Section 4.11.2) can be used to read a
ig into memory. Unfortunately it does not return the

al length of the input string; however, you can find this
0 if it is needed by searching for the trailing nulls

ity zero bytes).

Suppress _Trailing Blanks with -TRAILING

1“§ts trailing blanks of a message, the word -TRAILING
Sed. If -TRAILING is given an address of a string (second
:;hkllnd a count (top of stack) such as that output by
";_gh.n ~TRAILING will adjust the count to commands if
T;ry to eliminate any trailing blanks in the string.
jxampl e

HEX 9
988 9 EXPECT <RETURN>

-{xnine characters to be entered into memory starting at
B Enter

ONLY5 (followed by four spaces)

5-13

immediately after the <RETURN> following EXPECT (note Fhat
OK will not be displayed until after nine characters are
entered). A five character message with four trailing hiani ks
is now in RAM. Check it with

988 9 DUMP
980 4F 4E ¢ 59 35 20 20 20
988 28 B) XX XX XX XX XX

OK ;I. ormal

Notice the terminating null character ($0) placed a!tor thes
entered data. Now enter

90@ 9 -TRAILING S
5 (character count less rrai'
blanks) o
909 (starting address)

To see the full message less trailing blanks, enter

CR TYPE CR
ONLYS5
OK

5.4.5 Interpret a Number with (NUMBER) 3?

Most of the words needed for terminal input are described ir
Section 4.11. This section covers the special situation d-
accepting a numeric string as input and interpreting it as
number. BSuch special input is seldom necessary, because mo§
pPrograms can accept input from the FORTH system itself (i
numbers typed onto the stack), if they use a terminal at a
This special terminal input is most often for turnkey prcgf

not run under the direct control of FORTH (in which the use
should not see the OK).

First use EXPECT to accept a string from the user (ses ?
Eoctiou 4, 11 2). Then use (NUMBER) to lntorprut part or a
of that string as a number (the parentheses are part of the
name)., This operation is a bit complicated. It needs a
double-precision zero on the stack, as well as the address ol

5t ASCII character of the number minus one, i.e., the
lof one byte before the number begins. This address
‘an top of the stack. (NUMBER) then returns the value
nimher; it is accumulated into the double-precision
The address on top of the stack is incremented to point
first non-numeric character, i.e., to the terminator of
ber; the program may test this terminator, which would
v be a blank, and if it is an unexpected quantity, e.g.
‘erroneously typed by the terminal operator, error
‘can be performed.

example

t INPUT .
PAD 10 EXPECT @ @ PAD 1 - (NUMBER) ;

.—'..;_ L .'” rd
i INPUT

ch wher executed, accepts a number, returning the address

yond the number, and the number itself in double-
on form (as two numbers on the stack). (NUMBER) will

skir leading blanks or handle minus signs; you must do so

ssary. By defining INPUT , you have handled the
1+ part of (NUMBER) just once., Subsequent inputs can
essed easily by using the INPUT word.

z.Input a Number with NUMBER

¢ NUMBER (written without the parentheses) will handle
hlanks and the minus sign. But if the string being

ed is in error (e.g., contains alphabetic letters),

i1: handle the error itself by echoing the unrecognized
with a question mark; the user cannot get contrel to

‘the error differently. Therefore the more primitive

UMBER| is usually preferred for turnkey applications.

5-15

5.5 DICTIONARY STRUCTURE 5 fis set to indicate the start of a name. The precedence

{ pilicates if the word is for compile or immediate
As you are well aware by now, FORTH consists primarily ofs§ lon
dictionary of words. The FORTH words were listed using Vi ﬁictlcnary during compilation. If the compilation

The smudge flag prevents the word from being found

in Section 4 and are shown in Table 4-1. This section B successfully, the smudge bit is reset to zero allowing
describes the structure of the words in the dictionary. Ble to be recognized. "SMUDGED" words show up in a

5.5.1 PFORTH Word Structure

B8 field continues with the ASCII characters of the name
The FORTH words are arranged one after the other, starting I8 MSB of the last character set to indicate the end of
LIT to TASK , followed by all user-created words. Each
is composed of five sections:

address is the address of the count byte of the

. flag bits and name character count 1 § word (i.e., the beginning of the previous name field).
+ nName flovs the dictionary to be scanned, word-by-word,

«» link address ng with the most recent word and moving back. The last
. code address f'the dictionary has a link address of zero.

. parameter field

@ address indicates the code to be executed depending on

Here is a picture of the dictionary with a word expanded wi be of word, i.e.,
its sections:]
code $c723 for "colon-definition™ words
i SCTAD for USER words
' LIT I WORD | WORD | WORD | WORD | WORD ' . e $C778 for VARIABLE words

SC75F for CONSTANT words
| |) . next address for "CODE-definition® words

' COUNT NAME LINK CODE PARAMETER |

| | I I
NFA LFA CFA PFA . iword is a "colon-definition" word, the parameter field

the addresses of the FORTH words that make up the

The first byte of a word begins the name field and contal tion. If the word is a "CODE-definition" word then the
X jter field contains the actual assembly code for the logic

fameter field changes meaning depending on type of word.

number of characters in the word's name along with two flag
; Performed.

, 1 ‘ X ' X | X PR AR S RS] @ the TASK word; as an example,
|
| character count i L HEX OK
smudge flag 8@ C DUMP

precedence flag : 860 84 54 41 53 CB D5 D9 23
8A8 C7 32 C5 XX XX XX XX XX

OK

For both CONSTANT and VARIABLE words, the parl-otoriqi-
is two bytes long and contains the value of the constantjor
variable. For USER words, the parameter field is one by

long and contains the offset into the user area for the ' USE

variable.
Now look at it's component parts:

80@ 84

MSB of last character set r= é
885 D5 D9 Link address of $D9D5 links to

(
(

801 54 41 53 CB (ASCII characters for TASK
(
(:
(word in AIM 65/48 FORTH ROMs)

807 23'C7 (Code address of $C723 indicates
(colon-definition) il
889 32 c5 (Parameter address of $C532)
(indicates the end of a)
(colon-definition, i.e., ";')

5.5.2 Handling FORTH Word Addresses

There are five FORTH words concerned with finding the addre
of the various word fields. They are:

s (tick)

PFA (Parameter Field Address)
CFA (Code Field Address)

LFA (Link Field Address)

NFA (Name Field Address)

a. ' leaves the parameter field address (PFA) of the

following word on the stack. i

b. NFA converts the parameter field address on the '_ :

into the name field address (NFA).

LFA converts the PFA into the link field address

(LFA) .

d. CFA converts the PFA into the code field adaress

(CFA) .
PFA converts the name field address (NFA) to 're
parameter field address.

5-18

B = MSB = 1 = start of a word
4 = Number of characters in |

|FORTH Word Handlinc Examples

int the contents of LFA of CLIT , perform

HEX
' CLIT LFA @ @CRD
Cadr

int the name of LIT , perform

! LIT NFA COUNT 1F AND CR TYPE
LIT

int the topmost word name in the dictionary, perform

LATEST CR 1D.
TASK

pl: 1list of all words in the FORTH dictionary can be

with

: DIR CR LATEST
BEGIN
‘DUP ID. CR
PFA LFA @ DUP
@= UNTIL ; OK
PIR <RETURN>
DIR
TASK
.8 (Press <RESET> to terminate list)

NMOCABULARTES

jularies are groupings of FORTH words. They are used to

tns same names to be used for different operations in

ptent application areas. If a name is redefined in the
jogabulary, only the latest definition will be accessible.

the same name is used in two or more different vocabu-

5, 211 the definitions can be selected. Every word
Jd 'In FORTH should be in only one vocabulary to minimize
08] on between word usage.

5-19

The AIM 65/40 FORTH system as supplied includes two vocabu- }
laries: FORTH , which is the default vocabulary, where he
example definitions illustrated earlier in this manual wrre d
placed, and ASSEMBLER , which contains definitions of R&SE
instruction mnemonics, mode symbols, and other operations o:
used for the assembler (See Section 6). For example, AIM &5
FORTH has two words, @= and @< , which are defined in ba
vocabularies and used differently (see Section 4.7.2 and 6.5
depending on which vocabulary is selected (see Section 6.1)

'EONTEXT and CURRENT GSpecity Vocabularies

¥ civen time, two vocabularies are in effect: CONTEXT
REL‘T . CONTEXT specifies the vocabulary in which
jonary searches begin, while CURRENT gives the vocabulary
&cl{ new definitions are placed. Often CONTEXT and
-are the same; e.g., when AIM 65/4@ FORTH is initialized
{21 entry or COLD word), both of them point to the

§ vocabulary. But when a CODE-definition is being

bled, the CONTEXT vocabulary is ASSEMBLER , while

[is usually FORTH or something else (CURRENT would
ISSEMBLER only if you were adding new capabilities, e.g.,
5, tc the assembler).

5.6.1 More on VLIST

As mentioned at the beginning of Section 4, you can list th
FORTH vocabulary by executing the word

8t the CONTEXT , just execute the name of a vocabulary;
VLIST

Press any key to. terminate the VLIST . VLIST can also be
used to list the words contained in the assembler vocabulary
(see Section 6). Enter

ASSEMBLER

thes to the

orc

ASSEMBLER vocabulary.

To set the CURRENT ,

ASSEMBLER VLIST

DEFINITIONS
which will print the ASSEMBLER vocabulary (and then link ki

the FORTH vocabulary and print that also). The FORTH jes the CURRENT to the CONTEXT . So to change both of

word (no name) is shown at address $726 in the VLIST. 'l‘hel to ASSEMBLER , execute
is wise to execute

ASSEMBLER DEFINITIONS
FORTH

y new col: , CODE- , or other definition will go into

to set the vocabulary back to FORTH . ASSEMBLER cabulary. Remember to get back by executing

Vocabularies are effective only at compile time; they ha'-'e,-
meaning after object code has been compiled. They only =fis
the search for names of words in the dictionary.

FORTH DEFINITIONS

. you are done extending the assembler

Incidently, any colon or other new definition will set CONTEY
back to CURRENT . This is done to help the programmer avoid

]l Application Libraries
errors. So if you are in FORTH and then execute just

1 l can create your own vocabularies, in order to keep
ASSEMBLER Y E
jfferent application libraries separate from each other. Just

gcute
without DEFINITIONS , and then define any new words, they wil :

go intoc FORTH , and also the CONTEXT will be set back to

FORTH ; i.e., executing ASSEMBLER alone will have had 1littlj
effect.

VOCABULARY <name>
it
e <name> is the name (up to 31 characters) you want the new

gabulary to have. Then you would usually say
5.6.3 Use LATEST and HERE to Check Directory Addresses

<name> DEFINITIONS
The word LATEST leaves on the stack the name field address g

the last word pointed to by CURRENT
check the FORTH dictionary

= e & GO stact fibegin putting your application library words into the

jme> vocabulary.

HEX LATEST <RETURN> .
L e AIM 65/490 FORTH system, the new vocabulary will be

The word HERE leaves on the stack the next available d to whatever vocabulary it was created in (usually

dictionary address where new words can be added. #H) . All vocabularies form a tree, allowing subvocabularies
ted to any depth. All vocabularies from CONTEXT along the
HERE . <RETURN> 8PB jiching path back to the root of the tree (which is always
f7H) will be searched whenever a name is entered into the
= RTH system for execution or compilation.
ASSEMBLER
Vocabulary
= — itreate a new vocabulary, use the word (2) VOCABULARY (2)
1ink fng with the vocabulary name to change (2) CONTEXT (2) to
it to its last word, e.g.,
FORTH < !
Vﬂcabulﬂfy {———— _HERE VOCABULARY NEW
{———LATEST

ghadd words to NEW, now type

NEW DEFINITIONS

jtause DEFINITIONS sets CURRENT equal to CONTEXT
lowing new words to be added to the NEW vocabulary.

BN add a new word

: MYWORD ." NEW vOC"

and type VLIST and get a new immediate word, use IMMEDIATE after its
finition, i.e., after the semicolon. This causes the last

VLIST 4 defined to be immediate.

826 MYWORD 726

813 NEW 889 TASK (word in NEW)
D9DC .8 DSD1 MON (l1ink NEW to FORN tare ~~rasions the programmer must force compilation of an
g;i; ?AHG gg;? VLIST (new vocabulary) sediate word, To do this, use [COMPILE] (the brackets are

D927 .R OK (<SPACE> bar pressed nera) the name.

Now typ. FORTH , this will set CONTEXT back to the FORTS
vocabulary and MYWORD will not show up on a VLIST but
will execute. E

spla, Suppose you want to run source code written for an
- yersion of FORTH which used the name ENDIF for THEN
§ 65/40 PORTH supports both of these words). You don't want
brough the code and make all the changes. It would be

Now type FORTH DEFINITIONS , changing both CURRENT and e ‘lf define ENDIF by

CONTEXT to the FORTH dictionary. Now MYWORD will not gl
up in VLIST and will not execute. To use MYWORD one needs

ENDIF THEN ; IMMEDIATE
only to link the NEW vocabulary to FORTH by typing NE

se the THEN would try to compute a conditional branch
yse an error message because there is no corresponding
The correct form would be

It is generally recommended that use of subvocabularies be
avoided and all user-defined vocabularies be created in FORI
This is for compatibility with many other FORTH systems whicl
only allow one level of vocabulary nesting. : : ENDIF [COMPILE] THEN ; IMMEDIATE
Vocabularies are optional, needed for advanced users only.
Most programs only use the default FORTH vocabulary, and th
programmers do not even need to know that vocabularies exisl

definec ENDIF to work the same as THEN .

CREATTNG YOUR OWN DATA/OPERATION TYPES

AIM 65/48 FORTH system includes several *defining words';

words which create new words. The most important of

e: (the colon), CODE , CONSTANT , VARIABLE , USER
I VOCARULARY

5.7 IMMEDIATE WORDS

Most FORTH words will be compiled, not executed, when they &
used inside a colon-definition. Immediate words are the
exception. They are executed even at compile time.

1 ay /want to create new defining words. In general, each
The words used for conditional branching and looping (e.g., B fning word creates a new type of data structure of

IF , THEN , DO , LOOP , BEGIN , etc.) are all immediat ation. Examples might be ARRAY , MATRIX , CUSTOMER-

words. They execute at compile time in order to handle fory - . and VIRTUAL-ARRAY . FORTH assemblers use similar

or backward branch references, various error checks, and oth ires for classes of instructions, such as one-address and
functions. Some of these words such as DO and LOOP plac
special run-time words, not used directly by the proarammer,
into the object code. But some, (e.g., BEGIN) place n~thij
at all in the object code.

d_rpqs,

5-24 5-25

DoEf part tells what happens when X or Y |is

jted At execution of 8 X , 49 X , etc., DOES>
gatically causes the system to place the address of where
fray begins on top of the stack; any arguments (@ , 49
i these examples) are below that address. The SWAP

98 he array index to the top of the stack, where it is
;fled by two to get its byte offset from the beginning of
ay. This offset is then added to the address of the

tr get the desired address of the particular element.

New data or operation types are usually created by the palr
words <BUILDS and DOES> i these words are always used
together. The word ;CODE is an alternative way to creaty
data structures; they run faster but require use of the
assembler (see Section 6.9).

For example, suppose we want a word to create arrays of 2=by
(16-bit) memory locations numbered from zero. We want to g5
e.g9.,

58 ARRAY X
12 ARRAY Y

@ how the allocation works, after entering the definition
RRAY , type:
to create arrays 'X' and 'Y' with 58 and 18 elements,

HERE .
respectively. Then we want to use these arrays as L

f¢ whers the next dictionary entry will occur . Then enter

(8th element of ARRAY X)
9 Xx (49th element of ARRAY X)
(8th element of ARRAY Y)
(9th element of ARRAY ¥Y)

L

50 ARRAY X HERE .

g

to return the addresses of the first (8th) and last clerent
X and Y. We can then use the arrays to store and fetch dat;
using | and @ . Note that there are 5¢ elements in ARRA
(numbered from # to 49) and, similiarly, there are 18 eleng)
in ARRAY Y (numbered from @ to 9).

¥ much dictionary space has been used by the array. Note
thers are 8 bytes of overhead plus the 108 bytes for the

i nov enter
How do we define ARRAY to do this? We could use 1?2 ARRAY Y HERE .

see that 28 bytes of array plus 8 bytes of overhead
gen allocated. Entering

: ARRAY
<BUILDS 2 * ALLOT
DOES> SWAP 2 * + ,

How does this definition work? e s x1

-;U.ptor. 1234 in the fifth element in the X array. And

;
The <BUILDS part tells what happens at compile time. 7mhe g
A NG

argument (on top of the stack) to ARRAY (50 or 1@ in the
above example) is multiplied by two, and ALLOT leaves that
many bytes of space in the dictionary. Note that when X o
Y or any other array is being defined, the appropriate ﬁhm{
of bytes must be alloted for it. '

- place 1234 on the top of the stack

5-26 5-27

and DOES> can be used to create much more elaborate
:3 such as special array definitions which do bounds
J: error checks at run-time. These definitions could be
during debugging and replaced with the regular (faster)
itions for production use, once you are assured that no
f-bounds error will occur.

The data to go in an array may be loaded at compile time byl
following technigue:

t VECTOR <BUILDS @ DO ,
LOOP DOES>
EWAP 2 * +

The data on the stack is in inverse order and the top valug§
the stack is the number of elements in the vector. Thus,

data n-1 data
n VECTOR ALPHA

a-g data'

creates a vector with n elements called ALPHA . Por avanpl

55 4444 -33 2222 1111 @
6 VECTOR ALPHA

Now check the element data

These elements may be changed if so desired, e.g9.,
1919 @ ALPHA !

Check with
@ ALPHA @ . <RETURN> 18180

In the definition of VECTOR , a loop is executed the numbes
times indicated by the top value on the stack. The only
function performed by the loop is to use the , command toj
Store the current top value of the stack into the dictionary
entry. This is repeated until all of the vector elements ar
stored in the dictionary definition. The remainder of the
operation is the same as the definition. The remainder of th
operation is the same as the prior example for ARRAY ,

5-28 5-29

SECTION 6

AIM 65/40 FORTH ASSEMBLE

s A4 65/40 FORTH structured assembler creates machine

age execution procedures that would be time-inefficient i:
e¢ in high-level FORTH colon-definitions. A separate

ER vocabulary provides the op-codes, addressing modes,
diticnals, and other support words necessary to program
gtions in R6588 assembly language. A function written in
enbler language is entered into a vocabulary in a similiar
jer as a PORTH colon-definition. It is also executed in th
' anner by referring to the word name. It is recommended
£ sssembly language, or "code®, as it is often referred to

ih-level FORTH for clarity of expression. A function can
it be rapidly written and debugged in FORTH, tested for
per operation, and then recoded in assembly language for
ter execution with a minimum of restructuring.

THF ASSEMBLY PROCESS

AI) 65/48 FORTH assembler vocabulary is selected by the
d ASSEMBELER or by the word CODE (explained in the
lowing paragraphs). A separate ASSEMBLER vocabulary is
J ahead of the FORTH vocabulary. The words in the
ENBLER vocabulary are defined in Appendix D, AIM 65/49

’:'_ Assemhler Glossary, in ASCII sort order.

gxamine the assembler words, perform a cold start, command
YBLER , and run a VLIST . The Assembler VLIST is shown in
ure -1, Note that the ASSEMBLER VLIST continues into the
vocabulary upon completion of the ASSEMBLER word list.
s any key to terminate the VLIST before completion.

6-1

gy

L

ASSEMBLER Ok

YLIST -
DFD@ END-CODE DFCL @<
DFBS 0= DFAF YS
DFR6 CS DFS9 NOT
DF73 ELSE, DF6S THEN,
DF2B ENDIF, DF24 IF,
DF@4 REPEAT, DEF® AGAIN,
DEDS WHILE, DEBA UNTIL,
DEAS BEGIN, DESS BIT,
v DE61 LDY
DES2 LDY., DE4S CPY,
DE37 CPX. DE25 STX.
DE1iB ROR, DE@D ROL.
DDFF LSR, DDF1 INC,
DDEZ DEC. DDDS ASL.
DDC? STA. DDBS SBC,
DDRE ORA, DDSD LDA,
DDSF EOR, DD81 CMP,
DD72 AND. DDES ADC,
DDS3 TXS. DD4D TYA.
DD41 TXA, DD3S TSX,
DD2S TAY. DDiD TAX,
DD11i SEI, DD@S SED,
DCFS SEC, DCED RTS,
DCEL RTI, DCDS PLP,
DCCS PLA, DCBD PHP,
DCBL PHA, DCAS NOP,
DCSS INY, DCBD INX,
DC81 DEv, DE7S DEX,
DCES CLY. pCSD CLI,
DCS4 CLD, DC4S CLC,
DC23 BRK. DBEC RP)
DBSE SEC DBS® TOP
DB4S > DB3C >V
DB32 X) DB28 ,
DB1E , X DBi4 MEM
DBOS # DB8 . A
DACF SETUP DAC2 BINARY
DABE PUTGR DARA PUSHBR
DASD POPTHO DRSG POP
DABE PUT DAZC PUSH
DAZ1 NEXT DAGE INTVECT
DASE INTFLAG DR4A XSAVE
DAZE UP DR2S W
DA2D 1P DR24 N
Pigure 6-1. VLIST of AIM 65/48 PORTH Assembler Wris

6-2

COLD

AIM 65/48 FORTH V1.4

ASSEMBLER OK

VLIST

DFD@ END-CODE DE DFC1l @<
DFB8 @= DFAF VS
DFA6 CS DF99 NOT
DP73 ELSE, DF65 THEN,

DA3E UP DA35 W

DA2D IP DA24 N

726 809 TA:E(

pIDC .5 D9D1 MOK

D9C1 HANG OK (<SPACE» bar pressed)

as=enbly consists of interpreting entered words with the
EMELER vocabulary as CONTEXT (see section 5.6.2). Thus,
word in the input stream is matched according to the FORTH
Gtice of searching CONTEXT first, then CURRENT .

yocabularv search order is

Vocabulary

ASSEMBLER (Now CONTEXT)

FORTH { Chained to ASSEMBLER)
User's Vocabulary (CURRENT if one exits)

FORTH (Chained to user's vocabulary)

Literal Number

sbove sequence is the usual action of FORTH's text inter-
ter, which remains in control during assembly.

1 'cope Definitions

‘o0 word defines a word written in assembly code (called
Bpi-defirition) in a similiar manner as the : word defines
rd writtern in FORTH (a colon-definition). The assembler
tabularv is automatically selected as CONTEXT when CODE

ountered. The name following CODE is entered into the

ary as the PORTH word for the CODE-definition. Assembly
sua0c routines or program segments in CODE-definition form
ften referred to as "CODE" or "code” in general FORTH

6-3

literature. Assembly language instructions in RPN rnrmar [&
Section 6.2) are then entered along with any Instructions i
save and restore return stack values (see Section 6.4) -~nd
conditionals (see Section 6.6) The END-CODE word terminats
a CODE-definition in a similiar manner as the ; terminatas
FORTH colon-definition.

During assembly of CODE-definitions, FORTH continues interpre
tation of each word encountered in the input stream (not in
compile mode) . These assembler words specify operands, =dite
modes, and op-codes. At the conclusion of the CODE-definitis
an error check verifies correct completion and then “unsmudge
the definition's name, therefore making it available for
dictionary searches.

6.1.2 Assembly-time Versus Run-time

It is important to understand at what time a particular word
definition executes. During assembly, each assembler wnrd
interpreted executes. Its function at that instant is calle
'‘assembling' or 'assembly-time'. This function includes
op-code generation from mnemonics, address calculation, addre
mode selection, and relative branch calculation.

The later execution of the generated code is called ‘run-tiss
This distinction is particularly important with the
conditionals. At 'assembly-time', each word (i.e., IF,
UNTIL, BEGIN, etc.) 'runs' to produce machine code
(conditional branch and/or jump instructions) which will)ates
execute at 'run-time' when its CODE-definition name is used,

6.1.3 CODE-Definition Example

As a practical example, here's a simple call to the AIM 65/4)
Monitor, via the IRQ address vector (using the BRK op-code) ..
Enter the following words. .

CODE MONX
BRK,

NEXT JMP,
END-CODE

Exit to AIM 65/48@ “onitor

6-4

The word CODE is first encountered and executed by
FORTH. CODE builds the name MONX into a dictionary
header and calls ASSEMBLER as the CONTEXT vocabu-
lary. Note that the <name> after CODE must be on

the same line.

BRK , is next found in the assembler vocabulary as the
op-code. When BRK , executes, it assembles the byte
value @@ into the dictionary as the BRK instruction
machine code. This causes the R6582 CPU to perform an
IRQ interrupt, which in turn returns control to the
AIM 65/48 Monitor (see Section 6.4 in the AIM 65/40
System User's Manual).

Note that the FORTH assembler word names end with a
= »_ 7The significance of this is:

(1) The comma distinguishes assembler control words
from FORTH control words, e.g., IF, versus IF
r etc.

{2) The comma shows the conclusion of a logical
grouping that would be one line of classical
assembly source code.

(3 "," compiles into the dictionary; thus, a comma
implies the point at which code is generated.

(4) The *," distinguishes op-codes from possible
hexadecimal numbers ADC, ADD, and BCC.

FORTH executes your word definitions under control of
the address interpreter, named NEXT . This short
code routine moves execution from one definition to
the next. At the end of your CopE-definition, you
must return control to NEXT or else to other code
whic¢h returns to NEXT.

The BRK instruction executed by the word MONX] Single Mode Op-Codes
returns control to the AIM 65/48 Monitor, e.g.,

16582 single mode op-codes
MONX

= B@ 08 92 00.FD @814 BRK

Note that the address counter and processor statuﬁ RE CLC, CLD, CLI, DEX, DEY, INX,
were saved by the IRQ processing. If G, followed N NOP, PHA, PHP, PLP, RTI, RTS,
the address displayed plus one, and <RETURN> is ng SEC, SED, SEI, TAX, TSX, TXS, TXA,
typed, execution will resume at the next instructis
past BRK, which is the JMP to NEXT , e.g.,

EA,

jny of these op-codes are executed, the corresponding

{G} @815 <RETURN> @ code byte is assembled into the dictionary.

NEXT is a constant that specifies the machine addg

of FORTH's address interpreter (at SCO6F). Here puulti-Mode Op-Codes
NEXT is the operand for JWMP, . As JMP, executes i
it assembles a machine code jump to the address of jiti-mode op-codes

NEXT from the assembly time stack value. If contt
is not returned to this FORTH address as the last ! AND, CMP, EOR, LD&, ORA SRC.
instruction in the CODE-definition, improper epexﬁ' i DEC, ING, DRy ROL, BoR 2
of the AIM 65/40 microcomputer and possible alterat E* LONE DL, Blky SRy INF, RELe

of your program may result.
p codes take an operand which must already be on the

d. The END-CODE word terminates the CODE-definition wi An address mode may also be specified. 1If none is
a SMUDGE of the name. It also exits the ASSEMBH " Cp=Cods Uata TSpagE (el APpropriste): oy abolute
making CONTEXT the same as CURRENT . sing.
The object code of our example is: I DDRESSING MODES

¢BOB B4 (Name letter count with MS 'f essing modes are specified by:

@8GC 45 58 49 D4 MONX (NMame with MSB of last 4

@818 @@ @8 link field

8812 14 98 code field § FORTH Addressing

g8ls @@ BRK Word =—¥ods

@815 4C 6F C@ JMP NEXT

6.2 ASSEMBLER OP-CODES

The bulk of the assembler consists of dictionary entries for :)

oA accumulator none

] immediate 8 bits only

X indexed X z-page or absolute
X indexed Y z-page or absolute
X) indexed indirect X z-page only

B § indirect indexed Y z-page only
indirect absolute only

the R6500 mnemonic op-codes. Refer to Appendix B in the - none memory z-page or absolute

Programming Manual to see the machine code that is generated
each mnemonic op-code.

Here are examples of FORTH vs. conventional assembler .- :°.,’_. }"53: ::::::}:: & f;:ﬂ and
that the operand comes first, usually followed by any add

ing mode modifier, and then the op-code mnemonic. This md
best use of the stack at assembly-time. Also, each assenl
word is set off by blanks, as is required for all FORTH &

Iaaves @ on the stack and sets the address mode to ,X
" leaves 2 on the stack and also sets the address mode to

text. 4
¢ i+ a pictorial representation of the parameter stack in
i FORTH Conventional Assembler "4g: (see Appendix F).

.A ROL, ROL A .A distinguishel 1
1 ¢ LDY, LDY #1 from hex numb 'iow Memory

DATA ,X STA, STA DATA,X i 3

DATA ,Y CMP, CMP DATA,Y

I'OII; T')l :2:. ;2: ::gi:‘r}) ¥ TOP lqiw byte | <-- 8,X (the X-register points to here.)

0P high <== 1,X
VECTOR) JNP, JMP (VECTOR) 709 high byte '

C low byte | <-- 2,X —
sg e: Eo.l_ “3:‘ =

The words DATA , POINT , and VECTOR specify machine 2d8
esses defined by prior VARIABLE or CONSTANT words. U
case of "6 X) ADC," the operand memory address $8886 was
directly. This is occassionally done if the usage of 2
does not justify devoting the dictionary space to a svmﬁ
value. A

r“2. 1left by TOP or SEC is the base address above
h ¥ register indexes. You may further modify this at
6.4 R6582 CONVENTIONS gably=-time to address at any byte in the parameter stack.
i= an example of assembly code to “"or" together the top
f bvres on the stack:

6.4.1 Stack Addressing

The parameter stack is located in z-page, and is usually

addressed by "Z-PAGE,X". This stack starts at $8891 and g FORTH Conventional Assembler
physically downward. The X index register is the data sti TOP LDA, LDA (8,X)
pointer. Thus, incrementing X by two removes a data s TOP 1+ ORA, ORA (1,X)
1 SEC ORA, ORA (2,X)
value; decrementing X twice makes room for one new data & SEC 14 ORA, ORA (3,X)

value. .
ibt2i- the 14-th byte on the stack, use
16-bit valies are >laced on the stack according to the RES
convention, the 1 ¢ byte is at low memory, with the high §
following. This llows "indexed, indirect X" instructiag
be execute: direc ly off of a stack value.

TOP 13 # LDA,

The top and second stack values are referenced often ~noug
that the support words TOP and SEC are included. Usls

6-9

6.4.2 Return Stack

The FORTH Return Stack (and the machine stack) is located I
the R6502 machine stack area in Page One. It starts at S
and builds physically downward. No lower bound is set or.
checked as Page One has sufficient capacity for all
(non-recursive) applications.

By R6582 convention the CPU's S register points to the nexk
free byte below the bottom of the Return Stack. The byte ol
follows the convention of low significance byte at the lows
address.

Return stack values may be obtained by: PLA, PLA, whig
Stack. To operate on arbitrary bytes, the method is:
3. Save X in XSAVE .

b. Execute TSX, to move the S register contents
X register.

€. Use RP) to address the lowest byte of the return
stack. Offset the value to address higher bytes.
(The address mode is automatically set to ,X ok

d. Restore X from XSAVE .

As an example, this CODE-definition non-destructively test
second item on the Return Stack (alse the machine stack),
see if it is zero.

CODE IS-IT (Is second item on Return Stack 28]
XSAVE STX, (Setup for Return Stack)
TS5X,
RP) 2+ LDA, (Or second item's bytes together).
RP) 3 + ORA,

#= IF, (If zero, increment Y by one)

INY,
THEN,
TYA, (Save low byte)
XSAVE LDX, (Restore data stack)
PUSHOA JMP, (Push Boolean and zero onto data s
END-CODE

6=10

$01FE T I

Low Memory

Free Byte — &

Top Item Low Byte <—— RP) = §101,X
Top Item High Byte

Second Item Low Byte
Second Item High Byte

Return Stack

ORTH REGISTERS

Assembly Registers

FORTH registers are available only at the assembly

and have been given names that return their memory

ses, These are:

Address of the Interpretive Pointer, specifying th
next FORTH address which will be interpreted by
NEXT .

Address of the pointer to the code field of the
dictionary definition just interpreted by NEXT .
W-1 contains $6C, the op-code for the indirect jump
instruction. Therefore, jumping to W-1 will
indirectly jump via W to the machine code for the
definition.

User Pointer containing the address of the base

the user area.

A utility area in z-page from N-1 thru N+7

2 CPU Registers

FORTH execution leaves NEXT to execute a
“‘aefinltion, the following conventions apply:

The Y register is zero It may be freely used yerw important to note that many PQRTH procedures use
thus, N may only be used within a single CODE-
b The X register defines the 1 byte of the Lotrom & {ticy. HNever expect that a value will remain within
stack item relative to machi address S0000 + = e : single definition!
point to the correct item ur returning to FosTH,

The CPU sta er S points one by below the |
byte of the item in the Returr :ack. =rec
uting PLA, ull this byte to t accumu =to;

(Setup a counter)

I (Make Port A input)
EFFA3 STA,

BEGIN

PFAL BIT, (Test Port A)

N 1- DEC, (Decrement the counter)
UNTIL, (Loop until negative)

_NEXT JMP,
FNN=CONF

d The accumulator may be freely used

The CPU is in the binary (i.e., not decimal) mode a
must be returned in the binary mode (with a CLD <'

to return, as needed). - the VLIST and HERE to det he iin_rting and next

g after the end of dictionary
6.5.3 XSAVE L
ik 814 DEMO 809 TASK
pInc .s ! D9D1 MON
DICL HANG OK (<SPARE> bar pressed)
HERF . <RETURN> 827 OK

XSAVE is a byte buffer in z-page, for temporary storage of &
X register. Typical usage, with a call to a previously defi
code word USER , which will change X, is: $
ipe r~ AIM 65/48 Monitor and examine generated machine code.

CODE DEMO -
XSAVE STX,)
' USER JSR, Ki=0814 /¢ OUT=<RETURN>
::::x.’:gf, 8814 A9 96 LDA #5806
END-CODE §816 85 96 STA $96

. @818 A9 08 LDA #5890
@812 BD A3 FF STA S$FFA3
" @81C 2C Al FP BIT SFFAl
- 0B2L C6 96 DEC $96
982: 18 P9 BPL $@81D
@824 4C 6F CP JMP SC@6F

6.5.4 N Area

When absolute memory registers are required, use the "N :rea
in Page Zero. These registers may be used to store pninterd]
for indexed/indirect addressing or to store temporary v=lueg p seTup

we wish to move stack data values to the N area. The
SETUP has been provided for this purpose. Upon entering
UF the accumulator specifies the quantity of 16-bit stack

#s '« be moved to the N area. That is, A may be 1, 2, 3,

The assembler word N retitns the base address ($0997). 7o
N area spans 9 bytes, from N-1 thru N+7. Conventionally, -
holds one byte and N, N+2, N+4, N+6 are pairs which may hold

16-bit values. See SETUP for help on moving values to rhe
Area.

3 & LDA,
SETUP JSR,

6-12 6-13

Stack before N after Stack after sonditional specifiers for the R6502 are

TOP —> A high N—> A FORTH
B low B 1 onditior
s Co ee) est
P g g =ﬂ$;s' ;unntion Processor Status Bit
E E .
s carry set c=1
: . v Top ol ¥ less than zero M=l
H high H i equal to zero z=1
7 overflow set V=1
NOT carry clear C=0
6.6 CONTROL FLOW NOT positive N=§
§= NOT not equal zero z=8
gs NOT overflow clear V=0

FORTH discards the usual convention of assembler labels.
Instead, two replacements are used. First, each PORTB;;
definition name is permanently included in the dictianary
This allows procedures to be located and executed by name |
any time as well as be compiled within other definitians,

Conditional Looping

ditional loop is formed at assembler level by placing the
uctions to be repeated between BEGIN, and UNTIL, .

. . ede UNTIL, by a conditional specifier, e.g., @< . The
Secondly, within a CODE-definition, execution flow is sblec generates the proper conditional branch machine

controlled by label-less branching according to ®"structurs sction, e.g., BEQ, to test the processor status and to
programming®. This method is identical to the form used{ﬁ tionally branch back to the machine instruction
colon-definitions. Branch calculations are done at assenb dlatel: after the BEGIN, .

time by temporary stack values placed by the control words s

genera. format is:

BEGIN, THEN,

UNTIL, AGAIN, -

IF, WHILE, Kassembly code>
ELSE, REPEAT, €cc> UNTIL,

continuinc assembly code>

Here again, the assembler words end with a comma, to indica
that code is being produced and to clearly differenriate ffg
the high-level form.

xample, enter the CODE-definition for LOOP-TEST

HEX

@ VARIABLE TICK
- PODR L.OQP-TEST
One major difference occurs! High-level flow is controlleg

E'ml
run-time Boolean values on the data stack. Assembly flow {i }‘%:2{"‘
controlled instead by processor status bits. You must indls TICK DEC,
which status bit to test with one or two FORTH condition cod :_DSE;TIL'
(cc) words, just before a conditional branching word i.e., muﬂfﬁﬁn?""

