TURTLE TALK

SmarilOGO Turlie Talk

author. Seymour Papert
confributing editors: John Berlow
Eric Brown
Wynter Show
word processing: Marie Barbeau
SmariLOGO Reference Manual
contributing editors: Eric Brown
Barbara Mingie
word processing: Marie Barbeau
Graphic design and layout
Lomaine Lavigne
Richard Lavigne
Julien Perron
Bploring Smarll0OGO
author/programmer. Eric Brown
contributing editor: Barbara Mingie
SmariLOGO Sofiwoare feam
analysts: Mario Bergeron
Mario Bourgoin
Mamadou Billo Diallo
festers: Hani Fanous
René Yelle
Project Management: Michael Quinn

Contributions 1o Logo software and reference materials have
been made by many members of Logo Computer Systems inc.

Mawmmemdcmmmmmmumvom
preparation of the software and reference materials.

© 1984 Logo Compuler Systems inc.

All ights reserved. No part of the documentation contained
herein may be reproduced, stored in refrieval systems, or
fransmitted, in any form or by any means, photocopying,
elecironic, mechanical, recording, or otherwise, without the prior
approval in witing from Logo Computer Systems Inc.

\

e

Table of
Contents

Chapter1
1 Introduction: Welcome to SmartLOGO
Chapter 2
5 Starting Out
5 Meet the Turtle
10 Some Fancy Stuff
Chapter 3
13 Motion, Shapes, and Colors
13 Let's Get Moving
14 Shapes and Colors
15 More Turlles
16 A Project
18 Making Your Own Shapes

Chapter 4

23 Procedures
23 Teaching the Computer a New Command
25 Changing the Procedure
26 Procedures with Inputs
29 Circles and “"Magic” Numbers
3 Subprocedures
34 Printing on Paper
Chapter 5
37 Reporters
39 More Reporters
Chapter 6
43 SmartLOGO as a Calculator
Chapter?7
47 Making a Movie
49 Sound Effects
Chapter 8
5 Naming Things
52 Names for Turtles and Names for Shapes
53 Teams
54 Names of Things
Chapter 9@
59 Memory
59 Saving Procedures
60 Saving Pictures
o1 Saving New Turtle Shapes
Chapter10
65 P.S. Some Things to Experiment With

©90-DAY LIMITED WARRANTY

Coboowmuﬂstohealgkﬂoonwmerpurdmhhe&ﬂed&desdmmm
nsephysodoanpmaﬂsdmmddopockumvgtdwomcmwmmedddecsin
mmmmmm%dcwﬁommeddedpudmemdemamdinm\na

Cdeoo'ssdemdemdmlvelcbitvfordefedshndeﬂdmdwoﬂcnu@ip ofthe
meommmllmmmmamdmmcmmCWQ
miswmawdoesndoblgdeCdecobbeameooddhuspafdbndugesmcomodimwﬂh
the repair or replacement of defective parts.

mswarawsmdidmhedomogeordetedisoanedbvooddem.oddeod

mmmmmmmwwmmmu
mmmmmmamnmmu&ammmm
m,mmmummmmamwmwm
OTHER PARTY AGAINST THE USER OF THE DIGITAL DATA PACK.
msm'medwmawdoesndmﬂtomepmqammaﬁdinmeowwo

mmm.ooueommummmcwuammm
BY ANY OTHER PARTY AGAINST THE USER OF THE PROGRAMS.

miswmorwgvasyouspedicbguldgta\dyoumavmvooihefmm
mmmmmmmmmmmmamama
omseanﬁddanogasalrﬂtdimsontnwbngmhpledmtvbﬂ&sohecbove
limitations or exclusions may not apply fo you.

SERVICE POLICY
Hmw&mWsMwaﬁmuﬁgmmmmnmr
mmmmmmmw.mmbmmmdwhm

wnwomsewbemmm'smmmﬂ-wowmm.mms
in operation from 800 am. to 10:00 p.m. Eastem Time, Monday through Friday.

nmmmmmmmmmmmmnm
mepcida\dmedwﬂhmmme.odaess.noddmoaadmmmdowamdpmn
dmmmmmmmmmmmmmﬂnnmmmm
qundlobefoduvddedweduhgmm%dav&nmmerepamdmwpbcodmmoomo
youHMUgﬂdDdoPodz&fandtonebeenoomumdmmedadxmdmdmeme
not covered by the waranty, then you will be advised, in advance, of repair Costs.

NWWMMMWWWMMNMWW
mmmwm'smmmmmmmmmbm
4-800-842-1225 nationwide.

IMPORTANT: SAVE YOUR RECEIPTS SHOWING DATE OF PURCHASE.

Starting
Out

Chapter 2

1. Turn the computer [ON |
2. Insert the SmartLOGO digital data pack.

3. Press the computer [RESET | button.

e

Meet the Turtle
T e =

A journey of a thousand miles starts with a single step. Our
first step toward programming is to meet the turtle.

The turtle is a computer creature that lives on the
screen. The turtle will draw if you tell it what to do. You talk

to it by typing. Try:
?FORWARD 50

Don't forget the space. g

Computer people
4 make zero like this: @.
1% O is the number zero.

This is what you see:

& Press to show the

§¢ computer you have come 4

totheend ofyour &,
instruction. g

%
You should now see this: ,

0|

What about:
28 FO 1 4
Put in any number: try a very big number.

Two more

instructions
==

BACK |_j or BK | |
LEFT |_j or LT ||

Try FORWARD 25 and other numbers. To save typing,
use FD. It works just like FORWARD.

Thisis a command.—l r This is the input.

FORWARD 50,

The whole thing is an inst.ruction.—T

A new command
-]

?CLEARSCREEN or CS

No input needed [RETURN |is still needed.
Why no input? FD needs an input to tell it how far to

move the turtle. But CS is just clear the screen. It doesn'’t
need any more information.

To make the turtle face another direction:

?RIGHT, 80 or RT, 90
T—Space——-T T—Dontforget-

TryFD |__J RT | FD | RT |_j andsoon.

%

i -
¥ l<’

FAT—

L.J

o / i\

| /:'/\
V. 5 1

Y,
/
L.

|

The | jmeans you fill in any numbers you want. If
the numbers are small, the turtle moves only a little. If they

are very big, the turtle may surprise you.

—
8

Try this:

?CS ?RT 30

" 9FD 140 2FD 78 ?

The turtle can move without drawing lines. You just

have to lift its pen.
That's how you would draw something like this:

Here are the commands you need:

PENUP or PU
PENDOWN or PD

Try them out:

?CS RT 80
?PD FD
?PU FD
?PD FD
?PU PD

Another new command:
2REPEAT 6 [PD FD 10 PU FD 101

il il il
e6eaese

Some more
commands
e
?HOME If you think nothing is
happening, try
FD 5@ RT 92 FD 5@ HOME.
?CLEAN Hint: Try FD 5@ CLEAN.
? H T (for HideTurtle) Look for the turtle!
? S T (for ShowTurtle)

?PE or PENERASE Hint TryPDFD 5@ PE BK 25.

Some
Fancy Stuff

Two ways to draw a square:

® The long way

?FD 50
?FD 50
?FD 50
?2FD 50

@ The short way

?REPEAT 4

This is a command.
It has two inputs.

[FD 50 RT 80]

Oneinputisa
number.

L—The other is a list
of instructions:
[FD 5@ RT92]
Alist is always inside an
envelope:
[1.

REPEAT can be a lot of fun. With different inputs, you

can get some amazing resullts.

2REPEAT 5 [FD 75 RT 144]

I.... 'ﬂ

N
c"\‘ :::{'\

““L‘E.

s
The list envelopeis [], not ().
2REPEAT 10 [FD 50 BK 50 RT 3—
6]

1

- —]

Motion,
Shapes,
and Colors
I
Chapter 3
- =]
1
Let’s Get
Moving
— o =

9SETSPEED 25 or SETSP 25

While it's moving, change directions with RT92 or LT
15 or other inputs. Do PU, CLEAN, PD while it's moving, and
see what happens. Then try FD 5@.

See how fast you can make it move, then see how
slow you can make it move.

oA R
s
ST
e

Oh @ speed meansit
doesn’t move.

CRTEN S
N AR S

Shapes
and Colors

You can also set the turtle’s shape and color.
?SETSHAPE 5 or SETSH 3

The input is the number of the shape.

Each shape in the computer’s memory has a
number, starting with &.

Colors also
have numbers
o == ————1

?SETCOLOR 1 or SETC 1 makesthe shape
black.

?SETCOLOR 2 or SETC 2 makesthe shape
green.

14

The turtle can draw in different colors too! Try this:
2?SETPENCOLOR 8 or SETPC 8

~ and then:
?FD 30

More
Turtles

/_—

So far you have only seen one turtle. But there are really 30
of them. Each turtle has a number. The turtle you already
know is turtle &.