UNTIL, or WHILE, .

-

6-14 6-15

Note where the variable TICK and LOOP-TEST are locs
the FORTH dictionary:

onditiona Execution

of eyecution may be chosen at assembly in a similar

Mo . done in colon-definitions. 1In this case, the branch
:i; ‘Ir':g:-““ D:;l‘: ?:c‘ ssr-based on a processor status condition code. The
DSD1 MON D9C1 HANG 1 format is (using 8= as a typical condition code word):
D97A VLIST OK (<SPACE> pressed)
Also, find the start ($832) of the next dictionary entry: FORT LDA,

<code for zero set)

HERE . <RETURN> 832 lnuinq codes
% example, the accumulator is loaded from PORT . The

tu is tested and, If set (2Z=1), the code for zero set
cuted. Whether the zero status is set or not, execution

Return to the AIM 65/4¢ Monitor and disassemble the llv%l.'
code.

(ESC)

{K}*=8824/6 OUT=<SPACE> pme ot THEM, .

9826 85 97 STA 897 itional branching also allows a specific action for the
§828 CE 14 98 DEC $9814

§828 C6 97 DEC $97

882D D§ P9 BNE $9828

982F 4C 6F C9 JHP $CO6F : 0R™ LDA,

This shows you how the assembly code is generated for a ty
L]

' <asgembly code for zero set>
conditional loop. £

agsubly code for zero clear>

First, the temporary storage byte at address N s loaded continuing assembly code>

the value 6. The beginning of the loop is marked (at a?
time) by BEGIN, . Memory at TICK is decremented, then !
loop counter in N is decremented. Of course, the CPU updat
its status register as N is decremented. Finally, a test
Z=] is made; {f N hasn't reached zero, execution retur

of PORT will select one of two execution paths,
resuming execution after THEN, . The next example
ents . N based on bit D7 of a port:

' LDA, (Fetch one byte)

B - DECS !
EGIN, When N reaches zero (after executing TICK £C, Nzr, —— ’ R
times) execution continues ahead after UNTIL, . Note tia 5 E“c'

r
BEGIN, generates no machine code, but is only an assembl - . N _INC, (If :I-l, ::c;mnt N)
locator. 1In this example, # = UNTIL, generated a BNE / .EH, (Continue

instruction to address $8828, the address located by BEGIN

6-16 6-17

6.6.3 Conditional Nesting jome Nesting Examples

Conditionals may be nested, according to the conventinns An.8-Bit Counter
structured programming. That is, each conditional sequenc

begun (IF, BEGIN,) must be terminated (THEN, UNTIL An8-bit counter illustrates simple conditional
before the next earlier conditional is terminated. An i
must pair with the immediately preceding 1IP, . | @ VARIABLE COUNTS
-1 ALLOT
CODE COUNT-DOWN
BEGIN, COUNTS STA,
<code always executed> { : @ §# LDA,
cs IF, : COUNTS DEC,
<code if carry flag set> BEGIN,
ELSE,] @= UNTIL,

<code if carry flag clear> NEXT JMP,
THEN, END-CODE
<loop until zero flag is non-zero>
@= NOT UNTIL,

'Execute the counter:
<code that continues onward> = 4

COUNT-DOWN <RETURN> OK

Next is an error that the assembler security will reveal :nunr the machine code for examination:

c : " HEX ' COUNT-DOWN NFA 1C DUMP
02:623:..> : 817 BA 43 4F 55 4E 54 2D 44
PORT LDA BIF 4P STCE B B8 26 8 AS
8= 1P, - : 827 9 8D 16 8 CE 16 8 D@
TOP INC - 82F FB 4C 6F C# 4 44 S5 4D
r
#= UNTIL, - oK

ENDIF, ' The breakdown of the machine code is:

The UNTIL, will not complete the pending BEGIN, =ince

816 @0 COUNTS Variable)
immediately preceeding IF, is not completed. An error t 817 B8A Name Field = Start)
will occur at UNTIL, and error number 19 "conditinnals n ' :i; :: :: AARISE S0 AT T O E?ﬂ:';?ff: !.:={g)
paired” will be generated. To delete the erroneous code fr 824 26 @8 Code Field = @826)

the dictionary, first SMUDGE the word to allow finding | PR R e ol Parameter Field)
then FORGET it, and correct the source code and rerompil 828 CE 16 @8 DEC 8816

82B D@ FB BNE 982B Next)
838 4C 6F C@ JMP C@6F

- The machine instructions can be disassembled with the
~ AIM 65/40 Monitor K command to check the assembly
code sequence.,

~ Ir this example we use part of the RAM dictionary for
the counter (COUNTS) . This counter is only 8 bits,

however, so after we create the 16-bit named
~digticnary location COUNTS , we use ALLOT to back
ur over the extra byte and recover it for use.

6-18 2 6-19

'J‘?a

e

9832 D@ FB BNE $@82F
9834 CE 17 @8 DEC $@817
9837 D@ F6 BNE $0882F
9839 4C 6F Co JMP $SCB6F

The definition of the word COUNT-DOWN is a simple
loop, decrementing COUNTS until it hits zero then
jump to NEXT . PFirst, of course, we clear OUNT
to its initial value by the LDA, and STA,
instructions. The initializing to zero is no proble
because right after we clear counts to zero we
decrement it and it becomes FF. This way we loop Z:¢
times before finally exiting when we decrement to
Zero.

A 24-Bit Counte

e value of indenting the loops for visual clarity
'I‘bta obvious here than in the previous example.
is example uses a three byte counter and so one

lﬁn byte of dictionary space is alloted and three

. jested loops do the work.
A lb-3it Counter

VARIABLE COUNTS
1 ALLOT

CODE COUNT-DOWN

@ # LDA,

- COUNTS STA,
(COUNTS 1+ STA,

This counter is similar to the B-bit one except t.bi:

COUNTS is the right size to begin with therefors
ALLOT is unnecessary. i

We initialize two bytes to zero to start with.f ! |Fog.gguf+ B
We use two nested loops to do the decrementing. e b BEGIN,
BEGIN,
i | v COUNTS DEC,
The assembly code is: Al @= UNTIL,
COUNTS 1+ DEC,
@ VARIABLE COUNTS @= UNTIL,
CODE COUNT-DOWN COUNTS 2+ DEC,
@ # LDA, - | .-@= UNTIL,
COUNTS STA, - .NEXT JMP,
COUNTS 1+ STA, - END-CODE
BEGIH, ! -
BEGIN, Execute the counter:
COUNTS DEC, 1
#= UNTIL, j:OU‘IT-m <RETURN> OK (About 2 1/2 min.)
COUNTS 1+ DEC,
@= UNTIL, breakdown of the machine code is:
NEXT JMP, s
END-CODE 9816 90 00 @9 COUNTS variable)

2819 BA

BE1A 43 4F 55 4E 54 2D 44 4F 57 CE
2624 @B 08

2826 28 @8

PB28 A9 @0 LDA §S@@

Name Field Start)
COUNT-DOWN Name)
Link Field = $988B)
Code field = $@828)
Parameter Field)

Execute the counter

COUNT-DOWN <RETURN> OK

—— — — — —

§

The machine code is: G82A 8D 16 @8 STA $#816
i _ 282D 8D 17 @8 STA $0817
@816 @0 00 (COUNTS Vi) @838 8D 17 @8 STA $@818
@818 BA (Name Fiecld 5H @833 CE 16 @8 DEC $0816
@819 43 4F 55 4E 54 2D 44 4F 57 CE (COUNT-DOWN Na 0836 D@ FB BNE $0833
9823 gB @8 (Link Pleld =&l @638 CE 17 08 PEC §0817
9825 27 @8 (Code Ficld = 2638 D@ F6 BNE §083)
8827 A9 @0 LDA #5000 (Parameter Fla ~ 083D CE 18 @8 DEC #d8l8
9829 8D 16 @8 STA $8816
@82C 8D 17 @8 STA $8817
@82F CE 16 08 DEC $@8816

6-20 6-21

6.7 RETURN OF CONTROL - ap

When concluding a CODE-definition, several common stack _
manipulations are often needed. These functions are alread

YN (High byte to accumulator)
the nucleus, so we may share their use just by k..a-uw . PUSH JMP, (Push to data stack)

return points. Each of these words ultimately returns cont
to NEBXT . .

Our next example complements a byte in memory. The hytes
address is on the stack when INVERT is executed. '

A new stack value may result from a CODE-definition.
place it on the stack by: :

lar version could use PUSH :

20D ONE
‘1 § LDA,
PHA, (Push low byte to machine stack

(Code to put 1 on the stack)

END-CODF

Soventinr for PUSH + BINARY and PUT is:
e Bemove ong. J6-ULE stack’ valwbe " -'. Push the low byte on to the machine stack,
POPTWO Remove two l6-bit stack values. 5 ' Leave the high byte in the accumulator.
PUSH Push two bytes to the data stack. Jump to PUSH , BINARY or BPUT .
PUT Write two bytes to the data stack, repla
the pressat top of ‘the stack, i th. wil. place the two bytes at the new bottom of the data
POSHEA Push & zero and the accumulator t"' PUT “ will over-write the present bottom of the stack
stack. X e :,-'__. two bytes. BINARY first pops two stack values (four
PUTEA Replace the top of the stack t‘ e ién’ does a push. Failure to 'push exactly one byte on
zero and the accumulator.] _ 2 .)
. chine stack will disrupt execution upon usagel -
BINARY Combines the action of POPTWO and PUS

mp)est version would use PUSHOA :

o DE OME
i1 § LDA,

Code to invert a memory Iryr.c '3

CODE INVERT (PUSHBA JMP,
HEX (Change I/0 base to HEX) uD-ConE
TOP X) LDA, (Petch byte addressed by stack | 3
FF # l::i (g:-rllul;t accumulator) | high byte of a result to be placed on the stack is zero,
;35 §.’Q, > : Di‘l‘c::; pgint.trigm .g‘cg # low byte is in the accumulator, the words PUSHSA and
END-CODE (Return to MNEXT) !

are convenient. They work the same as PUSH and PUT
" t,;:, or replace, the data on the stack with a zero in

Iazt_n position and the contents of the accumulator in
o) b'yt{'pclltion.

CODE ONE Code to put 1 on the stack. SSEMBLEF SECURITY
D“' b

DEX, Make room on the data stici

1 & LDA, ’ ‘Assembler Tests

TOP STA, (Store low byte) 3. & ==

TOP 1+ STY, (High byte stored from Y singe = & _r,,g_

NEXT JMP, grou nastl are made by the assembler to detect orrorl in
END-CODE

LU c and_:“gyntax. These tests verify that

|

a. All parameters used in CODE-definitions are removas ADDING ASSEMBLY CODE TO A DEFINING WORD
b. Conditionals are properly nested and paired. :
€. Op-codes are valid. :

d. Address modes and operands are allowable for the

op-codes.

ordé ;CODE is used in a colon-definition to stop
lino and to add assembly code to the definition. The
at i< as follows:

Note that a possible error not detectable by the a=sembler,
referencing a word in the wrong vocabulary, e.g., referring
#= in the FORTH vocabulary rather than the Assembler
vocabulary. . .

| <name® [FORTH words] ;CODE [assembly code] END-CODE

the [PORTH words] are run at compile time and the
blr code] is executed at run-time.

pame® is used later to define new words, this assembly
pddress will be put into the code sequence of the new

. Tnus, the new words will cause this assembly code to be
: For example,

6.8.2 Bypassing Security

Occasionally we may want to generate unstructured code.
then contreol the assembly-time security checks, as follows
First, we must note the parameters utilized by the control
structures at assembly-time. The notation below is taken
the assembler glossary in Appendix D. The "---" jndicates
assembly-time execution and separates input stack values §
the output stack values.

j VALUE CREATE SMUDGE C,
s CODE

' X) LDA,
\PUSHEA JMP,
FEND-CODE

isec by typing 8¢ VALUE EIGHTY , the word EIGHTY is

::2{:: ::; addrB 1-:;c:df£: . g@d which, when executed with a "dot™ to print the stack
AGAIN, ==> addrB 1 ===

WHILE, =-=> addrB 1 --- addrB 1 addch

REPEAT, --> addrB 1 addrW 3 ---

IF, -—> <cc> --=- addrI 2
ELSE, - addrI 2 --- addrE 2
THEN, -=> addrI 2 ---

or addrE 2 ---

Where the address values indicate the machine location of
corresponding “B"EGIN, , "I"F, , or "E"LSE, and <cc>
represents the condition code to select the processor statl
bit referenced. The digit 1, 2 or 3 is tested for ronditls
pairing. {

The general method of security control is to drop off the ¢
digit and manipulate the addresses at assembly-time. The.
security against errors is less, but the programmer 18 usus
paying intense attention to detail during this effort,

AL

et

=
¥

e _--“‘_.

k
1:
'l
i
B
G

W T

SECTION 7

HANDLING INTERRUPTS IN FORTE

OF INTERRUPT HANDLERS
ots can easily be hlndlad in FORTH using one of two
8; nachine level or interpretive interrupt processing. !
ne level, or conventional, interrupt handler is written

Imbly lingungo and performs the entire interrupt

f{ before returning to the interrupted routine. NMI

?% must be serviced with a machine level interrupt

23 shown in the flowchart in Figure 7-1. The IRQ

“: can also be serviced with a machine level interrupt

Which is the method used for all AIM 65/48 peripheral s
Trpracessing. The gonuraz zlnucha:t for using this
on the AIM 65/48 ntn:oconpntnr is shown in Figure 7-2.
acn,n;pvidll the fastest response to an interrupt, .
pince it ll written in assembly llnqnagc it may take

iﬂzgvelnp and check out.

pretive IRQ interrupt has 2 minimum length assembly
subroutine to service the interrupt and to initiate

processing, which is written in high level FORTH and ‘
under control of the FORTH inner-interpreter, f
¢ general flowchart for this approach is shown in
=3, Although the response to an interrupt may be

ith this approach, the development and checkout may be
cker and easier since the main interrupt processing is
IORTH.,

welopinc interrupt dependent software (regardless of the
nterrupt’ try to take small steps between checkout.
ly determine when system interrupts should be disabled
bled, Avoid using any interrupt service routine that has
i first tested for logical integrity.

]
o

f $0228
OMCOLD RESET UIRQBM
B VECTOR |
USER

$0227
UNMIBM USER
VECTOR F '
2R/

| 1/0 ROM €01 N RESET

IL‘E1_ - HIGH -
| sAVE cPusTATUS PRISER "
| savesscstatus | RQ?-"

| o

£022%9

1/0 ROM COLD RESET /~ UNMIBR
r VECTOR
$F120 USER

M
| PERFORM 1 PERFORM USER PERFORM USE
I RESET _ NMI PROCESSING NMI PROCESS
PROCESSING | AFTER 1/0 ROM BEFORE I/0ig

£FOD(

l

PERFORM USER PERFORM USER
DISPLAY LOW PRIORITY HIGH PRIORITY
“IRQ ERROR" IRQ INTERRUPT IRQ INTERRUPT

PROCESSING PROCESSING

it d an—'

Figure 7-1. Machine Level NMI Interrupt Handling Fioure 7-2. Machine Level IRQ Interrupt Handling

7-2 7-3

NOTE
-Since the AIM 65/47 system is interrupt
(tvdriven, care must always be taken with
untested user interrupt routines to

ravoid hanging up the system. This hang
up condition is always recoverable with
- |[["'a cold reset.

AT PROGRAM INITIALIZATION AT FORTH WORD
OR COMPILE TIME ~ INTERPRETATION

LOAD ADDRESS OF THE |
INTERRUPT PROCESSING ;
WORD INTO INTVECT !

v HACHINE LEVEL INTERRUPT HANDLING

' v | INTERPRET WORD

LOAD ADDRESS OF THE
INTERRUPT SERVICE
SUBROUTINE INTO
UIRQBM ($0227) OR
UIRQAM ($0229) SNTVEET

SET INTERRUPT REQUEST
INHIBIT (BIT 6=1) f
IN INTFLAG

iachine level interrupt handler in assembly language
Conk-definitinn (see Section 6.1) or as a code
If written as a CODE-definition, assign a name to
pt ‘handler and later address it by that name to load
upt vector. If written as a code fragment, include
2 13! code directly into the dictionary, but first save

PANTINUE L } ng “@ddress for later loading into the interrupt
PERFORM ¢ code fragment (also called an orphan) eliminates
INTERRUPT PROCESSING ayerhead of the dictionary header. In either case,
AT INTERRUPT OCCURRANCE * - the interrupt handler with an - RTI, to reéturn to the

‘program rather than NEXT JMP, which returns

RESTORE IP the inner-interpreter. Before continuing you may
RESET INTERRUPT REQUES] s i) e ’ ;
SET INTERRUPT REQUEST (BIT 7=0) AND '. izw the AIM 65/4¢ interrupt linkage and handling
IN INTFLAG (BIT 7=1) RESET INTERRUPT RE_OU n “‘Section 6.3 and 6.4 of the AIM 65/40@0 System User's
INHIBIT (BIT 6=0) the. R6502 interrupt processing features discussed in
IN INTFLAG :

f the R6500 Programming Manual.

-7 IRQ ™~

" I'/ﬂ interrupt vectors normally available to the user

e
(Before I/0 ROM Processing)
Before Return to Monitor)

Befora I/0 ROM Processing)
{Afrer I/O ROM Processing)
RRL

$0227 (UNMIBM)
$0229 (UNMIBR)
$022B (UIRQBM)
§022D (UIRQAM)

Cromy Co)

— ———=PROGRAM DESIGN CONSIDERATION

38

&
Figure 7-3. Interpretive IRQ Interrupt Handlimj
7-4

7.3.1 CODS-Definition Porm le Intecrupt handler is not named, the starting address
N sachin- code is saved on the stack by the word HERE

The form for an interrupt handler written as a CODE-defln he cading is complete, then it is stored in the
ate interrupt vector. Notice that in both the above
HEX g be interrupt vector was loaded after the interrupt
CODE <name> ' s a is method allows an IRQ or NMI
<assembly code> we assembled. This .
<for interrupt> ot occurring immediately after the interrupt vector
<handler> 3 ¢ the IRQ interrupt is enabled) to be processed
RTI, or CONTINUE JMP, (CONTINUE must end with an R
END-CODE
' <name> 022X | (Set interrupt vector)
where X = 7, 9, B or D Interrupt Disable/Enable Words
The use of either the RTI, or the CONTINUE JMP, will depe ier ‘help with control of IRQ interrupt execution you
the interupt vector used. For the NMI or IRQ interrupt ﬁ,hl\ want to define two short CODE-definition words to
vectors after I/0 ROM processing (UNMIBR or UIRQAM), eith ¢ disable only the ‘user IRQ interrupts. Define the
RTI, or CONTINUE JMP, (where CONTINUE is the address lefl B intocropt disable word as

the interrupt vector by a cold reset) may be used. For
or or IRQ interrupt vectors before I/0 ROM Processing (UM S8 DISABLE

or UIRQBM), the CONTINUE JMP, should be used (where CONTIl serform anticn tod
the address left in the interrupt vector by a cold reset S intertupt>
Don't forget the END-CODE as it completes the CODE-def [D-CODE

and makes <name> available for use to load the interrupt

n interrupt. as required with DISABLE .
ler address in the interrupt vector. Misable the IRQ in P —_

th» user IRQ ENABLE word as

The word ' ("tick") fetches the parameter field addres: |

of the word <name> to the stack and 022X | stores it in _ s
.. 0DE ENABL
appropriate vector. The PFA obtained is the start addres erform action tod

the executable machine code. store user interrupt>
JMP
M- ONF
7.2.2 Code Fragment Form ;
. enable the IRQ interrupt as required with ENABLE .

The form for a machine level interrupt handler written a:

code fragment is: critical applications (such as writing data to a
4izk;, it is sometimes necessary to disable all IRQ
e upts except for the user interrupt. This type of masking

L ¢ {:g::g*d;::;::i:; :ggffgii {1y performed using the IRQ Interrupt Priority Mask

<assembler code> ', The PRIRTY mask is a write-only register that masks

<for interrupt> _ 80 interrupts below the set level (see Section 2.7.2 in
<handling> 1 / fority level
RTI, or CONTINUE JMP, (CONTINUE must end with an RY IN 65/47 System User's Manual). Since tha prisrity

822x | (Store dictionary address ij eonficurabie with a DIP header, these time-critical IRQ

interrupt vector)

7-6 ‘ p 7-7

sources can be given the highest priority. For each T8((Example
that is equal or higher in priority of the user IRQ Snrurg 3
this PRIRTY mask is not effective and separate enable and {ns,gf a conventional interrupt handler, written as a
disable words should be created for each. The following sgment, is shown in Pigure J-1 for the 24-Hour Clock
code masks out all IRQ sources except for the RMES BHS-f: e prooran described in Appendix J.

(DISABLE ALL IRQ SOURCES EXCEPT USERS)
HEX 6@ USER UPRIRTY (IMAGE OF PRIRTY)
@8 UPRIRTY CI (COLD RESET VALUE)

FF8@ CONSTANT PRIRTY

FF CONSTANT USERMASK (MASK BELOW USER)

(NTERPRETTVF INTERRUPT HANDLING PROCEDURE

{ terrupt Bervice Subroutine

(DISABLE ALL IRQ EXCEPT USER) nini tine usi th
: DISABLE { MASK OUT ALL IRQ ABOVE USER) minimur length interrupt service subrou using the

USERMASK PRIRTY CI (MASK BELOW USER) ; T dure described in Section 7.2 to load the AIM 65/40

(ENABLE ALL IRQ INCLUDING USER) fupt vectors (and to disable/enable the IRQ interrupt).

: ENABLE (RESTORE ALL IRQ ABOVE USER) putine .needs only to set bit 7 in the FORTH interrupt

UPRIRTY C@ PRIRTY CI (RESTORE MASK) ; NPELAG (at $88A7) to one and return to the interrupted
The user variable UPRIRTY is an image of the PRIRTY r=gis QERANEE oF the. THITEAG: wariaiis word is
Any application code that modifies PRIRTY from the colf
value ($80) must also change UPRIRTY to reflect this
The constant USERMASK is the bit pattern that masks.off
sources below the highest priority. The DISABLE word di
all IRQ sources except for the user interrupt. rlt;f, 1

Bit No. @

A ixfx]x]x]x][x

@ = Not ibi
taken as the priority mask level. = A o Anitad

|
interrupts above the IRQ priority level are disabled . /nap i "fr"' AT e avs
this example), then the mask for interrupts below the Lev bt ‘. In:nzprltlvn Tnkarrupt
stored into the priority latch. The ENABLE word restore Inhib
IRQ sources to the previous state, with the value in (PR ' 1= Iﬂhibl"‘

bit 7, In erpretive Interrupt
Reqiiest

1 = Reqg ested

@ = Not Requested

CAUTION

Since the AIM 65/40 peripherals are IRQ '
interrupt driven, DISABLE <code> ENABLE
should always be paired as closely as
possible. Interactive debugging of
code between DISABLE and ENABLE clnnot
be performed. =

Enterrupt Processinc Word

irec IRQ interrupt processing procedure uses a high

ORT: colon-definition word. Load the code field address
of this interrupt handler word into the PORTH interrupt
INTVECT , a two-byte user variable located at $@@A8 and
te that upon FORTH initial entry, or upon executing

¢ COLD , this vector is initialized to $D245, which
Eo ABORT processing.

7-8 7-9

When FORTH is executing its inner-interpreter, i.e., an ftﬂmPEE
examines the interrupt request and inhibits bits of INTEL
When the interrupt inmhibit (bit 6) of INTFLAG is ON,
interrupt request (bit 7) is ignored and NEXT cxerutes §
PORTH word. When the interrupt inhibit is OFF, the inter:
request (bit 7) of INTFLAG is tested. If the interrupt
request is OFF, then NEXT executes the next FORTH wnrd
the interrupt request is ON, then NEXT passes cxecution
the word whose CPA is in INTVECT , i.e., the interoratiy
interrupt service word, and sets the inhibit bit.

s0i¢ of an interpretive interrupt handler is shown in
Only two short CODE-definition words are defined;
se* the request bit in INTFLAG when an IRQ interrupt
dus to VIA Timer 1 timeout, and one to clear the inhibit
NTFL.AG when the interpretive interrupt word completes

joe= to the 24-Hour Clock to use interpretive interrupts
replacing the code interrupt handling routine with a
@finition or code fragment service word, writing the

The interpretive interrupt word now processes the service
required without interruption (inhibit bit is set). Whe fétiva interrupt arm and trigger words and then the FORTH
interpretive interrupt word has finished, it must reset &h processing word. The conventional interrupt handler
inhibit bit to zero, restore the interrupted word to the A, to RTI, is replaced with two smaller code
interpretive’ pointer, and jump to NEXT to continue the 8, one a code fragment and the other the ARM word that
interrupted execution. Remember to keep the assembly ifu- the end of the FORTH' interrupt processing word.

code as short and simple as possible. For example, if
reading data values at specific times, read them and put
away in, say, a FORTH variable using a small interrupt ¢
for just that purpose. Meanwhile, a high level FORTH rou
examines that variaple for new data and processes it »
appears. FORTH is fast enough for much of the work to bi
in high level which will speed program development time,

@ fracment is the interrupt service subroutine that is
d with each IRQ interrupt. It sets the interrupt

pi* in INTFLAG and clears the VIA's IRQ reguest bit
*-Ed‘thc interrupt. This code fragment serves as a
ample of all that is necessary to do at the code

= wide variety of high level FORTH interrupt words.

If FORTH is not fast enough for some purposes, a prwerful
nique is to first develop the program logic in high level
and test the logic at reduced speed. When it works correg iva pointer into the interrupted FORTH word and then
code in assembly language only those FORTH words that ar FORIH's inner-interpreter NEXT to continue

required to bring the speed performance to the desired 1 -. ARM could be written in high level FORTH using

By this technique, program development time is rndnced'{ and ; words but it must not be interfered with by a
minimum, g} interrupt. This interference cannot occur if the

& 2r2 done within a CODE-definition.

98 word ARM turns OFF the interpretive interrupt
bi+ (bit 6) of INTFLAG , restores the FORTH

T interpretive interrupt word for the 24-Hour Clock is
2r PFORTH word, +IL is used often by T+ . These
omprise the entire interpretive interrupt service

T does just what the CODE-definition interrupt

didt i.e., increment the hundredth's of a second byte
d when it reaches 18@, increment the seconds, minutes,

7-11

etc. The utility word +IL increments a certain byte Iy &
given amount and checks it against the given limit. If
limit is exceeded, it zeros the byte and returns a true val
so that the next byte can be incremented. The arcuments g
stack for +IL are:

pints to Remember

nefine and code all required words before loading
INTVFCT , or requesting an interpretive interrupt. The
required CODE words are (see text for more detail)

limit 1- byte-address increment --- T/F 1:= the IRQ or NMI code fragment
2 - the ARM word to rearm the interrupt, etc.

The CODE-definition word ARM stops execution of T+ . ' 3,- the ENABLE and DISABLE words for IRQ (if using
word [switches FORTH from the compiling state to the l IRQ) .

interpreting state so that the word SMUDGE will be execut

which makes the name of T+ available in the FORTH ¢iction

colon-definiticn level FORTH word is also required to
rur at interrupt request. The last word executed by
i3 word is ARM , above.

In order for the interpretive interrupts to work, the code
field address (CFA) of the interpretive interrupt word nust s

loaded into INTVECT . This is accomplished in this Fwam Ses that NMI and IRQ do not contend for the

the following: E nrprprat—.ive interrupt -- there is no stacking and they

car get lost.

' T+ (Obtain the PFA of T+) / .

Jc\;;:nnr.an % 3;22; :: :ﬁ.up‘;nﬁ:"i.,mn., vocabl Do not alter any of FORTH's floating buffers (at HERE
INVECT (Obtain the address of INTVECT) and PAD) or any of the USER variables (BASE , DPL ,
l!*on-m } :::I.rl:nt:: g: :glt';':’;ni; uiﬁzﬁﬁfz v » , etc.) or leave anything on the stack between

- nrnrrnprr-
which follows the definition of T+ .
jse caution when using interpretive interrupts -- think
the sequence through before acting. If it does not
pperate correctly, perhaps you are overwriting
gomething that PORTH needs. Try using a do-nothing
word like

Note that if the AIM 65 is executing machine code for an
appreciable amount of time and not frequently executing
the FORTH interrupt routine will not be executed and interg
requests may pile up or be lost (depending on the interrug
service subroutine). This can happen when using the print
walting for a key.

: DUMMY ARM SMUDGE

for the interpretive :d and see if that

works,

The proper choice of machine level or interpretive (or hoth
interrupt service routines can make a very flexible approach

control situations or understanding computer interrupts. '
The X register contents must be saved if X is used

r during the interrupt processing, but not in XSAVE or
! any of the other regular FORTH “"registers™. For
_example, use the Return Stack instead, such as TXA,
PH)

SECTION 8

PROGRAMMING THE R6522 IN FORTH

in the AIM 65/49 System User's Manual explains how t
48 the R6522 Versatile Interface Adapter (VIA) in R6588
iy lancuace. FORTH can be used to program the VIA in a
f manne' using its built-in assembler, however, in most
jigh-level PORTH can be used. This section repeats mos
iples described in the AIM 65/40 System User's Manua
grams them in FORTH rather than assembler, except for a
atances where assembler is preferred.

'_ques shown in this section can easily be applied to
6507 ‘peripheral devices such as

!"lrlphcul Interface Adapter (PIA)

551 Asynchronous Communications Interface Adapter (ACIA
545 CRT Controller (CRTC)

#f similariy structured I/0 or peripheral control

A ORGANIZATION AND REGISTERS

o

, tha R6522 is organized as shown in Figure 8-1 with
gisters occupying 16 addresses as listed in Table 8-1.
gsses shown correspond to the user R6522 on the AIM
€ Modula. To summarize, the VIA operates as determined
entents of four control registers.

Dara Direction Register A (DDRA) determines whether
the pins on Port A are inputs or outputs.

- ra Direction Register B (DDRB) determines whether
the pins on Port B are inputs or outputs,
i

1

INTERAL®T
CONTROL
FLAGS
1NFRL
ENABLE
1ER]
mu@ DATA
BUS
BUFFERS
PERIPHER AL
IPEA|
¥ auxiiary
TACRAY
FUNCTION
CONTROL
LATCH LATCH
AEL ITAL-H) Tk
BT P e e
2 COUNTER COUNTER
e —— IT1C 1} Imcj
———t
S5 CHIP TIMER 1
CRl—— | accEss
RE0————| CONTAOL TIMER 2
A LATCH
Rat———a} (120 L)
Ax———¢] COUNTER COUNTER
ITZC M1 (R0 0]

>

INPUT LATCH
1IR&T
e e

OUTRUT
10RA)

DATA DIR
IDORAL

BUFFERS
wal

POAT A REGISTER

3

HANDSHAKE
CONTROL

POAT B RECISTERS

EHIFT REG
IsR|

L)

INFUT LATCH
1Al
ouTeuT
IoRB}
OATA DR
IDDAE

K=

surreas LA

{1.1]

Figure 8-1. R6522 VIA Block Diagram

8-2

Table 8-1. R6522 Memory Assignments

Function

Port B Output Data Register (ORB)
Port A Output Data Register (ORA) Controls handshake
Port B Data Direction Register (DDRB) 0 = Input
Port A Data Direction Register (DDRA) 1 = Output
Timer R/W =1L RIW =H
T1 Write T1L-L Read T1C-L
Clear T1 Interrupt Flag

T1 Write T1IL-H & T1C-H Read T1C-H

TiL-L—=TIC-L

Clear T1 Interrupt Flag
T1 Write T1L-L Read T1L-L
T Write T1L-H Read T1L-H

Clear T1 Interrupt Flag
T2 Write T2L-L Read T2C-L

Clear T2 Interrupt Flag

T2 Write T2C-H Read T2C-H

T2L-L - T2C-L

Clear T2 Interrupt Flag
Shift Register (SR)
Auxiliary Control Register (ACR)
Peripheral Control Register (PCR)
Interrupt Flag Register (IFR)
Interrupt Enable Register (IER)
Port A Output Data Register (ORA) No effect on handshake

(User VIA), B(System VIA), C(Keyboard VIA)

"

The | ripheral ¢
polal ty of tran
edge) is recogni
CBl) mnd how the
oper: e.

rol Regisi

The Auxiliary Control Register (ACR) sterm1nesi

whether the data ports are latched and how the
and shift register operates.

Note that there is a data direction register for each side
only one pair of control registers. Ports A and B are almg

identical. oOne important difference is that Port B ran

Darlington transistors which are used to drive solennids?i
relays. We will generally use Port A for input and Porc 8

output in our examples.
8.2 SIMPLE I/0 WITH THE VIA
8.2.1 Considerations

Since RESET clears all the VIA registers, disabling all

interrupts and clearing all control lines, we can discuss

simple 1/0 referring only to the data registers and the

direction registers. 5o simple 1/0 can be performed witht

R6522 VIA as follows:

Establish the directions of the Ins by storing th

proper values in the data direc >n registers.

b. Transfer data by moving it to or from the data
registers.

‘Note that most programs only have to execute ftiifonce
the directionality of most input and output devices is f

(i.e., you never want to read data from a display or Pf1mu

write data to a switch or paper tape reader).

8-4

(PCR) determines i
ion (i.e., 'ising edge or fallly
on the ir It status lines (CA
her statu: ines (CA2 and Cﬁf

) establish directions as follows:

"-ﬂl' in a bit in the data direction register makes
-}tha corresponding pin an input.

‘Fnr example, a '@' in bit 4 of data dirletlon register
-L makes pin PA4 into an input.

f} '1' in a bit in the data direction register makes
itha corresponding pin an output.

For example, a '1"' in bit 6 of data direction register
' © makes pin PB6 into an output.

nsterring data, ;;;;iber ﬁhnt the R6502 micro-

nas no specific I/0 instructions. Storing data in a
that has been designated for output is equivalent to
j the data to the attached output device. Loading data
port that has been designated for input is

t to reading the data from the attached input device;
nstruction that acts on memory can serve as an 1/0
tior if the specified address is actually an I/0 d,vlcn
be careful of the exact significance of such instruc-
| writing, reading, and documenting R6502 programs,

Examples

four examples can be done in almost exactly the same
PORTE as they are done in assembler -- they are

; herg as a bridge between assembler techniques and
irst, the assembler label equivalences are emulated
Jfie FORTH constants:

- il R6522 ADDRESSES)
" HEX

FFAD CONSTANT UDRB
FFAL CONSTANT UDRAH
. FFA2 CONSTANT UDDRB
. FFA3 CONSTANT UDDRA
. ,FFA4 CONSTANT UTIL
- |FFA5 CONSTANT UTICH
' 'FFA6 CONSTANT UTILL
FFA7 CONSTANT UT1LH

8-5

FFA8
FFA9
FFAA
FFAB
FFAC
FFAD
FFAE
FFAF

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

uT2L
UT2H
USR

UACR
UPCR
UIFR
UIER
UDRA

§ a
gli
Then the examples are done as FORTH colnn-d.tinltionig
definitions will do exactly what the assembler code does
the same example. Note that we are in HEX the whole €
also, since.FORTH uses page zero for its parameter stack
not a very good idea to put things in there indiscrinin
After presenting these examples in exactly the same for
assembler they are done again in a way that complerely &
any conflict with the FORTH stack area. Note also that
comments have been included beside the FORTH words Tor ¢
understanding. In actual coding, you should include th
comments along with the code. Remember that comments dg
take up any space in the compiled FORTH object code. :

& constants

a. FPetch da om a simple wt port (e.g., fros
of switc r a keypad) 1 store it in memor
location

HEX

: INDATA

@ UDDRA C1 Set DDR A to Inputs

UDRAH C@ 48 CI! ; Fetch input data and
b. BSend data to a simple output port (e.g., te sel

displays or relays) from memory location 42. dat

: OUTDATA
FF UDDRB CI

(Set DDR B to gutput
40 C@ UDRB C! ;

(Fetch data and ~itpy 80
You can mix inputs and outputs on a single port by estab
the directions of individual pins appropriately, Note
can read the states of data pins even if they have been ¢
nated as outputs. Port B side is buffered so that tt car

always be read correctly; however, Port A side is not

(or designated as inputs).

t of PORTH just as VLIST or

g y:uled in a2 natural way in the new version of
ind in the examples to follow.

#yanples are all perfectly fine FORTH words and will

do not take advantage of FORTH's unique abilities

lso to illustrate the point, they are done over now
'ORTH style,

Note that with the proper choice of
nc order, the examples are more readable and nearly
sh what they actually do. Also, since proper FORTH

inosr always uses the parameter stack for temporary
haverused it here as the comments indicate.

HEX
@ CONSTANT BPORT
1 CONSTANT APORT

: INPUT === b. Get Data from Port)

FFAS + Ce ;

: OUTPUT b ---. Output Data To Port)

FFA® + C! ;

i DIRECTION (b---. Set Data Direction)

FFA2 + C! ;

1 EX1 (=—=b. Set Output and Input Data)

@ APORT DIRECTION APORT INPUT ;
1 EX2 (b=——. Set Output and Output
Data)

FF BPORT DIRECTION BPORT OUTPUT ;

APORT and BPORT are defined in such a

heir numeric value can be added to a fixed value to
e ; or B I/O port data direction addresses.
INPUT ,
di& cqorrect port or direction register and then fetch

Next,
OUTPUT and DIRECTION are defined to

? or store direction information. 1In this manner,

ave defined convenient words that talk to or control

the AIM 65/48 SBC module User VIA. These words are

DUMP are and extend

ATH in the direction of peripheral control. These

EX1

8~7

T

Lo s L

RECOGNIZING STATUS SIGNALS i Examples

If the I/0 device is more complex, we may not be able tg 0w look at some examples:
transfer data to or from it at will. 1In the input case,
processor must know when new data is available (e.g., 2 %
been pressed on a keyboard or a tape reader has read anot
character). In the output case, the processor must ino

whether the device is ready to receive data (e.g., a pr

_perch data from an input port with an active high-to-
Jovw DATA READY strobe and place the data in memory
Wnration $48.

i inti the last ch t r a modem [2s : EX3
has finished printing e character o 4 : T Dk S e e
completed the previous transmission). M 5:2& c1 (Set CAl Plag on falling edge)
BEGIN
UIFR C@ 2 AND
8.3.1 Considerations UNTIL (wait for strobe occurance)

UDRAH C@ 48 C! ; (Fetch data and store in memory)
Normally, the input or output device provides a status si
A transition on that line indicates the availability of 4
the readiness of the device. The microcomputer I/0 sectld
must recognize the transition and allow the processor to)
determine that it has occurred.

‘Cieraring the Peripheral Control Register is unneces-
sary if the routine is starting from a reset. Note
that reading the input Data Register clears the
Anterrupt flag so that it is avallable for the next
DATZ. READY signal.

You can handle this kind of I/0 with the R6522 Versati

Interface Adapter as follows: Senc data to an output port with an active high-to-low

PERIPHERAL READY strobe. Get the data from memory

3 n
a. Attach the peripheral status input CAl or &1, reation $48 sad send 1t when the peripheral is ready.

4
b. Determine which edge on the status line will . ;l::DDRB ct (Set DDR B to outputs)
recognized by assigning a value to control regl :gg::ﬂ ct (Set CBl Plag on falling edge)
bit @ (CAI’ or 4 (CBl). A value of zero in ".. UIPR CR 18 AND
position means that the interrupt flag will te UNTIL (Wait for strobe occurance)

a high-to-low transition (or falling edge). 49 CO UDRB i ; (Fetch data and output it)

of one means that the interrupt flag will be
low-to-high transition (or rising edge).

MNote that sending the data to the Output Data Register
clears the interrupt flag so that it is available for

3 the next PERIPHERAL F IADY signal.
¢. Determine whether a transition has occurred by :

examining bit 1 (CAl) or 4 (CB1) of the [nferrug
register. The bit will be one, if a transition

?br the second version of EX3 and EX4 the word
?STROEE has been defined to wait in a BEGIN ...

occurred. ENTIL loop until a given bit in the IFR register
L turns ON, To help provide readable code the special
d. Reset the ! 't £lag by reading or writingi§ word @IPR was defined to fetch the IFR register from
correspond! | register. The flag is then he stack to be ANDed with a copy of the given mask
to be used next operation,

byre. The word loops until the result of the AND

8-8 8-9

operation is true (non-zero) and then exits and ff
the extra copy of the mask byte. With similar :

motivation for clear coding, the word |IPCR ls_'
defined to store a given byte in the PCR for settl
up the desired event.

by setting Bit @ (Port A) or Bit 1 (Port B) of the
Muxillary Control Register. The input data will the
‘be latched by the active transition on CAl or CBl.

JOUCTNG QUTPUT STROBES

: IPCR FPAC CI ; (Set I'CR Reaf=teg) plpheral may also require information about when a
£ bas occurred or whether the port is ready to receive

example, devices such as digital-to-analog conver-

: @IFR FFAD C@ ; (Petcli IFR)

;ég:nou U R =) : ::i: ::; o only require a LOAD pulse to enter data into the

DUP (The liask) A multiplexed display requires an output signal
@IFR AND (Pick Bit)] =

UNTIL (It i1 on) ts the next output properly. A communications device
DROP ; (Extrii Mask) '8 sional to indicate that an input buffer is available
. EX3 output buffer is full. Output signals may also be

@ APORT DIRECTION] 0 turn devices ON or OPF, activate operator displays,
@ IPCR CAl Palling)

2 ?STROBE CAl Interrupt?) operating modes.

APORT INPUT ;

——

: EX4 tonsiderations

FF BPORT DIRECTION

 iece (CB1 Falling)

1@ ?STROBE { CBl Interrupt?) andle this kind of I/0 th the R6522 Versatile

BPORT OUTPUT ; ¢ Adapter as follows:

Examples 5 through 8 are all modifications cf &
and EX4 and use |IPCR to setup for various I/
protocols.

Attact the control output to CA2 or CB2.

ake CA2 (CB2) into an output by setting control

reci=ter bit 3 (7).
Fetch data from an input port with an active

high DATA READY strobe and place the data on the
stack.

Hake CA2 (CB2) into a pulse by clearing control
feaister bit 2 (6) or into a level by setting that

1 EXS

@ APORT DIRECTION /

1 IPCR (CAl Rising) 1f CA2 (CB2) is a pulse, make it into a handshake
2 ?STROBE (CAl Interrupt?)

iqnal (low from the time the Output Register is read
or written until the next active transition on CAl

APORT INPUT ;

Note t| the VIA has | lnput and output ! pal‘ * by clearing control register bit 1 (5) or into
The ou! : latches are ts enabled; outpnt 2 =ingle-cycle strobe by setting that bit.

latchet 1en it is sto | an output data r !

The in| latches, if - ire needed, can he f CA2 (CB2 |s a level, determine its value by

clearing or itting bit 1 (5).

8-10 8-11

B.4.2 Options £ iThe Peripheral Control Register bits ars

The options are: bits 4-7 = @ since CBl and CB2 are not use

bit 3 =1 to make CA2 an output
a. CA2 goes low when the processor transfers da
from Output Register A, and goes high when the bit 2 = @ to make CA2 a pulse
active transition occurs on CAl. The signalig bit 1 = @ to make CA2 a handshake

acknowledgement that remains low

indicate that the port is ready for more dataly URE1) Ehe nept acEfiye Eransttion 'ob

3 output data is available. The peripheral's CAl

. then indicates that it has sent more data or bit 8 =1 to make the active transition on

: processed the previous data, CAl a falling edge (high-to-low
transition)

b. CA2 goes low when the processor transfers da
from Output Register A and goes high after onj
cycle. This signal indicates that an input ol

operation has occurred and can be used for mul

Fetch data from an input device that requires a brief
IDATA ACCEPTED strobe for multiplexing or control
';rposes. Place the data on the stack,

ing. : EX8
4 # APORT DIRECTION
A I1PCR (CAl Falling)
€. CA2 is a level controlled by the value of cont 2 ?STROBE (CAl Interrupt?)

register bit 1. This signal can provide an APORT INPUT j
high or low pulse of arbitrary length. It ¢
to load registers, turn devices ON or OFF, o

operating modes.

Bere bit 1 of the Peripheral Control Register is set
£o 1 to make CA2 a brief strobe lasting one cycle
after the reading of Port A Input Data Register.

b 8.4.3 Examples Send data to an output device that requires a
handshake signal and that produces an active
low-to-high PERIPHERAL READY strobe. The data is
assumed to be on the stack and is sent when the
peripheral is ready.

Let us now look at some examples:

a. Fetch data from an input device that requires
handshake signal and that produces an active !

high-to-low DATA READY strobe. Place the dats : EX9
stack @ APORT DIRECTION
. 98 IPCR (CBl Rising)
! 18 ?STROBE
byt : EX7 APORT OUTPUT ;
b o5 @ APORT DIRECTION K
WG . | 8 |PCR (CAl Falling) ‘The Peripheral Control Register bits are:
~ 2 ?STROBE (CAl Interrupt?)

APORT INPUT ;

bit 7 = 1 to make CB2 an output

bit 6 = @ to make CB2 a pulse

R-113

bit 5 = @ to make CB2 a handshake arknnu1ndg
that remains low until the noxt ac F
transition on CB1

 5end data to an output device that must be turned ON
 before the data is sent and turned OFF after the data
} is sent (a logic 1 on a control line turns the device
~ ON). The peripheral produces an active low-to-high
'PERTPHERAL READY strobe. The data is assumed to be on
'bths stack and is sent when the peripheral is ready.

bit 4 = 1 to make the active transition on CB
rising edge (low-to-high transiti

bits 0-3 = @ since CAl and CA2 are not usedi

Send data to an output device that requires a brisf

OUTPUT or DATA READY strobe for multiplexing or : EX12 get CB2 Highj
control purposes. The data is assumed to be on the :: ?:g:T DIRECELON E s:t CBl 1139 on Rising
stack. ; Edge)
18 ?STROBE: (Ready?)
BPORT OUTPUT
: EX19 D@ IPCR ; (Turn off)
FF BPORT DIRECTION
A@ IPCR (CB2 Pulse)

BPORT OUTPUT ; pplications, such as portable equipment, the output

pheral is only turned ON when data is to be sent to it, In
ﬂplications, the processor must issue an OUTPUT REQUEST
4ceive an acknowledgement before sending the data.

Here bit 5 of the Peripheral Control Register is 58|
to 1 to make CB2 a brief strobe lasting one cycle |
after the writing of Port B Output Data Register.

RTH versions of EX10 , EXll and EXl1l2 , we use the
y defined DIRECTION , IPCR , INPUT , OUTPUT and

words to our advantage. These extensions to AIM 65
¢ coding most types of VIA I/0 words very convenient.
examples a further refinement of naming a constant @

Fetch data from an input device that requires an
active-high START pulse. The device produces an

active high-to-low DATA READY strobe. Place the dag
on the stack.

: EX11 I and FF ALL-OUT would result in the very readable
@ APORT DIRECTION B

C IPCR (Reset)

E IPCR (Bet Start) s

€1 PcR (Reset) . ALL-OUT BPORT DIRECTION

2 ?STROBE

APORT INPUT ;

Here bit 2 of the Peripheral Control Register is sﬁ
to 1 to make CA2 a level with the value given by hﬂ
of the Peripheral Control Register. This mode can b
used to produce pulses of any length and potarity;f
is called the manual output mode because there is no!
automatic pulse information.

ALL-IN APORT DIRECTION

In a typical application, an analog-to-digital
converter or data acquisition system usually peeds.
START CONVERSION pulse to begin operations.

8.5 VIA INTERRUPTS
8.5.1 Considerations

You can easily use the R6522 Versatile Interface Adapter U
interrupt-driven mode. Figure 8-2 shows the Interrupt Enab
Register (IER). Any of the various interrupt sources can b
enabled by setting the corresponding enable bit. Note

most significant bit controls how the other enable hits ap
affected:

822 INTERRUPT ENABLE REGISTER (IER), LOC. $FFXE

70543210

LH E
I ’ wamminﬁbn

If IER7 = @, each '1' in a bit position clears an enad
bit and thus, disables that interrupt. g
If IER7 = 1, each '1l' in a bit position sets an inte
bit and thus, enables that interrupt.

e CA1Interrupt Enable
L SRinterrupt Enable

_ - CB2 Interrupt Enable
Zeroes in bit positions always leave the enable bi CB1 Interrupt Enable
they were.) T2 Interrupt Enable
T1 interrupt Enable
8.5.2 Examples e IER Set/Clear Control

IERRUPT ENABLE BITS (IER0-8)
For examples of how to set up the VIA's Interrupt Enable ‘0 Disable interrupt

Register, the word IIER is defined to make things =s simp . = Enable interrupt

as possible. The word takes an argument from the srack yl IRSETICLEAR CONTROL (IERT}

like the previous examples, is an 8-bit pattern to srnre | Bl = 0 Foreach databus bit set to logic 1, clear corresponding IER bit
Interrupt Enable Register. 1 Foreach databus bluino logic 1, set c-o_rrnpondlng IER bit.
IER7 is active only when R/W = L; when R/W =H, IER7 will read

:+ 1IER (Put Byte) L

FFAE C! ; (In IER)

a. Enable CAl interrupt; disable all others.
: EX13
7D IIER 82 IIER ;

The first operation clears all the interrupt “
except CAl. The second operation sets the (2l
interrupt enable.

Plonre 8-2. R6522 Interrupt Enable Register (IER)

8-16 8-17

I_
L

b Enable CB1 and CB2 interrupts; disable all others

: EX14
67 1IER 98 IIER ;

Note that we could disable all interrupts in the

step.

|

c. Disable CAl interrupt; leave others as they wers, .

""uw',' NTERRUPT FLAG REGISTER (IFR), LOC. $SFFXD
7 6 5 4 3 2 10

: EX15
1 !IER ;

d. Disable CB1 and CB2 interrupts; leave others

s CA2 Interrupt Flag
: EX16 4 CA1 Interrupt Flag
is 1IER ; - SR Interrupt Flag

CB2 Interrupt Flag
CB1 Interrupt Flag
T2 Interrupt Flag
T1 Interrupt Flag
IRQ Has Occurred

The processor can determine which interrupt has occurred
examining the Interrupt Flag Register (Figure 8-3). Note
examining bit 7 determines if any interrupts have ocrurred
the VIA. Note also, the conditions for clearing the integ
flags. !

Set By Cleared By ‘
- Active transition on CA2 Reading or writing the ORA
- Active transition on CA1 Reading or writing the ORA
Completion of eight shifts Reading or writing the SR
Active transition on CB2 Reading or writing the ORB
. Active transition on CB1 Reading or writing the ORB
* Time-out of Timer 2 Reading T2C-L or writing T2C-H

A typical polling seguence {.n regular R6582 assembly 1
would be:

LDA UIFR 7ANY INTERRUPTS ON THIS VIA?
BPL NXT iNO, LOOK AT NEXT POSSIBLE SOURCE

ASL A ;IS INTERRUPT FROM T1 b Time-out of Timer 1 Reading T1C-L or writing T1L-H
BMI TIMl ;YES, GO SERVICE Tl INTERRUPT Any IFR bit set with its Clearing IFRO-IFR6 or

ASL A 718 INTERRUPT FROM T2? corresponding IER bit IERO-IERS

BMI TIM2 ;YES, GO SERVICE T2 INTERRUPT also set =

ASL A ;IS INTERRUPT FROM CB1?

BMI CBl iYES, GO SERVICE CBl INTERRUPT

.~ Fiaurs 8=3, R6522 Interrupt Flag Register (IFR)

8-18 8-19

The same fragment of assembler code, shown above, is coded
Note that this code !=

below using the FPORTH assembler.
structured and therefore does not

HEX
FFAD LDA,
@< NOT IP,
<assembly code>
<to look for next>
<source of possible>
<interrupt>
ELSE,
«A ASL,
#< IF,
<Tl interrupt> (
<service assembly>
<code>
ELSE,
.A ASL,
#< 1P,
<T2 interrupt)
<{service assembly>

<code>
ELSE,

«A ASL, (
8< 1P, (

<CBl interrupt>
<service assembly>
<code>
(Etc.)
THEN,
THEN,
THEN,
THEN,

require labels.

IFR)
No VIA Interrupts)

(Tl Interrupt on?)

Yes)

T2 Interrupt on?)

CBl Interrupt on?)
Yes)

1 ?IRQ
EIFR 8@ AND ;

of the

IFR.

: TON
i OVER AND ;

POLL-VIA
?2IRQ IF
€IFR 40 70N
IF
<Tl interrupt>
¢service FORTH>

<T2 interrupt>
<service FORTH>
<code>

ELSE 1@ 70N

I IF

<CBl interrupt)
<gservice FORTH>
<code>

(cic.}

THEN
THEN
THEN
DROF
THEN

gve FORTH assembler code will do exactly what the regular
ges but even polling of interrupts can be done on a high
in fORTH. Using the word @IFR defined for EX3 to

the contents of the Interrupt Flag Register we then

(From VIA)

leldc a true or false value depending on the state of
Then a direct form of the polling sequence

(Mask bit on?)
(Poll for VIA Interrupts)

(Any Interrupts on?)
{(Tl Interrupt on?)

T2 Interrupt on?)

CBl Interrupt on?)

(Copy of IFR)
(Done)

B-21

SECTION 9

NOTES ON STYLE AND PROGRAM DEVELOPMENT

¢ other programming languages FORTH is not particularly
le :« someone who is not familiar with it, Because FORTH
Ue among programming languages even experienced

mers have difficulty at first -- PORTH is unlike their
perience, After reading this manual FORTH should be
andabls and some practice in coding will sharpen the

e ey to easily readable FORTH code lies in logical

ng of key words and in choosing appropriate names for

£ EORTH code should read in an almost natural English way
piaher level key words if these practices are followed.
g neans writing a word as a collection of lower level
iat sctually name the functions performed by this word.
bwer level words in turn are made up of other still

1‘ words which more precisely define the task
ihed by the word. Finally, you will arrive at a level
g5 mostly regular FORTH words and is the most
.1 level, not particularly obvious to anyone but the
fogrammey, and then only when coding the word and for a

ge afrerwards

ary necessary to understanding the operation of words.
. ?tp.rtectly clear to you today will not be next month
“: o equally gqualified programmer at any time.

' simplz statements using the appropriate FORTH word
jacently where you can. Be a bit more detailed than

ik necessary when you write them, since they will be a
ob cure later if you don't., However, comments are not
_to “the novice or non-programmer. Too much verbage
the program flow in a sea of text. Commentary

ation that must speak to the non-programmer should be
glsevhera in a companion document.

9-1

Comments given at the start of a FORTH word should ": However, miles is not the odometer reading, it is th

simple statement about what the word takes from and leay miles traveled, and the odometer will require a

the stack. ~cnrrr-\rﬂ'fnn factor, so

miles = {nl-n'}'k mg = last odometer readin
9,2 EXAMPLE PROGRAM m; = current odometer
reading
To illustrate the style and comment forms described sbayi i K = correction factor
at the many examples elsewhere in this manual and you il |
the top-down approach in use, and reasonable (omments &l ﬂtherefore,—
be included on a 40 column printer. This section takegy _
example simple problem of figuring the miles a car fraysl mpg = (m,-mg) kp p = price
gallon of fuel from data kept in a common automobile :) L Rie SRet

book. S But price is either in cents per gallon or cents per

liter, and since you are probably interested in miles
. per gallon you will have to multiply any cents per
L liter prices by 3.785 to correct to cents per gallon.

a. Problem Definition

Start with the definition

miles traveled ‘, gy

m =
P9 gallons us

which is fine if you record mileage and oallong ‘ mpg = —=—=__ for cents/gallon

You aren't particular about accuracy. Por the
automobiles, an error of a tenth of a aallan can
an error of 0.5 mpg in the result.

For best accuracy you should accumulate mileage & mpg = (.1-.!“ (3I83R) £or cents/gallon

gasoline used over several fill-ups. This av { s

your error in filling the tank pon-uniformly N

by recording the data carefully you can have To be efficient when doing more than one gas mileage

accurate picture of your gas mileage. ;check, the current odometer reading should be saved as
‘m, for the next calculation.

o

mpy = ln.‘g , but gallons = mount'

gallons : price ’ _-'Sr.'ul ing
=0 g | 1o correctly scale the calculation for integer
! ‘computation, you must first decide the precision is
,-m - .:—:;%-r = Miles(price) - . desired .in the answer. If you want mpg to a tenth of
price amount . & mile per gallon, distance in miles, price to a tenth

- of a cent and amounts in cents, then

9-2 3 1 9-3

It is not necessary but a convenience to use two
‘memory storage locations in this calculation, one
constant for k and a variable where we can store the
current odometer reading (m;) to use as the last
pdometer reading (mg) for the next calculation.

(m,-m_)p(10)
mpg (10) 18

If we enter p without the decimal, we get p time
automatically and the result will come out in
mile per gallon as desired.

Start with the word .MPG and use the normal FORTH
putput formatting words except include a decimal point
in the output text string with the phrase 46 HOLD
and embellish the result with the ending "MPG" .

Program Design, Coding and Checkout

If the data are recorded in a data book as =il
price, and amount, it is convenient to enter thes
written, therefore the stack would look like

Enter the program source code into the AIM 65/48 Text
Buffer and compile from there. If any error occurs
uring text entry, it will be easy to correct the
jource code and recompile. Notice that blank lines
'enrer ¢SPACE> followed by <RETURN>) aid in source
code readability.

m pa

and they would all be 16-bit numbers.

Given the data on the stack as described above am
odometer correction and price adjustment necessag
the principle word looks (without any romments)
this:]

{E}
EDIT FROM=200@ TO=3FFF IN=<RETURN>

(MPG PROGRAM)

(CONST & VARIABLES)
183 CONSTANT K

: 7MPT ROT TRUE-MILES ROT CENTS/GAL
3 @ VARIABLE OLD

ROT */ -MPG

: .MPG (MPG * 10 ---. DISPLAY MPG)
5->D <# # (1 DIG.)

46 HOLD (DEC. PT.)

#5 4> (FINISE IT)

CR TYPE ." MPG " ;

CR ." DONE"

FINIS

END
={Q}

(s}
AIM 65/ FORTH V1.4
SOURCE < TURN> IN=M
DONE

OK

where the ROT words bring the stack values up
operated on by the fairly obvious correction and
adjustment words. The */ computes the Final
operation '

mp
a

and the word -MPG prints the answer out in an
format with a decimal point where we expect 1£;

Now that we have the 'top' level structure, lat |
define the lower level words TRUE-MILES , CEN

B
and .MPG . j

N

The test of

along with
not been altered.

1 2 3 456 MPG .S
45.6 MPG
3

2
1 oK

With .MPG working correctly, define TRUB-MILES
*/ as a scaling operator.
(derived for each odometer and set of tires
ly) is multiplied by the miles traveled (M -
and then divided by 199.
CENTS/GAL tells if the price for a gallon or i
§1.90 and should be correct for a while yet, T
adjustment for liter prices is

which uses

3785

Piooe

which results in cents per gallon equivalent.

Escape and re-enter the Text Editor.
and read in the rest of the program.
the source code entry, exit the Text Bditor, en
65/48 FORTH and compile.
compile the program if you do not code the comman
but don't forget the terminating

«MPG puts a few numbers on the
before the test number 456 and then execute
«8 to see that the stack contents hayl

The consil

The decision point for

After validi
You can quickly enrer

for each word .

<ESC>
{IICJ

T}

(MPG PROGRAM)
={B}

FINIS

={0}/1

CR ." DONE"

={R} IN=<RETURN>

: TRUE-MILES (ODOMETE!
OLD @ (OLD #)

OVER OLD | (MEW §)

- (MILES)

K (CORRECTION)

188 */ (ADJUST) ;

ADJUST MILEAGE

: CENTS/GAL (PRICE --
DOP (FOR COMPARE)
1000 < (? < §1.00)
IF (CENTS/LITER)

3785 168 */
THEN ;

CONVERT PRICE)

: 7MPG (ODO PRICE AMT '« DISPLAY MPG
ROT (GET ODOMETER)

TRUE-MILES

ROT (GET PRICE)

CENTS/GAL

ROT (GET AMOUNT)

*/ (COMPUTE MPG)

.MPG (& PRINT) ;

<RETURN>

CR ." DONE"

={0}

-]
{l{l'l 65/48 FORTH V1.4
SOURCE <RETURN> IN=M
DONE

OK

~ 1{ any errors occur during compilation, check the
source code for entry errors. Compile each word
separately, if needed, to verify proper coding by
bracketing each word before the word (before the :
"using the Monitor C command to move the top of the
Tevr Buffer, and after the word (after the ;) with
¢ FINIS

Program Final Testing

The testing of ?MPG involves entering some rnoun
values into it and observing the results, Don't

forget to set the OLD value for the odometer readin

first, as shown below. Then enter test values g

stack for the current odometer reading, the orice

the miles traveled.

3198 OLD ! OK

3457 1199 841 7MPG

37.9 MPG OK

3665 1169 1938 ?MPG
24.1 MPG OK

3839 1199 1063 ?MPG
2@.1 MPG OK

4017 1339 1158 ?MPG
21.3 MPG OK

4200 1329 997 7MPG

25.@ MPG OK

OLD ? 4200 OK

Finally, if you want to put the decimal points i

input numbers, remember that AIM 65/4@ FORTH
interprets this as a 32-bit number.
number with a decimal point in it, you will have
16-bit numbers on the stack.

Program Enhancement

You can redefine word ?MPG which will take suct
numbers and rearrange them to be acceptable to th
This time the input is in wvhol

original ?MPG .
miles, cents and a tenth and dollars.

The 32-bit numbers go on the stack with the most
significant part on top.

are even close to using the most significant 16-b
part, simply drop them off the stack at the appro
priate place and use the old version of 7MPG

S0, for evep

Since none of the rimber

CR ." DONE"

={R}] IN= <RETURN>

: 7MPG (ODO CENTS § --
DROP (UNUSED WD.)

SWAP (OTHER ONE)

DROP (IT TOO)

7MPG (USE IT OVER)

i
<RETURN>
CR ." DONE"

={Q}

(5}

AIM 65/4@ FORTH V1.4
SOURCE <RETURN> IN=M
7MPG NOT UNIQUE
DONE
0K

Nov test it with miles, cents and a t
dnllarg,

3198 OLD | OK
3457 119.9 8.41 7MPG

37.9 MPG OK
Check to be sure OLD was updated.

OLD ? 3457 OK

COMPUTE MPG)

h, and

SECTION 1@

PREPARTNG AN APPLICATION PROGRAM FOR PROM INSTALLATION

i often desired to install an application program written
0ATF intc one or more PROM/ROM devices for immediate

fation upon microcomputer power turn-on, i.e., without

ting entry into FORTH under operator control from the

'ﬁﬂ or compilation of the application FORTH source code.
Section describes a method to develop a 4K-byte

[cat1an program written in PORTH high level (code-

itions) and/or low level (assembly language CODE-

aitions) using batch compilation, how to locate it for

tion from either RAM or PROM/ROM on the AIM 65/49

pnputer, and how to install a start-up driver program for
inirialization.

exanple startup drivers are illustrated. Each driver

te: that the AIM 65/49 FORTH ROMs be installed. One

f operates with both the I/0 and Monitor/Bditor ROMs

le¢ and takes advantage of the user key decoding provided
¢ Monlitor linkage. The second example driver operates

gnly the I/0 ROM installed. Both of these drivers provide
4¢ cold and warm start initialization as well as common
flization paths. A third driver operates with neither the
0N nor Monitor/Editor ROMs installed. This last configur-
yould be appropriate only for an application program

inc the total initialization, reset and I/0 processing.

general procedure is illustrated for one of the drivers.
procedure can be easily modified, to accommodate larger
ans. by changing address boundaries of the Text Buffer in
f [squzcs code), and/or the object code and by compiling
pas: storage, if necessary. Since compiled FORTH object
8 very compact, a fairly large application program can b
ided In 4K bytes of object code.

18-1

i_r

Change the address of the dictionary pointer (in user
riabla DP) to point to the first address of the
PROM/®0NM area (now RAM):

CAUTION

This procedure changes the dictionary linkage
variables from default AIM 65/48 FORTH values
to application dependent values. Correct
dictionary linkage is vital to the proper
operation of FORTH, thus the procedure to
change it must be carefully followed. Should
the dictionary linkage be improperly altered,
a cold reset may be necessary to recover
proper operation.

HEX 8888 DP |

thange the first and last addresses of the data buffer (in
User variables UFIRST and ULIMIT) to values equal to,
r greater than, $A@ above the last address of the

-ﬁpnrnnw area, to allow compilation:

96A@ DUP UFIRST ! ULIMIT |

ote that these last two steps may, alternatively, be done
i 2n interactive manner in FORTH prior to compilation,
owever, including them with the source code saves re-
intering the steps during development.

18.1 GENERAL PROCEDURE

The general procedure is {llustrated for the example ririye
described in Section 18.2.1. The memory map for this -xamg

Sll: = :{:r :lg! : nclnde the follow u want to verif changing of
— age ' "D

$200 - STFF System and FORTH Variables - £, UFIRST , and during compila on:

$800 - $BEA TASK dummy word 3

$1060 - S$7FFF Applica on Sour e Code (Text Huffas . HERE 9 D.

$8000 - $BO3F Applica on Obje t Code (Startup Df UFIRST @ @ D. ULIMIT @ @ D. CR

$8040 - S$BFFF Applica on Obje t Code (FORTH words

it this point, the start up driver for the application
fode to reside in the PROM/ROM is ready to be entered --
Wf;ting at $8090. This can be entered using the FORTH
ssenhler as described below in steps 7 and 8, or using
ihe AIM 65/40 Assembler as described in Section 18.2. If
the driver is to be programmed using the AIM 65/49
Ssenbler, or the Enter Mnemonic Instruction function in
AIK 65/40 Monitor (see Section 4.5.1 in the AIM 65/49
llt-r User's Manual), skip to step 9.

1, Verify that RAM is installed and selected from @ —jﬁ

2, If the source code is to be compiled from mass storags
to step 18. Otherwise, enter the Editor. Select sou
entry from the keyboard (illustrated) or from mass

{E}
EDIT FROM=1888 TO=3FFF IN=<RETURN>

3. Now create the text file that will be compiled. Fizs
forget TASK to allow subsequent linkage from TASK
the last application word:

£ the I/0 ROM is installed, include constants to identify
the PROM/ROM (at $88@P) and to cause auto-start processing
At S600. and $8002) -- see Section 6.2.2 AIM 65/40 System
(TEXT FILE 'FOR PROM-FORTH PROCEDURE) jer's Manual.
FORGET TASK CR

AUTO-START BYTES)
4 c, 40 = typical value)
77¢c, A5 C, $5A, $A5 = do autostart)

18-2 18-3

Note that a value other than $5A, e.g., 77 in this ci gnte the application source code cole and/or CODE
is used until the program is fully debugged, cthery

RESET may cause improper AIM 65/40 and/or FORTH operal

Mefinitians

EXAMPLE APPI (TION FORTH PROGRAM
WD1X CR ." T WORD 1" CR ;

Include the startup driver assembly code. The fa}lfi WD2X CR ." ‘T WORD 2" CR ;

code, in FORTH assembly format, implements the drivg
described in Section 18.2.2. This driver enters th-
command mode immediately upon completion of auto-sta
procﬁallng (i.e., without returning to the I/0 RoM),
value to load into the TASK NFA field is left zera |
after the application words are compiled (see =rop 1f

anoe the address of user variable DP back to the initia
value to allow TASK to be redefined in low memory, i.e.,
at §8@0.

8e@ DP |

(START-UP DRIVER FOR AIM 65/48 FORTH) Change the first and last addresses of the data buffer

ASSEMBLER { ASSEMBLY VOCABULARY). = = . =t TE=—
5203 BN { INIT PORTE)) back to the-initial values
i {25 L,
A
DP @ 1- ; D. .* =LSB * 4009 DUP UFIRST ! ULIMIT !
B85 STA, { STORE TASK LSB)
:: f’?ﬁA (STORE IP LSB) ‘irzlude the following if you rify restoration of
DP @ 1- ; D. ."™ =MSB " DF'y UFIRST , and ULIMIT , values during
8066 STA, (STORE TASK MSB) BBint1atinne
A@ STA, (STORE IP MSB) 3
92 # LDX, { INIT PARAMETER STACK) :
CB6F JmP, (TO FORTH COLD START ENTRI CR HERE @ D.
FORTH (RETURN TO FORTH VOCABILAR

UFIRST @ @ D ULIMIT @ @ D.
Note that the CO6F JMP, can be replaced with a NEN

._:.' isfine TASK at $800:
to immediately begin application execution. -

ASK
If the start-up driver is coded in FORTH, the compi X ;

application words will be located immediately =frar &
end of the driver machine code. In this case, <tip ¢t
step 18.]

but the name field address (NFA) of the last application
?-onﬁtrollrr-d to as LSB and MSB) into the TASK LFA
‘fiald. Note that the LSB and MSB (i.e., $880A and 8@0F
'ir this example) depend upon the driver assembly language
code (see Step B).

If the driver is to be merged later, room must b{ 3
the driver code ahead of the application code, 7he
dictionary pointer (in the user variable DP) i+
therefore changed to where the application code will
($8840 in this example). Words to verify the ua1ueff
compilation may also be included. 1

' WD2X NFA DUP'@ D. @ 1886 U/
B@QF C! B@OA CI

B884¢ DP | (START OF APPLICATION WORDS
CR HERE # D.

19-4 18-5

Lu.x-.-l £ RO e

S S e

ek

16

17.

18.

19,

20.

21

Add a message to indicate completion of comp! lation am
include FINIS to indicate end of words to conpile an
terminate text input:

Chanae the value of $8801 to $5A to enable driver aut
srart processing (see Step 7):

{m}8@@e 48 77 A5 2@ 93 D2 20 D1 @[

CR ." DONE" (/180088 48 S5A <RETURN>

FINIS :

<RETURN> Verifv operation after a cold reset, either at the FORT
END command or run—time level

Return to the Monitor and enter FORTH:

<RESET>

AIM 65/48 FORTH V1.4
={Q}
i #=t the application words.
5)

AIM 65/48 FORTH V1.4 —

Compile from the Text Editor or mass storage ({11 0K ;
from the Text Editor with user variable changes ver SRIX chETee»
1 TEST WORD 2
OK

SOURCE <RETURN> IN=M
8000 98A2 98AP

8@88A =LSB B@@F =MSB
8040

808 4000 4802 B885B DONE

_Ive the object code at $888@-$8FFF on mass storage, using
ths Monitor D command, for preparation of a PROM/ROM.

Save the source code in the Text Buffer on mass storage,

Run a VLIST to verif ilati »vanp|
¥ compllation (shown after ~vam sing the Editor L command, for future updates.

words) :

VLIST ’
889 TASK 8864 WD2X g 10-1 shows a compilation and test of the example program
8049 wD1x D9DC .5 g in this procedure. The listing includes the application
DSD1 MON OK (<SPACE> bar pressed) : y i

sonrcs code, the compilation, command of the test

anc a cold reset, followed by automatic execution of the
ipplication word. This listing assumes proper operation
n previously verified so that auto-start constant (i.e.,

Try the application words:

WD1X <RETURN>

g:s'r WORD 1 is compiled rather than being changed later.
WD2X <RETURN> '
g:s'r WORD 2 EXAMPLF START-UP DRIVERS

Escape to the Monitor ---- I1/0 and Monitor ROMs Installed

gtarr=up driver listed in Figure 1@-2 illustrates a start-
dflver for use with both the I/0 and Monitor firmware
talled, During auto-start, this driver checks for the

<ESC>
(ESC)

18-6 18-7

FORTH STRRTUP DRIVER FOR ALH 65/4@ WITH HONITOR

FORGET TASK CR | fiecT souece
i ; PROGRAM EQUATES
3%22 gug T e, "I'Sh'.L_FR-lBgS L;:!:r F:&tln MI:-P.EISSYE“FK‘:%IW
= INT4TH=$D253 +F H WV ABLE INI Fa
UFIRST @ @ D. ULIMIT & @ D. CR FNOTOP=80201 FIND FORTH VARIABLE DEFAULT VALUES
48 C, LAST=$000e s POINTER TO LAST RPPLICATION MORD (NFR)
SR C, AS C, STRAET=$3008 JAPPLICATION PROGRAM START
GSEEubLES URIVER FOR RIN 65/48 FORTH) ROGLI=s037E L FOR APPLICATION AT 26000
Egggnﬁggp FORENT=$LS45 ; ENTRY TO FORTH
. EXZMON=$8IF 4 s INDIRECT EXIT FOR START DECODE
D2D1 JSR, “=STRET
88 # LDA, BYT $81 i AUTO-START PROGRAM 1D
DP @ 1- 8 D * =TASK LSB * ! BYT $SA. SRS s AUTO-START KEY PATTERN
3?5&;“' BPL WARM iy e A
{) Fi = T
gg : I::Dﬂ,‘a, : b . L . g:: WEFF 'Sengm_(_:’on monT FRESEN
iy " =sTRSK MsB" 1 £
886 STH, i ON COLD RESET, PERFORM THE REQUIRED APPLICATION CODE
R@ STH, | COLD NOP s APPLICATION DEPENDENT
52 # LDX h 1 ; ALSO SET UP THE FORTH LINKAGE TO THE APPLICATION PROGRAM
CBEF JHP. 1 LDX WCDECODE s INITILIALIZE MONITOR DECODE LINKAGE
FORTH ’ : LDY #2DECODE
4 JER SETLNK
¢ EXAMPLE AFPLICATION FORTX PROGRAM) [i 03 STA RBALNK
WDAX CR . " TEST WORD 1" CR FD 03 STY REBLNK+1
g Nbgg CR . " TEST WORD 2" CR : 4 48 89 JHP COMMON
@e ! |)
:) s ON WARM RESET, PERFORM THE APPLICATION REGUIRED COGE
ggegEggPauglRST + ULIMIT ! : HRARM Nrc'w s APPLICATION DEPENDENT
UFIRST @ 8 D. ULIMIT @ @ D. J ON AMY RESET. SOME CODE IS COMMON TO MARM AND COLD
¢ TASK 4 F COMMON NOP s APPLICATION DEPENDENT
‘ WD2X NFA DUP @ D. © 4188 U/ RTS JRETURN TO [/0 ROM

8ei1 C! s00R C!