B T -
RO b i (AT L OO CSR
o wed TG N e T e -
..-,u"‘&.-::mn{" e bl -‘7..,".‘?‘--. 3\
P 2ad
e

i Ifit's the first turtle, why .y

isn'titturtle 17 & Computer people like to
7 8 count@, 1,2, 3... instead of

1,2, 3,4... like everyone

else. .
R s

\‘(A

v \'.‘,%-

To get turtle 1 out from hiding:

e TTELL 1 81
?FD 45

LM AmAA st e iws Ly
o T e A, Ty T T
PR L S AT ‘ __"t ERRRY

BTG A R o
#7 Ohyeah...
AR y .

I‘. STmeans ShowTurtle,

B
saat
&0

oy

¢ BRir s O
o e SRR
b ikl Tyt

Now you should see two turtles on the screen. All
instructions now go to turtle 1. Turtle & ignores them. Only
turtle 1 is listening.

To make turtle & listen again: N\

?TELL 0

Or to make both turtles listen at the sa
PTELL [0 11 g™

Remember, this is a list,
and it needs a list envelop

me

time:

e

e '.." "T.

Try this:

?TELL 1 RBRT 80

?TELL 2 RT 80+80
?TELL 3 RT S0+80+80
?TELL 18 1 2 @]

?ST SETSP 25

They should all be moving now.

AT

A Project

Turtles zooming along a road: =

Do it yourself or follow our plan. (Best of all: do it
yourself, then look at our plan to see if we had the same
ideas as you did.)

Turtle Talk People Talk

PTELL ALL

2CS BT Gets rid of everything.

?TELL 0 ST Turtle @ is listening and showing.

2PU FD 16 Turtle moves to the top of the
road.

20T S0 Turtle turns, ready to draw.

?PD FD 256 Draws the top of read, all the way
across.

LT 80 PU Turtle turns, facing up again.

?2BK 32 RT 80 Turtle backs down to other side
of road.

?PD FD 256 Draws the bottom of the road, all
the way across.

?PU HOME Puts the turtle back in home
position.

?RT S0 Turns to draw the center line.

"REPEAT 16 [PD FD 8 PU FD 8]

LT
?RT

?SETSPEED

90 BK 8
S0

STELL 31 81

?PU
2L

PSETSPEED

FD 8
S0

10

10

Draws the dotted center line.

Turtle backs into the road.
Points to the right
and drives away.

Turtle 1 is listening and showing.
It moves into the other lane
points to the left

and drives away.

Would you like the turtles to look like cars? All you
have to do is make car shapes for them to wear.

17

whatever you want.
When you have

press the [V | key.

Well, you've got it. You see how the cursor draws
and how it erases. So now you can change the shape into

finished making the new shape,

11

11

19

1

1
11

11 11

[t]
[~]
[

This tells the Shape Editor to go away until you want
to change another shape. Look at the turtle! It's now
wearing the shape 8 you just made.

Now back to your project. Make a car shape and TELL
two turtles to SETSHAPE 8. Then get them moving on the
road.

Perhaps you want a second car shape? You'll have
to edit another shape (say, shape 7) for that.

20

21

Procedures

Chapter 4

At last it's all working! But you had to type a whole set of
instructions several times. Here's how to avoid that.

e}

Teaching
the Computer
a New Command

If you wanted to draw a lot of squares, it would help if you
could just type SQUARE. So let’s try it. Something interesting
might happen.

?SQUARE
| DON'T KNOW HOW TO SQUARE

Instead of drawing a square, the computer
complained: | DON'TKNOW HOW TO SQUARE.

Okay, if it doesn’t know how to square, you can
teach it how to square:

?T0 SQUARE

and Logo prints on the screen:

TO SQUAREN
END

23

The computer learned a new word: SQUARE. Here is a
good word for you to learn: procedure. A procedure is
simply a bunch of computer instructions with a name.

N This whole thing is a procedure:
TO SQUARE TO SQUARE is the title line of the
FD 50 RT 80 procedure.
FD 50 RT 890
FD 50 RT 80 The procedure is called SQUARE.
FD 50 RT 80
END END tells Logo that the procedure
stops here.

E————

Changing

the Procedure

When you try your procedure, maybe you don't iike what it
does. If you want to change something, just type TO SQUARE
again.

Make any changes you want, using the arrow keys to
move the cursor and to erase things. Then type in
what you want.

When you have finished, press [VI .

Try this:

?REPEAT [y [SQUARE RT 4l

You can also use SQUARE as a command inside
another procedure.

?T0 FLAG

TO FLAG

FD 40 SQUARE BK 40
END

25

?T0 STAR
TO STAR
REPEAT 30 [SQUARE RT 12}
END

Look at this instruction list.
. There are two instructions:

) :V;‘;‘" o R SN R AUTIERGN -.-.-..c;:r‘f-}j.?.}.f,',';': ‘::"., . SQU ARE and RT 12.

¢ Who said this has to be 30? /7

Why 12?

AC Viie oy

W N s

4t s
e RS RIS

FLAG and STAR will work only if you have defined
SQUARE. SQUARE is called a subprocedure of FLAG or STAR.

Procedures
with Inputs

This is a command. | i This is its input.

(FD 90

Together they are called an instruction.

This is also a command. 1§ It has no input.

LYy
It is a full instruction by itself.—

Some commands need inputs. FORWARD needs an
input. Otherwise, it doesn’t know how far to make the turtle
move. But PENUP just tells the turtle to lift its pen. You don't
have to tell it how high to lift the pen!

You can think of the command as a little person
inside the computer. This person has a job to do, and
maybe he or she needs some information to do it. For
example, the FORWARD person needs information about
how far to go.

SQUARE is like PENUP — you don't have to tell it
anything more. It makes the turtle draw a square 50 by 50.

It would be great to have a SQUARE procedure that
worked like this:

?SQUARE 10 making a tiny square, and
9SQUARE 100 making a much bigger square.

Let’s begin by getting rid of the old SQUARE:

2ERASE "“SQUARE or ER " SQUARE
T-Don't forget the quotes!—T

Now test to see if that worked:

?SQUARE
| DON'T KNOW HOW TO SQUARE

The machine has forgotten — SQUARE has been
erased.

27

Old sQUARE procedure

New SQUARE procedure

FD 50 RT 80
FD 50 RT 80
FD 50 RT 80
FD 50 RT 80

FD || what? Youcan'tputina
number because the procedure
must work for all sizes.

So, invent a name for the size of
the square. SIZE is a good name for
the number. Then you do the
procedure like this:

FD :SIZE RT 90
FD :SIZE RT 90
FD :SIZE RT 90
FD :SIZE RT 90

L Remember the dots.

One important thing: on the TO line (the title line) in
the editor we have to tell SmartLOGO that this procedure
needs an input, and the name we are using for the input is

SIZE. This is how to do it:

Old sQUARE procedure New SQUARE procedure
2T0 SQUARE
TO SQUARE TO SQUARE :SI|ZE
FD 50 RT 90 FD :SIZE RT 90
FD 50 RT 90 FD :SIZE RT 90
FD 50 RT 90 FD :SIZE RT 90
FD 50 RT 90 FD :SIZE RT 90
END END
Press [Vi [to save it.

Try it. (Don't forget to test what happens if you

forget to give it an input!)

28

2 SQUARE 10
2 SQUARE 20
2 SQUARE 30
. 2 SQUARE 40
2 SQUARE 50
9 SQUARE B0 1

Try some numbers of your own!

Circles
and “Magic”
Numbers

cu_‘.

e F y playing turtle. Preten
. that you're a turtle and

B alk maczrcle ’ '

AT A

" | went forward a little,
turned a little, and did it
lots of times.

REPEAT 4y [FD 1 RT 11

But how many times must the turtle do [FD1RT1] to
make a circle? It must be a lot, so you could try:

?REPEAT 100 [FD 1 RT

11
?REPEAT 200 (FD 1 RT 1]

You can go on guessing or try something else.
Do these:

?REPEAT 4 [FD 4 RT 90]

?REPEAT 3 [FD _y RT 1201

The turtle does RT 90 four times to make a square —
and does RT 4120 three times to make a triangle. Each time,
the turtle turns RT 360 to get all the way around! This is the
Total Turtle Trip Theorem.

30

o

Turtle Talk Theorem Talk

REPEAT 4 [FD 50 RT 901 4timesRr90isaturnof
360: a square.

REPEAT 3 [FD 50 RT 1201 3timesRr420is aturnof

360: a triangle.

So, to make a circle:

REPEAT 360

[FD 1 RT 11 360timesRT1is aturn of
360: a circle.

The turtle goes forward 1 step, turns 1, and does this
360 times until it's back where it started. It's made a circle.

You can use the same idea to make curves. They're
just unfinished circles.

Subprocedures
e——— Iy

Remember the ROAD project? It's just the sort of thing to put
into procedures. It's easy. Just invent a name for the
procedure and write in all the instructions you need.

?2T0 ROAD That's the name.
TO ROAD

TELL ALL CS HT

TELL @ B1

PU
RT
PD
LT
BK
PD
PU

REPEAT
END

FD
S0
FD
S0
32
FD

16 These instructions were copied
from page 17.

296

HOME RT 90

16 [PD FD 8 PU FD 81

Press to save it.

31

Simple, but a little hard to read. A better idea is to
see if part of the job can be done by a subprocedure.

9T0 EDGE
TO EDGE e
PU FD 16 RT 90

PD FD 256

PU LT 90 BK 16

END

Press [VI |to save it.

Now we can do:

?2T0 NEWROAD
TO NEWROAD
EDGE

RT 180
EDGE

END

Press [VI | to save it.

o A Sk
R AR = e e e S B et

v

F
X -

4

% Why did you stop there?

o
eSS
.,-v"-'_-,{.'"“""l

[just want to try it.
I'll finish it later.
g

But the edges work. We'll
put in lanes and cars now. _g,

Now type TO NEWROAD. Logo will print the procedure
out for you as far as it's gone.

32

2T0 NEWROAD

TO NEWROAD

TELL ALL CS HT

TELL @ ST

EDGE

RT 180

EDGE

LANES Now we're working on this line.
CARS

END
Press - (Vi |to save it.

s '-..:-._~_--,-: ,,vl-:,- _,.. .rm- (e

'Hey, what's that? Thase B
th, aren’tLogocommands. g

s . LANE59 CARSD ,;.;-

?2T0 LANES
TO LANES
PU RT 90 BK 128

REPEAT 16 [PD FD 8 PU FD 8]
BK 128 LT 90

END

Press to save it.

?T0 CARS
TO CARS
TELL @ ST
PU HOME

BK 8 RT 90
SETSP 10
TELL 7 &Y
PU

FD 8 LT 80
SETSP 10
TELL @ 14
END

Press to save it.

33

To test them out, type CS LANES, CS CARS. Then CS
and try NEWROAD to see if the procedures work together.

Here are some
new commands

POTS
POALL

POTS prints out the titles of all the procedures you've
put into the computer so far. POALL prints out the titles with
the instructions that make up the procedures.

Printing
on Paper

Here’s how to print your procedures out on the
SmartWRITER printer:

?PRINTER Turns the printer on.
2POALL Prints out all your procedures on
the screen and the printer.
?NOPRINTER Turns the printer off.
T

35

Reporters

Chapter 5

Help! I did SETSHAPE
something and SETCOLOR

_ something, butl can't
—~_ ., rememberwhat

R
S g

4+ mean | can’t remember
: their numbers. What can
| do?

You can use a new kind of procedure. They're called
reporters because they give reports. This is how you use
them:

COLOR is a reporter. It gives
information to PRINT so that PRINT
knows what to put on the screen.

|—>PRINT COLOR or PR COLOR

PRINT is a command. It tells Logo
to print something on the screen.
What will it print?

37

Just to see how it works, try this:

7SETC 3
?PR COLOR
3 £ *N’Q\
?SETC COLOR+1, Thatsagoodtnckyoure
?PR COLOR 4 adding 1 to the number
4 £ given by COLOR, then

sending the result to SETC.

?2T0 NEXT ? -
TO NEXT s S,

SETC COLOR+1
END

Press[Vi |to save it.
NEXT will make it change color automatically.

PNEXT
PNEXT
PNEXT

9REPEAT 1(Ml [NEXT]I

o I TR i ?‘»"« o

Nouw it's going so fast 1
I can'tseeit! “

f""w‘ 1,,\-»,,' “-.u- g*,:

?REPEAT 50 [NEXT WAIT 30 N

A new command.J t Play with its input.

38

Just to do something different, try this:

?TO0 WOW
TO WOW
NEXT
WAIT 30
WOW
END

This procedure uses a trick called recursion. The

WOW just before END tells Logo to do WOW again... and

again... and again... and again...
To make it stop, press the key at the top of
the keyboard.

[

More
Reporters

" Each SET-command has a reporter to go with it.

?SETSP 35
?PR SPEED

59
?SETSH B
?PR SHAPE

6

You can play the same games with SHAPE that you
did with COLOR.

?SETSH 0
2REPEAT 20 [SETSH SHAPE + 1 —

WAIT 100]
To get the turtle shape back, use SETSH 36.

39

One of the most important reporters tells which

turtle is listening. This reporter is called WHO.

?TELL B
?PR WHO
6
?TELL @
?PR WHO
0

Watch how you can use WHO. Let’s talk to a whole

bunch of turtles:

2TELL (@ 1 2 3 4 § 6 7]
?SETC 1 They're all black.

?HOME They're all at the same place.

?SETSH 4 They're all balls.

Do you see only one ball instead of eight? That's

because they're all on top of each other.

To get them separated, you can give each a different

speed:

?TELL 1 SETSP 10
?TELL 2 SETSP 20
?TELL 3 SETSP 30

But you can save lots of typing by using the EACH

command with WHO:

7Ll 18 1" 2 83 ¢ 8 8 7
?EACH [SETSP WHO = 101<—|

Each turtle —1 to set its —T it's ownj times ten
gets a speed to number
command ...

A s A BN N
‘.-I;:;.\'n-;.'-‘é-.‘:'--u"’-“" L

?’Now Ican'tgetthem %, "
v, tostop! Remember:
T TELL ALL CS HT

% TELLOSTPD

vy

SmariLOGO
asa
. Calculator
Chapter 6
 —
Try this:
?PR 4+5 Logo added 4 and 5 and gave the
9 answer 9.
/‘\
2PR 35050 Logo multiplied 350 times 50 and
17500 gave the answer 17500.
?RT 180-135 Logo subtracted 135 from 180 and

used the answer 45 as the input to
RIGHT. How far right did the turtle
turn?

SmartLOGO has all the arithmetic features of a
calculator built in!

43

Like the reporters, the arithmetic operations send
the answer somewhere — so you have to tell Logo where.

25+200

YOU DON'T SAY WHAT T0 DO WIT—

H 205

?PR 5+200
205

Instead of trying to figure out how many times to
REPEAT something, you can let Logo do the arithmetic for
you. Try:

?REPEAT 360/4 [FD 1 RT 1]

The turtle draws a curve that's a quarter of a circle.

?SETSH 10
?SETSH 11
?SETSH 10
?SETSH 11

It should flap like a bird. Now you can animate it:

?TO0 FLAP
TO FLAP
SETSH 10
WAIT 20
SETSH 11
WAIT 20
FLAP = Here’s that recursion trick again.

END
Press to save it.

When you did it by hand, you didn’t need to use the
command WAIT. Why? Because you did the waiting when

you were typing.
First make sure that it worked:

?FLAP

Use the [ESCAPE | key to stop it. Now let's make it
move:

?PENUP
?SETSP 20
?FLAP

Making more birds:

?TELL 2 ST PENUP
?SETC 1 HOME FD 50

?TELL [0 2]

2R]. 45 SETSP 20 FLAP e

e "m:“w‘m SRRl
TN Hra g = "‘{,...-;
‘;“"5-

"How would you send all ;
5% the birds home?

iy

¥ You mean to the middle of :
the screen? Easy:
TELL ALL HOME

Naming
Things

Chapter 8

Perhaps you've been making new shapes with the shape
editor. Or maybe you've been playing around with the
shapes that are already there. Each one needs a shape
number — 25 for the truck, 19 for the flower, 27 for the
rocket. After a while, you might get mixed up. It would be a
lot simpler to give the shapes names instead of numbers.

In Logo there’s a trick for doing that.

You can use the command NAME, like this:

?NAME 25 | TRUCK

L——— Watch that little quote mark.
You'll soon see why it's there.

Now you can say
?SETSH ;TRUCK

You'll soon see why those dots
are there too.

You can give each shape a name.

P2NAME 4 "BALL Youchoose the name, any name
PNAME 15 "STAR youlike.

Then you can change shapes by saying:

?SETSH :BALL
9SETSH :STAR

o)

And so on. By the way, the computer will still
understand:

7SETSH 4
?SETSH 5 o

So you can use either names or numbers.

Names for
Turtles
and
Names for
Shapes

You can change the bird movie to work with names instead
of numbers. First, make one bird fly. Choose a turtle to be
the bird. Maybe 0.