CR “ DONE*" i A MONITOR COMMAND CAN STRRT FORTH WITH APPLICATION VOCABULARY

DECODE CMF #°5 s KEY TO DECODE
FINIS 3 BEQ FORINT I VES asd
*END» 4 a3 INP (EX21M0M)
=@ | FORTH INITIALIZATION DRIVER
B D2 FORINT JSR INT4TH ; DOMNLORD RAM VARIABLES
€3 02 ISR FNOTOP i SET UP DEFAULT VALUES
AIM 65749 FORTH V1. 4 LDR ®<LAST s INITIALIZE TRSK LFR
SOURCE IN=M 5 o8 STA TSKLFA
gggg 9929 S0R8 % @2 m;mm-ri
=TASK LSB 8911 =TASK M5B 3 i PRARAMET! ;
800 4000 4060 2033 s e I8 =it o BADES
: THIS 1S WHERE THE FORTH APPLICATION CODE WILL BEGIN
FREE L
WD4 ¥ END
TEST WORD 1
0K
WD2Zx

TEST WORD 2
DK

Figure 18-1. Example Driver Compilation and Te 14

fd. Startup Driver with I/0 and Monitor ROMs Installed

1p-8 18-9

ek i ot B T ot b i+ S e Ll

presence of the Monitor ROMs in the cold reset path. If
present, a pointer to a key-down check in the driver is adi
the Monitor key decoding linkage (see Section 6.2.2 in
65/49 System User's Manual). Linkage is also shown i-r Ct
warm reset processing in auto-start. The NOP instructions
in the listing should be replaced with actual appliratig
dependent instructions.]

W1 ‘FORTH STARTUP DRIVER FOR AIM 65/4@ WITH 1/0 ROM ONLY

Any time a key is pressed (when in the Monitor command lev
driver will check to see i{f it is the 9 key. If it is
FORTH will be initialized at the command level with the .

tion words linked to the dictionary.]

PROGRAM EQUATES
= ;'sum JLINK FIELD ADDRESS OF TASK
INTATH=#D293 1 FORTH VARIABLE IHITIH.I“I‘IM
FNDTOP=$D2D1
LAST=$2000
START=$8000

F FORTH VARIABLE DEFAULT

:H‘)’lam TO LAST APPLICATION m CNFR
s APPLICATION PROGRAM START

JENTRY TO FORTH

10.2.2 !lth I(O ROM Installed - _ =~
B o j'" poy :aunrsn-111vnnﬁnnn

WM RESET ==
4Excueu4nluzt PERFORM THE APPLICATION REQUIRED CODE
D NOP s APPLICATION DEPENDENT

This driver, shown in Figure 18-3, is similar to the o

in Figure 18-2 except that neither Monitor linkage ror
decoding is provided.

18.2.3. With I/0 ROM Not Installed

JAPPLICATION DEPENDENT
: ON ANY RESET, SOME CODE IS COMMON TO WARM AND COLD

This driver, illustrated in Figure 18-4, initializes FOR]

1 11 11 g comon 58 BT R’Im“"'""m':..":}un'“ b i
ncluding linkage of the application words to the d c“. JSR FNDTOP ;i‘u}v‘iu’u.tzt 3 Hy—
then jumps to NEXT to start execution of the applic

program, i.e., of the last FORTH word compiled. No cald g
reset interface with the I/0 ROM is provided, therefore,
driver and/or -the application program must provide all ras
interrupt and I/0 handler functions.

JSET UP PARAMETER STACK
JCOME UP IN FORTH COMMAND MODE

uretdB-3. Startup Driver with I/0 ROM Installed
18-11

PRAGE 0891 mmu:mmammntm:nm
ADDR OBJECT SOURCE
+ PROGRAN EQUATES

SECTION 11

USING AN AUDIO CASSETTE RECORDER

ssette recorder provides a low cost method of
tly saving programs written in FORTH as well as data

jur ing program execution. AIM 65/48 FORTH, in

tlon with the AIM 65/48 hardware and AIM 65/48 Monitor
#1lows both source and object code to be saved and

sinc an audio cassette recorder.

nt to save and load programs or data at separate
fopnect only one recorder. Connect two recorders if you
read from one recorder and write to another one. Refer
on © 4n the AIM 65/4@ System User's Manual for audio

TSKLFA=$200S
INTATH=$0293 :?-g%u'gr{.ﬁgﬁaus :uzt?:l.};: recordey; connection information and general operating
FNOTOP=$D204 1FIND FORTH YARLIAB! E DEFAULT Sl
LAST=40000 +POINTER TO NFA OF LAST APPL
LASTPF=$8000 i POINTER TO PFA OF LAsT PP
START=40000 s APPLICATION PROGRAM START)
NEXTwsCOEF i ENTRY POINT TO EMECUTF MEXT L
1P=$009F JPOINTER TO NEXT FORTH uORD ior describes the procedures to use audio cassette
1
==START 3
50 95 95 08 Y . — . ATM 65/40 FORTH also includes functions to
& == o2 LJ: FNDTOP +SET UP DEFALLT VALUES e with generalized mass storage. These functions are
8008 &0 oS Mm m' s INITIALIZE TRSK LFA 3
-nn. mm 3 in Section 12.
9020 8D o6 08 STA TSKLFR+1 ;
82de AS 28 - "'u:'. MWD TO EXECUTE ¥
pooepe : =t — ::l-ﬂ‘l'ﬂ' DLTNC PROGRAM SOURCE CODE FILES
8214 a2 OLASTPF
Sus & STH tor
8818 A2 92 LDX A%
o ’:.l!ll :IT lrwmm“m 2 sting Program Source Code
ERRORS=0008 ®@ several reasons to record the source cofle of a
trer in PORTH:
To nave a permanent file of the source code for
readinc into the Text Editor for editing in case of
accidental AIM 65/4@ power turn-off or inadvertent
puerwrits of the source code in RAM.
7¢ compil from audio cas: Insufficient memory
l¢ avalla le to have both 1d object code co-
grsident 7 RAM,.
Figure 10-4 Startup Driver Without /O ROM Tnstal

18-12

To allow program updating and editing at a 1__. C8j

] NOTE
To transfer programs between the AIM 65/49 ¥OR:

AIM 65 FORTH. Be sure to manually start the recorder

‘before pressing <RETURN>, if manual
recorder control is used.

The procedure to record source code from the Text Fdito

Reading Program Source Code

code of a program written in PORTH can be read int
3 . Editnr using the AIM 65/4@ Monitor E command (Enter
Recorder remote control must be used tor! or AIM 65/48 Text Editor R command (Read Lines
if extended FORTH execution is per- 4 ditor). Pollow the procedures described in Sectio
formed between blocks. 1 nd 5.4.1 in the AIM 65/40 System User's Manual,
- e -"_. fy. Also refer to Section 9.3 of that manual for
Position the tape and set up the recorder remo on how to use the audio tape recorder.
control commands as described in Section 9.3 o i

AIM 65/40 System User's Manual. v Compiling Program Bource Code

NOTE

il
Enter the Text Editor and read the source cod fce code can be compiled from an audio cassette recorde
the Text Editor as described in Section 4.5. -word SOURCE similar to the procedure described in

4. The procedure is:
If the file to be recorded is to be rampiled ff]
audio tape and contains the complete prooram, Previously record the source code on an audio cassette
as the last word in the Text Buffer: - £11= using the AIN 65/48 Text Editor L (List) command.

FINIS 1f recorder remote control is used, turn the recorder
k off using the AIM 65/48 Monitor 1 or 2 command.
Position the Line Pointer to the first line of b
code to be recorded. . Enter or re-enter FORTH.

List the source code to the recorder using the Compile using the word SOURCE as follows:
(List) command.] '

._ SOURCE <RETURN> IN=T
=({L)/. OUT=T UNIT=<recorder no.> 1 UNIT=<recorder no.> FILE=<filename><RETURN>

FILE=<filename> <RETURN> XX W
END XX W

After the compilation is finished, control ret fDumping Program Object Code

the FORTH command level.
s tne following steps to dump the dictionary object code,

@ ant re-entry variables:

NOTES Validate operation of the FORTH program in FORTH.

(1) If a tape read error occurs, an
error message is displayed and
control is returned to the AIM ' prantinnases
65/40 Monitor. i .
If the word FINIS is not read at . | EX NERE . <RETUNN) LAST
the end of a file, FORTH remains 4
in the read mode and will not re-
turn control to the keyboard. 1In
this case, p:iu the RESET button

to gain AIM 65/4@ Monitor control d ds ¢
then re-enter FORTH. Run a VLIST : d, Dump the FORTH variables and program object code to

~the audio cassette recorder using the Monitor D (Dump

 Us¢ HERE to find the last memory location used by the

‘whers LAST is the value to be used in step d.

Escape to the AIM 65/48 Monitor.

to see which words were compiled..
If only the word FINIS was missing,
all the words should have compiled.

command

{D}

g - 3 FROM=8788 TO=877F OFFSET=0@@@ MORE?Y

FROM=@g88@ TO 9878 OFFSET=0088 MORE?N
11.2 HANDLING PROGRAM OBJECT CODE FILES i TYPE=<A,B> OUT=T

UNIT=<recorder no.> FILE=<filename><RETURN>
Loading a program written in FORTH in object code form Whare
desirable since the files are shorter and compilation 788 = start of the FORTH variables.
required. While AIM 65/40 FORTH does not have words & i 77F = end of the FORTH variables.

Using 8¢ = start of the program dictionary.
and load object code, the AIM 65/4@8 Monitor does. Un _ 878 = end of the program dictionary
AIM 65/40 Monitor dump and load functions, the AIM 65/4 (from step b, typical value shown).
variables and dictionary object code can be saved and re

Ialsn, be sure to save any user variables that have
to allow a program entry capability.

‘been altered.

Note that FORTH object code is not compatible between thy Rsiiing: Prouren Obisct Code

65 and AIM 65/40 microcomputers. The source program FOR:
words are compatible, however, except as described in Apy

L p the following steps to loac¢ 't code which has been

according to the procedure ! don 11.2.1.

, I1{ in FORTH, perform a cold start using COLD to
initrializa FORTH, then escape to the AIM 65/40

ihnnltnr

If in thd Monitor, first type 5 to enter FQRTH |
initiali: PORTH variables, then escape back t¢
Monitor. "

Read the recorded FORTH variables and object
the audio cassette recording using the Monitor |
(Load) command.

4 >

¢ AIM 65/48-FORTH AUDIO TAPE DRIVERS)

(L} OFPSET=8088 IN=T _ < b
UNIT=<recorder no.> FILE=<filename><RETURN HEX FFB@ CONSTANT SYSORB

@ YARIABLE DRIVENO ,
@ VARIABLE NAME 4 ALLOT

s S?SBC! S?SORB DUP C@ ;
: ON ON"
: OFF .* OFF" 3

@ Type 6 to re-enter FORTH.

d Run a VLIST to verify that the application wordi
in the dictionary.

TAPE RECORDER CONTROL ROUTINES

TURN RECORDER 1 ON)
TI.-OI SYSBC® EF AND SWAP C! ;

(==— TURN RECORDER 1 OFF)
: TA-OFF SYSBC® 18 OR SMWAP C! ;

¢ TURN RECORDER 2 ON)
Dumping and loading in AIM 65/48 FORTH format Wi : T2-ON SYSBC® DF AND SWAP C! ;

FORTH READ and WRITE words (see Appendix B ! { ==— TURN RECORDER 2 OFF >
1 : T2-0OFF SYSBC® 28 OR SWRP C! ;

11.3 HANDLING DATA FILES

LR T o T o T

Data files can be written to and read from an audio cass
recorder in several different ways. These includes

URN RECORDERS 1 & 2 OFF)
T-OFF svsaco 2@ OR suaP c:;

{ =—— TOGGLE RECORDER 1 CONTROL
: T4 SYSBC® 1@ XOR 2DUP SWAP C!
1@ AND IF OFF ELSE ON THEN DROP ;

. === TOGGLE RECORDER 2 CONTROL
. T2 SYSBC@® 20 XOR 2DUP SWAP C!
20 AND IF OFF ELSE ON THEN DROP ;

Dumping and loading in AIM 65/48 Monitor Fo
Sections 4.8 and Appendix H of the AIM 55/4!
User's Manual).

“e e

Dumping and loading in FORTH screen format (
Section 12).

The program listed in Figure 11-1 contains several words
can be used to toggle or turn on/off the recorder remoti
control lines, dump and load data files in AIM /5/48 FQI
format under keyboard or program control, and to du=mp ag
data files in AIM 65/48 Monitor format under keybrard ga

5

s AIM 65/48 Audio Tape Handling Words

11-6 11-7

Toggle Recorder No. 1 On/Off
Toggle Recorder No. 2 On/Off
Turn Recorder No. 1 On
Turn Recorder No. 1 Off
Turn Recorder No. 2 On
Turn Recorder No. 2 off
Turn Both Recorders Off
FDUMP Dump in AIM 65/48 FORTH Format
< LOAD b FLOAD Load in AIM 65/48 FORTH Format
< AND DUMP DATA ONTD TRAPES A TDUMP Dump in AIM 65/48 Monitor Format
f: = SET OUTPUT DEUXCE -T) TLOAD Load in AIM 65/48 Monitor Format

oos SETOUT XSAVE STX, REBS JSR,
¢ WHEREQ) XSAVE LDX, NEXT JMP, END-"0DE pau also included that are used by the above words

e SET INPUT DEVICE = T)
I:I:IDE SETIN XSAVE STX, RESB
IlaERE{')‘ XSAVE LD: NEXT ﬁg: END-CLE proaram into the AIM 65/48 Text Editor and compile it

Rin a VLIST to verify compilation was completed and
¢ Eﬂﬂ'np CR_EETDUTug IN AIM 65/48 =0RTH) ori locations are the same as listed. Note that
& adde ITE CLOSE ; an example program that can be used as is, or as 2 base
: ELono"En‘EEm"SE“"anE‘._E;g 6548 FORTieg ow words. The flexibility of FORTH allows these
: be altered or other words to be defined easily to meet
m—— DUMP DIRECTLY FROM THE I“Ilml‘llmj y

CODE TDUMP XSAVE STX, AS76 JSR l.'\r application requirements.
¢ DUMP) XSAVE LDX, NEXT JMP, Fw'—ODE

g

(=== LOAD DI MONT TR

CODE TLORD xsm"?%ﬁ“"éﬁ?",}“ ONTT _E)_ . the word CLOSE is used in the program to return
¢ LOAD) XSAVE LDX, NEXT JMP, Eur 0o to the keyboard upon completion of tape file read.
FINIS .

*END+ Usinc Recorder Remote Control

e D1a S e

fde: remote control words can be used er keyboard or

YLIST foptral.,
99C TLOAD 988 TDUMP

9574 FLOAD 968 FDUMP
3“:. %‘r“‘ 938 SETOUT Tc turn a recorder on, use T1-ON or T2-ON .

8CE T-OFF S turn a recorder off, use T1-OFF or T2-OFF .
8S9F T2-ON 82 Ie-orF

878 T1i-ON gea ;%;'JFF . 7c turn both recorders off, use T-OFF .

84F 848 SYSBC# . 3 toggle a recorder control line, use T1 or T2 .

ON
82F NAME
816 SYSORB Say TasyENa

B T —

A

P —

s A e = e

Pigure 11- AIM 65/40 Audic Tape Handling Words /ront'd

11-8

|

11.3.2 Using AIM 65/48 FORTH Format

AIM 65/40 FORTH provides a data file format consisting @l
data bytes as opposed to the AIM 65/48 Monitor ASCII form:
which includes other information in multiple records. &
65/4@ Monitor record also includes the number of hytes '8

starting address, and a checksum. Since the FORTH da
format contains only data, more data can be stored in
space resulting in faster recording and reading. Since
data file does not include addresses, the recorded ds

easily be loaded where needed in memory without skipping

processing the address information.

a. Dumping a Data File Using FDUMP

(1) Establish an output data buffer im RAN.

(2) Store the output data in the output datA :

(3) Set up the recorder for recording using t
desired recorder remote control word.

(4) Enter or 1« ‘he starting idress ud' .
of bytes t¢ ‘ord and ini ate the dump,

<starting address> <no. of bytes> FDUMI

(5) Enter the output device code (in this ax
the audio tape device code =T),

OUT=T

(6) Enter the recorder no.
UNIT= <1 or 2>

(7) Enter the file name (all § rharacters);:
FILE= <filename> <RETURN>

The recorder will be started autromatirally

(8) OK will be displayed upon dump completion,

11-19

' For example, dump 20 bytes from locations $1880 through

$101F to recorder no. 1 as a file named QWERT . Use
the FILL and DUMP words to initialize and check the

" EA* contents for test purposes.

., 1088 20 FDUMP <RETURN>

OUT=T UNIT=1 FILE=QWERTOK
0K

Loading a Data File Usinc FLOAD

{1 Set up the recorder for reading. Use the
recorder remote control words as desired.

(2" Enter or load the starting address and the number
of bytes to record and initiate the load.

<starting address> <no. of bytes> FLOAD <RETURN>

{3 Enter the input device code (in this example, the
~ audio tape device code = T).

: IN=T
" (4' Enter the recorder no.

| UNIT= <1 or 2>

(5! Enter the name of the file as recorded.

FILE=<filename> <RETURN>

The recorder will be started automatically.
(6! OK will be displayed upon load completion.

‘; rv the following example. Again, use the FILL and
puMp commands to initialize and check the RAM

_contents before and after loading.

1e@@ 20 FLOAD <RETURN>

IN=T UNIT=1 FILE=QUERT <RETURN>
QUERT @8 R
OK

11.3. Using AIM 65/48 Monitor Format

It is sometimes desirable to dump and load a data file

| that is compatible with the AIM 65/48 Monitor ASCII or
' format (described in Appendix H of the AIM 65/48 System U
Manual). Data files recorded in FORTH in this mannsr cap
be read by the AIM 65/48 Monitor L (Load) command and dat
files recorded by the AIM 65/4@8 Monitor D (Dump) command
read under FORTH control. '

(3) OK will be displayed upon load completion

For example:

OAD <RETURN>
:;PSET-IIII IN=T UNIT=1 FILE=DAT22 <RETURN>
DAT22 @8 R

DONEOK

a. Dumping a Data File Using TDUMP

(1) Type TDUMP:
TDUMP <RETURN>

(2) Respond to prompts:

FROM= <address> TO= <address) OFFSET=<addr:
MORE?<Y ,N>

TYPE=<A,B> OUT=<T> UNIT=<1 or 2> FILE=¢£{]§

(3) A block count will be displayed during rece
and OK will be displayed upon dump complet

For example:

TDUMP <RETURN>
FROM=1988 TO=1200 OFFSET=888@ MORE?N

TYPE=A OUT=T UNIT=1 FILE=DAT?7<RETURNS
DONEOK

b. Loading a Data File Using TLOAD
(1) Type TLOAD:
TLOAD <RETURN>»
3 (2) Respond to prompts:

35 OFFSET=<address> IN=<T> UNIT=<1 or 2>
. FILE=<filename> <RETURN> '

SECTION 1

INTERFACING TO MASS STORAGE

! l;rous includes all of the fundamental words needed to
B dwith. and effectively use, mass storage devices.

japter provides directions and guidelines on how to

ace tc a floppy disk, however, the procedure may be
sdified to include other peripherals.

you begin, you must have a mass storage device in
f functioning order. You must know how to get data to
@ the device's controller, and what data the controller
e faaction correctly. Finally, you must have enough
the AIM 65/48 microcomputer to hold a FORTH screen.
Aimun RAM requirement is 2K bytes, but a practical
iz 16K bytes. If you have more than 16K bytes RAM
le then so much the better.

iMass Storage Terminology

ccesses mass storage in uniformly-sized pieces called
‘an¢ keeps data, or source code, in RAM in 1024-byte
called screens. If the block is 1824 bytes, then the
block' or 'screen' are often used interchangeably.

hese block sizes are commonly the size of a floppy disk
of 128 or 256 bytes, there are normally eight or four
par -screen, respectively.

Block Buffer : b. Data Buffer

A particular block is referenced by the PORTH word iThe RAM area reserved for use by mass storage,

BLOCK which takes the block number as the - ~ ;commonly called the data b?tlol, or the mass storage
If the block of data is in RAM, BLOCK reforns - ‘buffer, must contain more than two of the block

immediately with the address of the buffé: where &b - 'buffers described above. The first byte of the entire

data is to be found. If the block is not in RAM, . imass storage buffer area is referenced by the word
BLOCK uses R/W (described below) to fetch :+ fr ‘FPIRST and is stored in the variable UFIRST . The "
mass storage and put it in a buffer in RAM, tnen last byte of the entire buffer area is located at
returns the address of that buffer. BLOCK also LIMIT -1 and the value returned by the word LIMIT
checks to see if the data in a particular Lo fer p : :l kept in OULIMIT . The layout of the buffer area

sz

to be written out to mass storage before it usa X
buffer for new data.

e &)

LOW RAM

Each block buffer in RAM is four bytes larger tha;
mass storage block size. Two of these extra ny
at the end of the buffer and both contain CII g
characters ($88) to mark the end of data. The ot
two bytes, located at the start of the buffer, co
the block number (byte 1) and a one-bit flag |byts
that indicates whether or not the buffer contains 8 .] Block Buffer
that must be written to mass storage before the by :
can be used for new data. The layout of a hlofk
buffer is:

Block Buffer

Block Buffer

LOW RAM Block Buffer

Block No.
T S .
Update Flag ., Screen Size
(= Address
o ~ ‘Conventionally, when a screen of source code is listed
Block , 4] . on a CRT display, it appears as 16 lines of 64
Buffer i 3 characters each. The lines are numbered @ to 15 on
Dhta .' :e_m left of the text. If the display will not permit
2 ~ 67 or 68 characters on a line, other formats can be
¢d 'II b .Idoptﬂ'd.
e | < Null ~harac
B LI Null ~harag

12.1.2 Buffer Variables

The size, number and location of the block and data Luff
AIM 65/4@ FORTH is controlled by four user variables U
UB/SCR , UFIRST , and ULIMIT). The logic of which on
use at any given time is controlled by three other varin
(PREV , USE , and OFFSET). The names, description

access words for these variables are given in Table)7-1,

12.2 SETTING UP BLOCK AND DATA BUFFERS

R/W is the primary word that interfaces PORTH to mass st

All of the FORTH logic which automatically handles the
locating, reading and writing of mass storage data ulti

winds up using R/W . However, before R/W can work p:}

it must have a set of data buffers to use. As explaxned
earlier, AIM 65/4@ FORTH needs more than two buffers li
for the buffer rotation logic to work correctly.

The general steps in the process of setting up the block
data buffers is a simple procedure as summarized below;
details are given in the following section.

1. Set the top (high RAM) of the data buffer area
ULIMIT .

2. Set the size of the block buffers into UB/BUF

3. Compute and set the number of block buffers per
into UB/SCR .

4. Compute and set the start of the data buffer ar
UFIRST .

5 Set USE and PREV to FIRST .

Clear the data buffer.

7 Initialize the block offset value.

12-4

abli 12=1

Buffer Variables and Access Words

Access Default
Word value | Description

B/BUF 128 Holds the number of bytes of data in
each block buffer. This is often a
power of two in the range of 128 to
174, The actual buffer size is four

bvtes larger than this value.

B/SCR 8 |Holds the number of block buffers
|per FORTH screen. Typical values
lare 1.3;‘ or 8.

FIRST » Hnlds the location of the start of
the data buffer. -

LIMIT * Holds the location of the end of the
datz buffer plus one.

.none**® * Holds the address of the block

|buffer most recently referenced.

Holds the address of the block
huffar to use next.

none** -,

Holds a value to be added to the
binck number given to BLOCK .

none** none

old start, AIM 65/40 FORTH V1.4 sets these variables to
5 of 16K of RAM plus one byte (§4000 = 16384).

les without a special access word to fetch the value
eated like any other FORTH variable. Use @ to fetch

it from its address and | to put data into its address.

iabla can be accessed in this manner; the special
wordg are only for convenience.

12-5

In many cases, steps 1, 2 and 3 can be omitted. The d=f] FIRST PREV | (AND ALSO PREV POINTER)
EMPTY-BUFFERS (CLEAN OUT THE BUFFERS)

value of the top of RAM for ULIMIT is a good choice, 1 : ve« CR . . . ; (R/W WORD FOR DEMO)
special circumstances dictate that another value shnnld be ' ... CFA UR/W | (SET UP R/W WORD POINTER)
" CR ." DONE " (FINISHED)
used. The default values for UB/BUF and UB/SCR are : FINIS
values for floppy disk systems, but may have to be r~hanged| 3
especially for magnetic tape, or fixed disk, mass storage, @ 1 sers the input/output base to hexadecimal, as it is much
: _kb visualize memory layouts in this format. Line 2
In steps 3 and 4, it is convenient to use FORTH to compute <2 of the dummy word TASK to avoid piling up
actual value to store. Step 5 provides the starting values nitions, The constant S# in line 3 is the number of
the buffer pointers, and step 6 sets up the buffers to u{_. | screen's worth of buffers desired.

clears them of prior data.

b and 5 depend on the size (5 1/4-inch mini-floppy or
Step 7 is necessary as FORTH adds this offset value to e standard floppy) and recording density (single- or

block number requested via R/W . The utility of OFFSET ple-density) of the disk drive. The values shown (80,8) are
in setting it to the first block number in an extra mass s single-density mini-floppy, which has 128 bytes per

age device. Then the block numbers of media inserted in &h These values are the same for a single-density

device will be the same to the user as when OFFSET is andar¢ floppy. For a double-density mini-floppy or a double-
and the media is in the primary device. (fity =tandard floppy, there are 256 bytes per sector, so

t¢ or- §100 bytes per buffer and four buffers per screen.

12.3 CREATING SCREENS

6 npegins the actual calculation by putting LIMIT and
This section illustrates the creation and testing of two ilf on the stack, adding four to allow for the extra four
different buffer arrangements. Assume you have an AIM 6 n each block buffer, then multiplies this true block
microcomputer with 16K bytes of RAM connected to a disk ¢z size by the number of buffers in a screen. Line 7 then
typical sector size. :] %gs this by the number of screens desired. With two

i "3|?n the stack, LIMIT and the computed size of the
12.3.1 Creating and Testing a One Screen Buffer] dizk buffer area, a subtraction leaves the bottom of the
< buffer, which is placed in the variable UFIRST .

Source Code Entry
58 9 and 10 set the remaining buffer variables, and in

Enter the following source code into the AIM ﬁqfda}%y 11 EMPTY-BUFFERS completes the buffer generation by
Editor:) tinc all the RAM buffers to $00.

(SETTING UP DISK BUFFERS) Y 3 .definition word ... (dot-dot-dot) on line 12 is
HEX ¥ '

FORGET TASK (FDC RAM S4AG-§55F) X g ﬂto test the FORTH mass storage processing gnd buffer
% COH;TANT S# (ONLY 1 SCREEN) . Note that aside from the constant S# , this is the only
@ UB/BUF | (128 FOR SINGLE DENSITY) b

8 UB/SCR | (8 BLOCKS ARE A SCREEN) ! or+ defined and that all the other words are interpreted

LIMIT B/BUF 4 + B/SCR * '? ':fecuted as encountered. The word ... simply does a

84 * - UFIRST | (BUFFERS AT TOP OF RAM) a tack.
§ OPFEET | (NOT NERDED RIGHT NOW) e return then prints the top three items on the stac

FIRST USE | (SET UP FIRST POINTER) i unction of ... is to print the three parameters that are

12-6 4 12-7

supplied to R/W , to allow viewing of the overall aperatLoJ inc LOAD to test the buffer operation is convenient as it
buffer selection and use. Line 13 shows how to install a8 pansfer: an entire screen, allowing the overall operation of
into the mass storage vector of UR/W . The FORTH word ' @ brnffer selection logic to be observed. Each line printed
(tic). fetches the parameter field of the word following it .-+ shows the read/write flag (1), the block number (88,
(i.@., ...), CFA changes that address to the code field add- ; etc.) and the buffer address. Remember that the screen
ress, and the phrase UR/W | stores it in UR/W . binigli ber gets multiplied by B/SCR and that buffers are four
and 13 are only shown to test the buffer operation without a jter larger than B/BUF .

mass storage device. FPor proper operation, these lines would

be replaced with the mass storage interface words (see Sec ?‘ ¢ word UPDATE sets the update bit in the buffer that PREV

pointing to and indicates that the buffer must be written
The mass storage system is now ready to visually test for . ¢+ mass storage before being over-written. This operation
correct operation using parameters appropriate for a disk, ' seen in the last two lines. It is the responsibility of the
Line 14 is only to show that the buffer creation step is done et to use UPDATE in any word that modifies the contents of

¢ disk buffer. If a disk buffer is not marked as updated when
b. Interpretation and Operation ha: new data, it will be over-written and the data will be

The interpretation of the buffer creation code is done sing

SOURCE with M specified for the location of source code. UPDATE J:ZLDAD <RETURN>

' ' y 18¢ 3B

DONE is displayed when the buffers are ready to use. 181 3C66

182 3CEA

183 3D6E

184 3DF2

185 3E76

186 3EFA

187 3P7E (Write out updated block)
187 3F7E OK (Read in new block)

(s}

AIM 65/48 FORTH V1.4
SOURCE <RETURN> IN=M
DONE
OK

B R

The following example shows the operation of the test word

: 3.7 Creation and Testing a Two Screen Buffer
with the words LOAD and UPDATE . Pirst, load two screen - — B

Source Code Entry
10 LOLD.;RBTﬂ!ﬂ> (Read screen 1@ into the buffer) X
8@ 3B
3C66 ange the value of S# to 2 in line 3 of the source code in
gg:: @ Tert Buffer and recreate the disk buffers by compiling the
3DF2 fde acain.
3E76 k.
3EFA |
3F7E OK] (]
@ LOAD <RETURN> (Read screen 24, overwritting this buf! =(F}1 CON
10@¢ 3BE2 ; |1 CONSTANT S§
101 3C66) =(C} OLD=L <RETURN> NEW=2 <RETURN> /<RETURN>1
182 3CEA - 1 CONSTANT S#
183 3D6E ! i 7 CONSTANT S#
104 3DF2 ol
105 3E76 L 80 UB/BUF
196 3EFA & s ={0*
187 3F7E OK :

P et et et Bt N Bt B et el et et et et

b Interpretation and Operation : | TNTERFACE WORDS

After modifying the source code in the Text Editor, the b ££i ghain of events that results in a particular block of data
operation can again be simulated by first entering FORTH and ‘,traasfex:ed to, or from, mass storage begins with a high
compiling as follows: . i el word, such as LOAD for programs, or BLOCK for data.
§ the user, or a word, executes LOAD or BLOCK , the
‘:L‘ 65/ § PORTH V1.4 tns' logic decides if the data is in RAM, and if not, which
SOURCE < ITURN> I[N=M er to use and whether or not a write is necessary. This
DONE fmation, along with the block number, is passed along in

or mora calls to R/W .

Now, testing using LOAD shows that two screens may be loade

before a buffer is over-written. 3
- = ext step is handled by the user written interface words

. h translate the FORTH parameters supplied to R/W into
19 LOAD <RETURN> (Read screen 10
8@ 37c2 Lico s Buster) set=ts acceptable to the mass storage device. This

:i ;:::: : rfsce then executes programs that do the actual work of
83 394k inc or writing data. These programs may be part of the
:; ;:gg ace itself, or may be located in firmware supplied with
86 3ADA gvira,

87 3BSE OK '
@ LOAD <RETURN> (Read . i
100 3BE2 REESE ¥ Juta the Dutte) 1y the status of the operation is returned, and control

i:;‘ ;,c::: tns to the word following the original high level FORTH
183 3D6E thst began the transfer. The status resulting from the
i:; gg} : jfer may, or may not, be acted upon, at the option of

106 3EFA (face program.
.le 3F7E OK

LOAD <RETURN> (Read screen 34, by

180 37c2 OURTMELtEing S piact interface methods depend on the hardware, but a few
i‘:;‘ g:g 5 v applicable to most devices. Try to do most of the
183 394E : in PORTH until you get to the point where you must call a
{:; g:g: outina in the driver firmware, or where you need the speed
i'g 3ADA achine code. Use the FORTH assembler for these final

7 3035 0% q s, then take advantage of FORTH's parameter stack to pass

‘and sense information between the interface words.

Pt et ot ot

1
1
2
1
1
1
1
|
1
1
1
3
1
1
S
1
1
1
1
1

pagretic disk mass storage devices, you usually have to
jlate the track and sector, then place these values where
device driver expects to find them. The act of reading or
'* ¢ is often a matter of calling the appropriate sub-

ine 5 For magnetic tape you may have to also keep track of
syrcent location on the tape to know which way the tape
‘be positioned in order to access the desired block.

12-11

1% 65/48 -- FORTH DOUBLE-DENSITY DISK ROUTINES)
% FORGET TASK (FDC RAM $4A@-$55F)

CONSTANT S# (ONLY 1 SCREEN NEEDED)

§ UE/BUF | (256 FOR Egu:::gr:::s;ﬂ)
;:4S§§nér‘4‘+'g§sggue S# * - UFIRST | (TOP OF RAM)
OFFSET | (NOT NEEDED WITH ONLY 1 DRIVE)

For example, consider the floppy disk system example id Fig
12-1. This system is compatible with the RM 65 Floppy Dis
Controller (PDC) module (RM65-5101) with program PROM
dated 1/4/82 installed. This system uses the location
§DC and $4A0 to $55F to keep the buffer pointers and vat 2 IR 00> 0SE 1 YRRV 1 (S8T UP FIRST BOSVER.)
data. Seeking, reading and writing are done by calling/ V7Y -SUFFERS { CLEAR OUT THE BUFFER AREA)
subroutines in the disk driver firmware located in mems: ; 55 INITIALIZE FDC & ‘I'Uil.l.g"' 3::" ('ol:iul.' 1T §
starting at $8000, with parameters passed in the A, x, %od 5.7 DRIVE PARAMETERS IN SRCORV, SRCSID, & SRCDEN)
registers. Data is passed in the RAM buffers pointed € by § | LDA, 4A5 STA, (D‘I:BDS:‘I;:;OB:C‘:?:V)’
. RDBUF and WRTBUF , each which return a status byte i the EB§; ‘t{;’!ii,‘(su’:gmn DENSITY INTO s:ggg:o::
i register. The interface driver's task is to take the é a f g:?hh';g:o:& :s:‘;: ‘;‘;J",;,‘f“g,:"o'a :uvg NO. 1)
! given to R/W , compute the track and sector, load tl!ro?g
buffer address into the buffer pointers, and call the Subrg
with the proper parameters in the registers. This syst=a

11T FN46 4FB | (UIRQBM > IRQOUT)
83Co 22B | (SET UP IRQHAN) INIT1;
a standard double-density mini-floppy, with 35 tracks snd
sectors per track.

51250K OVER 238 < ; (16 SECTOR * 35 TRACK)
uugonup 4F1 (RDBUF) | 4F3 (WRTBUF) ! ;
%5 SWAP 1§ /MOD ; (LEAVE TRACK & SECTOR)
DC PRIMITIVES)
-;f"g,g: ;S:V; STX, TOP LDA, 8184 JSR, (CALL SEEK)
9 4 AND, PUSHOA JMP, END-CODE
ﬂsvgnggg'xgnv; STX, TOP LDA, 84BF JSR, (CALL RDSEC)
VE LDX, BD # AND, PUSH@A JMP, END-CODE ine
DWRITE XSAVE STX, TOP LDA, 85::nig:6:t CALL :
£ FD §# AND, PUSHOA JMP,
[T DISABLE ALL OFNER INTERRUSTS POB PRIMITIVES)
T0IS FF FF8@ C! ; (MASK OUT ALL BUT RM 65 IRQ)
INTENB 6@ PF8O C! ; (RESTORE THE IRQ MASK)
DERROR (RESTORE IRQ MASK s.pnlur ERROR)
INTENB CR . " DISK ERROR - " ;
Di ROT BBUF T&S SEEK DUP
e DcaROR | nSEEK Aee (SEEK ERROR) INTDIS ELSE DROP
~ THEN DROP 1+ (START WITH SECTOR 1) SWAP
IF DREAD DUP IF DERROR ," :ﬁg l)h-" . (READ ERROR)
SE DROP THEN (DO NOT
'zuE: DWRITE DUP IF DERROR ." WRITE A=" . (ERROR)
ELSE DROP THEN (DO NOTHING) THEN DROP ;
DISK SIZEOK IF INTDIS DATA INTENB
ELSE CR ." BLOCK TOO LARGE ERROR ™ ABORT THEN ;
K CFA UR/W | (STORE INTERFACE WORD)
0F FORMAT XSAVE STX, 8095 JSR, (CALL FORMAT)
VE LDX, NEXT JMP, END-CODE
ORMAT INTDIS FORMAT INTENB ;
7ASY ; (THROUGH WITH CODE) FINIS

The entire disk interface is included in the Program listed
Figure 12-1, as typical of FORTH, each word performs a sim
function, with each new word building on previous ones.
first nine lines set up the mass storage buffers for use ai
Previously described in Section 12.3. There is one screen
buffer created with four blocks of 256 bytes each, i

INIT initializes the module by setting up the interr
and then calling the code INIT1 , which in turn calls :
65 FDC module initialization routine, then turns on the i
drive. SIZEOK checks that the block number is valid, {4,
less than the number of sectors times the number of t
BBUF stores the RAM block buffer address into the Read
Write buffer pointers for the FDC module. T&S takes th _
number from the stack, and leaves a track and a sector numbe

The next three words are the basic primitives that ll.lui
disk sector to be read or written. The code word SEER 1 g
the disk head to the track number on the stack and lea ’=—._
non-zero status byte for an error condition. The DR
DWRITE words read or write between the RAM block buffes and
the disk sector left on the stack, returning a non-u:ai:
bit for error conditions. b

-3

RM 65 FDC Module Disk System
12-13

Pigure 12-1

The PDC primitives (specifically DREAD & DWRITE) are vap nsTuc MASS STORAGE
time critical because they must be synchronized with the _
diskette movement and must not be interrupted, or else an gimpl 11ty of the disk interface and FORTH's ability to
may occur. Since the AIM 65/40 microcomputer uses interruptl iz to a particular application allows mass storage
also, all other interrupt sources except for the PDC mcdule -- to be easily used in powerful ways. Two such ways are
must be disabled while the primitives are being perfomed. W .bad in this section. Remember all mass storage opera-
word INTDIS masks out all IRQ sources except for the &M . ni:: use diskettes that are first formatted with either
bus. INTENB restores the IRQ Priority Latch to the ccld res 4 ti a similar word.

value ($00) with no interrupts masked. The word DERROR :

restores the interrupt mask and prints out an error messags, b 'M%W

The word DATA , when given a block number, read/write statu
and a RAM block buffer address on the stack, performs the
transfer, or returns with an error indication if an error i
detected. First, the disk buffers are setup and the blocks
number is converted to a track and a sector. A seek to "h’.
track is performed, with a disk seek error shown if the =ecek
not successful. This is followed by a read or a write, __ 237 the offset to the address returned by o
depending on the status from the stack. For a read, the
requested disk sector is transferred into the RAM block bu r posc ‘you want to process an array of 250 1
with a disk read error shown for errors. For a write, the RA yish the data to start at block 25. If Ehe disk unes

! y ddress of a
block buffer is transferred into the requested disk sector, -byr= blocks, a word that would lupp‘llylth: :::;
with a disk write error shown for errors. - gn array element number (§-249) woul oo 2

-rnr..aga and retrieval using a mass storage device is quite
e Just think of the data as an array of numbers, and,
element number of a data item in the array, co_upu\:a
tequired block number and offset into that block. Knowing
ook number, all that is left to do is to access the block

6-bit numbers and

The word DISK integrates all of the disk management struct
to be used by the FORTH mass storage device. DISK Eirs;"
a size check; if the block is out of range, a disk error ocgl
and the operation terminates. Otherwise, interrupts are dis
abled, the disk access is performed, then the interrupts are
restored (under an error condition they will already be rests s mndification would be appropriate here -- the word !
If more than one drive, or disk side, is available, Dis¥ 4 automatically indicate that data was put into a disk
WiL£144 to select (he spprepriste Aisk and'si6e. s v fer 5o that the buffer will be written out automatically.
also turn on and off the drive motor, but for this rxample, & - ¢asily done by redefining ! and @ as U! and U@ :
motor continues to run. Finally, the disk interface word 01§ :

is stored into the mass storage read/ write vector UR/W .

“IDATA 128 /MOD 25 + BLOCK SWAP 2 * + ;

address produced by DATA can then be used like any other
abl~ address. The normal FORTH words @ and | would
h fotck and store data as if it were always in RAM. One

 lvalue index ---
« ! DATA | UPDATE ;

The FORMAT word prepares new disks for use with the FORTH f}é:dgi_r;".' ‘;'1“’)
disk. This word formats the selected disk (selected by INIT E

by writing track and sector identifiers for every sector of #
disk, and filling each sector with byte $ES pattern. UNore thi
interrupts should be disabled during FORMAT.

12-14

™ha actual use of oA is shown by a :ouple of examnies, con:r-n. + what is called a load screen, which contains

print the 153rd numbe simply type: ctions for loading and executing the entire program.

ee tha source code of the input part of the program is in
153 w . ns 12, 13 and 14, the source code for the processing part

' screens 3@, 31 and 32, and the output source code is in

To clear out the enti array use: / @15 33 to 35. Further suppose that some data manipulating

: 4:4.in screen 192 and 183, and that these words are

CLEAR 250 0 DO @ I U! LOOP FLUSH ; 0ly used by the three overlays of the program. The

ing load screen might look like this:

(The word FLUSH at the end writes all updated buffers oulf

the mass storage device.) : 0RGET TASK : TASK ; (CLEANS DICTIONARY)

g2 LoaD 163 LOAD (DATA WORDS)
MINPUT 12 LOAD 13 LOAD 14 LOAD ;

12.5.2 pProgram Loading and Overlays PROCESS 3@ LOAD 31 LOAD 32 LOAD ;

ouTPUT 33 LOAD 34 LOAD 35 ;
LEVEL 3 INPOT
Once a screen has been written with a FORTH program, it is

necessary to compile the program into the dictionary., This ¢ the three overlay programs, INPUT , PROCESS and
done with LOAD , which takes the screen number from the s f . should have the phrase
and begins compiling that screen, starting at line § and
continues until a ;§ is encountered. The i8 terminatqg 0RGRT LEVEL : LEVEL ;
be placed at any position, and any number of ;S words may
‘i'l"“ On a screen, but FORTH will always stop comnilinag at be first screen to be loaded. This phrase discards the
first ;S encountered. . ous overlay and makes room in the dictionary for the next
i T RS ,-, The process of overlays is started by interpreting
A co“: one screen may be compiled but only if poré . INPUT in the load screen. Note that the three
e = g “::uous. Each screen, except for the n \v words are defined before the dummy word LEVEL . This
==> , and the last screen must e tes that the overlay words will not be forgotten by the
nated with ;§ . Compilation starts with a LOAD of the fis 4ys themselves.
screen in the sequence.
With a disk connected to an A e o evezkaging com be u selmlly Siseerad ope, oF L6
Sty of M v n AIM 65/40 microcomputer with e the next overlay can be called as the last action of
5% Btritia in v an run quite large programs in EQR surrent overlay. The process of overlaying can then
9 the program into convenient-sized pieces and us nie indefinitely and unattended.
pProgram overlays. The techniques £or using program O\P.l[ay 3
;:: :;.1:::1':":0‘:;"‘ data storage -- quite straightforward, ethod - outlined above for enhanced use of mass storage are
s FORGET and LOAD to overlay proaramgy v useful in actual practice even though the methods are
Suppose you have a pro { 8¢ sinple. FORTH is capable of much more. By using the de-
i 4 : program that consists of three parts: b ng words <BUILDS and DOES>, different classes of new
Put, processing and output. If these three parts do not i words can be created to take advantage of other mass

to b
e resident in RAM all at the same time, they can be :rmd : fag: or external facilities.
and run sequentially. .

U e g o e,

b

12.6 SOURCE CODE EDITING

The many different mass storage devices, terminals and uf

preferences make it impossible to provide more than a stark

putting source code onto FORTH screens. Two useful words
manipulating character data are already supplied in AIM 65
FORTH, namely (LINE) and .LINE . The following code
defines two useful words that take advantage of (LINE)
«LINE , and a third word useful for initializing screens
for text. These three words (P ¢ LIST , and WIPE
data to be typed into a line of a screen and show the
techniques involved in creating an editor appropriate to

particular setup. The example screen format shown resnl
using these words.

LIST DUP CR ." SCR # " . (PRINT SCREEN AND SAVE)
16 8 DO CR I 3 .R SPACE I SCR @ .LINE LOOP C

(8§ -—- S WIPE BLANKS & WRITES SCREEN # S. BE C

DO I BLOCK B/BUF BLANKS UPDATE LOOP FLUSH H

L ol ol ol 3
SLUNHRBUDOYIOVdWNHS D
P

15 BASE | (RESTORE PREVIOUS BASE.)] 4

The words LIST and P work together in that a screen
be listed before text is placed in it with P . The ac
listing a screen makes that screen the current screen and
operations are directed to it.

The word LIST uses .LINE to output 16 lines of 64 charas

ters each. LIST also prints the screen number and the ni
of each line, for reference when placing text in that scr
Given the line number as a parameter, the word P fatches
the current screen number then places blanks in that line

$ 13
(SOME PRIMITIVE WORDS TO PUT TEXT IN SCREENS.) ;
BASE @ (SAVE CURRENT BASE) DECIMAL (FOR THIS }
L === PUT TEXT INTO LINE # L VIA: L EDIT TEXTTEXIC
i1 P SCR @ (LINE) OVER SWAP BLANKS (CLEAR LINE) 1
@ WORD (PARSE TEXT) HERE COUNT 64 MIN (64 CH. LINE
ROT SWAP CMOVE (MOVE TEXT) UPDATE ; k-
(8§ === S LIST LISTS SCREEN ¢ 5)

: WIPE B/SCR * B/SCR BOUNDS (SCREEN # TO BLOCK RANGE}

gre moving the following text string into it. The phrase @
I parses out the following text to the carriage return and
'ifh;to HERE with the character count in the first

jon. The phrase HERE COUNT ROT SWAP gets the address

g connt of the text, positioned correctly along with the
-Eisfof'the destination, so that CMOVE can be used to move

%%. Once the text is in the proper buffer, UPDATE
tha buffer as having new data in it, and that data will
stically be written to mass storage if the buffer is needed

I

4

Wword WIPE takes the screen number left on the stack and
ﬁ-au of its blocks with spaces, thus preparing the screen
editing. Because WIPE overwrites anything written in the
en. it must be used with caution.
word: are used like this:
1/ WIPE

'Ebllnka in screen 10, and

16 LIST

e: this.

nter text, use P like this:

'3p THIS LINE OF TEXT GOES ON LINE 3.

5 tevt will be placed on line 3, and the rest of line 3 will

blanked, in case there was old text on it.

T to place text into screens to make a simple editor.
‘tnéaé'ibtdi'by loading the screens and trying them out.

1 use the simple editor to make a enhanced editor that takes
:Qzaue of any features that your particular setup has.

12-19%

Al

f—y

Before you use P with a TTY or CRT, the input buffer =ize
should be set to the display line length, The phrase

APPENDIX A

AIM 65/48 FORTH FUNCTIONAL SUMMARY 3

=7

8@ UC/L

will do this, with the number being the number of charac 2L g
per line.

eppendix contains a summary of the AIM 65/48 FORTH word
nitfons, grouped by area of primary function. Consult
gndix B for the detailed definition of each word.

After a screen has been created or edited, the new informat '
must be written to the disk before that screen is compiled,
This can be done with a FLUSH before the LOAD .

K Notatior

jrack operation is denoted in the parentheses. The symbols
he left indicate the order in which input parameters must
ei on the stack prior to FORTH word execution. Three
f===) indicates the FORTH word execution point. Any

erd left on the stack after execution are listed on the
The top of the stack is to the right.

bol Definition

16-bit signed number]
s . . 32-bit signed number e |

s - 16-bit unsigned number 7
dl, . 32-bit unsigned number -

@addir.,.. address

__ 8-bit byte (with eight high bits zero)
7-bit ASCII character value (with nine high bits
zero)
Boolean flag (zero - false, non-zero = true)
Boolean false flag (value = zero)
Boolean true flag (value = non-zero)

12-20 A1 "

A.l STACK MANIPULATION

bDup (n—nn} Duplicate the nuabes (nl n2 =—- sum) Add two 16-bit numbers.
the stack. 4 (41 42 --- sum) Add two 32-bit numbers.
2DUP (d ---44d) Duplicate the dol (nl n2 === diff) Subtract (nl-n2).
or (nl n2 --- number (or _ (nl n2 === prod) Multiply.
nl n2 nl n2) numbers) on 4 (nl n2 --- quot) Divide (nl/n2).
DROP (n=-==) Delete the top numbas (nl n2 === rem) Modulo (i.e., remainder
the stack. from division).
2DROP {i @ === =) Delete the top d (nl n2 --= Divide, giving remainder
or (nl n2 --- number (or the e, rem quot) and quotient.
numbers) on the * 'MOD (nl n2 n3 Multiply, then divide
SWAP (nl n2 === n2 nl) Exchange the top | === rem gquot) (nl*n2/n3), with
numbers on the stag double intermediate.
OVER (nl n2 -- Copy second number g i (nl n2 n3 --= Like */MOD , but give
nl n2 nl) the stack to the quot) quotient only.
ROT ({ nl n2 n3 Rotate the third nusb (ul u2 === ud) Unsigned multiply leaves
n2 n3 al) on the stack -o th double product.,
top. ' iy (ud ul --- u2 ul Unsigned remainder and
-DUP {(n=---n?) Duplicate the top uotient from double
on the stack only ividend.
it is non-zerc. N (nl n2 da) Signed multiplication
>R (B Move top item to Ret leaving double
Stack. product.
R> ==='n) Retrieve item fvom (dnl n2 n3) Signed remainder and
> Return Stack., uotient from double
R { =—= n) Copy top of Re ; ividend.
onto stack, < M/MOD. (udl u2 Unsigned divide leaving
PICK (n === nth) Copy the nth it 3 u3 udd) double quotient and
top. 2 remainder from double
SPe (== addr) Return address of sta dividend and single
top position., * divisor.
RPE@ addr) Return address of th MAX (nl n2 === max) l:l:lul-
return stack point MIN (nl n2 === min) Minimum.
BOUNDS (addr n --- Convert start agd & g +- (nl n2 === n3) Set sign, n3 = nl times !
addr r + n addr) count to start_and the sign of n2. '
stop addresses. Rip4 (dl n === 43) Set sign of double N
5 —-—) Display stack content number. il
without modifying & " ABS (n --— absolute) Absolute value. 1*
i stack. NARS (d ——- absolute) Absolute value of double _
i f number. '
| A.2 NUMERAL REPRESENTATION - NEGATE {(n=-==n) Change sign, i
= DNEGATE (d - =-d) Change sign of double a
DECIMAL () Set decimal base. - number. :
HEX () Set héxadecimal hasa E->0 (n d) sign extend single
BASE (==— addr) System variable number to double
containing number number.
base. ¥ 1+ (nl1 === nl+l) Increment by 1.
DIGIT { =) Convert ASCII to bina 2+ (nl -—= nl+2) Increment by 2.
5 — t—8) The number zero. - { nl === nl=1J Decrement by 1.
| 1 (=-—=—1) The number one. 2- (nl === nl1-2) Decrement by 2.
| 2 {— 2) The number two. . AND (nl n2 -=-- and) Logical AND (bitwise).
| 3 (—=3) The number three. ~ OR (nl n2 === or) Logical OR (bitwise).
4 (= &) The number four, XOR (nl n2 === xor) Logical exclusive OR

(bitwise).

A.4

A.5

COMPARISON OPERATORS

(nl n2 === £)
(nl N2 ===)

(nl N2 —= £)

i< (n~-—¢)

e= R B
u< ul w2 --- f
NOT £ == f') .

CONTROL STRUCTURES

DO ... LOOP (end+l start —--
e loop)

DO ... n (end+1l start —---
+LOOP «se N +loop)

I (== index)
LEAVE 3

BEGIN BEGIN ... f UNTIL
«ss UNTIL

BEGIN ... BEGIN ... f

WHILE ... WHILE ... REPEAT
««« REPEAT

BEGIN ...
AGAIN
IF ... THEN if: (f -—)

IP ... ELSE if: (f -)
««+ THEN

END
ENDIF

| MEMORY

True if nl less tha

n
True if nl greater 4

n2.
True if top two numbi
are equal. ce
True if top numher o Cl
negative. 7

True if top number |
(1.e., reverses tf
value).

True if ul less t

Reverse Boolean valu
(same as 0 = | .

+!

CMOVE
FILT

FRASF

4 BLANKS
Set up loop, given
range.
Li.. m-o.m’ ['.I
and stack value
(instead of always

P TOGGLF

Place current index
value on stack,
Terminate loop at ney
LOOP or +LOOP .
Loop back to BEGIN §
true at UNTIL .
Loop while true at
WHILE ; REPEAT |
uncanditianally &8
BEGIN .
Unconditional loop.

If top of stack tLrue

execute. «t B
Same, except that if
stack false, execute

ELSE clause., °
Alias for UNTIL .
Alias for THEN .4

addr ---n)
n addr ---)
addr -—-- b)
b addr ---)
addr ---)

n addr ---)

from to n ==
addr n b ---

addr n ---

addr b ---

)£

A-5

Replace word address by
contents.

Store second word at
address on top.

Fetch one byte only.

Store one byte only.

Print contents of
address.,

Add second number on
stack to contents of
address on top.

Move n bytes in memory.

Beginning at addr, fill
n bytes in memory with b.

Beginning at addr, £ill
n bytes in memory with
Zeroes.

inni at addr, fill

..g 57:23 in memory with
blanks.

Exclusively OR byte at
addr with byte b.

“a

INPUT-OUTPUT

-CR

CR

SPACE
SPACES
CLRLINE

TYPE

?TERMINAL
KEY

EMIT
EXPECT

WORD

IN

BL

c/L
TIB
QUERY

ID.

-—f)

---e,

(
(
({ @ ===)
(addr n ---

{ ¢ ===)
(=== addr)

(—=¢)

=== addr)

L
L

addr ---)

{ ==)

L ONIIMRRR

Output a carriage rat
and line feed to thi
AIM 65/48 printer, b
not to the displays

Output a carriage retl
and line feed to the
AIM 65/4® prinrer an
display.

Type one space.

Type n spaces.

Output a CTRL b to ti
AIM 65/49 printer &
display. '

Print message
(terminated by "

Dump n words starting
address using curres
base. -

Type string of n
characters starting
address. 3

True if any key is
depressed. 4

Read key, put ASCI
value on stack.

Output ASCII value
stack. -

Read n characters
until carriage retyl
from input to addre

Read the next text
character string.

User variable contail
current offset with!
input buffer.

Put a SPACF characteg

(ASCII $2@) on the
stack.

Maximum number of
characters/line.

Terminal Input Buffe
start addr.

Input text from
terminal.

Print <name> given nan
fleld address (NFA)

Wait for key stroks,

<
'

STGN

2

VHOLT

 HLD

~ .LINE

CONNT

D‘a

B DPL

L =TRATI.TNC-

OUTPUT FORMATTING

(addr --- d

sl
lal -—- 141

t1agl — 00

(nld]l -—— |d])
(ld] --- addr u)
{0 a7y

{ === addr)

(addr nl ===
addr n2)

(line SCR ---)

(addrl ---
addr+l n).

(B ==}

(n fieldwidth -~

e
(@ fieldwidth -~

(=== addr)

)

)

Convert string at
address to double-
precision number.

Start output string.

Convert next digit of
double-precision
number and add
character to output
string.

Convert all significant
digits of double-
precision number to
output string.

Insert sign :! n into
output string.

1.:-?53:. output string
(ready for TYPE).

Insert 11 character
into output string.

Hold pointer, user
variable.

Suppress trailing
blanks.

Display line of text
from mass storage.

Count and address of
message text.

Print number ASCII
string.

Print number ASCII
string right-justified
in field.

Print double number
ASCII string.

Print double number
ASCII ltring
right-justified in
field.

Address of number of
digits to the right of
decimal point.

= e

== S0 SITWIT - TR, TEE

T

PR T DY,

= T

== =

A.9

A.l8

MONITOR & CASSETTE I/0

coLp § iy
MON { avia)

CLOSE € sn)

7IN (—=)

0UT (===)

GET o3

PUT (e

READ (addr n
WRITE (addrn =)
SOURCE

FINIS (==

COMPILER-TEXT INTERPRETER
sy £ =5
igonpn.:j : popil
LITERAL { B~ 5]
DLITERAL (d --- @)
EXECUTE (addr ——

(

] i’ -

A-8

AIM 65/49 IOI‘IH.e ;
start.

Exit to AIM SSAl
Monitor.

Close audio tape f

Set active 1npu: da

Set active outpyt
device,

Input a character |
the active inpu
device.

OQutput a charlutc
the active outpuy
device. :

Input n charact&
active input de
addr.

Output n characters
addr to lctivq g
device. :

Interpret input fro
active input devig
through AIM 65/48
wt“. g o

End of file marker {
input via sounce

CREATE
PORGET

Interpret next scraf LATEST
Stop interpretation
Force compilatian
IMMEDIATE wor
Compile a numbe
literal.
Compile a doublq
into a literal
Execute the da(ﬁh1~
CFA on top of sta
Suspend co-pfllﬁn
enter execution,
Resume compilation,

LIT

STATE

IMMEDIATE

- LUTERAL
.~ SMUDGE

DICTIONARY CONTROL

{ <name> --

(=—- addr

{ o=
g =%
(<name> addr

found: (<name> ---
PFA b tf) <name>
not found: { <name>

(n === addr)
1w Sl
(a—)

(=~ addr)

(<name>

INTERPRET

addr)

(=—-n
(=-——Db)

{ mim=—]

(=== addr)

Create a dictionary
header.

FORGET all definitions
from <name>.

Returns address of next
unused byte in the
dictionary.

Leave a gap of n bytes
in the dictionary.

A dictionary marker null

word.
rlnd tho PFA of <name>
in the dlctiennrg.
Search dictionary for
<name>.

User variable containing
the the dictionary
pointer.

Compiles byte into
dictionary.

Compile a number into
the @

Pointer to tonporary
buffer.

Forces execution when
compiling.

The Text Interpreter
executes or compiles.

Leave name field address
(NFA) of top word in
CURRENT .

Place 16-bit literal on
the stack.

Place byte literal on
the stack.

Compile a 16-bit
literal.

Toggle name SMUDGE bit.

User variable containing
compilation state.

——a il

—

A.12

<name>
VARIABLE
CONSTANT
CODE <name>

:CODE

<BUILDS...
DOES>

USER

DEFINING WORDS

(

Compilation:

(

Execution:

Begin colon defini{th OAD
of <name>, 1
End colon definitie
Create a variable’
named <name> with
initial value nj

--=)

n =-- <{name>)

{ <name> --- addr) returns address whe
executed.
Compilation: Create a constant inam
(n == <name>) <name> with val
Execution: returns value wh
(<name> -—— n) executed, N
(=== Begin definition of
assembly-language
primitive operatis
named <name). "
(===) Used to create a ney
defining word,
execution-time “g¢
routine® for th
type in assemblys b
Compilation: Used to create a nes UPDATE
<BUILDS ... defining word, wi
Execution: ... execution-time rg FLUSH
DOES> ... for this data typs 2

Offset user <name>

higher-level FORTf EMPTY-
Create a user variab ‘BUFFERS

$BUF

A.13

CONTEXT

CURRENT

FORTH

ASSEMBLER

DEFINITIONS

VOCABULARY

VLIST

VOC-LINK

VOCABULARIES

(

(
(

(
(

(

IBUFFER

-=— addr) Returns address of)} R/W
pointer to CONTEXS WUSE
vocabulary. 3

—=— addr) Returns address of
pointer to CURREN] PREV

vocabulary.
Main FORTH vocabulap
(execution of PORT
sets CONTEXT 1}
vocabulary).
Assembler vocabulary
sets CONTEXT .
Sets CURRENT
vocabulary to
CONTEXT .
Create new vocabulary
named <name>, \
Print names of all wopg
in CONTEXT '
vocabulary.
Most recently defin
vocabulary.

==

"FIRST

\OFFSET

-—-)

<name> ---)

=== <name>)

-—=)

=== addr)

S5 STORAGE

(screen =——)

(block -—— addr)

(=== m)
(—— n)

(=== addr)

(——— addr)

{= =r=g)

=)

=2

(addrl —-- addr2 f)
(n ——— addr)

(addr blk £ —-=)

(==- addr)

{ -=—— addr)

{ —— n)

{ -——— addr)

Load editing screen into
buffer and compile or
execute. Automatically
saves prior buffer
contents if necessary.

Load editing screen into
buffer and compile or
execute. Automatically
stores prior contents
of buffer if necessary.

System constant giving
mass storage block
size in bytes.

Number of blocks/editing
screen.

System variable
containing current
block number.

System variable
containing current
screen number.

Mark last buffer
accessed as updated.

Write all updated
buffers to disk.

Erase all buffers.

Increment buffer
address.

Fetch next memory
buffer.

User read/write linkage.

vVariable containing
address of next
buffer.

variable containing
address of latest
buffer.

Leaves address of first
block buffer.

User variable block
offset to mass

storage.

e

= 5T

A.16

A.l5 MISCELLANEOUS AND SYSTEM

(<comment>)(-——)

CFA (pfa --- cfa)
NFA (pfa --- nfa)
PFA (nfa === pfa)
LFA (pfa --- 1fa)
LIMIT ‘ ——= n)

QuIT Y
SECURITY

1cse 1)
?COMP § ===)
7ERROR { -~)

7EXEC (===
?PAIRS { =-—-)
?STACK (===

Csp { =)

ABORT {~—)

ERROR (line === in blk)
MESSAGE (n ===)
WARNING (=== addr)
FENCE (-—- addr)
WIDTH (=--- addr)

Begin comment, tacs
by right parenth
on same line.

Alter parameter flell
address to cnd £
address.

Alter parameter f
address to name {

address. 3 (Do

Alter name field
to parameter flels
adddress.

Alter parameter £
address to llng
address.

Top of memory.

Clear Return Stack &
return to termina

PRRANCE

Store stack positig \BRANCE

into check =srack
pointer.
Error if not compild
Check stack positl
Outputs error messags

Not executing ~rrof Re

Conditional not palg

error. g0

Stack out of hou -?
error. !
User variable !ot 2
stack pointer.!
Brror ...operatio
terminates.
Execute error |
notification and
restart system,
Dilplayl message
1
!lng for to message
routine. .
Prevents FORGET be
this point. :
Contrnls rthe numbepts
significant rharag
of <name>.

8(; CODE'

(ARNRT!

' (NUMBER'

FENCLOSE

[==r)

(n==-)

(limit+l
start -)

(addrl addr2 -

pfa b ff)

(addrl addr2 -

££)

(nl n2 -)
addr count)

(===

)

£ =)

{ —=)

===)

({ add ¢ —
addr 1 n2 n3)
(=== addr)

(-—- addr)
==

Run-time procedure
compiled by ." .
Run-time procedure
couYilod by ;CODE .
Run-time procedure
compiled by +LOOP .
Run- me procedure
iled by ABORT .
Run—t me procedure
compiled by DO .
searches the dictionary

Virtual storage line
primitive.

Run-time procedure
compiled by LOOP .

Converts ASCII to
numeric.

Run-time conditional
branch.

Run-time unconditional
branch.

Indicates single
character literal.

Text scanning by WORD .

Location of Return Stack
base.

Location of Parameter
Stack base.

Initializes Return
Stack.

Initializes Parameter

Stack.

=5 S

T s

#. Mot o 1

X == W= S

Lt

APPENDIX B

AIM 65/48 PORTH GLOSSARY

glossary contains the definition of all words in the AIM

/4§ FORTE vocabulary. The definitions are presented in ASCII
ik oraar

lick Notation

first line of each entry shows a symbolic description of
action of the procedure on the parameter stack. The
ol: on the left indicate the order in which input
-:eters have been placed on the stack. Three dashes "---"
te the execution point; any parameters left on the stack
#r execution are listed on the right. 1In this notation, the
of the stack is to the right.

mbol Definition

fE,addr: memory address
: 8-bit (with high eight bits zero)

7-bit ASCII character (with high nine bits
zero)
32-bit signed double integer, most
significant portion with sign on top of
stack
Boolean flag (@=false, non-zero=true)
Boolean false flag (value = @)
16-bit signed integer number
16-bit unsigned integer number
32-bit unsigned number E
Boolean true flag (value = non-zero)

Pronunciation

The natural language pronunciation of FORTH names is civen

double quotes (").

Integer Format

Unless otherwise noted, all references to numbers are for
16-bit signed integers. The high byte of a number is on Egj
the stack, with the sign in the left-most bit. For 32-blt
signed double numbers, the most significant part (with the

sign) is on top.

All arithmetic is implicitly 16-bit signed integer math, v

error and underflow indication unspecified.

Capitalization

Word names as used within the glossary are convenrionally
written in upper case characters. Lower case is used when
reference is made to the run-time machine codes (not dlro@
accessible), e.g., VARIABLE is the user word to create a

variable. Each use of that variable makes use of a code
sequence 'variable' which executes the function of the
particular variable.

one

STACK
NUMERTC
ARITHMETIC
b COMPART SON
CONTRO!
MEMORY

1/c

FORMAT

MONTTOR
COMPILER
RICTTONNARY
PEFTNTNC
VOCARUTLARY
MASE

N1SC
SECURTTY
WPRIMITIVF
ASSEMBLER
PARAMETER

iributes (ATTR)

Ma: only be used 1
indicates number

oup Key Words (GROUP

2ital letters show definition characteristics

iin a colon-defini 1. A digit
emory acdresses u v if other tha

Intended for execution only.

" Indicates that the word is IMMEDIATE and will execute
during compilation, unless special action is taken

Has precedence bit set. Will execute even when compiling.
» user variable. :

8 follnwing key words identify the functional group (see
pendis A) that each word is most related to.

Stack Manipulation

Numeric Representation
Arithmetic and Logical
Comparison Operators
Control Structures

Memory

Input/Output

Output Formatting

Monitor and Cassette Input/Output
Compiler - Text Interpreter
Dictionary Control

Defining Words

Vocabularies

Mass Storage

Miscellaneous
Security/Error Detection
Primitives

Assembler Dictionary
Parameter Used in FORTH

WORD

ICSP

>

45

STACK NOTATION/DEFINITION GROUP ATTR

n addr === MEMORY
"store"
Stores 16-bit number n into addr.

————— SECURITY
“store CSP"

Stores the stack position in CSP . Used as pa

the compiler security. See CSP .

udl -— wud2 FORMAT
“sharp"

Generates the next ASCII character placed in

output string from udl. Result ud2 is the qual

after division by BASE, and is maintained for
E;rthu: processing. Use between <§ and §>

d -—— addr n FORMAT
“sharp-greater"

Terminates numeric output conversion by dropping
leaving the text address and character count o

suitable for TYPE .

vd — 9 P FORMAT
“sharp-s*

Converts all digits of a ud adding each to the

pictured numeric output text, until the remal
zero, A single zero is added to the output s
if the number was initially zero. Use only be
<} and ¥ .

1

——- addr DICTIONARY

“tick®
Used in the form:

<name>

If executing, leaves the parameter fleld addres
the next word accepted from the input stream,"§
compiling, complles this address as a literal;

execution will place this value on the stack.

If the word {s not found after a search of _COM
and FORTH vocabularies an error message is
displayed,

STACK NOTATION/DEFINITION GROUP ATTR

MISC

“paren"
Used in the form:

{ ccecc)

Accepts and ignores comment characters from the
input stream, until the next right parenthesis. As
a word, the left parenthesis must be followed by one
blank. It may be freely used while executing or
compiling. An error condition exists if the input
stream is exhausted before the right parenthesis.

PRIMITIVE c

The run-time procedure, compiled by .%, which
transmits the following in-line text to the selected
output device.

See . .

PRIMITIVE C

The run-time procedure, compiled by ;CODE , that
rewrites the code field of the most recently defined
word to point to the following machine code
sequence., See ;CODE .

PRIMITIVE c

The run-time procedure compiled by +LOOP , which
increments the loop index by n and tests for loop
completion. See +LOOP .

PRIMITIVE

Executes after an error when WARNING is -1. This
word normally executes ABORT , but may be altered
{with care) to a user's alternative procedure. See
ABORT .

limit +1 start —— PRIMITIVE C

The run-time procedure, compiled by DO , which
moves the loop control parameters to the return
stack. See DO .

RNR—Y

WORD

(FPIND)

(LINE)

(LooP)

(NUMBER)

L7

STACK NOTATION/DEFINITION GROUP ATTR

PRIMITI
addrl addr2 pfa byte tf {oqu '
addrl addr2 £f (bad)

Seatches the dictionary starting at the name \‘iel
address addr2, matching to thonzo:t nt.addrl 3
Returns parameter field address, length of n:
field byte and Boolean true for a good match.

!:;.:]I; is found, only a Boolean false is left.

nl n2 =--- addr count PRIMITIVE
Converts the line number nl and the screen n
:out:o :i:: ?:gfor address containing the dat

ount o cates the full 1i h
S 1 ne text leng !

PRIMITIVE |

The run-time procedure, compiled by LOOP, whi
increments the loop 1n5-x agd t.lt! for ioop;
completion. See LOOP . i

dl addrl --- d2 addr2 PRIMITIVE
Converts the ASCII text beginning at addrl+l w
regard to BASE . The new value is accumulate y
dl, being left as d2. addr2 is the address o
first unconvertable digit. See NUMBER . '

nl n2 =--- n3
"times"*

Multiples nl by n2 and leaves the product n3.

ARITHMETIC

nl n2 n3 --- nd
"times-divide®
Multiplies nl by n2, divides t i
leaves the quotient nd. nd 1-h:o§;3:it::3.235'*
The product of nl times n2 is maintained as a&
intermediate 32-bit value for a greater precisbf
than the otherwise equivalent sequence: 9

ARITIHITICi

nl n2 * pn3 /

B-6

==

STACK NOTATION/DEFINITION GROUP ATTR
nl n2 n3 --- nd n5 ARITHMETIC

"times-divide-mod®

Multiplies nl by n2, divides the result by n3 and
leaves the remainder n4 and quotient n5. A 32-bit
intermediate product is used as for */ . The
remainder has the same sign as nl.

nl n2 =--- n3 ARITHMETIC

- “I
s nl to n2 and leaves the arithmetic sum n3.

n addr --- MEMORY
"plus store" <
Adds n to the 16-bit value at the address, by the ”
convention given for +.

nl n2 =--- nl ARITHMETIC !
*plus-minus"” i

Applies the sign of n2 to nl, which is left as n3. |

addrl --- addr2 flag MASS
*plus-buf" .
Advances the virtual storage buffer address (addrl)
to the next buffer address (addr2). Boolean flag is
false when addr2 is the buffer presently pointed to
by variable PREV .

nl === (run-time) CONTROL Ic
addr n2 --- (compile-time)

*"plus-loop”

Used in a colon-definition in the form:

DO ... nl +LOOP

At run-time, +LOOP selectively controls branching
back to the corresponding DO based on nl, the loop
index and the loop limit. The signed increment nl is
added to the index and the total compared to the
1imit. The branch back to DO occurs until the new
index is egual to or greater than the limit (nl >
g), or until the new index is equal to or less than
the limit (nl < @), Upon exiting the locop. the
parameters are discarded and execution continues.
Index and limit are signed integers in the range
‘-32 ,753. |32 '767>o

B-7

WORD

+LO0OP
(Cont.)