?NAME 0 "BIRD —

Choose two shape numbers, say 10 and 11, and
make two shapes:

Now, choose two names for them:

?NAME 10 "UP
?NAME 11 "DOWN

52

Watch this:

?T0 BIRDS
TO BIRDS

TELL :BIRDS 8T —

PU CS

SETC 1

RT 60

EACH [FD WHO=*10]
RT 30

SETSP 20

FLAP

adald LS ol
e e
5

;_-',4-_:",#,-5".3-2.«' e) -N’ J— 1‘ LBy
f‘i" What about the sun and %% _.2® -

Names
of Things

Maybe you've wondered what the dots and quotes are all
about. This section will help you think about it. Read it when
you feel like taking a break from the computer.

You can explain dots and quotes by playing a game.

You say to someone: Say your name.

Maybe the person

says: Barbara.

Then you say: I didn't say Say Barbara,
| said Say your name.

Barbara will

probably say: Your name.

Then you say: Oh so that's what you
are called? Your name?

[=us- =i

There are many forms of this joke. For example:

You: What's the longest river in the U.S.?
Victim: The Mississippi.

You: Spell it.

Victim: M-I-S-S-I-S-S-I-P-P-I

You: Really? I thought it was spelled I-T.

“Spell it” can mean two things:

Spell the word it: I-T
or
Spell what the word it stands for.

People usually understand which you mean from

the tone of your voice. If you write it down, you use
punctuation marks to show the difference. For example:

Spell it means spell the thing you're
talking about.
Spell “it” means spell “it” itself.

Computers need punctuation marks too. In

SmartLOGO, we do this with dots and quotes.

itself.

Quotes are a way to say that you mean the word

Dots say that you mean what the word stands for.
?NAME 55 "AGE

?PR "AGE

AGE It printed the word age.
?PR :AGE

55 It printed what the word age

stands for.

?PRINT “BIRDS
BIRDS

?PRINT :BIRDS
2 345678191011

55

56

PPRINT "UP
UpP
?PRINT :UP
10

E—

57

Then, when you turn the computer back on, you
type:
?LOAD “TODAY

and the computer will copy all the procedures in the TODAY
package back into the workspace.

If you don’t want to save everything in your
workspace, you have to erase those things you don’t want.
Use POTS to see the titles, find which procedures you don't
want (for instance SQUARE) and type:

?ERASE "SQUARE
B Then you can save the workspace.

7 Inght forget whatl % R
kS named my package it o
N SO < Try: CATALOG 3y

) 5& This prints the names of all %
the packages (called files) that .
are saved on the data pack.

% [tdoesn't print the contents

% Of those files, just their (
. names. L W

-
Saving

Pictures

— - -~ -

You can also save any picture the turtle draws on the
screen.

?SAVEPICT "DRAWING Orany other name you
choose.

When you turn the computer back on, type:
?LOADPICT "DRAWING

SAVEPICT copies everything that is on the screen
(including text) onto the data pack. So you may want to
learn this command:

?CLEARTEXT or CT

This clears all the text from the screen, but doesn’t
change the picture.

Saving New
Turtle Shapes

Saving new turtle shapes is a little more complicated.

The computer uses numbers to remember the
patterns that make up a shape. These numbers are like a
code. In order to save a new shape, you have to save those
numbers. You do it with the command GETSH, which gets
the code for a shape number.

Remember the FLAP procedure? You used shapes
10 and 11 as the wings.

?NAME GETSH 10 "WINGSUP
?NAME GETSH 11 "WINGSDOWN

And the code for each shape now has a name. Next,
save all the names and the things that go with them.

?SAVENS “"WINGSHAPES
Then when you turn the computer back on, type:
?LOAD "WINGSHAPES

1
1

and

?PUTSH 10 :WINGSUP
?PUTSH 11 :WINGSDOWN

PUTSH (for putshape) tells shape 10 to become the
pattern that we called WINGSUP. And shape 11 becomes the
pattern we called WINGSDOWN.

o1

When you do:

?SETSH 10
?SETSH 11

it ﬂaps like a bird again.

SRR SR G e

i,

" No, it’s just the beginning.
Now it's up to you. Use
your imagination
your friends
anything you can find
(don't forget the
SmartLOGO Reference

62

P.S.

Some Things
to Experiment
With

Chapter10

Here are some projects you can try out. You'll find some
new commands and ideas in them. If you play around with
them you'll figure out how they work.

Filling
in asquare
|

Try:

?SQUARE 50

?PU RT 45 FD 5
7P0 SETPE ¢ FILL
?SETPC 14 FILL

Another way
to stop

and start
|

Try:
TELL ALL
?2CS ST PU
PEACH [SETH 12*WHO]
?SETSP 50
?FREEZE
?THAW

Getting turtles

to bounce
s = =— =7 =

Try this procedure:

TO BOUNCE
&Ll W

SETSH 4

SETC 8

ST PU

FD 60

TELL]

SETSH 4

SETC 3

ST PU

BK 60

TELL @

SETSH 4

ST PU
ON.TOUCH 2 1
ON.TOUCH 2 0
SETSP 20

END

ON.TOUCH needs 3 inputs: two numbers for turtles,
and a list of instructions to do when the turtles touch.

This means that
when turtle 2
touches turtle 1 it
turns RIGHT 180.

66

Every effort has been made to
ensure the accuracy of the
product documentation in this
manual. However, because we
are constantty improving and
updating our computer
software and documentation,
Logo Computer Systems Inc. is
unable to guarantee the
accuracy of printed material
after the date of publication
and disciaims liability for
changes, efrors or omissions.

No reproduction of this
document or any portion of its
contents is allowed without the
specific written permission of
Logo Computer Systems Inc.

© 1984 Logo Computer
Systems Inc.
All rigths reserved.

[GoLEco 1M

Logo Computer Systems Inc.
9960 Céte de Liesse Road
Printed in U.S.A. 14381 Lachine, Québec, Canada H8T 1A1

REFERENCE
MANUAL

SmariLOGO Turtie Talk

author: Seymour Papert
confributing editors: John Berlow
Eric Brown
Wynter Snow
word processing: Marie Barbeau
SmartLOGO Reference Manual
contributing editors: Eric Brown
Barbara Mingie
word processing: Marie Barbeau
Graphic design and layout
Lomaine Lavigne
Richard Lavigne
Julien Pemron
Bxploring SmarllOGO
author/programmer: Eric Brown
contfributing editor: Barbara Mingie
SmarLOGO Sofiware feam
analysts: Mario Bergeron
Mario
Mamadou Billo Diallo
testers: Hani Fanous
René Yelle
Project Management: Michael Quinn

Confributions fo Logo sofiware and reference materials have
been made by many members of Logo Computer Systems Inc.
Many members of Coleco Industries Inc. have confributed fo the
preparation of the software and reference materials.

© 1984 Logo Computer Systems Inc.

All rights reserved. No part of the documentation contained
herein may be reproduced, stored in refrieval systems, or
fransmitted, in any form or by any means, photocopying,
electronic, mechanical, recording, or otherwise, without the prior
approval in writing from Logo Computer Systems inc.

.-

Table of
Contents
e]
1 Preface
Chapter 1
5 Intfroduction
6 What You Need
8 The Keyboard
13 How Primitives are Described
13 How We Describe Formats
16 Special SmartLOGO Considerations
Chapter 2
21 Logo Grammar
21 Procedures
23 Punctuation and Inputs to Procedures
25 Commands and Operations
26 Variables
28 Global and Local Variables
29 Understanding a Logo Line
Chapter 3
33 Defining Procedures
34 SmartLOGO Editor

Chapter 12

415 Words, Numbers and Lists

147 SmartLOGO Object Manipulators
118 SmartLOGO Object Reporters

119 Variables as Inputs

119 Inputs from the Keyboard
Chapter 13

137 Variables
Chapter 14

445 Mathematical Operations

147 Order of Mathematical Operations
Chapter 15

163 Flow of Control and Conditionals

Chapter 16

179 Logical Operations

Chapter 17

187 Interacting with SmartLOGO:
Peripheral Devices

187 The Game Controllers
191 The Keyboard

197 The SmartWRITER Printer
199 Optional Devices

Chapter 18

201 Workspace Management

Chapter 19

209 File Management

214 Creating a Digital Data Pack for File Storage

Chapter 20

217

Property Lists

222

A Sample Project Using Property Lists
Chapter 21

227

Special Primitives

Appendix A

233

Error Messages

Appendix B

239

Program Files Included on the SmartLOGO
Digital Data Pack

240
241
242
242

Using the Tutorial Files

Using the Demonstration Programs
Using the EASY Programs

Using the Useful Tools

Appendix C

249

Startup

249
250
250
251

The STARTUP File

The STARTUP Variable

Changing the STARTUP File: A Note of Caution
A Sample STARTUP File and Variable

Appendix D

253

Memory Space

253
254
255

How it Works
How Space is Used
Space Saving Hints

Appendix E

257 Parsing
257 Delimiters
258 Infix Procedures
258 Brackets and Parentheses
259 Quotes and Delimiters
260 The Minus Sign
Appendix F
263 Summary of SmartLOGO Primitives
Appendix G
287 Glossary
297 Index

90-DAY LIMITED WARRANTY

Coleco warrants to the original consumer purchaser in the United States of America that
the physical components of this digital data pack (the “Digital Data Pack”) will be free of defects in
material and workmanship for 90 days from the date of purchase under normal in-house use.