-=>

-DUP

-FIND

STACK NOTATION/DEFINITION GROUP ATTE

At compile-time, +LOOP compi i
piles the run-timg
(+LOOP) and computes the branch offset frzé
to the address left on the stack by DO n2
used for compile time error checking. I '

ﬂ ——
"comma"
Stores n into the ne i

: Xt available dictiona nemg
cell, advancing the dictionary pointer i

DICTIONARY

nl n2 --- n3
"minus"”

Substracts n2 from nl and leaves the differenc

ARITHMETIC 8

"next-screen" T <

Continu in rpre
n es te tation wit e n t v ua
h th ex irt 1

"carriage-return" RO

Issues a carriage return and 1i

ne feed t
Printer but not to the display. calls hgntgg
Monitor subroutine CRCK.

nl =--- nl (if zero) ST
ACK
nl --- nl nl (non-zero)

*minus-dup"
Reproduces nl only if it is

non-zero. Thi
u§ga11y used to copy a value just before 1§Fis
eliminate the need for an ELSE clause to drop

-—— ?ga b tf (found)

a5 (not £
"dash-find" =)

Accepts the next text word (del

imited by bl 5)
ég;Tinput stream to HERE , and searcheg th:nk
£9 :?T and then CURRENT vocabularies for a-
ar.c ng entry., If found, the dictionary entryl
parameter field address, its length byte, and a;

boolean tr
i el lzgtis left. Otherwise, only a Boolean

DICTIONARY

STACK NOTATION/DEFINITION GROUP ATTR

addr nl --- addr n2 FORMAT

*dash-trailing®

Adjusts the character count nl of a text string
beginning address to suppress the output of trailing
blanks. The characters at addr+nl to addr+n2 are
blanks. An error condition exists if nl is
negative.

e INPUT/OUTPUT
"dot"
Displays the number on the top of a stack. The
number is converted from a signed 16-bit two's
complement value according to the numeric BASE .
The sign is displayed only if the value is negative.
A trailing blank is displayed after the number.
Also see D. .

INPUT/OUTPUT I

*dot—-gquote”
Used in the form:

iceece"

Accepts the following text from the input stream,
terminated by " (double-quote). If executing,
transmits this text to the selected output device.
1f compiling, compiles so that later execution will
transmit the text to the selected output device. At
least 127 characters are allowed in the text. 1f
the input stream is exhausted before the terminating
double-quote, an error condition exists.

0 =S e FORMAT

*dot-line"

Displays a line of text from mass storage by its
line number nl and screen number n2. Trailing
blanks are suppressed.

Ll - FORMAT

*dot-R"

Displays number nl right justified n2 places. No
trailing blank is printed.

I4 il

T

/MoD

8<

@BRANCH

STACK NOTATION, NITION

GROUP ATTR DD

STACK
*dot-s"

Displays the contents of the stack without altrﬁr
the stack. This word is very useful .n detarminls

the stack contents during debuggi rograms and
learning PORTH. R 4

nl n2 === n3 ARE
"aivide® THMETIC

Divides nl by n2 and leave the gquotient n3. n?\
rounded toward zero. The remainder is lost.

nl n2 =--- n3 nd
*divide-mod"
Divides nl by n2 and leaves the ?uo:ttnt nd and

ARITHMETIC

remainder n3. n3 has the same sign as nl,
-— NUMERIC
"zero®

The number zero is placed on top of the stack.

n =--- flag
"zero-less"
Leaves a true flag (1) if the number is less than
zero (negative), otherwise leaves a false flag (§
The number is lost.]

COMPARISON

COMPARISON :

n == fl
“zero-equals”
Leaves a true flag (1) if the number is equal to BROF

zero, otherwise leaves a false flag (9). The nunb
is lost,

flag --—- PRIMITIVE
“zero-branch” :
The run-time procedure to conditionally branch, DUP

the flag is false (zero), the following in-line
parameter is added to the interpretive pointer tp
branch ahead or back. Compiled by IF UNTIL
and WHILE .

B-180

STACK _NOTATION/DEFINITION GROUP ATTR
ans 1 NUMERIC

“one"
The number one is placed on top of the stack.

n =--- n+l ARITHMETIC
*"one-plus"

Increments n by one according to the operation of
+ .

n ==-- n-l ARITHMETIC

"one-minus®
D::r.lonts n by one according to the operation of

-

e, /W NUMERIC
.t”.
The number two is placed on top of the stack.

n === n+2 ARITHMETIC
*two-plus®

Increments n by two according to the operation of
‘ -

n --- n-2 ARITHMETIC

*two-minus"®
Decrements n by two, according to the operation o!

-

d - STACK
or nl n2 ---
" two-drop”
Drops the top double number on the stack.

d === d d STACK
or nl n:_—-- nl n2 nl n2
*two-du
Duplicog.- the top double number on the stack.
———— e — NUMERIC
“three®

The number three is placed on top of the stack.

—-— 4 NUMERIC

"four"

The number four on top of the stack.

B-11

-t

;CODE

STACK NOTATION/DEFINITION GROUP

"colon"
A defining word used in the form:

: <name> ... } -
Selects the CONTEXT vocabulary to be identical &g
CURRENT . Creates a dictionary entry for <name) {
CURRENT , and sets the compile mode. Words thus
defined are called 'colon-definitions'. The
compilation addresses of subsequent words from
input stream which are not immediate words are

stored into the dictionary to be executed when
<name> is later executed.

executed as encountered,

IMMEDIATE words are

If a word is not found after a search of the
CONTEXT and FORTH vocabularies conversion and
compilation of a literal number is attempted, with
regard to the current BASE ; that failing, an errs
condition exists.

FIN
"semi-colon" I

Terminates a colon-definition and stops further
compilation. If conpill:g from mass storage and i1 1.0s
input stream is exhausted before encountering ; & LD
error condition exists.

DEFINING
"semi-colon-code"

Used in the form:

: <name> ,... ;CODE <assembly code>
END-CODE

Stops compilation and terminates a new defining wor

<name> by compiling (;CODE) . Sets the CONTEXT

vocabulary to ASSEMBLER , assembling to machine

code the following mnemonics. !

When <name> is later executed in the form:

<name>

<namex>

to define the new <namex>, the code field address g
<namex> will contain the address of the code

sequence following the ;CODE in <name>. Executio
of any <namex> will cause this machine code sequencs
to be executed. !

GROUP ATTR

STACK NOTATION/DEFINITION

COMPILER
. i-colon=-8" ‘
B::;s interpretation of a screen. 15 1-101:0 th
run-time word compiled at the end of a co onln
definition which returns execution to the calling

procedure.

nl n2 =--- flag COMPARISON

- - -
L::::stiazruo flag (1) if nl is less than n2;
otherwise leaves a false flag (@).

4 -— 4d FORMAT

- - _h -
Ittzzaig:zl.t;:pplcturcd numeric output format using

the words:

<§ # #S HOLD SIGN #>
ision
ifies the conversion of a double-prec
;ul;or nto an ASCII character string sto

right-to-left order, producing text at PAD .

DEFINING

Used within a colon-definition:

: <name> <BUILDS ... DOES> .

defines a
time <name> is executed, <BUILDS

:::?uorz with a high-level execution procedure.
Executing <name> in the form:

<name> <namex>

for
<BUILDS to create a dictionary entry

:;::l!) with a call to the DOEB> part for <nluc:>
when nnnn is later executed, it has the addre:;.e
its parameter area on the stack and -:.cut:; - P
words after DOES> in <name>. <BUILDS a 3 :
allow run-time procedures to written in high-leve
rather than in assembler code (as required by

;Ccﬂl .‘I

nl n2 --- flag COMPARISON
*"gequals”
L:2th a true flag (1) if nl is equal to n2;

otherwise leaves a false flag (8).

>R

7CoMP

?CSp

7ERROR

7EXEC

?IN

70UT

GROUP ATTR ORD

STACK NOTATION/DEFINITION
nl n2 --- flag COMPARISON ALRc
"greater-than" ;

Leaves a true flag (1) if nl is greater than n7:
otherwise a false flag (8).

n =--- STACK ; 4
"to-R" A
Removes a number from the computation stack and '
places it as the most accessible number on the

return stack. Use should be balanced with R>

the same definition.

ERMINAT

addr -- '
“question-mark"”
Displays the value contained at the address on th
top of the stack in free format according to the
current BASE. Uses the format of . .

STACK

SECURITY
Issues error message if not compiling.

SECURITY ¢

Issues error mes: I stack posi ion differs fro
value saved in ¢
SECURITY

Issues error message #1 (STACK EMPTY), If the
Boolean flag is true.

SECURITY

Issues an error message if not executing.

MONITOR

Calls the AIM 65/48 Monitor subroutine WHEREI to |
the active input device.

MONITOR
Calls the AIM 65/40 Monitor subroutine WHEREO ta-”
the active output device.

B-14

STACK NOTATION/DEFINITION GROUP ATTR

nl n2 === SECURITY

Issues error message §#19 (CONDITIONALS NOT PAIRED)
if nl does not equal n2. The message indicates tha
compiled conditionals do not match.

SECURITY

Issues error message #7 (FULL STACK) if the stack is
out of bounds.

--- flag INPUT/OUTPUT
Tests the terminal keyboard for actuation of any
key. Generates a Boolean value. A true flag (1)
indicates actuation, whereas a false flag (8)
indicates non-actuatien.

addr -—— n MEMORY
"fetch"
Leaves the 16-bit contents of the address on tog_ot

the stack.

SECURITY
"abort™
Clears the stacks and enters the execution state.
Returns control to the AIM 65/40 keyboard.

A — o ARITHMETIC
"absolute"

Leaves the absolute value of n as u

addr n --- (co -time) CONTROL
"again®
Used in a :olon-defini in the form:
BEGIN AGAIN

At run-time, AGAIN forces execution to return to
the corresponding BEGIN . There is no effect om
the stack. Execution cannot leave this loop (unles
R> DROP is executed one level below).

At compile-time, AGAIN compiles BRANCH with an
offset from HERE to addr. n is used for
compile-time error checking.

B-15

ASSEMBLER

B/BUF

B/SCR

STACK NOTATION/DEFINITION GROUP ATTR 40F
-— COMPILER 3 a1

n
"allot"
Adds the signed npmber to the dictionary poinrer
DP . May be used to reserve dictionary space nr
re-origin memory. n is the number of bytes.

nl n2 2
I.Mt
Leaves the bit-wise logical AND of nl and n2 as i

ARITHMETIC

VOCABULARY
"assembler"™

Sets the vocabulary to ASSEMBLER .

~
- n

"bytes-per-buffer" .
Leaves the number of bytes (default value = 128)
data buffer, the byte count read from mass storaaf
by BLOCK . The actual buffer size is four bytes
larger than this value.]

— R
"blocks per screen®
Leaves the number of blocks (default value 8) per
FORTH screen. By convention, an ediring screen {

MASS

1824 bytes organized as 16 lines of 64 characrar LANK S

each. : j
=== addr NUMERIC

"base” a

Leaves the address of the variable containing t .

current number base used for input and output L)

conversion. The range of BASE is 2 through 74,

B-16

STACK NOTATION/DEFINITION GROUP ATTR
--- addr n (compile-time) CONTROL
*begin®
Occurs in a colon-definition in form:
BEGIN ... flag UNTIL
BEGIN ... AGAIN
BEGIN ... flag WHILE ... REPEAT

At run-time, BEGIN marks the start of a word
sequence for repetitive execution.

A BEGIN-UNTIL loop will be repeated until flag is
true. A BEGIN-WHILE-REPEAT loop will be repeated
until flag is false. The words after UNTIL or
REPEAT will be executed when either loop is
finished. flag is always dropped after being
tested. The BEGIN-AGAIN loop executes
indefinitely.

At compile-time, BEGIN leaves its return address
and n for compiler error checking.

=== cha
"blank"
A constant th
"blank", i.e.

INPUT/OUTPUT

res the ASCI! character value fo

addr n =-—-
*blanks”
Fills an area of memory beginning at addr with the
ASCII value for "blank®, the number of bytes
specified by count n will be blanked. -

MEMORY

--— addr
"b-1-k"*
Leaves the address of a user variable containing th
number of the mass storage block being interpreted
as the input stream. If the content is zero, the
input stream is taken from the terminal.

MASS

n --- addr
et 5 77] =
Leaves the first address of the block buffer
containing block n. If the block is not already in
memory, it is transferred from mass storage to
whichever buffer was least recently accessed. If
the block occupying that buffer has been marked as
updated, it is rewritten onto mass storage before
block n is read into the buffer. If correct mass
storage read or write is not possible, an error
condition exists. Only data within the latest block

MASS

B-17

BOUNDS

BRANCH

BUFFER

C.

ce

STACK NOTATION/DEFINITION GROUP A

referenced b

BLOCK is valid by byte address, dus
to sharing o

the block buffers. n is an unsigned

number. Also see BUFFER , R/W , UPDATE and
FLUSH .

addr n --- add +n addr ARITHMETIC A4
"bounds”™

Bounds is equivalent to OVER + SWAP . It is
to convert addr and count to a start and stop
address for a loop.

CONTROL
*branch®
The run-time procedure to unconditionally branch,
An in-line offset is added to the interpretive
pointer IP to branch ahead or back. BRANCH is
compiled by ELSE , AGAIN , and REPEAT .

n --- addr MASS
*buffer” T .
Obtains the next block buffer, assigning it to blog
n. The block is not read from mass storage, If th
previous contents of the buffer is marked as

UPDATED, it is written to the mass storage., If
correct writing to mass storage is not possible, 2
error condition exists. The address left is the
first byte within the buffer for data storage.

RLINE

n addr =---
"c-store"
Stores the least significant 8-bits of n into the
byte at the address.

MEMORY

n -
"c-comma”
Stores 8 bits of n into the next available X
dictionary byte, advancing the dictionary pointery

DICTIONARY

"characters/line" o
Leaves the number of characters (default value = 30
per input line.

INPUT/OUTPUT:

add === byte MEMORY
“c-fetch n
Leaves t 3-bit contents the byte at the adrress
on the t »f the stack i ? low order byte, The
high ord dyte is zero.

o

B-18 1 ;

STACK NOTATION/DEFINITION GROUP A

——

pfi - cfa MISC
*c=-f-a"
Convert: e parameter field address (pfa) of a
definit to its code field address (cfa).

e T STACK
"c-1it"

Compiled within system object code to indicate that
the next byte is a single character literal (i.e.,
in range 8-255). Used only in system code (not by
application program, i.e. user). Application
programs use LITERAL , which uses CLIT or LIT
as appropriate.

MONITOR
"close”
Closes tape Sets the active input drive to
koxbonrd and re output device :o Display/
Printer.
- INPUT/OUTPUT

"clear-line”
Outputs a CTRL B to the AIM 65/4@ printer and
display to clear to the end of the line.

addrl addr2 n --- MEMORY

"c-move"

H:vol n bytes from memory area beginning at addres:s
addrl to memory area starting at addr2. The
contents of addrl is moved first proceeding toward
high memory. If n is zero or negative, nothing is

moved.

ASSEMBLER
"code"”
A defining word used in the form:

CODE <name> ... <assembly code> ... END-CODE

To set CONTEXT to the ASSEMBLER vocabulary and
to create a dictionary entry for <name>, When
<name> is later executed the machine code in this

parameter field will execute.

B-19

coLp

COMPIL

CONSTANT

CONTEXT

COUNT

CR

STACK NOTATION/DEFINITION GROUP ATTR R
MONITOR AT

"cold" i
The cold start procedure to adjust the dictionagy
pointer to the minimum standard and restart vis .
ABORT . May be called from the terminal to re
application programs and restart. Performs the saml
functions as entering FPORTH from the AIM 65/44
Monitor via the 5 key.

COMPILER
"compile”™

When the word containing COMPILE executes, ths
compilation address of the next non-immediate wor
following COMPILE is copied (compiled, Into th 3
dictionary. This allows specific compilation -
situations to be handled in additiop to simply
compiling an execution address (which the

interpreter already does).

n =--- <name> (compile-time)
<name> --- n
"constant"®
A defining word used in the form:

DEFINING 3
(run-time)] [RENT

n CONSTANT <name>

to create a dictionary entry for <name>, leayingj
in its parameter field. When <name> is later
executed, it will push the value of n to the s

et DICTIONARY
"context”®
Leaves the address of a user variable pointing
the vocabulary in which dictionary searches are tg
made, during interpretation of the input stream,

addr

addr === FORMAT
"count®
Leaves the address addr+l and the character counts
of text beginning at addr. The first byte at addg
must contain the character count n. The actual
starts with the second byte. The range of n is
#=255. Typically COUNT is followed by TYPE -

addr+l n

INPUT/OUTPUT
"carriage-return®

Transmits a carriage

| and line feed (ﬁ}
to the active output :

B-20 : 1

GROUP ATTR

DICTIONARY

"create"
Acdoliulng word used in the form

CREATE <name>

dictionary entry for <name> without
Ei;::::l=g any paruzottr ¥101d memory. When :20-:>
is subsequently executed, the address of the g rs
byte of <name>'s parameter field is left on tt.tho
stack. The code field contains the address o &g
word's parameter field. The new word is creat

the CURRENT vocabulary.

addr SECURITY

et o raril
Leaves the address of a user variable tempo Y

storing the check stack pointer (CSP) position,
for compilation error checking.
-== addr DICTIONARY
- t.
L:::::“th. address of a user variable inting to

the vocabulary into which new word definitions are
to be entered.

d 42 — a3 ARITHMETIC

;:;?g:ublo precision numbers dl and d2 and leaves
the double precision number sum d3.

dl n --- d2 ARITHMETIC
Applies the sign of n to the double precision number

dl and leaves it as double precision number d2.

FORMAT

d —
*"d-dot"

a signed double-precision number from a
gg:g}:’:uo'l go.pl!llnt value. The high-order iﬁ
bits are most accessable on the stack. c:zvars“on
is performed according to the current BASE .
blank follows.

d] B Tes= FORMAT

"d-dot-r” & Jidii
a signed double-precision number
Ei:g::g'in a %iold n characters wide,

B-21

s STACK NOTATION/DEFINITION GROUP ATTR] : j0RD
DABS [——r id
*d-abs® ARITHMETIC |

Leaves the absolute value ud of a double numbej

DECIMAL

Saslaats NUMERIC
Sets the numeric conversion BASE 51
18) for input-output. e iﬁ
DEFINITIONS]I
*definitions® e 3
Used in the form:]
cccc DEFINITIONS -
Sets CURRENT to the CONTEXT vocabul S
subsequent definitions will be created in the Lﬁ'
vocabulary previously selected at CONTEXT . f
1
DIGIT
NUMERIC
z:ar nl --- n2 tf (valid conversion) 3
'dtgtt'.r nl =--- ff (invalid conversion)
Converts the ASCII character (usi BASE nl 0
%:: blg:r{hoqulvllonf n2, ac :?od by a tr:.ti
. e conversion is { 3
Ealan Slag (o) s nvl;id, leaves only a
DLITERAL d --- d (executing) COMPILER
d -— (compiling)
sd-literal” ;
ling, compiles a stack double number :niq |
literal, Later execution of the dctinltlonr Y
containing the literal will push it to the Srack
If executing, the number will remain on the =rack
DNEGATE dl =-- =41
IR ARITHMETIC
Leaves the two's complement of a double prerisiong
number,

B-22

STACK NOTATION/DEFINITION GROUP ATTR
nl n2 =--- (run-time) CONTROL

addr n =--- (compile-time

Occurs in a colon-definition in form:

DO ... LOOP
DO ... +LOOP

At run-time, DO begins a sequence with repetitive
execution controlled by a loop limit nl and an index
with initial value n2. DO removes these from the
stack. Upon reaching LOOP the index is
incremented by one. At the +LOOP the index is
modified by a positive or negative value. Until the
new index egquals or exceeds the limit, execution
loops back to just after DO ; otherwise the loop
parameters are discarded and execution continues
ahead. Both nl and n2 are determined at run-time
and may be the resuult of other operations.

Loops may be nested. within a loop I will copy the
current value of the index to the stack. See I ,
LOOP , +LOOP , LEAVE .

At compile-time within the colon-definition, DO
compiles (DO) and leaves the following addr and n
for later error checking.

*"does"

Defines
defining
Used in !

: <name> ... (BUILDS ...
DOES> ... 1}
and then <name> <namex>.

Marks the termination of the defining part of the
defining word <name> and begins the definition of
the run-time action for words that will later be
defined by <name>.

DOES> alters the code field and first parameter of
the new word to execute the sequence of compiled
word addresses following DOES> . Used in
combination with <BUILDS . The execution of the
DOES> part begins with the address of the first
parameter of the new word <namex> on the stack.
Upon execution of <name> the sequence of words
between DOES> and ; will be executed, with the
address of <namex>'s parameter field on the stack.
This allows interpretation using this area or its
contents.

B-23

e

WORD STACK NOTATION/DEFINITION GROUP ATTR STACK NOTATION/DEFINITION

DOES> Typical uses include the PORTH assembler, i At compile-time, ELSE emplaces BRANCH reserving
(Cont.) multi-dimensional arrays, and compiler generation, font . a branch offset, leaves the address addr2 and n2 for
error testing. ELSE also resolves the pending
forward branch from IF by calculating the offset
DP addr COMPILER from addrl to HERE and storing at addrl, BSee IF
"d-p" and THEN .
Leaves the address of user variable, the dictionagy
pointer, which points to address the next free
memory address above the dictionary. The value =ay char --- INPUT/OUTPUT
be read by HERE and altered by ALLOT . Semit*®

Transmits an ASCII character to the selected output
device. See KEY .

DPL ==== addr PORMAT
.d_rII i
iTY{-BUFFERS MASS
"empty-buffers”
Marks all block-buffers as cnptx, not necessarily
affecting the contents. Updated blocks are not
written to the mass storage. This is also the
required initialization procedure before first use
of the mass storage.

Leaves the address of user variable containing th
number of digits to the right of the decimal on
double integer input. It may also be used hold
output column location of a decimal point, in user
generated formating. The default value on sinale
number input is -1.

-

DROP n === STACK
"drop
Drops the number on top of the stack from the stack

SF PRIMITIVE
addr char -— addr nl n2 n3

"enclose"

The text scanning primitive used br WORD. From the
text address addr and an ASCII dellmiting character
is determined the byte offset to the first non-
delimiter character nl, the offset to the first
delimiter after the text n2, and the offset to the
first character not included n3. This procedure
will not process past an ASCII 'null', treating it
as an unconditional delimiter.

DUMP nddl n = INPUT/OUTPUT

D!sf s the contents of n memory locations

nning at addr. Both addresses and contents
lhm in the current numeric base. DUMP ~urputs 8
bytes on a line.

bup A === n n STACK
ldu L]
Duplicates the value on the stack. CONTROL
i.ndl
This is an 'alias' or duplicate definition for
ELSE CONTROL UNTIL .
addrl nl addr2 n2 (compiling)
"else"
DIF addr n === (compile) CONTROL
Occurs within a colon-definition in the form: "end-if"
An alias for THEN . See THEN .
IF ... ELSE ... THEN
At run-time, ELSE executes after the true part AS F addr n --- MEMORY
following IF . ELSE forces execution to skip oval "erase"
the following false part and resumes execution afts Clears a region of memory to zero from addr over n
{ the THEN . It has no stack effect. addresses.

B-24 B-25

WORD STACK NOTATION/DEFINITION GROUP ATTR ORD STACK NOTATION/DEPINITION GROUP ATTR
ERROR line --- in blk SECURITY Lus N
"error™ *flush" 5é
Executes error notification and restart of system, Writes all blocks to mass storage that have lon £
WARNING is first examined. If WARNING = 1, the 3 flagged as UPDATEd . An error couditl:: results
text of line n, relative to screen 4 of drive # i writing to mass storage is not completed.
printed. This line number may be positive or :
negative, and beyond just screen 4. If WARNING
@, n is just printed as a message number (non-disk 07 . . DICTIONARY
installation). If WARNING = -1, the definition : forget
(ABORT) is executed, which executes the system | Executes in the form:
ABORT . The user may cautiously modify this I
execution by altering (ABORT) . AIM 65/48 FORTH FORGET <name>
saves the contents of IN and BLK to assist in !
determining the location of the errer. Final actlol h Delete from the dictionary <name> (which is in th
is execution of QUIT . L CURRENT vocabulary) and all words added to the
dictionary after <name>, regardless of their
vocabulary. An error message will occur if the
EXECUTE add; =-- COMPILER : CURRENT and CONTEXT vocabularies are not
“execute' currently the same. Failure to find <name> in
Executes he definitic * code field address § CURRENT or FORTH is an error condition.
on the st ck. The code address is also ~allag :
i
the comp! ation addres VOCABULARY
“forth"
EXPECT addr count --- INPUT/OUTPUT The name of the primary vocabulary. Execution makes
= 2 3 ' FORTH the CONTEXT vocabulary.
Transfers characters from the terminal beginning at
addr, upwards until a "return® or the count of n New definitions become a part of FORTH u?tllda
characters has been received. Takes no action for) differing CURRENT vocabulary is established.
= zero or less. One or more nulls are added at the) ”
end of the text. ' User vocabularies conclude 'chalnlnt to FORTH,
: so it should be considered that FORTH is 'contained
' ; within each user's vocabulary.
FENCE --- addr SECURITY
"fence" 5
Leaves the address of a user variable containing af G --- char MONITOR
address below which FORGETting is trapped. To ' _ "get" bl
forget below this point the user must alter the Leaves the ASCII value of the next available
contents of FENCE . character from the active input device and outputs
the character to the active output device.
FILL addr —— MEMORY
"fi11* ® X 1 gANC INPUT/OUTPUT
Fills n bytes, beginning at addr with the byte ' *"hang"
pattern b. ! Waits until a key is depressed then continues
FINIS MONITOR 5 25 albe DICTIC §ARY
“finis" i ' "here”
Marks the end of the input data stream into the Leaves the addres next avalilable iictionary
compiler. 1 location.
FIRST === n MASS
"first"

{ Leaves the first (lowest address of the data (or
mass storage buffer. -

B-26 B~-27

WORD

HEX

HLD

HOLD

In.

IF

STACK NOTATION/DEFINITION

GROUP ATTR ORD
NUMERIC
gy IHMEDIATE
Sets the numeric conversion BAS! to sixteen
(hexadecimal).
--- addr FO
*hold" R

Leaves the address of user variable which holds “hs
address of the latest character of text during
numeric output conversion.

char FORMA'
*hold" ¥

Used between <§ and #> to insert an ASCII

character into a pictured numeric output string. AEREE

i - CONTROL

Used within a DO-LOOP to copy the loop index from
the return stack to the stack, '

nfa INPUT/OUTPUT

*i-d-dot"
Print a definition's name from its name field
address. See NPFA.

flag (run-time)
addr n (compile)

CONTROL

Il!.
Used in a colon-definition in form:

IPF ... THEN
IF ... ELSE ... THEN Pt
At run-time, IF selects execution based on a i
Boolean flag. If flag is true, the words foll g
IF are executed and the words following ELSE ¥
skipped. The ELSE part is optional. EAVE
If flag is false, the words between IF and lLsi'l
or between IF and THEN (when no ELSE fis used),
:::tl:lppﬂd. IF-ELSE-THEN conditionals may be

ed,

At compile-time, IF compiles @BRANCH and 0
reserves space for an offset at addr ., Addr and n
are used later for resolution of the offset and
error testing.

B-28

STAZK NJTATION/DIFINITION GROUP ATTR

COMPILER
*"immediate"
Marks the most recently made dictionary entry as a
word which will be executed when encountered rather
than being compiled.

—-—= addr INPUT/OUTPUT
Ilnl

Leaves the address of user variable containing the
byte offset within the current input text buffer
(terminal or disk) from which the next text will be

accepted. WORD uses and moves the value of 1IN .

COMPILER
"interpret"
The outer text interpreter which sequentially
executes or compiles text from the input stream
(terminal or mass storage) depending on STATE . If
the word name cannot be found after a search of
CONTEXT and then CURRENT it is converted to a
number according to the current BASE . That also
failing, an error message echoing the <name> with a
"?" will be given.

Text input will be taken according to the convention
for WORD . If a decimal point is found as part of
a number, a double number value will be left. The
decimal point has no other purpose than to force
this action. See NUMBER .
--— char INPUT/OUTPUT
Ik.y'
Leaves the ASCII value of the next available
character from the active input device.

addr COMPILER
"latest"
Leaves the name field address of the top-most word
in the CURRENT vocabulary.

CONTROL
"leave”
Forces termination of a DO-LOOP at the next
opportunity by setting the loop limit equal to the
current value of the index. The index itself
remains unchanged, and execution proceeds normally
until LOOP or +LOOP 1is encountered.

B-29

LIMIT

LIT

LITERAL

STACK NOTATION/DEPINITION GROUP ATTR

pfa - - 1fa DICTIONARY
;:-!-a'
nverts tl parameter f address (pfa) of
?i::;onnry finition te link tialg aédga=:.

MISC

Leaves the highest address plus one available in ¢
data (or mass storage) buffer. Usually this i= ¢}
highest system memory. I

n co
"1 MPILER

Within a colon-definition LIT s antomati v
compiled before each 1G-bit literal ;uigtr ;ﬁggki
ered in input text. Later execution of LIT cau
the contents of the next dictionary address to b
pushed to the stack. b

n === (compiling)

o

compiling, then compile the stack val

16-bit lltoril. which when later .xccu:.:: :1??

::n:;.: :: t?;lctack. Tsisidctlnltlon is immediag
w execute durin ini I,

s ettt g a colon definition

COMPILER

: xxx [calculate] LITERAL ;

Compilation is suspended for the compile time
calculation of a value. Co-pllltlonpll then res
and LITERAL compiles this value into the
definition.

*load"

Begins interpretation of screen n maki he
input stream; preserves the locatosz of :ﬂ! ;:p§“=
input stream (from IN and BLK). 1

If interpretation is not terminated explicitl 't; !
Will be terminated when the Input stream s eihaustlllE
Control then returns to the input stream containing

LOAD , determined by the input s i3
<l i y P tream locators 1N

B-30

STACK NOTATION/DEFINITION GROUP ATTR

addr n --- (compiling)
-1"90
Occurs in a colon-definition in form:

Do LOOP

At run-time, LOOP selectively controls branching
back to the corresponding DO based on the loop
index and limit. The loop index is incremented by
one and compared to the limit. The branch back to
DO occurs until the index equals or exceeds the
limit; at that time, the parameters are discarded
and execution continues ahead.

At compile-time, LOOP compiles (LOOP) and uses
addr to calculate an offset to DO . n is used for
error testing.

nl n2 --- 4 ARITHMETIC

"m-times"
A mixed magnitude math operation which leaves the
double number signed product of two signed number.

d nl --- n2 n3 ARITHMETIC
*m-divides”

A mixed magnitude math operator which leaves the
signed remainder n2 and signed quotient n3, from a
double number dividend 4 and divisor nl. The

remainder takes its sign from the dividend.

wdl u2 =--- u3d udd ARITHMETIC B
*m-divide-mod”

An unsigned mixed magnitude math operation which

leaves a double gquotient ud4 and remainder u3, from

a double dividend udl and single divisor u2.

n n2 -—— max ARITHMETIC
...‘I

Leaves 21e greater of two numbers.

- SECURITY

Displays on the selected active device the text of
line n relative to screen 4 of drive 8. n may be
positive or negative. MESSAGE may be used to
print incidental text such as report headers. If
WARNING is zero, the message will simply be
displayed as a number (no mass storage).

B-31

STACK NOTATION/DEFINITION GROUP ATTR I0F STACK NOTATION/DEFINITION GROUP ATTR

nl n2 -=— N3 ARITHMETIC nl n2 === n3 ARITHMETIC
"min®™ "or"
Leaves the smaller number n3 of two numbers, nlEl Leaves the bit-wise logical or of two 16 bit values,
n2.

nl n2 -— nl n2 nl
nl n2 -— n3 ARITHMETIC STACK
"mod™ *over®
Leaves the remainder n3 of nl divided by n2, wig Copies the second stack value, placing it as the new
the same sign as nl. top of stack.

MONITOR |) —-—— addr DICTIONARY
*mon™
Exits to the AIM 65 Monitor, leaving a re-entry) Leaves the address of a scratch area used to hold
FORTH. ; ¥ character strings for intermediate processing. The
. maximum capacity is 64 characters.

NEGATE N === =R ARITHMETIC =
"negate"” 17 nfa -— pfa DICTIONARY
Leaves the two's complement of a number, i.e, thi A "p-f-a"
difference of @ less n. : Converts the name field address (nfa) of a
: ! dictionary definition to its parameter field address
(pfa) .
pfa --- nfa DICTIONARY

Converts the parameter field address (pfa) of a ; 0 —— nth STACK
definition to its name field address (nfa). ; "pick”®

Returns the contents of the nth stack value, not
counting n itself. An error conditions results for
" t-flag ——— COMPARISON n less than one. 2 PICK {is equivalent to OVER .
no
Leaves a true flag (1) if the number is egual tg
zero, otherwise leaves a false flag. Same as @% Bk === addr MASS u
1 - rev-

NUMBER addr -— d FORMAT LSaves the address of a user variable containing the
*"number™® address of the disk buffer most recently referenced.
Converts a character string left at addr with a The UPDATE command marks this buffer to be later
preceeding count, to a signed double precision written to mass storage.
number, using the current number BASE . If a
decimal point is encountered in the text, its
position will be given in DPL , but no other offs) Cle—=——57) MONITOR
occurs. If numeric conversion is not possible, N
error message will be given. 3 "put”

Transmits an ASCII character to the active output

device (see 7?0UT).
OFFSET —-== addr MASS

"offset: ;

Leaves the address of user variable which conta U INPUT/OUTPUT

block offset to mass storage. The content of OF ' "query"

is added to the stack number by BLOCK . Messag Accepts input of up to B@ characters of text, (or

by MESSAGE are independent of OFFSET . GSee until a 'return") from the keyboard into the

BLOCK and MESSAGE . I i terminal input buffer (TIB) . WORD may be used to
accept text from this buffeer as the input stream,
by setting IN and BLK to zero.

QuIT

REPEAT

STACK NOTATION/DEPINITION GRoup ATTR G

MISC ;
“"quit"® |
Clears the return stack, stops compilation, and
r:turns contrel to the keyboard. No message is
given.

— N STACK 4
IrI ‘
Copies the top of the return stack to the co-pu~
tation stack.

addr blk flag --- MASS
"r-slash-w) o
The mass lto:lg read-write linkage. addr s eci 8
the source or destination block buffer, blk th
sequential number of the referenced block; lnd £lag
specified read or write (flag = @ is write and flag
=1 is read).
storage, performs the read-write and performs any
error checking. R/W executes the cfa found in
UR/W . On cold start this is the address of (AROR

"r-from"
Removes the top value from the return stack and
leaves it on the computation stack. See >R and

=== addr
"r-zero"
Leaves the address c
initial value of the

PRIMITI /E

variable contaiing b
1 stack pointer, See

addr n ===
"read”
Inputs n characters from the active input device 3
stores the ASCII value starting at addr.

MONITOR

addr n === (compiling)
"repeat®
Used within a colon-definition in the form:

CONTROL

BEGIN ... WHILE ... REPEAT

rces an unconditional brang
>rresponding BEGIN .

At run-time, RE
back to just aft

At compile-time, compiles BRANCH lndlﬁ{
offset from HER ir. n is used for errnr
testing.

B-34

R/W determines the locatlon on mas 0D

- n STACK -_' 2

STACK NOTATION/DEFINITION GROUP ATTR

n2 n3 n2 n3 nl STACK
"rote
Rotat the top t + values on the stack, bringin

the t rd to the »

PRIMITIVE
"r-p-store"

Initializes the return stack pointer from user
variable RO .

=== addr STACK
*r-p-fetch"
Leaves the address of a variable containing the
return stack pointer.

n --— d ARITHMETIC
"s-to-d"
Extends the sign of single number n to form double
number d.

-=-= addr PRIMITIVE
"s-zero"

Leaves the address user variable that contains the
initial value for the parameter stack pointer. GSee
SP!

--= addr MASS
*s-c-r" f
Leaves the address of user variable containing the
screen number most recently referenced by LIST .

n 4 -— d FORMAT
*sign"
Inserts the ASCII *"-" (minus sign) into the pictured
numeric output string if n is negative. n is
discarded, but double number d is maintained. Must
be used between <§ and #> .

DICTIONARY
"smudge"
Used during word definition to toggle the “"smudge
bit® in a definitions name field. This prevents an
uncompleted definition from being found during
dictionary searches, until compiling is completed
without error.

B-35

SOURCE

spe

SPACE

SPACES

STATE

SWAP

TASK

STACK NOTATION/DEFINITION GROUP ATTR

MONITOR I
"source"

A procedure which identifies the active input d.-
for batch compilation. The procedure is:

SOURCE <RETURN> IN = [INPUT DEVICE CODE])

If the device code = M, compilation starts at {
top of the AIM 65/48 Editor Text buffer. Complla
tion continues until FINIS is encountered.