Coleco's sole and exclusive liability for defects in material and workmanship of the
Digital Data Pack shall be limited to repair or replacement at an authorized Coleco Service Center.
This wamranty does not obligate Coleco to bear the cost of fransportation charges in connection with
the repair or replacement of defective parts.

This waranty is invalid if the damage or defect is caused by accident, act of God,
consumer abuse, unauthorized alteration or repair, vandalism or misuse.

ANY IMPLIED WARRANTIES ARISING OUT OF THE SALE OF THE DIGITAL DATA PACK
INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE LIMITED TO THE ABOVE 90 DAY PERIOD. IN NO EVENT SHALL COLECO BE LIABLE
TO ANYONE FOR INCIDENTAL, CONSEQUENTIAL, CONTINGENT OR ANY OTHER DAMAGES IN
CONNECTION WITH OR ARISING OUT OF THE PURCHASE OR USE OF THE DIGITAL DATA PACK.
MOVEOVER, COLECO SHALL NOT BE LIABLE FOR ANY CLAIM OF ANY KIND WHATSOEVER BY ANY
OTHER PARTY AGAINST THE USER OF THE DIGITAL DATA PACK.

This limited waranty does not extend to the programs contained in the Digital Data
Pack and the accompanying documentation (the “Programs”). Coleco does not warrant the
Programs will be free from emor or will meet the specific requirements or expectations of the
consumer. The consumer assumes complete responsibliity for any decisions made or actions taken
based upon information obtained using the Programs. Any statements made conceming the utility
of the Programs are not to be construed as express or implied warranties.

COLECO MAKES NO WARRANTY, EITHER EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, IN CONNECTION
WITH THE PROGRAMS, AND ALL PROGRAMS ARE MADE AVAILABLE SOLELY ON AN “‘AS IS” BASIS.

IN NO EVENT SHALL COLECO BE LIABLE TO ANYONE FOR INCIDENTAL, CONSEQUENTIAL,
CONTINGENT OR ANY OTHER DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE PURCHASE
OR USE OF THE PROGRAMS AND THE SOLE AND EXCLUSIVE LIABILITY, IF ANY, OF COLECO,
REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED THE PURCHASE PRICE OF THE DIGITAL
mupmmm,mmmummmmormmomm
BY ANY OTHER PARTY AGAINST THE USER OF THE PROGRAMS.

This wamranty gives you specific legal rights, and you may have other rights which
vary from State to State. Some states do not allow the exclusion or limitation of incidental or
consequential damages or limitations on how long an implied warranty lasts, so the above
limitations or exclusions may not apply to you.

SERVICE POLICY

Please read your Owner's Manual carefully before using your Digital Data Pack. If your
Digital Data Pack fails o operate properly, please refer to the trouble-shooting checklist in the
Operating Tips Manual. I you cannot correct the matfunction after consulting this manual, please
call Customer Service on Coleco's toll-free service hotline: 1-800-842-1225 nationwide. This service is
in operation from 8:00 a.m. to 10:00 p.m. Eastem Time, Monday through Friday.

If Customer Service advises you to retum your Digital Data Pack, please retum it postage
prepaid and insured, with your name, address, proof of the date of purchase and a brief description
of the problem to the Service Center you have been directed to retum it to. If your Digital Data Pack
is found to be factory defective during the first 90 days, it will be repaired or replaced at no cost to
you. If the Digital Data Pack is found to have been consumer damaged or abused and therefore
not covered by the waranty, then you will be advised, in advance, of repair costs.

If your Digital Data Pack requires service after expiration of the 90 day Limited Warmranty
period, please call Coleco's toll-free service hotiine for instructions on how to proceed:
41-800-842-1225 nationwide.

IMPORTANT: SAVE YOUR RECEIPTS SHOWING DATE OF PURCHASE.

ABSOLUTELY OUT OF SPACE

Your workspace is completely filled. If you want to continue,
erase some procedures and names from your workspace.

YOU DON'T SAY WHAT TO DO WITH OBJECT

A Logo operation or object was given without a command
preceding it.

TOO MUCH INSIDE ()'S

Parentheses were incorrectly placed in a Logo instruction.
For example, parentheses surround more than one Logo
expression.

NOT ENOUGH INPUTS TO0 PROCEDURE
A procedure or primitive requires more inputs to run.

) WITHOUT

A closing parenthesis has no corresponding opening
parenthesis or a closing parenthesis was found when an
input was expected.

| DON'T KNOW HOW TO PROCEDURE

Logo has tried to execute “PROCEDURE" but can't find its
definition.

PROCEDURE DIDN'T QUTPUT TO PROCEDURE

A procedure or primitive that requires an input was not
given one and was followed on the same line by another
procedure or primitive.

NUMBER TOO BIG

The result of an arithmetic operation is more than 1E39 or
less than 1N38.

234

Preface

The Smartl OGO Reference Manual should be used for
reference, to look for specific primitives or to browse
around, looking for new ideas. For a general introduction
to SmartLOGO, read the first section of this book, Turtle
Talk. It was written to help and encourage a beginner.
First-time users should also go through the Exploring
SmartLOGO tutorials provided on the SmartLOGO digital
data pack. To use the tutorials or view the demonstration
program, type YES after the question TUTORIALS? YES OR NO.

The previous section of this book Turtle Talk, is a
casual introduction to some of the concepts involved in
programming turtle graphics. The following section,
Smartl OGO Reference Manual, is much more formal.
The first two chapters give a general introduction to
SmartLOGO and the conventions used to define and use
procedures. Following these, are chapters which provide
concise descriptions of each SmartLOGO primitive and
provide many sample programs (procedures).

There are several ways to use this manual.
Inexperienced programmers should go through the
introductory chapter, read the chapters on turtle graphics
and then do some programming. Experienced G
programmers can find out what a specific primitive does by
looking it up in the index or by checking Appendix F or the
Quick Reference Guide. Browse through the book and
you'll find many interesting ideas that can help you create
your own programes.

The appendices include technical information such
as: messages that appear on the screen, information on
files included on the SmartLOGO digital data pack, handy
procedures, and a summary of SmartLOGO primitives.

Throughout this manual, green text is used to
represent what you type on the computer. Black text is used
to represent what the computer displays. The words in
italics are the inputs to primitives.

e

Introduction

Chapter1

-

Logo is a language for computers. Compared with
languages like English or French, Logo has a very small
number of words and rules, but you can add new words. In
_ fact this is what programming in SmartLOGO* is all about:
using what exists to make new things, and then using the
new things to make more new things.

The initial vocabulary words are called Logo
primitives. These words deal with different kinds of
computer functions, from adding and subtracting
numbers, to drawing turtle graphics and manipulating
words and lists of words.

A Logo program is a collection of procedures.
Procedures are either primitives (pre-defined by
SmartLOGO) or procedures defined by you. All the
procedures you define (user-defined procedures) are built
out of SmartLOGO primitives. For example, a program to
draw a house may contain these procedures: HOUSE, BOX,

*SmartLOGO is the Logo language that was created especially for the

ADAM™ computer. The word Logo is used to refer to general Logo

features. SmartLOGO refers specifically to the Logo you will be using.
]

5

TRI, RIGHT, FORWARD and REPEAT. Of these, the last three are
primitives. The first three are user-defined procedures.

TO HOUSE
BOX
FORWARD 50
RIGHT 30
TRI 50
END

T0 BOX
REPEAT 4 [FORWARD 50 RIGHT 9-

0]
END

TO TRI :SIZE

REPEAT 3 [FORWARD :SIZE RIGH-
T 1201

END

Before going on, make sure you have read Turtle
Talk and have viewed the Exploring SmartLOGO tutorial ~—~
documentation. Working with SmartLOGO on your
ADAM™ will help you understand the ideas in the following
chapters.

e]
What you need
== = S =]

In order to use SmartLOGO, you need:

® An ADAM™ computer.

® A video monitor or a television set. You can use
either a black and white or a color set. If you use a
black and white set, the colors described here will
appear as shades of gray.

® A SmartLOGO package which contains two books:

Turtle Talk and the SmartLOGO Reference
Manual, and the SmartLOGO digital data pack.

6

1. Turn the computer [ON |.
2.Place the SmartLOGO digital data pack into the

drive.
3. Press the computer [RESET | button. Wait for
several seconds.

Remember to turn the machine on before putting
the SmartLOGO digital data pack in the drive. If your
ADAM™ is already on, just put the SmartLOGO digital data

__ packin and press the computer button.

After a moment you'll see on the screen:

COPYRIGHT 1984

LOGO COMPUTER SYSTEMS INC.
WELCOME TO SMARTLOGO
TUTORIALS? YES OR NO NO

5 t This question may be removed.
2 See Appendix C, Startup. For the
moment type NO.

The ? (question mark) is called a prompt. When ? is
on the screen, SmartLOGO is waiting for you to type
something. The flashing B is the cursor. It moves as you
type, showing you where the next character you type will
appear.

The Keyboard

The ADAM™ Home Computer keyboard is set up like a N
typewriter.

Character Keys
[= ==

Character keys include letters of the alphabet, numbers and
punctuation marks. For example:[A],[8],[C],[7],], [$].

RETURN |Key
I

The key tells SmartLOGO: “Now do what | just
typed.” Press it when you've typed something you want
SmartLOGO to do. In the Editor, pressing the key
moves the cursor and the rest of the line to the next line.

[SPACEBAR |

The [SPACEBAR | prints an invisible but important character
called space. SmartLOGO uses spaces to separate words.
For example, SmartLOGO would interpret THISISAWORD as a
single word and would interpret THIS IS A WORD as four
words.

Key
T |

Holding down the key, while pressing certain
character keys, changes that particular character key's
meaning in SmartLOGO. For example, if you hold the o
key down and press 8, SmartLOGO will print * on the
screen.

To make a shift character, always press the
key first and hold it down while typing the other key.

8

Arrow Keys

will move the cursor one space to the left.
will move the cursor one space to the right.
will move the cursor one line up.

will move the cursor one line down.

The arrow keys are useful editing keys. They move
the cursor in the direction in which they point without
affecting the text already there. (Note: The up and down
arrows only work in the SmartLOGO Editors.) Once the
cursor is positioned, you can insert or delete characters. To
insert text, simply position the cursor and begin typing.

[ESCAPE/WP | Key
[= = ——-__

Pressing the [ESCAPE/WP | key signals SmartLOGO to stop
whatever it is doing. When you press it, SmartLOGO types

STOPPED!!!
71

then lets you type the next instruction.

Smart Key
.

Pauses keyboard and screen operations. To prevent printed
information from scrolling off the screen, press the Smart
Key [V]once. Press it again to continue the scrolling.

Smart Key
(e =

The Smart Key is used to exit the SmartLOGO Editors.
This key is discussed, along with other special editing keys,
in Chapter 3, page 37, and Chapter 6, page 71.

[BACKSPACE | Key
- —

Erases the character to the left of the cursor.

DELETE | Key
| R ———— |

Erases the character under the cursor.

INSERT | Key
[e = -

Opens up a new line at the present cursor position. This is
most useful in the Editor, when you wish to insert a new line
into an existing procedure.

Key

Deletes all the characters from the present cursor position
to the end of the current line. SmartLOGO holds this text in
the delete buffer.

[MOVE/COPY | Key
-

Copies the last typed line. The [MOVE/COPY | key inserts a
copy of the text that is in the delete buffer, at the current
cursor position. The delete buffer retains the line of text
until new text is put into the delete buffer. The delete buffer
can hold 256 characters.

10

Special
Characters

A quotation mark, “, used immediately before a word,
indicates that it is being used as itself not as the name ofa
procedure or the value of a variable. We call this a literal
word. Note: numbers are literal words that don’t need a
quotation mark.

Examples:

?2PR "HELLO
HEL L0

?PR 5
5

A colon, ;, used immediately before a word, indicates that
the word is to be taken as the name of a variable and
produces the value of that variable.

Example:

9MAKE “PURPLE 13
2PR :PURPLE

13
9SETC :PURPLE

Brackets, [], are used to surround a list. They also group
the members or items of a list together.
Example:

"MAKE “COLORS [RED BLUE]
9 SHOW :COLORS
[RED BLUE]

1

Parentheses, (), are used to group things in ways that
SmartLOGO ordinarily would not, or to change the order in
which mathematical operations are performed. They also
let you vary the number of inputs for certain procedures.
For example, PRINT usually takes only one input but can
take more if the primitive and its inputs are enclosed in
parentheses.

Examples:

?PR 3%5+2
17

?PR 3+(5+2)
21

?MAKE “COLOR "“BLUE

?(PRINT [I HAVE A] :COLOR "C—
AR)

| HAVE A BLUE CAR

A backslash, \, tells SmartLOGO to interpret the character
that follows it literally as a character, rather than keeping
some special meaning it might have. For instance, suppose
you wanted to use 3[A]B as a single word. You need to type
3\[A\|B in order to avoid SmartLOGO's usual interpretation
of the contents of the brackets as being a list. You have to
put a backslash before [, (, |,), +,—, *,/, =, <, >, and\
itself. If you want to print a blank space, the\ will let you do
this.

Example:

?PR [985-4482]
985 - 4482

?PR [985\-4482]
985-4482

12

e,

How Primitives
are Described

e

The rest of this manual, except Chapter 2, Logo Grammar,
consists of a listing and description of each SmartLOGO
primitive.

In bold face at the top of each description, you will
find the name of the primitive and its short form if one
exists. Also indicated on that line is whether the primitive is
a command or an operation or an infix operation. The
difference between a command and an operation is
described in Chapter 2, Logo Grammar. An infix operation
is one that is placed between its inputs (for example, 4+ 5).
All other primitives are written in front of their inputs.

Below this, the name of the primitive, followed by
the type of each input is shown. This line is called the
format. You are to supply all inputs (shown in italics).

A description of the types of inputs is in this chapter.

This is followed by the definition, general
information about the primitive and illustrations of how to
use the primitive.

How We
Describe
Formats

If a primitive has more than one format, we write one below
the other, with the simplest or most commonly used on the
top line. You will see that, with some primitives (such as
PRINT), an optional format is surrounded by parentheses.

This indicates that the primitive will accept as many inputs
as you wish but when using more than the indicated
number of inputs with such a primitive, you must always
put a left parenthesis before its name and a right
parenthesis after the last input.

When we describe the kind of input that a primitive
requires, we are not speaking about the way the input is
written when you define the procedure; these rules are
described in Chapter 2. If you look up MAKE, you will see
that it must have the following form:

MAKE name object

This uses two input words: name and object.
Name means that the first input must be a word (we call a
word a name if it is used to identify a procedure, a variable
or a property) and objectis an abbreviation for a Logo
object (a word, a number or a list).

On the following pages are the words that are used
to describe the inputs to SmartLOGO primitives. Beside
each word is a description of what the real input must be.
These definitions apply only to the inputs of SmartLOGO
primitives.

Input Words
|

Type of Input Real Input i
address An integer from 0 through 65535.

byte An integer from 0 through 255.
character A letter of the alphabet, number, or

punctuation mark.

colornumber An integer from @ through 15.
SmartLOGO accepts bigger numbers
and divides them by 16 using the
remainder as the input number (i.e. 16
=0,17 = 1,100 = 4).

14

condnumber
degrees

duration
filename

freq
instructionlist

joystick
line

list
name

namelist

newname
newshapenumber

An integer from 0 through 5.

Degrees of an angle. A real number
between — 32767 and 32767.

An integer from 0 through 255.

A single word of 10 characters or less,
used to name a file.

An integer from 128 through 9999.

A list of procedures that SmartLOGO
can execute.

An integer, 0 or 1.

An integer from 0 through 23.
Information enclosed in[] brackets.

A word naming a procedure, a variable
or a property.

A list of words that name procedures or
variables or properties.

A word used for naming a procedure.

An integer from 0 through 59.

number, a, b, x, y Anumber. (The type of number will be

object

paddlenumber

position

pred

specified.)

A Logo object (a word, a listor a
number).

An integer, 0 or 1.

A list of two numbers giving the
coordinates of the turtle or the cursor.

A predicate, which is an operation that
outputs either the word TRUE or the word
FALSE.

15

prop A word naming a property.
ratio A number from — 32767 to 32767.
shapenumber An integer from 0 through 59.

shapespec A list of 32 numbers representing the
shape grid.

speed A number from — 128 through 128.

startvol An integer from 0 through 15.

steplength An integer from 0 through 15.

steps An integer from 0 through 15.

stepvol An integer from — 7 through 7.

furflenumber An integer from 0 through 29.
furflenumberiist A listof integers from @ through 29.

ype An integer from 0 through 7.

voice An integer from 0 through 2.

volume An integer from 0 through 15.

word A sequence of characters (not including
spaces).

SmartLOGO
Considerations

Order
of Precedence
for Turtles

ADAM™’s SmartLOGO has 30 turtles and there is an order
of precedence among them. Lower numbered turtles
always take precedence over higher numbered turtles when

16

there is a question of who should be displayed on the
screen. If two or more turtles overlap, the lower numbered
turtle is the one you see.