STACK

s tore"

Initializes the stack pointer from 58 .

=== addr STACK
"s-p-fetch® .
Returns the address of the top of the stack as |
was before SP@ was executed. (e.g., 1 2 F5P@
« o« would type 2 2 1)

INPUT/OUTPUT
Transmits an ASCII blank to the active output dey

n -
"spaces"”
Transmit n ASCII blanks to the active output de

=== addr
"state"
Leaves the address of user variable Pontalﬂlng
compilation state. A non-zero value indicates
compilation.

COMPILER

nl n2 =--- n2 nl STACK
I.“P.
Exchanges the top two values on the stack.

DICTIONARY
"task"* -
A no-operation word which can mark the hnundary
between applications. By forgetting TASK and rf
compiling, an application can be discarded im it
entirety. 1Its definition is : TASK j; .

B-36

STACK NOTATION/DEFINITION GROUP ATTR

CONTROL
"then"
Used within a colon-definition, in the form:

IP . .. ELSE . .. THEN or
IF THEN

THEN is the point where execution resumes after
ELSE or IF (when no ELSE is present).

--=- addr
*t-i-b"]
Leaves the address of user variable contairing the
starting address of the terminal input buffer.

INPUT/OUTPUT

addr b -—-
"toggle”™
Complements the contents of addr by the B-bit
pattern byte.

MEMORY

addr n ---
"type"®
Transmits n characters beginning at addr to the
active output device. No action takes place for n
less than one.

INPUT/OUTPUT

unl un2 =--- ud ARITHMETIC
"u-times"”

Performs and unsigned multiplication of unl by un2,
leaving the unsigned double number product of two

unsigned numbers.

=== addr
"u-dash-carriage return®
Leaves the address of the user variable containing
the code field address of the U-CR orphan word.

PARAMETER

ud ul =--- u2 ul
"u-divide"
Performs the unsigned division of double number ud
by ul, leaving the unsigned remainder u2 and
unliqnod quotient n3 from the unsigned double
dividend ud and unsigned divisor ul.

ARITHMETIC

unl un2 =--- flag ARITHMETIC
"u-less-than"

Leaves the flag representing the magnitude
comparison of unl < un2 where unl and un2 are

treated as 16-bit unsigned integers.

B=-37

WORD STACK NOTATION/DEFINITION GROUP ATTR STACK NOT TIO TION CROUP ATIR
u
UZIN -== addr PARAMETER o FARNIS AR
"u-question mark-in" "u-emit® 2 ‘ tni
Leaves the address of the user variable containif Leaves th ss of the user farlabletczztzéﬁéng
the code field address of the U?IN orphan word the code Adress of the EMIT outp :
uzour --- addr PARAMETER 5T =5= FRRAIREEH =
"u-question mark-out"™ "u-first" ~ 3 c i
Leaves the address of the user variable containiy Leaves th e of the user variable ;:?;a;?lnq
the code field address of the U20UT orphan woRd the first « the data (or mass § .
! buffer.
UZTERMINAL —-== addr PARAMETER u
“u-question mark-terminal® / e EARMEIR
Leaves the address of the user variable containimg "u-key"® : int
3 3 ble containing
the code field address of the U?TER) F Leaves tr s of the user varia:
word. ° ° N EHIL. ozl 1 code fiel s of the the KEY input word.
UABORT -—= addr PARAMETER NIT TS FESARSTAR -
"u-abort" “u-limit’ : ini
Leaves the address of the user variable containing Leaves ti s of the user vaélab17 :o:::;ning
the code field address of the ABORT word, ' the last PG WhN DI ERGRENT D
storage)
UB/BUF --~ addr PARAMETER
"u-bytes-per-buffer™” ! (run-time) i
Leaves the address of the user variable containipg addi = Jeewpile=tine)
the number of bytes per buffer. 1
"until® 3 . s
Occurs W :olon-definition in the form:
UB/SCR === addr PARAMETER
"u-blocks-per-screen” 1 BEG VWEEL
Leaves the address of the user variable containing "
the number of blocks per screen. At run-t 1ag 15 trus, the Tospad ::;mi:a;:fé
If flag . execution returns to the firs
i after B BEGIN - UNTIL structures may be
' uc/L --- addr PARAMETER nested.
"u-characters-per-line™
Leaves the address of the user variable containing At compi UNTIL compiles GBRRQCH andoan
the number of characters per line. offset f ¢ ‘to'audr. 'n is used for &rrot
tests.
I UCLOSE -- addr
- PARAMETER]
"u-close" IDATE it
Leaves the address of the user variable containing *update"
I the code field address of the UCLOSE orphan word Marks th ecently referenced plock (pointeiltu
\ by PREV tered. The block will subsequently
be trans utomatically to mass storage, should
UCR --= addr PARAMETER its huff quired for storage of a different
"u-carriage return” I bloc

. Leaves the address of the user variable containing
| the code field address of the UCR orphan word.

WORD

UR/W

VARIABLE

VOC-LINK

BARILARY

STACK NOTATION/DEFINITION GROUP ATTI
=== addr PARAMETER

"u-read-write"

Leaves the address of
the code fileld address
Initialized to (ABORT)

the user variable containing
of the mass storage I/0 word,
on a cold start, ;

"use® MASS e

Leaves the address of user iabl
address of the block et T
least recently urltte:?ft.r ES-ORS Tang; MK khe

addr

n -
"user"
A defining word used in the form:

DEFINING

n USER <name>

which creates a user variable <name> 4
« The
:::idtot ;nnna) contains n as a fixed o!!l.gazzgifer-
varllb:ct .H:::r<:::=§.:sr;=é:t.r i St
. r execut

the sum of its offset and the user lrc:dsl:: E;;ces
gn the stack as the storage address of that tti;ii
ar variable. Offsets of $60 to $7F are nvar:nbl 1
See Appendix G. *

BRN TNC

n === {name> (compute-time) DEPI
. W P NING
"variable" i

A defining word executed in the form:

n VARIABLE <name> 3
to create a dictionary entr

Y for <name> and
two bytes for storage in the parameter !lcld?lz::ou

<name> is later executed
eor ool e s it will place the storage

*yoc-1ink® I
Leaves the address of user variabl
e
:ggzzzgyogr:.::zld lnhtgo dotinltioue:?tzézlzgl:h.
vocabulary. All vocabul
:;;GIInknd by these fields to allow ocn:r:IyI::-..
ETting through multiple vocabularies.

addr VOCABULARY

B-40

STACK NOTATION/DEFINITION GROUP ATTR

VOCABULARY

"vocabulary"®
A defining word used in the form:

VOCABULARY <name>

to create (in the CURRENT vocabulary) a dictionary
entry for <name>, which specifies a new ordered
1ist of word definitions. Subsequent execution of
<name> will make it the CONTEXT vocabulary. When
<name> becomes the CURRENT vocabulary (see
DEFINITIONS), new definitions will be created in

that list.

New vocabularies 'chain' to FORTH. This is, when a
all of dictionary search through a vocabulary is
exhausted, FORTH will be searched.

VOCABULARY
"y-list"
Lists the names of the definitions in the CONTEXT
vocabulary. Depression of any key will terminate
the listing.

SECURITY u

"warning®
Leaves the address of user variable containing a
value controlling messages. If value = 1 mass
storage is present and screen 4 of drive @ is the
base location for messages. If value = @, no disk
is present and messages will be presented by number.
If value = -1, execute (ABORT) for a user
specified procedure. See MESSAGE and ERROR .

aa¢z1'1:3

*while®

Occurs in a colon-definition in the form:

— - ErereaE T v
REPEAT

addr

(run-time) CONTROL
-> addrl nl addr2 n2

BEGIN ... WHILE (tp) ...
At run-time, WHILE selects conditional execution
based on Boole ag. If £l {non-zero)
WHILE continues execution of the true part through

to REPEAT , which then branches back to BEGIN .
1f flag is false (zero), execution skips to just

after REPEAT , exiting the structure.
At compile-time, WHILE emplaces (@BRANCH) and
leaves addr2 of the reserved offset. The stack

values will be resolved by REPEAT .

B-41

WORD

WIDTH

WORD

WRITE

XOR

[COMPILE]

STAZX NOTATION/DZFINITION GROUP ATTR APPENDIX C
=== addr SECURITY 1 N AIM 65/4P FORTH ASSEMBLER FUNCTIONAL SUMMARY
"width" | i :
Leaves the address of user variable containing u&. [
maximum number of letters saved in the compilati tls appendix contains a summary of the AIM 65/4@ FORTH

:ft; :'512:512“3.?::’;: ;i‘nu;;.b:.:.tl;;:l:ggti:, Jsiembler word definitions grouped by area of primary function.

count and its natural characters are saved, up N (asult appendix D for the detail definition of each word.
the value in WIDTH . The value may be changed
any time within the above limits.

Btack Notation

char =-- COMPILER

"word" o ik stack operation is denoted in parenthesis. The symbols on
Receives characters from the input stream until

non-zero delimiting character in the stack is L?-l'lt indicate the order in which input parameters must be
:neountor;d or the input stream is exhausted, liced on the stack prior to FORTH word execution. Three

adi it . : ; .
-3:::5"2. : Plggﬁg.i{:in;r:ithftzoc:;::::::: :::n sshes (---) indicate the FORTH word execution point. Any .
:ulrh: first character position. The actual ' fameters left on the stack after execution are listed on the
elimiter encountered (char or null) is stored at h -
the end of the text but not included in the count. (Mfcht. The top of the stack is to the right

If the input stream was exhausted as WORD is

called, then a zero length will result. Babol Definition

addr n === MONITOR &
"write" - AT Assembly-time
Outputs n characters to the active output device R/T Run-time

starting at addr. B/B High-byte

L/B Low-byte
':-orrl Bl 8 BRCTIIC addr, addrl,.. Address

Leaves the bit-wise logical exclusive or of two vally

) OP-CODES

COMPILER

®"left-bracket"” 18
Ends the compilation mode. The text from the input
stream i{s subsequently executed. See] ., "

]

COMPILER
"bracket compile”

Used in a colon-definition in form: :
{8
[COMPILE] <name> 1 8
Forces compilation of the following word. This 5
allows compilation of an IMMEDIATE word when i:

would otherwise be executed.
4Nf

v
"

COMPILER
"right bracket"

Sets the compilation mode. The text from the {
stream is subsequently compiled. See [.

C.4

BEGIN,

UNTIL,

AGAIN,

ADDRESS MODES

.A =
® ——
o X A
o X -
X) e
1Y —

CONDITIONAL SPECIFIERS

8< AST: -—= cec
= AST: —— ee
vs A/T: --= cc
Cs A/T: ——— ce
NOT A/T: el =-= cod
CONTROL
A/T: --- addrB 1

BR/T: —_——

A/T: addrB 1 cc --
R/T: ——

A/T: addrB 1 ---
R/T: —~———

Accumulator address
mode. [
Immediate address
Indexed X address m
Indexed Y address.g
Indexed Indirect X
address mode, 1
Indirect Indexed ¥}
address mode,
Indirect Absolute
address mode.

Branch on negative
(N=1) . '
Branch on zero (2=
Branch on overflow
(V=1) . g
Branch on carry (C=l)
Reverse the conditiep
code, ;

At A/T, leaves the
dictionary pointer
address and the valy
1 for later testinglp
conditional pairing,

At R/T, marks the
beginning of a
repeatedly executed’
assembly sequence,

At A/T, assembles a
conditional branch
instruction to addrB
(BEGIN, point) '
based on condition cgy
cc. {

At R/T, conditionallyl
branches to the BEGH
point (if cc is Falsg
or continues ahead (§
cc is true).

At A/T, assembles a JMi

instruction to addrB |

(BEGIN, point)

At R/T,
BEGIN,

jumps to the
point.

JDIF ,

At A/T, assembles a JMP
instruction to the
BEGIN, point

A/T: addrB 1 addrW 3 ---

R/T: —-—— At R/T, jumps to the
BEGIN, point.

At A/T, assembles a
conditional branch
instruction to the
instruction following
REPEAT, based on the
condition code cc.

A/T: addrB 1

addrB 1 addrW 3

At R/T, conditional
branches to the point
following REPEAT, Iif
cc is false, or continues
ahead if cc is true.

R/T: m__—

At A/T, creates an
unresolved forward
conditional branch
based on cc and leaves
addr for resolution by
ELSE, or THEN,.

A/T: addr 2

At R/T, conditionally
branches to the ELSE,
point (or THEN, point
if ELSE is not present)

R/T: cc -——- addr 2

if cc is false, or continues

ahead if cc is true.

2 At A/T, assembles a
forward JMP instruction
to THEN, and resolves
the forward conditional
branch from IF, .

A/T: addrl 2 =-- addr2

At R/T, marks the start
of an assembly sequence
conditionally branched
to from IF, if cc is
false.

R/T:

At A/T, marks the con-
clusion of a conditional
structure started by IF,
and resolves the forward
conditional branch from
IF, (if ELSE, 1is not
present) .

A/T: addr 22 —=

At R/T, marks the conclu-
sion of a conditional
structure started by

R/T: g

Alias for THEN,

A/T:
R/T:

'IF,

At A/T, leaves the
address of the R/T
return point which
will add the accumu-
lator (B/B) and the

R/T top machine stack byt

(L/B) to the data s:a

At A/T, leaves the
address of the R/T
return peoint which
will write the accumu=
lator (H/B) and the top
machine stack byte (L/

to replace the existing

top data stack lc-bit
value (nl).

R/T: n2

At A/T, leaves the
address of the R/T
return point which

R/T: will pull a 16-bit

value from the data

interpretation.
PUSHBA

At A/T, leaves the
address of the R/T
R/T return point which
will push a zero (H/B)
and the accumulator
(L/B) onto the data
stack.

At A/T, leaves the
address of the R/T
return point which
will write a zero (H/B)
and the accumulator
(L/B) to replace
the existing data stack
16-bit value (nl).

R/T: nl n2

At assembly-time, leave

the address of the

nl n2 run-time return point
which will pull two

~16-bit values from the

data stack and conrinue

interpretation.

At assembly-time, leaves
the address of the
FORTH inner-interpre

STACK

A/T:

R/T: nl n2 --
A/T:

A/T "}
A/T

REGISTERS

A/T: - addr
A/T: addr
A/T: addr
A/T: addr
A/T: addr
A/T addr

181 (hex)

At A/ leaveu the
addr s of a return
poin which, at R/T,
will wull two 16-bit:
valu from the stack
and sh the accumu-
late (H/B) und the to
mach e staclh byte (L/B)
to t data sntack.

At A/T, used to address
the botiiom of the
Return fitack.

At A/T, used to address
the top item on the
data stack.

At A/T, use to address
the secon¢ tem on the
data stack

Leaves the address of a
nine-byte work space in
page zero.

Leaves the address of a
utility routine to move
items from the stack to
the N area on z-page,

Leaves the address of
the pointer to the next
FORTH execution address
in a colon-definition
to be interpreted.

Leaves the address of
the pointer to the base
of the user area.

Leaves the address of
the pointer to the code
field of the FORTH word

being executed.

Leaves the address of a
tem rarg buffer for
saving the X register.

c.s
INTFLAG

c.9

INTERRUPT
A/T: --= addr

A/T: === addr

R/T:

MISCELLANEOUS

END-CODE A/T: —_—

A/T:

APPENDIX D

At A/T, leaves the
address of the
interpretive flag
byte on page zero.

At A/T, leaves the
address of the intes
pretive interrupe
vector.

AIM 65/48 FORTH ASSEMBLER GLOSSARY

ii: glossary contains the definitions of all words in the AIM
i/40 FORTH ASSEMBLER vocabulary with exception of the
odes, The definitions are presented in ASCII sort order.

tack Notation
Marks the end of = £f
detisition, @ firsr line of each entry shows a symbolic description of
action of the procedure on the parameter stack. The

mbols on the left indicate the order in which input

graneters have been placed on the stack. Three dashes "---"
dicate the execution point; any parameters left on the stack
-'i_ execution are listed on the right. 1In this notatlon.ﬂ_.

op nf the stack is to the right.

Sets MODE &o direc
memory adaressing gj
Z~page.

ynbo! Definition

3 jadr addrl, ... memory idress
: Bicclyeee conditi 1 code
1. ses 16-bit lgn.d number
fenunciation

natural language pronunciation of FORTH names is given in
ble quotes (").

Bpitalizatior

)t names as used within the glossary are conventionally
itten in upper-case characters. ‘Lower case is used when
jaference {s made to the run-time machine codes (not directly
jecessible), e.g., VARIABLE is the user word to create a
I griahie Each use of that variable makes use of a code
dquence 'variable' which executes the function of the
rticnlar variable,

-1

Group Key Words (GROUP)

ADDRESS
OP-CODE
CONTROL
STACK
REGISTER
CONDITION
RETURN
INTERRUPT

Addressing Mode
Operation Code
Control Structures
Stack Addressing
Assembly Register
Conditional Specifler
Return of Control
Interrupt Processing

RORL

STACK NOTATION/DEFINITION

"immediate” ADDRESS
Specifies 'immediate’' addressing mode for the
next op-code generated.

"indirect"® ADDRESS
Specifies 'indirect absolute' addressing mode for
the next op-code generated.

-— ADDRESS
"indirect indexed Y"

Specifies 'indirect indexed Y' addressing
mode for the next op-code generated.

-— ADDRESS
"indexed x"

Specifies 'indexed X' addressing mode for
the next op-code generated.

e ADDRESS
"indexed Y"

Specifies 'ii1 lexed Y' addressing mode for
the next op-code ¢ mnerated.

et ADDRESS
"accumulater®™ ,
Specifies accumulator addressing mode for the
next op-code generated,

—- cc (assembly-time) CONDITION
“zero-less"
Specifies that the immediately following
conditional will branch based on the processor
negative flag status bit being negative (N=1),
i.e., less than zero. The flag cc is left at
assembly-time; there is no run-time effect on the
stack.

-=- cc (assembly-time) CONDITION
*zero-equals"
Specifies that the immediately following
conditional will branch based on the processor
zero fﬂl_ei_l‘!ls,e.t,ug bit being equal to one (2=1);
i.e. equal to zero. The flag cc is left at

assembly-time; there is no run-time effect on the
stack.

BEGIN,

BINARY,

cs

---"cc (assembly-time)

JRD

STACK NOTATION/DEFINITION GROUP. S

addr 1 --- (assembly-time) conTRon MELST
=== (run-time) :
"again®

Occurs in a CODE-definition in the form:
BEGIN, . . . AGAIN,
At assembly-time, AGAIN, assembles a JNP

instruction to addr. The number 1 is issued for
error checking. 4

At run-time, AGAIN,” branches unconditionally tg
its matching BEGIN, . s

=== addr 1 (assembly-time) rnn?w;
im (run-time) -
Occurs in a CODE-definition in the form:

’!‘GINJ - = =

§)=-CODE

cc UNTIL,

At assembly time, BEGIN , leaves the dfﬂtlonarj

pointer address addr and the value 1 for later

:E:::nq of conditional pairing by UNTIL, or
%

At run-time, BEGIN, marks the start of an .
assembly sequence repeatedly executed. It serves
as the return point for the corresponding =
UNTIL, . When reaching UNTIL, a branch to
BEGIN, will occur if the processor status hit
given by cc is false; otherwise execution
continues ahead.

BiDTF

=== addr (assembly-time RFE
nl n2 =-—- (n) (run-time)
"binary*
At assembly-time constant which leaves the
machine address of a return point which, at
run-time, will pull two 16-bit values from the
stack and push the accumulator (high-byte) =nd
the top machine stack byte (as low-byte) to ths
data stack. !

q

= ° CONDITIO|
cll:;;l.t . < i
Spec es that the immediately fol

conditional will branch balcdyon nﬁzwi?gc...oé
carry status flag being set (C=1). e flag cc
is left at assembly-time; there is no run-time
effect on the stack.

STACK NOTATION/DEFINITION GROUP

addrl 2 =--- addr2 CONTROL
2 (assembly-time) --- (run-time)
"else"

Occurs within a CODE-definition in the form:

cc 1IF, <true part> ELSE, <false part>
THEN,

At assembly-time, ELSE, assembles a forward
2ulp to just after THEN, and resolves a pending
orward conditional branch from IF, . The value
2 is used for error checking of conditional

pairing.

At run-time, if the condition code specified by
cc is false, execution will skip to the machine
code following ELSE, .

wmben MISC
"end-code"
An error check word marking the end of a
CODE-definition. Successful execution to and
including END-CODE will unsmudge the most
recent CURRENT vocabulary definition, making it
available for execution., END-CODE also exits
the ASSEMBLER making CONTEXT the same as

CURRENT .
addr 2 =--- (assembly-time) CONTROL
-—= (run-time)
"end-1£"
Another name for THEN, .
——= addr 2 (assembly-time) CONTROL

5§ ce --— addr 2 (run-time)
‘I
Occurs within a code definition in the form:

cc IF, <true part> ELSE, <false part>
THEN,

At assembly-time IF, creates an unresolved
forward branch based on the condition code cc,
and leaves addr and 2 for resolution of the

~the corresponding ELSE, or THEN, .
Conditionals may be nested.

At run-time, IPF, branches based on the
condition code cc (@< or @= or CS). If the
specified processor status is true, execution
continues ahead, otherwise branching occurs to
just after ELSE, (or THEN, when ELSE, Iis
not present). At ELSE, execution resumes at

the corresponding THEN, .

D=5

WORD

INTFLAG

INTVECT

P

STACK NOTATION/DEPINITION GROUP W jOAD

-=-= add (assembly-time INTERRUBSS
s (run-time) .
"interrupt £1. '

A constant wh« : value is the ss of the
interpretive :errupt flag by zero page
It is used in code-definitio the form:

INTFLAG LDA, (MOVE THE INTFLAG BYTE TO 2)

Bit 7 of INTPLAG is the interpretive interrupt
bit. 1 means interrupt. Bit 6 of INTFLAG is
the interpretive interrupt mask bit., If bit 6
on, bit 7 is not tested for an interpretive
interrupt. 1f bit 6 is off and bit 7 is on, the
word whose code field address is in INTVECT
will be executed on return to NEXT . After that
word finishes, regular FORTH word execution
continues.

=== addr (assembly-time) INTERRUPH
——— (run-time) 3

"interrupt vector"

A constant whose value is the address of the q

interpretive interrupt vector. This vector must

contain the code field address of the FORTH word

to execute on interpretive interrupt.

]

=== addr (assembly-time) RE

"j.p*

Used in a CODE-definition in the form:

IP STA, or 1IP)Y LDA,

At assembly-time, a constant which leaves the
address of the pointer to the next PORTH
execution address in a colon-definition to be
interpreted.

At run-time, NEXT moves IP ahead within a
colon-definition. Therefore, IP points just
after the execution address being interpreted.
If an in-line data structure has been compiled
(i.e., a character string), indexing ahead by
can access this data:

IP STA, or 1IP)Y LDA,

loads the third byte ahead in the colon-
definition being interpreted.

D-6

STACK NOTATION/DEFINITION GROUP
" Rt MISC
"memo!'y"

Used ithin the
defau..t value £
Z-pag:.

mbler to set | E to the
rect memory ad¢ 'ssing on

--- addr ADDRESS

System variable used to determine the assembler
addressing mode.

=== addr (assembly-time) REGISTER
In.
Used in a CODE-definition in the form:

N 1l -STA, or N 2+)Y ADC,

A constant which leaves the address of a 9 byte
workspace in. z-page. Within a single CODE-
definition, free use may be made over the range
N-1 thru N+7. See SETUP .

=== addr (assembly-time) RETURN
"next”
A constant which leaves the machine address of
the FORTH address interpreter. All CODE-
definitions must return execution to WNEXT, or
include code that returns to NEXT
(i.e., PUSH , PUT , PUSHSA , PUTEA , BINARY ,
POP , POPTWO).

ccl --- cc2 (assembly-time)
"not"
When assembling, reverse the condition code for
the following conditional. For example:

CONDITION

@= NOT IF, <true part> THEN,

will branch based on "not equal to zero".

=== addr (assembly-time) RETURN
= (run-time)
L] -
A constant which leaves (during assembly) the
machine address of the return point which, at
run-time, will pull a 16-bit value from the data
stack and continue interpretation.

p-7

POPTWO

PUSH

PUSHBA

PUT

PUTEA

STACK NOTATION/DEFINITION wROURS

--- addr (assembly-time)

nl n2 --- (run-time)
o ey v ‘
assembly time, constant which leaves zachine
address of the return point which, at run-tim:?
will pull two 16-bit values from the data stack
and continue interpretation.

=== addr (assembly-time) RETUQ
" -—= N (run-time) i
push*
At assembly-time, constant which
machine ldxrlll 51 the return :oig:':;:c;?.at
run-time, will add the accumulator '(as high-bytel

and the top machine stack ; 0.
the data lgack. SRR t-

=== addr (assembly-time) RETURN
-—— n (run-time) 3
"push-pg-a"

At assembly-time, constant which leaves the
machine address of the return point which, at
run-time, will add a zero (as high byte) and the
accumulator (as low byte) to the data stack.:@

=== addr (assembly-time) RETLURN
nl =--- n2 (run-time) 3
'P‘Ilt'
At assembly time, constant which leaves the
machine address of the return point which, at
run-time, will write the accumulator (as
high-byte) and the top machine stack byte (as
low-byte) over the existing data stack 16-bit
value (nl).

=== addr (assembly-time) RETURI
. nl -—- n2 (run-time)
put-zero-a"

REPRAT

At assembly-time, constant which leaves the S SETUIT

machine address of the return point which, at
run-time, will write a zero (as hlgh-bytu; :nd
the accumulator as low-byte) over the existing
data stack 16-bit value (nl). .

STACK NOTATION/DEPINITION GROUP
addrB 1 addrW 3 =--- CONTROL
(assembly-time) =--- (run-time)

"repeat”

Occurs in a code definition in the form:
BEGIN, ess ©C WHILE, ... REPEAT,

At assembly-time, REPEAT, assembles as JMP
instruction to the instruction immediately
following the BEGIN, word.

At run-time REPEAT, unconditionally branches
back to its matching BEGIN, .

-== 181 (assembly-time) STACK
"return-pointer”
Used in a CODE-definition in the form:

RP) LDA, or RP) 3+ STA,

Addresses the top byte of the return stack
(containing the low byte) by selecting the ,X
mode and leaving n=$101. n may be modified to
another byte offset. Before operating on the
return stack the X register must be saved in
XSAVE and TSX, executed. Before returning to
NEXT, the X register must be restored.

-—— 2 (assembly-time) STACK
"second"”
Used in a CODE-definition in the form:

SEC LDA, or SEC 1+ BSTA,

Addresses the second l6-bit item on the data
stack by selecting the , X,X address mode and
leaving 2 on the stack.

=== addr (assembly-time) STACK
"setup”
A constant whose value is the address of a
utility routine to move items from the stack to
the N area of zero page. The number of items to
move (1, 2; 3 or 4 only) is in the A register.

D-9

g

|

THEN

UNTIL,

STACK NOTATION/DEFINITION GROUP
addr 2 --- (assembly-time) CONTROE

=== (run-time)

"then*

Occurs in a CODE-definition in the form: y
cc IF, <true part> ELSE, <false part> THEH,:

At assembly-time, THEN, marks the conclusion of
a conditional structure, The conditional branch
instructions generated by IF, and the JMP
instruction generated ELSE, point to the
instruction immediately following THEN, . When
assembling, addr and 2 are used to resolve the
pending forward branch to THEN, .

At run-time THEN, marks the conclusion of a
conditional structure. Execution of either the
true part or false part resumes following

2 o

=== § (assembly-time) STACK
- topn
Used during code assembly in the form:

TOP LDA, or TOP l+ X) STA,

Addresses the top of the data stack (containing
the low byte) by selecting the ,X mode and
leaving n=@, at assembly-time. This value of n
may be modified to another byte offset into the
data stack. Must be followed by a multi-mode
op-code mnemonic.

addr 1 cc --- (assembly-time)
=== (run-time)

"until®

Occurs in a CODE-definition in the form:

CONTROL

BEGIN, ... cc UNTIL,

At assembly-time, UNTIL, assembles a
conditional relative branch te addr based on the
condition code cc. The number 1 is used for
error checking.

At run-time, UNTIL, controls the conditional
branching back to BEGIN, . If the processor
status bit specified by cc is false, execution
returns to BEGIN, ; otherwise execution
continues ahead.

ORD

1

AR

STACK NOTATION/DEFINITION GROUP

-== addr (assembly-time) REGISTER

"user inter"
u:.; lgoa CODE-definition in the form:

UP LDA, or UP)Y STA,

A constant which leaves the address of the
pointer to the base of the user area. The
instructions

HEX 12 # LDY, UP)Y LDA,

will load the low byte of the sixth user
variable, DP.

-—- cc (assembly-time) CONDITION

"overflow set”

s;eclties that the immediately following
conditional will branch based on the processor
status overflow flag being on (V=1). The flag cc
is left at assembly-time; there is no run-time
effect on the stack.

-— addr (assembly-time)
Used in a CODE-definition in the form:

Wl+ STA, or W1l - JMP, or W)Y ADC,

embly-time constant which leaves at
::s::gly-tI-o the address of the pointer to the
code field (execution address) of the FORTH
dictionary word being executed. Indexing
relative to W can yield any byte in the
definitions parameter field, For example, the
instructions

2 # LDY, W)Y LDA,
will fetch the first byte of the parameter field.

addrB 1 --- addrB 1 addrW 3 CONTROL
(assembly-time) —— {run-time)
"while"

Occurs in a CODE-definition in the form:
BEGIN, ... cc WHILE, ... REPEAT,
i-
At assembly-time WHILE, assembles a cond
tional relztivc Eranch instruction to the

instruction immediately following the REPEAT,
based on the condition code cc.

D-11

WHILE,
(Cont.)

X)

XSAVE

STACK NOTATION/DEFINITION GRoOuP

At run-time WHILE, controls the conditional
branching to just past REPEAT, . If the
Processor status bit specified by cc is true,
WHILE, continues execution through to REPEAT,
which then branches back to BEGIN, . If cc is
false a jump is made to just after REPEAT, and’
execution continues. :

indexed indirect X ADDRESS
Specifies "indexed indirect X" addressing mode
for the next op-code generated.

=== addr (assembly-time) REGTSTER
"x-save"
Used in a CODE-definition in the form:

s

XSAVE STX, or XSAVE LDX,

A constant which leaves the address at assembly
time of a temporary buffer for saving the X
register. Since the X register indexes to the
data stack in z-page, it must be saved and
restored when used for other purposes,

APPENDIX E

ERROR MESSAGES AND RECOVER

I,. STANDARD ERROR MESSAGE

12 standard FORTH error message is "?" . This question mark
{: output along with the most recently interpreted word when
that word can not be found in the dictionary and will not
-annf: into a number in the current BASE . For example:

ROCKWELL AIM 65/48

{s}
AIM 65/40 FORTH V1.4

QUERTY
QUERTY ?

ABC
ABC ?

HEX OK

ABC OK
DECIMAL . <RETURN> 2748 OK

jpor initialization, QUERTY and ABC were not in the
é&rrxonary, therefore, the ? error message was displayed when
they were entered. After the number base of the I/0 was
shanged to HEX , however, ABC became a valid number. ABC
2c then accepted as a valid number upon the record entry
sttempt, converted to internal two's complement binary format,
2¢ stored on the stack. The number was then removed from the
srack and displayed in decimal.

L=

AIM 65/40 FORTH Error Message

Echoed word was
the last one inter-
preted. Name is not

in the dictionary

and is not a number.

Parameter stack

The dictionary
space is used
up. PIRST HERE -
is less than $SA®.

The address mode
for that assembler

op-code is

The dictionary entry

E.2 STANDARD ERROR MESSAGE WORD Table E-1.
AIM 65/40 FORTH has a standard error message word llumber Message Definition
7ERROR (] ?
which takes two items from the stack:
t n ?2ERROR
where t is Boolean and n is the desired error number. R 1 STACK
EMPTY is empty.
If the Boolean is false, nothing happens; but if it is true,
one of three things happen depending on the value of the user
variable WARNING . If WARNING is zero, the number n is
printed as an error message. If WARNING is greater than 2 DICTIONARY
zero, a disk is assumed to be in use. Then n becomes the line) FULL
number relative to line @, screen 4 of drive 8 and that line
number is displayed in ASCII. The line number may be negative,
zero or positive and greater than fifteen. The line number is
simply an offset from line @ screen 4. If WARNING is less 3 HAS
than zero, the word ABORT is executed. INCORRECT
ADDRESS
E.3 AIM 65/48 FORTH ERROR DEFINITIONS MODE incorrect.
The error conditions detected by AIM 65/48 FORTH are listed in 4 NOT
Table E-1. For increased utility the two most common errors UNIQUE

are given in English. These are error message 1,

NOT UNIQUE .

STACK EMPTY
and warning message 4,

The last action of error messages processing is to clear the

stacks and execute QUIT . However, the warning message 'NOT

UNIQUE' is simply output, it has no effect on the stacks and
execution continues normally.

Error message number 3 is slightly different in that it prints
the name of the code word being defined, the name of the 1
assembler op-code word being interpreted, and the message
number or message.

<name> just created

is not unique.

Not assigned

Action
Define the named
item. Check number

conversion base.

Don't pull more
items off of the
stack than are

there.

Increase space for
dictionary by

FORGETing entries
or moving FIRST .
Use a correct

address mode. See
R6502 Programming

Manual.

Be aware that the
new definition of
<name> obscures
the old one and
all future refer-
ences to <name>
will be to the
new entry (often

an advantage).

The disk block

asked for is out

There has been a

interpreted must

interpreted must be

used outside of a

Omitted word or
incorrect nesting

of conditionals,

The current defini-

tion is not yet

Table E-1.
_# Number Message Definition
4 6 DISC
i RANGE?
of range.
7 FULL The parameter
STACK stack is full
(more than 65
items) .
B DISC
ERROR! disk error.
9-16 - Not assigned
17 COMPILATION The word just
ONLY
be used in a
definition.
18 EXECUTION The word just
ONLY
definition.
19 CONDITIONALS
NOT PAIRED
20 DEFINITION
NOT
FINISHED finished.

AIM 65/4@ FORTH Error Message (Continued)

Action |

|

This is available

for the user to I
put in his 3
definition of R/Wd

Remove some stack
item. DROP or

output,

This is available
for the user's R/W
definition.

Don't use compila-3
tion words inter-
pretively. i

Don't use interpr
tive words in a

definition.

Pair conditionals
correctly.

Finish definition.,

Bumber

Table E-1.

Message

Definition

21

22

IN

PROTECTED
DICTIONARY

USE ONLY
WHEN
LOADING

The word in guestion
is below the FENCE

Incorrect use of
the word -->

AIM 65/40 FORTH Error Message (Continued)

Action

Cease trying to
FORGET a protected
word or move FENCE.

Use the word
-=> only while
loading.

: E APPENDIX P

PAGE ZERO and ONE MEMORY MAP

Cold Warm
Start Start
No. Hex Hex Parameter
Bytes Value Value Name Parameter Description
} 16 Stack overflow.
130 Parameter Stack. A\
—3 Error storage for
] BLK .
| Error storage for IN
; N N Area temporary
B buffer.
1 98 C2 98 €2 IP Interpretive Pointer --
i initialized to STRTUP .
; 1 6C 6C W=1 Op-Code for Indirect
] aMp .
y W Working address for
f jump to next PORTH
2 word.
1 2 @@ 87 @8 87 UP User area pointer
. 1 - - XSAVE X register temporary
storage.
1 a9 - INTFLAG Interrupt flag.
2 45 D2 - INTVECT Interrupt vector.
Initialized to ABORT .
69 Unused by PORTH.
16 Used by AIM 65/48 1/0
ROM and Moniteor
lij-1PF 256 FORTH and R6582 return
' stack.

r-1

_—r

Hex

fdcess

w=701
i2-703
14-785
=707
Ma-?ls
#A- /8B
iC=78D
LE-?IP
10=711
112-713
14=715
16=717
18=719
IA-71B
JIC=71D
JLE-71F
10=721
122=723
24=725
16=727
28=729
1n=T2B
Jic=72D
1E=T2F
1i0=T731

114=735
F16=737
118-739

APPENDIX G

USER VARIABLES RAM MAP

152=733"

Cold Warm
No. Start Start Parameter
Bytes Value Value Name Parameter Description
2 50 C3 UZIN CFA of U?IN orphan word.
2 SA C3 uzout CFA of U?0UT orphan word.
2 F2 C3 UCLOSE CFA of UCLOSE orphan word.
2 33c UKEY CFA of UKEY orphan word.
2 20 C3 UEMIT CFA of UEMIT orphan word.
2 FD C3 U-CR CFA of U-CR orphan word.
2 3B C3 U?TERMINAL CPFA of UZ?TERMINAL orphan word.
2 47 €3 UCR CFA of UCR orphan word.
2 1F @e WIDTH No. of letters in name.
2 o0 o0 WARNING Error message action switch.
2 00 o8 FENCE Forget protection point.
2 o8 @88 DP Dictionary Pointer.
2 2A 97 VOC~LINK Last VOC fileld.
2 40 0@ uc/L No. of characters/line.
2 80 @e UB/BUF No. of bytes/disk buffer.
2 o8 00 UB/SCR No. of buffers/screen.
2 81 A® FORTH chain head.
2 éo o8 FORTH vocabulary pointer.
2 68 o9 FORTH vocabulary line.
2 81 AP ASSEMBLER chain head.
2 C3 DF ASSEMBLER vocabulary pointer.
2 24 97 ASSEMBLER vocabulary link.
2 45 D2 UABORT CFA of UABORT orphan word.
2 45 D2 UR/W CFA of UR/W orphan word.
2 92 98 92 @0 S0 Parameter Stack base address.
2 FF 81 FF 81 RO Return Stack base address.
2 80 @7 88 @7 TIB Terminal Input Buffer pointer.
2 o8 40 USE Mass storage buffer to use.
2 g8 40 PREV

Mass storage buffer just used.

Cold Warm
Hex No. Start Start Parameter
Address Bytes Value Value Name

Parameter Description
f 73A-73B 00 490

! e UFIRST Start of mass storage bug?
i R+130 S ULIMIT End of mass storage buffer
g s 80 9 BLK Number of current block, APPENDIX H
| 4e-741 IN Byte offset in current ipnpy ABCII CRRRACTER SwT
742-743 2 BEEean.) pec Ascii | mEx Dec Ascir | mEx DEc Ascir | mex pec ascir
Teiire = - R Most recently listed scraeng@s 8 WL 20 32 sp T 6 9
vl O oo orme s ol G 2 [EOB D[ELO|H OB,
T746-747 2 22 87 22 87 CONTEXT CONTEXT vocabulary pointes 3 3 ETX 23 35 @] 43 67 ¢ 63 9 e
. 48-749 2 22 97 22 S 4 kot 28 36 § 44 68 D 64 100 4
@7 CURRENT CURRENT vocabulary pointeg H 5 ENQ 25 37 % a5 6% & 65 101 e
- A e
a2 sese wnes smmr concaine seorcoilll (S (303 0t lu oo @ i
w3 0 D e cwne vobmenocoll 3 oMo [BO8 (f8 AT O[B MG
Ee-74r 2 - DPL Number of decimals in Aoublel 9 r 2A 42 » w74 3 6A 106
. : ¢ 11 vr 2 43 % & 15 K 6 107 k
! Fibd Precision input. ; 4 { FF :g :4 ' | B :g L :: 18 1
7”'751 2 csp Check Stack Pointer. ¥ 1 so ® 4 & 7w & 113 =
sarss mo o Mamotowec ol 8 N X O8O0 [8 23 (%M
2 MODE ASSEMBLER addressing node, ! 17 DCl 31 49 1 s1 81 Q@ 71 13 g
756-77F 42 A il 18 DC2 32 S8 2 4 s2 82 R 72 114 r
s User available. Sl 19 pel T 53 83 s ous s
T Terninal Input Buffer Ml 31 wax |35 33 5 |35 8 u |2 17 w
D 22 SYN 36 54 6 56 86 v 7 118 v
5 23 37 855 1 57 87 W 7 119 w
i 24 CAN 38 56 8 58 88 X 7% 128 x ‘
5 25 EM 3 57 9 59 89 ¥ 79 121 y
;26 sus 3 se SA 99 2 A 122 3
it 27 msc B 5 8 91 | 78 123 |
K 28 s i 60 sc 92 \ 7 124
It 29 GS kL 61 SD 3 -3 128
i 3 RS 3e 62 SE 94 1 7T 1N ~
Ir 31 vs ¥ 63 s¢ 95 - 7¢F 127 DEL

Null

Start of Beading
Start of Text

Data Link Escape
Device Control
Negative Acknowledge
Synchronous Idle

End of Transmission Block
Cancel

End of Medium
Substitute

Escape

File Separator

Group Separator
Record Separator
Unit Beparator

Space (Blank)

Delete

Text
End of Transmission
Enguir
Acknowledge
Bell
Backspace
Horizontal Tabulation
Line Feed
Vertical Tabulation
Form Feed
Carriage Return
Shift Out
Shifr In

APPENDIX I

FORTH STRING WORDS

171~ appendix defines FORTH words that can be created to handle
hara~ter string data. The FORTH words defined are similiar to
trinc handling functions provided in AIM 65/48 BASIC. The
li:finec words are based on, and extend, functions described by
2alpt Deane in an article entitled "A Proposal On Strings for
QiTH," published in Dr. Dobbs Journal of Computer Calisthenics
W orthodonia, November/December 1980 (See Appendix N).

i the following string handling words can be implemented using
W t1¢ colon-definitions listed in Table I-l:

1 i FORTH Word Function

i
i E STRING Define a string
| » Enter text
8! Store entire string
| SuB Substitute part of string
MIDS Get m characters of string
LEFTS Get left-most n characters of
string
RIGHTS Get right-most n characters of
string
VAL Convert string to numeric value
STRS Convert numeric to string
LEN Get current length of string
! ' MLEN Get maximum length of string
; S+ Add strings
5= Compare strings

The easiest way to implement these functions is to enter the
colan-definitions shown in Table I-1 into the AIM 65/48 Text
Editnr and to batch compile.

Table I-1,

SRCH

DUP BEGIN DUP

C@ SWAP 1+ SWAP
@= END SWAP - 1-

STRING
<BUILDS ABS

255 MIN 1 MAX DUP

CJ

@ DO 32 C, LOOP @ C,
DOES> 1+ DUP SRCH ;
@ VARIABLE IB

254 ALLOT

(")
R COUNT DUP 1+
R> + DR ;

34 STATE @ IF
COMPILE (") WORD
HERE C@ 1+ ALLOT
ELSE WORD HERE COUNT
IB SWAP ROT OVER IB
SWAP 1+ CMOVE 2DUP

+ @ SWAP C! THEN ;
IMMEDIATE

\.JA L
OVER + BL SWAP
C! 1- NUMBER ;

STRS
SWAP OVER DABS
<f# #5 SIGN #> ;

MLEN
DROP 1- C@ ;

51

DROP DUP 1- Cg

ROT MIN 1 MAX 2DUP
+ @ SWAP C| CMOVE

LEN
SWAP DROP ;

FORTH String Words

Table I-1. FORTH String Words

MID$

SWAP >R ROT

MIN 1 MAX SWAP OVER
MAX OVER - 1+ SWAP
R> + 1- SWAP OVER
SRCH MIN ;

LEFTS
>R >R 1 SWAP
R> R> MIDS ;

RIGHTS
>R >R 256
R> R> MIDS ;

5+

ROT >R ROT R>

SWAP OVER IE SWAP
CMOVE SWAP OVER +
255 MIN DUP >R OVER
— SWAP IB + SWAP
CMOVE R> @ OVER 1B
+ C! IB SWAP ;

SUB

ROT MIN 1 MAX
CMOVE ;

S=

ROT OVER

= IF 1 SWAP 8 DO
DROP OVER

Ce OVER Ceé = IF 1+
SWAP 1+ SWAP 1 ELSE
@ LEAVE THEN LOOP
ELSE DROP @ THEN
SWAP

DROP SWAP DROP ;

(Continued)

I.1 COMPILATION PROCEDURE : 2 WORD DESCRIPTIONS

The procedure to enter and compile is sch of the string words are described below. Note that there
~ Mire two words, SRCH and (") , and a variable area, 1B ,
__ :;{Tl::;;:2:::ITS£:'==/::_Eon1tor Wit are used internally by the string functions and are not
| : BRCH fe=crihed
. . (Enter from Table I-1) o
. ' STRING
g t B= ... 3
1 «" CR DONE" |
FPINIS STRING creates a word in the dictionary up to 255
= > characters. The string is initialized to all spaces
END with a zero at the end and the maximum length at the
={0} ' beginning. For example,
{5} ;

AIM 65/49 FORTH V1.4
SOURCE <RETURN> IN=M
DONE

38 STRING AS

Creates a string named AS$ which has room for 3@
characters. When the name AS$ Is executed, the
current length and the address of the text is put on
the stack in the order required for the word TYPE .

-

" enters text into an intermediate buffer called 1B ,
{ if used in the immediate mode. In the compile mode,
1 the text is put into the dictionary. In either case
the length and text address is left on the stack.
Text is terminated by another " .,

51 RIGHTS

S! moves the entire string text from one string to ' In like manner RIGHTS gets the right-most n
another, for example, { characters of a string. The sequence

" COWS EAT CORN"™ AS sS!] 18 AS$S RIGHTS BEST S|
puts the text "COWS EAT CORN" into the string AS . makes the string BEST now contain the word CORN

verified by

Also as an example, define another string BEST and

move AS$ into it L BEST TYPE

40 STRING BEST : ! VAL
AS BEST S!
VAL converts a string to a double-precisicen number,
MIDS for example,

MIDS gets the m characters of a string starting at ® 128 VAL D,

the nth character position, for example,

gives
6 3 A$ MIDS TYPE 128
will print the word EAT . STRS
LEFTS . Conversely, STRS converts a double-precision number '

into text. The sequence
| LEFTS gets the left-most n characters of a string,
for example,

3 567. STRS AS S!
3 BEST LEFTS TYPE : | makes the string AS equal to "567.".

f will print the word COW . - LEN

g LEN returns the current length of a string, such as

- AS LEN ., <return> 3

MLEN
MLEN return th

AS MLEN . <RETURN> 38

:aximum length of a string, such as

SUB allows substitution of characters in a string,

for example,

" COWS EAT CORN" A§ S|
" ATE" 6 3 AS MID$ SUB

replaces EAT with ATE in string AS.

S+

§+ adds strings together and puts the result in
for example,

® AND HAY" BEST S|
AS BEST S+ BEST SI

adds BEST to A§. Verify by
BEST TYPE
and get

COWS EAT CORN AND HAY

§= compares
length and te:
stack, else a

Ings to see
If so, a

they are equal in
8 returned on the

APPENDIX

USER 24-HOUR CLOCK PROGRAM IN FORTH

This appendix describes a 24-hour clock program written in
f0r7H using either machine level or interpretive interrupt
sand’ing. The 24-hour clock is maintained under interrupt
control, using Timer 1 in the AIM 65/49 SBC Module User R6522
UT: The program allows you to initialize the clock, enter a
sessage that will be displayed with the time, and display the
tim= either upon command or continuously.

. HOW TO OPERATE THE PROGRAM

The 24-hour clock program is compiled into PORTH words as
described in the next section. Once compiled you must be in
fORTH to command the 24-hour clock functions. Once initiated
towaver, the clock will continue to run as long as the User
V1t is not reset, the User R6522 Timer 1 operating mode is no
dltered, or the IRQ Priority Latch mask (PRIRTY at address
iFFAD, is not altered to inhibit the TRQ interrupt from the
User VIA (TRQ3 on the AIM 65/48 SBC Module --refer to Section
" in the AIM 65/48 System User's Manual),

‘Or~+ FORTH has been entered, the program compiled and
Hnit;alized with a time value, control may be returned to the
[ATh 65/48 Monitor. Be sure to re-enter FORTH with the 6 key,
[however, or the program will have to be re-compiled.

Ine 24=hour clock functions are entered from FORTH using any of
Rnwv keys. These four keys are defined as FORTH words and are
#ntered into the FORTH vocabulary. The keys, their functions
ant the associated operating procedure is:

J=1

M Key Allows a message of up to 30 characters to be ' C Key Causes the message and time to be continuously

displayed preceding the time value. Enter the 4 displayed. For example,
| message as follows f
L C<RETURN>
i i Tyee : FORTH TIME 16:085:30
(2) Press <RETURN>. ! Press a key to terminate the display (although)
f; (3) Type a message up to 30 characters 1 the clock will continue to run). The key will

g long. 1 also be interpreted as a FORTH command or data
(4) Press <RETURN> (do not press 1 aBicatERt

<RETURN> if exactly 3@ characters are

entered). An example is: 1 11,2 HOW TO COMPILE THE PROGRAM

M ME § = 5 _
RLRETURMD" AN 65/,48. RONTH. TY : a. Load the program listed in Figure J-1 or Figure J-3
-1 <RETURN>OK

| into the AIM 65 Text Editor and compile it, The

program listed in Figure J-1 contains a machine level
i * Bey Allows the initisl time value to be entered, interrupt handler (see Section 7.2) while the program
E Enter it as follows: I listed in Pigure J-3 contains an interpretive
f interrupt handler (see Section 7.3). The load and

) {3} Type in the time in the format compile procedure is:

1 HH.MM.SS (not HH:MM:SS). A

] (2) Press <SPACE>. : @
: (3) Type T. : EDIT FROM=2@888 TO=3FFF IN=<RETURN>

(4) Press <RETURN>. (24-HOUR CLOCK)

, HEX
For example: E CODE DISABLE
i 4 s (Figure J-1 or J-3 Program)
! 16.85.88<SPACE>T<RETURN>OK b . &
=- 2 CR D QUIT ;
B D Key Causes the message and time to be displayed . 3 ;;HISR DONE®
i (and printed if the printer is ON) once each i <RETURN>
| time D is typed. The display format is:
={0}
<MESSAGE>HH:MM:SS _ (s}
- 3 AIM 65/40 FORTH V1.4
: The time is displayed immediately after the ;‘ gogggguéggagnn> Ii=M
L message, for example, A DONE
: : OK
0 D<RETURN> ¥ b. Run a VLIST and verify that the compiled words are
p AIN 65/48 FORTH TINE 16105110 -? entered into the FORTH vocabulary as listed in Figure
. J=-2 or J-4.

The system remains in the FORTH command mode,

J-2 - 3-3

¢ 24-HOUR CLOCK USING IRQ@ INTERRUPTS)
HEX 822D CONSTANT UIRQAM

FEA@ CONSTANT IRQRTN

FFA4 CONSTANT UT1

FFAB CONSTANT UACR

FFAD CONSTANT UIFR

FFAE CONSTANT UIER

C34F CONSTANT PERIOD

@ VARIABLE DAY# ¢ 2 BYTES)
@ VARIABLE TICKS ¢ 4 BYTES) @ .

CODE DISABLE ¢ DISABLE USER VIA INT)
7F & LDA,

UIER STA.,

NEXT JMP,

END-CODE

DISABLE

ASSEMBLER
HERE PHAR. ¢ SAVE IRQ VECTOR>
cLC,
S # LDA, ¢ 58 MS)
TICKS 3 + ADC,
TICKS 3 + STR,
64 ® CMP, < AT 1887
CS IF, ¢ >= 108>
@ & LDA,
TICKS 3 + STA,
TICKS 2+ INC.
TICKS 2+ LDA,
3C # CvP,
CS IF, ¢ >= 6@
@ & LDA,
TICKS 2+ STA,
TICKS 1+ INC.
TICKS 1+ LDA,
3C & CHP,
€S IF, ¢ >= 60>
® % LDA,
TICKS 1+ STA,
TICKS INC,
TICKS LDA,
18 # CMP,
CS IF, ¢ >= 24>
@ % LDA,
TICKS STA,
DAY# INC,
e= IF,
DAY# 1+ INC,
THEN,
THEN,
THEN,
THEN,
THEN,
UIFR LDA, ¢ CLEAR USER VIA IRG>
UIFR STA,
PLA,]
IRGRTN JMP, ¢ RETURN TO I/0 ROM>

Pigure J-1. 24-Hour Clock Program
Using a Machine Level Interrupt Handle
J-4

UIRGAM ! SET IRQ VECTOR)

FORTH

INIT ¢ INITIALIZE THE USER VIA)
4@ UACR C! < SET Ti1i FREE-RUN MODE>
PERIOD UT1 ! < LOAD T1 VALUE = 1/100 SEC
Cé UIER C! ; ¢ ENRBLE USER VIR T1 INTY

DECIMAL
:bD ¢ TYPE M OR SO
S-2D <& # S8 ¢ :> HOLD #> TYPE

'TICKS C@ ¢ HRS) 2 .R TICKS 1+ C@ < M)

PAD 1+ - (% OF CHARACTERS)
PAD C! < FOR TYPE)

. .M ¢ PRINT MESSAGE>
PAD COUNT 38 MIN TYPE

H -
DECIMAL .M . T

: T! € SET TIMED

ie@ U/ ¢ GET SEC)

1080 /MOD ¢ MIN HRS)

TICKS C! ¢ LOAD HRS>

TICKS 1+ C! < MIND

TICKS 2+ C! ¢ & SEC)

@ TICKS 2 + C! ¢ ZERO 1@8THS)

. T ¢ SET TIME & GO>
T! INIT ;

¢ L ¢ CONTINUQOUSLY DISPLAY MSG & TIME)
BEGIN 24 EMIT ¢ BLANK CURSOR >

43 EMIT ¢ STAY ON LINE> D ?TERMINAL
UNTIL 23 EMIT ¢ RESTORE CURSOR > QUIT

. D ¢ DISPLAY MSG & TIME ONCE>
CR D QUIT

CR . " DONE
FINIS
WEND#

Figure J-1. 24-Hour Clock Program
Using a Machine Level Interrupt Handler (Cont'd)
J=5

¢ 24-HOUR CLOCK USING FORTH INTERRUPTS
HEX 8220 CONSTANT UIRGAM

FEA® CONSTANT IRQRTN

FFA4 CONSTANT UT1

FFAB CONSTANT UACR

‘FFAD CONSTANT UIFR

FFAE CONSTANT UIER

C24F CONSTANT PERIOD

';: 2 VARIABLE DAY# ¢ 2 BYTES>
b @ VYARIABLE TICKS < 4 BYTES) @ .

CODE DISABLE ¢ DISABLE USER VIA INT>
7F # LDA,

UIER STA.

NEXT JMP.,

END-CODE

DISABLE

¢ MACHINE CODE INTERRUPT SERVICE >
ASSEMBLER

- HERE PHA. ¢ SAVE IRG VECTOR>

[80 # LDR, ¢ SET INT REQUEST>

: INTFLAG ORA.

INTFLAG STA.

UIFR LDA, ¢ CLEAR USER VIR IRQ)>

UIFR STA.

PLA,

IRARTN JMP, ¢ RETURN TO 1/0 ROM>

CODE ARM ¢ RETURN FROM FORTH INTERRUPTS)
BF # LDA, ¢ RESET INT REQUEST BIT >
INTFLAG AND,

INTFLAG STA.

“ S JMP. ¢ RESTORE INTERRUPTED IP >
END-CODE

UIRGAM ! ¢ SET IR@ VECTOR)

FORTH

i 1 INIT ¢ INITIALIZE THE USER VIAD

48 URACR C! < SET T1 FREE-RUN MODE>

] C24F UTL ! ¢ LOAD T1 VALUE = 1/100 SEC)
Ca UIER C! ; < ENABLE USER VIA Ti INT)

DECIMAL S :
: +'L ¢ INCREMENT / STORE / LIMIT CHECK>
OVER +! ¢ ADD INC.>
SWAP OVER C@ < DUP
IF & ROT C!
ELSE SWAP DROP
THEN

Figure J-2. VLIST of 24-Clock Program Figure J-3, 24-Hour Clock Program
Using a Machine Lo;né Interrupt Handler b Using an Intcrputlv; Interrupt Handler
- o J=-

: T+ ¢ FORTH LEVEL INTERRUPT SERVICE > N

T! ¢ SET TIME>
99 TICKS 2 + S +!L ¢ 1/188 SEC COUNT>] 188 U/ ¢ GET SEC)
IF 53 TICKS 2+ 1 +!L < SECONDS > . 100 /MOD < MIN HRS)> N
IF S9 TICKS 1+ 1 +!L ¢ MINUTES > . TICKS C! ¢ LOAD HRS) N
IF 23 TICKS 1 +!L ¢ HOURS >) TICKS 1+ C! ¢ LOAD MIND
IF 23 TICKS 1 +!L ¢ HOURS) TICKS 2+ C' ¢ LOAD SEC) '
THEN @ TICKS 2 + C! ; ¢ ZERO 10@THS SEC b,
THEN
THEN T ¢ SET TIME & GO \
THEN T! INIT ; R
ARM [SMUDGE ¢ SIMILAR TO ; > 2\
: . € ¢ SONTINUOUSLY DISPLAY MSG & TIME)
° T+ CFA < PUT ADDRESS ON STACK) BEGIN 24 EMIT ¢ BLANK CURSOR) \
ASSEMBLER INTVECT ! ¢ SAVE INT VECTOR) ; 43 EMIT ¢ STAY ON SAME LINE> D ?TERMINAL
- UNTIL 23 EMIT ¢ RESTORE CURSOR > QUIT ;
FORTH .
;D0 ¢ TYPE M OR S) . : D ¢ DISPLRY MSG & TIME ONCE>
S-2D <% # & 58 ¢ :) HOLD #> TYPE ; CR D QUIT ;
: . T € PRINT TIME> : CR . " DONE"
TICKS C@ ¢ HRS) 2 . R FINIS
TICKS 1+ C@ :DD ¢ MIN) “END*
TICKS 2+ C@ DUP :DD ¢ SAVE & DISP SEC)
BEGIN ¢ WAITING FOR A SECOND CHANGE>
TICKS 2+ Cc@
OVER = NOT
UNTIL DROP ;

: M ¢ ENTER 30 CHAR MESSAGE)
PAD 1+ DUP 38 EXPECT PAD
BEGIN

i+ DUP C@ o=
UNTIL < NULL FOUND)
PAD 1+ - ¢ # OF CHARACTERS)
PAD C! ¢ FOR TYPE) ;

- M ¢ PRINT MESSAGE)
PAD COUNT 38 MIN TYPE ;

. D |
DECIMAL .M . T i

; Figure J-3. 24-Hour Clock Program : Figure ’;‘;.rkaEfv:'::::f:SStyﬁgzzi:r
Using an Interpretive Interrupt Handler (Cont'd) Using an Interp 329
J-8 ;

APPENDIX
UTILITY EXAMPLES
K.l MEASURING FORTH WORD EXECUTION TIME

It is often desired to know how long it takes for a FORTH word
to execute, expecially in time critical aplications. The
following words measure such execution time in AIM 65/42 clock
cycles, i.e., microseconds.

HEX
: ON FFFF FFAL ! ;
: OFF FFA4 @ 12B + DUP CR
IF FFFF DNEGATE D.
ELSE . THEN ;
The word ON initializes and starts Timer 1 in the AIM 65/48
SBC module User 6522 VIA. The word OFF displays the number
of cycles elapsed from the start of the timer minus ON and
OFF word overhead. Use these words as shown in the following
colon-definition example to measure the execution time of a
FORTH word, in this case DUP .

DECIMAL OK

: TDUP ON DUP OFF ;
OK

TDUP

76 OK

Using this technique, the execution time of most AIM 65/48 or
other FORTH words defined using colon- or CODE-definitions can
be measured. Set up and run similiar colon-definition words as
needed for your application.

Many problems can be programmed in FORTH using different
combinations of FORTH words with differing resultant execution
speed. If speed is important, measure the execution time of
each approach to decide which solution to use.

If the execution time of a FORTH word defined in high level,
i.e., colon-definitions, is too long, redefine portions, or
all, of the word in assembly code, i.e., colon-definitions,
then remeasure. Comparing the execution time of the word

K-1

defined in assembly code versus FORTH will show the performance APPENDIX L

improvement. For cases where the execution time exceeds the
16-bit counter capacity, other timing words can easily be
defined to accumulate the time.

AIM 65/48 FORTH VERSUS FIG-FORTH

K.2 AIM 65/48 ROM CHECK-SUM PROGRAM

This table is a comparison of AIM 65/40 FORTH V1.4 and the
FIG-FORTH model from which it is derived.

The object code bit pattern in the AIM 65/4@ Monitor and FORTH
ROMs (as well as other PROM/ROMs) can be easily verified by a. Words in AIM 65/48 FORTH V1.4 that are not in
performing a check-sum on them using the FORTH word CHECK-SUM FIG-FORTHE 1.0:
described below. The check-sum value is displayed on the
second line.

Word Name ?&
b
_CR l‘%
a. Definition - a \
1_ 3 Y
AIM 65/40 FORTH V1.4 2-
OK 2DROP
: CHECK-SUM (ADDR COUNT ---. 32-bit CHECKSUM) ; 2DUP
g8 S->D (ACCUM.) 4
ROT { GET COUNT) 2IN
@ Do { COUNT TIMES) 20UT
3 PICK { GET BASE) ASSEMBLER
I+ { FORM ADDR.) BOUNDS
ce s-.D (32 BITS) c/L
D+ (SUM IT) CLIT
LOOP CLOSE
CR D. { PRINT SUM) CODE
DROP ; (BASE ADDR.) CURRENT
DNEGATE
b. Execution 3 FINIS
FLUSH
HEX OK GET
A@PP 1008 CHECK-SUM {R32U5-11 Monitor ROM) : HANG
7374D OK NEGATE
B@PP 1889 CHECK-SUM (R32U6-11 Monitor ROM) i NOT
6EAG6 OK ; PICK
C@@@ 1898 CHECK-SUM (R32Pg-11 FORTH ROM) E READ
82647 OK PRE
DPP@ 1800 CHECK-SUM (R32P1-11 FORTH ROM) { SOURCE
8C1D3 OK i u<
FE@@ BF7F CHECK SUM (R32T3-12 I/0 ROM)* b UABORT
74508 OK UB/BUF
FFE® @01F CHECK-SUM (R32T3-12 I/0 ROM)* i UB/SCR
1178 OK \ uc/L
UEMIT
UFIRST
[UKEY
*Skip AIM 65 SBC Module I/0 (SFF80-SFFDF) 1 ULiMIT
UR/W
WRITE

i i

b.

The following words are in FIG-FORTH 1.8 but are not
in AIM 65/40 FORTH V1.4 (however, some of the words
are in the AIM 65/4¢ FORTH Assembler vocabulary) :

Word Name

+ORIGIN
?LOADING
BACK
BLOCK~READ
BLOCK-WRITE
DLIST
DMINUS

DRE

DR1

FLD

INDEX

LIST

MINUS

MOVE

NEXT

ouT
POP

PUSH
PUT
R#

TRAVERSE
TRIAD
X

Where Used

system

system

system

user disk word
user disk word
duplicate name
new name

disk

disk

not used

disk

disk

new name

N/A

AIM 65/48 FORTH
Assembler

not used

AIM 65/40 FORTH
Assembler

AIM 65/48 FORTH
Assembler

AIM 65/48 FORTH
Assembler
system

system

disk

system

L=2

Comment

(VLIST)
(DNEGATE)

(NEGATE)

(word addressing
computers)

(null)

APPENDIX M

FORTH AND THE RM 65 FDC MODULE

This appendix describes the actual code used to interface the

RM 65 FDC module with AIM 65/40 FORTH.

This example uses a

. single 5-inch disk drive with one side and double-density
recording and operates with the RM 65 FDC module PROM R32N5

(dated 1/4/82).
and compiled using the SOURCE word.
of the code words, refer to Section 12.

The example is entered into the

Text Editor

For a detailed description
There are seven major

words created which supplement the use of the FDC module:

INIT

MOTORON

MOTOROFF

WIPE

LIST

Initializes the FDC module and turns
side one, in single-density mode.

Turns ON the drive from SRCDSK, side
density from SRCDEN.

Turns OFF the selected drive

Initializes the disk in the selected
formatted disk will have all sectors
which on the AIM 65/4# microcomputer
a blinking "E.", and printed as “e".

ON drive one,

from SRCSID, and

drive. A
filled with SES
is displayed as

Clears screen n by filling it with null characters

($00).

n -
Lists screen n
64 characters each.

as 16 numbered lines (@ to F) with

EDIT n ==
Places the text following EDIT (up to 64 characters)
into line n on the current screen (i.e., the last

screen accessed with LIST or WIPE).

Other words that are present in FORTH and are also useful in
the creation and execution of source code include:

LOAD A e

Compiles source code into the dictionary starting
at screen n , line @ and continuing until a ;8
is encountered. The ;5 should be within four
lines of the last line of source code. More than
one sequential screen is loaded by using --> teo
point to the next screen.

EMPTY-E FFERS
Marks

with

11 RAM block buffers as empty and fills them
ll1s ($@88).

FLUSH
Writes out any updated RAM block buffers to the
disk.

Figure M-1 lists the FDC interface program in FORTH.

¢ AIM 65/48-FORTH DOUBLE DENSITY DISK ROUTINES >
HEX FORGET TASK ¢ FDC RAM $4AB-$55F)
1 CONSTANT S# ¢ ONLY 1 SCREEN NEEDED »
18@ UB/BUF ' ¢ 256 FOR DOUBLE DENSITY >
4 UB/SCR ! ¢ 4 FOR DOUBLE DENSITY >
LIMIT B/BUF 4 + B/SCR * S& * - UFIRST ! < TOP OF RAM >
@ OFFSET ! ¢ OFFSET NOT NEEDED WITH 1 DRIVE> W\
FIRST DUP USE ' PREY ' < SET UP FIRST BUFFER) X
EMPTY-BUFFERS ¢ CLERR OUT THE BUFFER AREA » N\
CODE INITL XSAVE STX, 8888 JSR, ¢ CALL INIT) NN
¢ SET DRIVE PARAMETERS IN SRCDRV, SRCSID. & SRCDEN >
© # LDA, 4AS STA, ¢ DRIVE ONE INTO SRCDRY)
@ # LDY, 4AF STY. ¢ SIDE ONE INTO SRCSID >
© # LDX. 4B1 STX. < DOUBLE DENSITY INTO SRCDEN)
B83E@ JSR, ¢ MOTON > XSAVE LDX. NEXT JMP. END-CODE
INIT FD46 4FB ' ¢ UIRGBM > IRQOUT) 83C9 22B
! ¢ SET UP IRGHAN)> INITL ;
. SIZEOK OVER 238 < ; ¢ 16 SECTOR * 35 TRACK)
: BBUF DUP 4F1 (RDBUF) ! 4F2 ¢ WRTBUF) ' ;
. T&S SWAP 1@ /MOD ; ¢ LERVE TRACK & SECTOR)
CODE SEEK XSAVE STX, TOP LDA. 8184 JSR. ¢ CALL SEEK >
XSAVE LDX. 99 # AND. PUSHSR JMP, END-CODE
CODE DREAD XSAYE STX, TOP LDR. B4BF JSR. ¢ CALL RDSEC >
XSAVE LDX, BD # AND, PUSH@R JMP,
CODE DWRITE XSAVE STX. TOP LDA. 8588 JSR,
XSAVE LDX. FD # RAND. PUSH@AR JMP, END-CODE
. INTDIS FF FFS@ C! ¢ MRSK OUT ALL IRQ@ BUT FDC)
: INTENB @@ FFB@ C! ¢ RESTORE THE IRQ MASK) ;
. DERROR INTENB CR . " DISK ERROR - " ; ¢ RECOVER & PRINT
: DATA ¢ FETCH A BYTE > ROT BBUF T4&S SEEK DUP
IF DERROR . " SEEK R=" . ¢ SEEK ERROR > ELSE DROP
THEN DROP 1+ ¢ SECTOR 1 TO 16 > SWAP
IF DREAD DUP IF DERROR . " RERD A=" . ¢ READ ERROR >
ELSE DROP THEN ¢ DO NOTHING)
ELSE DWRITE DUP IF DERROR . " WRITE A=" ., ¢ ERROR > -
, ELSE DROP THEN ¢ DO NOTHING > THEN DROP ;
| . DISK SIZEOK IF INTDIS DATA INTENB
ELSE CR . " BLOCK TOO LARGE ERROR " RBORT THEN
 DISK CFR UR/M ! ¢ STORE INTERFACE WORD)
¢ UTILITIES THAT MUST BE AVAILABLE TO USER)
. CODE FORMAT XSAVE STX. 8095 JSR, ¢ CALL FORMAT)
XSAVE LDX, NEXT JMP. END-CODE
. CODE MOTOROFF XSAYE STX. 8478 JSR,
| XSAVE LDX, NEXT JMP., END-CODE
| CODE MOTORON XSAVE STX. 8478 JSR,
4AS LDA, ¢ SRCDSK > 4AF LDY.
4B1 LDX, ¢ SRCDEN > S3E@ JSR,
HSAVE LDX, NEXT JMP, END-CODE
. EDIT SCR @ <(LINE> OYER SWAP BLANKS ¢ CLEAR OUT LINE
J @ WORD ¢ PARSE TEXT > HERE COUNT 4@ MIN ¢ 64 CHAR LINES
| ROT SWAP CMOVE ¢ MOVE TEXT > UPDATE ¢ MARK BUFFER) ;
J:LlS’T DUP CR ." SCR # " . ¢ PRINT SCREEN AND SAVE > SCR !

¢ CALL WRTSEC

¢ CALL MOTOFF >

¢ CALL MOTOFF »
¢ SRCSID >
¢ CALL MOTON >

1 @ DOCR I 3 RSPACE I SCR® .LINE LOOP CR

! WIPE B/SCR #» B/SCR BOUNDS ¢ SCREEN # TO BLOCK RANGE)
DO I BLOCK B/BUF BLANKS UPDATE LOOP FLUSH ;

: TASK ; < THROUGH WITH CODE > ¢ FINIS >

Figure M-1. AIM 65/4@ FORTH Floppy Disk Example

1'
i

APPENDIX N

SELECTED BIBLIOGRAPH

Anderson, A. and Wasson, P. FORTH-79 Tutorial and Reference
Manual, MicroMotion, 12077 Wilshire Blvd, Suite 506, West Los
Angeles, CA, February 1981.

Bartoldi, P, "Stepwise Development and Debugging Using a Small
Well-Structured Interactive Language for Data Acquisition and
Instrument Control,™ Proceedings of the International Symposium
and Course on Mini and Microcomputers and their Applicationms.

Brodie, L., "Starting FORTH" Prentice-Hal Englewood Cliffs,
N.J., 1981.

Cassady, J. J., "Stacking Strings in PORTH", BYTE, February
1981, pages 152-162.

Deane, R., "A Proposal on Strings for FORTH", Dr. Dobb's
Journal of Computer Calisthenics & Orthodontia,
November/December 1988, pages 48-43.

Dessey, R. and M. K. Starling, "Forth Generation languages for
Laboratory Applications®™, American Laboratory, February 1986,
pages 21-36.

Bwing, M. S., The Caltech FORTH Manual, California Institute
of Technology, Pasadena CA, 1978.

Ewing, M. S., and W. H. Hammond, "The FORTH Programming
System," Proceedings of the Digital Equipment Computer Users
Society (DECUS), San Diego, CA, November 1974, page 477.

FORTH Interest Group, fig-FORTH Installation Manual Glossary
Model™, May 1979, Box 1105, San Carlos, CA, 94070.

PORTH Interest Group, "FORTH Dimensions" a bimonthly
newsletter, c/o FORTH Interest Group.

Harris, K., "FORTH Extensibility or How to Write a Compiler in
25 Words or Less", BYTE, August 1980, pages 164 - 184.

Hicks, 8. M., "PORTH's Forte is Tighter Programming”,
Electronics, March 15, 1979, pages 115-118.

James, J. 5., "FORTH for Micro Computers™, Dr. Dobb's Journal
of Computer Calisthenics & Orthodontia, May 1978; also in ACM
SIGPLAN Notices, October 1978.

James, J. §., "What Is FORTH? A Tutorial Introduction™, BYTE,
August 198¢, pages 100-126.

Mannoni, M., "FORTH - An Extensible Path to Efficient
Programs™, Electronic Design, July 19, 1984, pages 175-178

Moore, C. H., "FORTH: a New Way to Program a Minicomputer™,

Astronomy and Astrophysics Supplement, 1974, number 15, pages
497-511.

Phillips, J. B. "Threaded Code for Laboratory Computers®,
Software Practice and Experience, Vol, 8, 1978, pages 257-263.

Rather, E. D., and C. H. Moore, "The FORTH Approach to
Operating Systems™, ACM 1976 Proceedings, Association for
Computing Machinery, 1976.

Rather, E. D., and C. H. Moore, and J. M. Hollis, "Basic
Principles of FORTH Language as Applied to a PDP-11 Computer",
Computer Division Internal Report No. 17, National Radio
Astronomy Observatory, Charlottesville, VA; Kitt Peak Mational
Observatory, Tucson, AZ, March 1974.