To understand this, think of 30 transparent planes,
numbered 0 through 29, making up your display screen.
Each turtle moves on the plane having its number — turtle
7 moves on plane 7 and so on. Plane 0 is at the front of the
screen, plane 14 in the middle and plane 29 at the rear of
the screen. So, the visible turtle on plane 5 will appear in
front of a turtle on plane 6 (or any other higher numbered
plane), but the visible turtle on plane 3 will appear in front of
turtle 5 when they overlap.

This feature can be used to enhance your dynamic
graphics. A truck (a turtle wearing a truck shape) can move
in front of a tree (a turtle with a tree shape) if the truck-turtle
has a lower number than the tree-turtle. Similarly, a dog
can pass behind the tree if the turtle using the dog shape
has a higher number than the turtle using the tree shape.

turtle @ turtle 1 turtle 2

17

The
Four-Turtles-in-a-Line
Rule

.]

There is an important rule that you should be aware of. It is
called the four-turtles-in-a-line rule. If there are more than
four turtles on the same horizontal line, the ones with the
highest numbers will disappear. Only four turtles can be
visible on one horizontal line at a time. Even if the four
turtles are hidden, another turtle with a higher number will
disappear. Turtles that disappear for this reason don’t go
away, they become visible again when one of the other
turtles moves.

If you find turtles appearing and disappearing in
strange ways, check to see if you have four or more turtles
on a horizontal line.

When SmartLOGO starts, all 30 turtles are located
at the center of the screen. If you want turtle 4 to be visible,
a turtle will have to move — either the one you want to see
or one of the lower numbered turtles.

Try the following example to see the effects of the
four-turtles-in-a-line rule:

?TELL ALL

?CS HT PU

21ELL € 8 4 §]
?8T

?EACH [SETCOLOR 7 FD 50 SETX—
20 = WHO]
?TELL 0

?ST SETSP 25
?SETSP 0

?SETY 50

7TELL &

?8ETSP 25

When you have finished experimenting, the
following commands clear the screen and leave only the
first turtle (turtle 0) visible.

———
18

?TELL ALL
?CS

PHT
?SETSH 36
2TELL ©
et

Text
and Graphics
on the Screen

Often if the screen is full of graphics, it may be hard to read
the text. Use CLEARGRAPHICS (CG) so the graphics will be
cleared, but the text will remain unaltered. If the text is
unneccessary, CLEARTEXT (CT) leaves the graphics but clears
the text.

Graphics and text are separate. Clearing one does
not affect the other.

CLEARSCREEN (CS) clears both graphics and text,
which gives you a totally clear screen with the turtle back
home. CLEAN does the same as CLEARSCREEN to the graphics
screen, except that the turtle’s position and speed are
unchanged. CLEARSCREEN, CLEARGRAPHICS, and CLEAN all
clean the FiLLed, STAMPed and SHADEd areas, but do not
change the background color. Note that only those turtles
in the current WHO list will be affected by CLEARSCREEN or
CLEARGRAPHICS. TELL ALL CLEARSCREEN will always clean the
screen, stop all the turtles and send them to the center, if
there are no demons (use ERDS to erase demons).

SETBG changes the background color (see Chapter 5
for a listing of colors). The textis always white (15). If
the background is set to the same color as text (15),
you will not be able to read the text. Use the primitive
CHANGE.COLOR to make the text readable. For instance
CHANGE.COLOR 15 1 changes everything in color 15 (except
the background) to color 1 (black). Then you can read the
text.

It is important to keep these facts and primitives in

mind so that you know how to clear graphics, text or both.
o]

19

7 N\

=

Logo
Grammar

Chapter 2

B e]

Logo is a powerful and flexible programming language
made up of building blocks called procedures. Some
procedures are already built into the SmartLOGO system;
these are called primitives. Others are defined by you.
Other than the fact that primitives are built i, there is no
difference between primitives and the procedures you
define.

Procedures can construct, modify and run other
procedures. They obey the rules of Logo grammar. The
following sections briefly describe these rules.

[= e

Procedures
—

The name of a procedure can be anything you like except
a name that SmartLOGO already uses for a primitive.

A meaningful name is best. A name can be as long you
want, but it must be only one word (no spaces). The word
can contain letters, numbers or symbols.

21

Here is a definition of a procedure called
WELCOME:

TO WELCOME title line
PRINT “HI
END

The title line always begins with 10 followed by the
name of the procedure. The last line contains only the word
END. For WELCOME, the main body is a request to run the
primitive PRINT,

There are two ways of defining a procedure:

® by using the SmartLOGO Editor, with TO or EDIT.
® by using the primitive DEFINE.

Once a procedure is defined, one way of executing it
is to type its name at top level (top level, represented by the
question mark (?), is when commands are immediately
executed):

?WELCOME procedure call
HI result

Another way is to call the procedure inside the
definition of another procedure. Suppose WARMWELCOME is
defined like this:

TO WARMWELCOME
WELCOME
WELCOME
WELCOME
WELCOME
WELCOME

END

22

When it's called, WARMWELCOME executes WELCOME
5 times.

?WARMWE L COME
HI
H I
H I
HI
HI

WARMWELCOME is the superprocedure that contains
the subprocedure WELCOME. Using superprocedures and
subprocedures, you can build structures of great
complexity. These structures contain levels. WARMWELCOME
is the highest level, and its subprocedure is in a level below.
These levels make up a program hierarchy.

A procedure can also be a subprocedure of itself.
This is called recursion. You'll find many examples of this
powerful Logo feature throughout this manual.

If you ask SmartLOGO to run an undefined
procedure, an error message appears.

?TALK
| DON'T KNOW HOW TO TALK

[T e .

Punctuation
and Inputs
to Procedures

SmartLOGO interprets every word as a request torun a
procedure. You must use special characters to indicate
when this is not the case.

A word beginning with a quotation mark — for
example, “Hl — tells SmartLOGO that the word must be
treated literally, not as a procedure call. Here, “Hl is an input
to the procedure PRINT.

?PRINT "HI
HI

23

Numbers are like literal words, but they don't need
quotation marks.

?PRINT 5
9

A sequence of words surrounded by square
brackets indicates a list. Lists can be inputs to procedures.

?PRINT [ARE WE HAVING FUN?]
ARE WE HAVING FUN?

The list [ARE WE HAVING FUN?] is a list of SmartLOGO
words; SmartLOGO does not try to execute them. The
following example illustrates this more clearly.

PRINT [2+2]
2+2

Without the brackets, SmartLOGO will attempt to
execute the sequence of words.

?PRINT 2+2
4
or
?PRINT ARE WE HAVING FUN?
| DON'T KNOW HOW TO ARE
Your procedures can also have inputs. For example:
TO GREET :PERSON titleline
PR "HI
PR :PERSON
PR [HAVE A NICE DAY]
END
ST

24

A word beginning with a colon (:) tells SmartLOGO
that the word is a variable. Variables that hold the inputs to
procedures are written on the title line after the name of the
procedure. PERSON is a variable whose value is determined
when GREET is called. The main body of GREET contains
three calls of the procedure PRINT (PR is the short form of
PRINT). The second of these calls uses the current value of
PERSON.

Here's an example of a request to execute GREET at
top level.

?GREET "SHARNEE
HI

SHARNEE

HAVE A NICE DAY

In this case, the input is the word SHARNEE;
SmartLOGO makes this the value of PERSON when it
executes GREET.

-

Commands
and Operations

There are two kinds of procedures in SmartLOGO:
operations and commands. Operations (referred to as
reporters in Turtle Talk) output a value to another
procedure; commands (such as PRINT) do not.

The primitive SUM is an operation that outputs the
sum of two numeric inputs. In this example, the output of
SUM is sent to the primitive command PRINT:

?PRINT SUM 31 28
08

25

Since an operation can be used only as an input to
another procedure, every SmartLOGO line must begin with
a command. Otherwise, you get an error message. For
example:

?SUM 31 28
YOU DON'T SAY WHAT TO DO WIT~
H 389

Your procedures can be commands or operations.
The procedure GREET is a command. To construct
operations, you must use the primitive OUTPUT. The
procedure FLIP, for example, is an operation:

TD FLILP

|F 0 = RANDOM 2 [OUTPUT "HEA-
DS

OUTPUT "“TAILS

END

FLIP outputs the literal word HEADS if RANDOM 2
outputs 0, or TAILS if RANDOM 2 outputs 4. You can pass the
output from FLIP to PRINT:

?PR FLI1P
HEADS

b ——
Variables
Vo=

You can think of a variable as a container with a name on
the outside and an object (a word, list, or number) inside.
The object is the value of the variable. A colon in front of a
word tells SmartLOGO it is a variable name and makes its
current value available to a procedure. For example:

?PRINT :JOHN

tells SmartLOGO to look for a container named JOHN. If it
finds one, it looks inside the container and makes whatever

it finds available to PRINT. PRINT then displays the contents of
JOHN on the screen.
If no variable JOHN exists, SmartLOGO prints the
~—. eITor message:

JOHN HAS NO VALUE
You can assign a value to a variable in two ways:

® by defining a procedure with inputs (see the
previous section “Punctuation and Inputs to
Procedures”) and then calling the procedure with
specified values.

@ by using one of the naming primitives MAKE and
NAME.

MAKE requires two inputs: a word and a value.

?MAKE "INTEGER 25
?PRINT : INTEGER
2d

In this case, the value is a number (25). However, it
can be a word or a list as well. Consider this example:

?MAKE “NUMBER " INTEGER

Here, MAKE has two quoted words as inputs. It puts
the word INTEGER inside the container NUMBER. The contents
of the variable name INTEGER from the previous example are
undisturbed. So,

PPRINT :NUMBER
INTEGER

PPRINT : INTEGER
29

NAME has the same function as MAKE, but the order
— of inputs is reversed.

27

Global
and Local
Variables

Variables created with MAKE or NAME remain in the
workspace until erased. These variables are called global
variables. There are also variables that remain in the
workspace only as long as a procedure is being executed.
These variables are called local variables. Variables that
are defined as inputs to procedures are local variables.
The procedure GREET can be modified to print the

date.
TO GREET :PERSON
PR :DATE
PR "HI
PR :PERSON
PR [HAVE A NICE DAY
END

DATE does not appear on the title line of GREET, so it is
a global variable. You can define the value of DATE at top

level.

?MAKE "DATE [MARCH 14 1984]
?GREET "BRIAN

MARCH 14 1984

HI

BRIAN

HAVE A NICE DAY

The variable PERSON is not global. After GREET stops
executing, PERSON no longer has any value. (But DATE is still
in the workspace.)

You could also use MAKE to define DATE inside the
procedure GREET. It would still remain as a global variable
after GREET executes.

28

| e

Understanding
a Logo Line

~

A SmartLOGO line can be longer than the line you see on
the screen. It can contain 2048 characters. For example:

'MAKE “MANYNAMES [MIKE BARBA -~
RA ERIC JUDY SHARNEE EFFIE]

The arrow (—) indicates that the next screen line is
a continuation of the previous screen line. You end a

SmartLOGO line by pressing [RETURN |,
Here are some guidelines to help you interpret a
complex Logo line.

® The first word of a Logo line must always be a
command.

® An operation is always the input to another
= procedure.

® Every input to a procedure must be accounted for.

e When the inputs to a command have been
accounted for, the next procedure must be another
command.

Here is an example of a complex Logo line:
2PRINT SUM RANDOM :N 100

PRINT is a command with one input, in this case the
output of SUM. SUM requires two inputs. The first is the
output of RANDOM, which itself requires one input (the
current value of N). The second input to SUM is 100.

PRINT

SUM

RANDOM 100

‘N

29

30

If N is assigned the value 10,
?MAKE "N 10
then the line will print a number between 100 and 109:

?PRINT SUM RANDOM :N 100
101

31

e
Defining
Procedures

Chapter 3

This chapter deals with the SmartLOGO Editor and those
primitives which allow a user to create new procedures —
to write a unique SmartLOGO vocabulary.

The SmartLOGO Editor is used to define
procedures, but other primitives allow for the defining of
procedures within other procedures.

The SmartLOGO Editor is used to create and edit
procedures or variables, which are then entered into the
workspace. A procedure or variable erased in the Editor is
not erased from the workspace. An entire file can be edited
in the Editor. The Editor is called into action with any of the
following primitives: TO, EDIT, EDNS or EDFILE. See Chapter 13
for more information on variables and EDNS. See Chapter
19 for more information on files and EDFILE.

SmartLOGO also has a Shape Editor which is used
to create and edit shapes which the turtle can wear. The
operation of the Shape Editor is described in Chapter 6.

33

SmartLOGO
Editor

How the Editor
Works

The word TO calls the Editor. For example:

?TO GREET

TO GREET :NAME The prompt “?”

PR "HI disappears when you
PR :NAME are in the Editor.
PR [HAVE A NICE DAY]I

END

TO is the command which starts the Editor. Its input
is the name of the procedure to be defined. If a procedure is
already defined, its definition is brought into the Editor
where you can modify it. If a procedure name is undefined,
the Editor shows only the title line and END.

?TO SQUARE
TO SQUARE 1
END

The input to EDIT (or ED for short) can be a single
name or a list of names. If the input is a single name it must
have a quotation mark in front of it.

2ED "POLY

TO POLY :SIDE :ANGLE
FD :SIDE

RT :ANGLE

POLY :SIDE :ANGLE
END

When a list of procedure names is used as the input
to EDIT, all the procedures in the list will be brought into the
Editor.

2ED [HOUSE ROOF DOORI

70 and EDIT can be used without an input. In this
case, you will enter the Editor with no procedure name. You
can start defining a procedure by typing a procedure name.

There is no prompt character, but the cursor shows
you where you are typing.

You can move the cursor anywhere in the text using
the arrow keys. You can also delete characters using the
appropriate keys described in this section.

Pressing the key marks the end of a
SmartLOGO line. A SmartLOGO line can contain 2048
characters. When you press the key, the cursor
and any text that comes after it, moves to the beginning of
the next line and is ready for you to continue typing.

You can have more characters in a line of text than
fit across the screen. Simply continue typing when you get
to the end of the screen line. An arrow (—) will appear at the
end of the screen line and the cursor will move to the next
screen line. SmartLOGO does the same thing outside of
the Editor.

This is how a long line would appear on the screen:

TO PRINTMESSAGE :PERSON

PRINT SE :PERSON [, | AM GOI-—
NG TO TYPE A VERY LONG MESSA—-
GE FOR YOU!

END

The Editor has a line buffer called the delete buffer.
The delete buffer can hold 256 characters. The key
deletes a line of text and puts it in this buffer. The
MOVE/COPY | key reinserts this line of text later at the place
marked by the cursor. The text remains in the buffer until

the key is pressed again.

35

Editing Actions

When you are in the Editor, you can use the following

editing keys:

*The star represents editing keys that work both inside and
outside the SmartLOGO Editor. They can be used at top
level to make changes on the line presently being typed.

Cursor Motion
=] Moves the cursor right one space.
*[—] Moves the cursor left one space.
Moves the cursor down to the next line.
Moves the cursor up to the previous line.
*LHOME |[—] Moves the cursor to the beginning of the
current line.
* HOME |[~] Moves the cursor to the end of the
current line.
Moves the cursor to the beginning of the
edit buffer.
LHOME |[t | Moves the cursor to the end of the edit
buffer.
Inserting and Deleting
RETURN RETURN] creates a new line by moving
the cursor and the rest of the text line to
the beginning of the new screen line.
INSERT Opens a new line at the position of the
cursor but does not move the cursor.
*| BACKSPACE | FErases the character to the left of the
Cursor.
.}

36

*| DELETE
* CLEAR

*[MOVE/COPY |

Exiting
the Editor

Smart Key

Erases the character under the cursor.

Deletes text from the cursor position to
the end of the current line. This text is
placed in the delete buffer. The delete
buffer can hold 256 characters.

Inserts a copy of the text that is in the
delete buffer at the current cursor
position.

Smart Key [Vl]is the standard way to
exit the Editor. It saves all the changes
that were made.

The Editor is a large buffer which
holds a block of text as you work on it.
When you exit the Editor by pressing
Smart Key [Vi], SmartLOGO reads each
line in the edit buffer as though you had
typed it outside the Editor. If there are
SmartLOGO instructions in the edit
buffer that are not contained in the
procedure definition (within TO ... END),
SmartLOGO carries them out just as if
you had typed them in at top level.

You can define more than one
procedure while in the Editor, as long as
each procedure is terminated by END. If
you forgot to type END at the end of the
last definition, SmartLOGO inserts END
for you.

37

LESCAPEWP | Cancels editing. Use it if you don't like
the changes you are making, or if you
decide not to make changes. If you were
defining a procedure, the procedure
definition will be the same as before you
started editing.

EDIT, ED command

EDIT

EDIT name

EDIT namelist

Starts up the SmartLOGO Editor. If an input is given, the
Editor starts up with the definition(s) of the given procedure
or procedures in the edit buffer. The input to EDIT can be a
list of procedure names instead of a single name. In this
case, all the procedure definitions will be brought into the
Editor.

END special word

END

END is a special word that tells SmartLOGO that you are
finished defining the procedure. It must be on a line by
itself. END must be used to separate procedures when
defining several procedures in the SmartLOGO Editor.

TO command

T0 name

Starts up the Editor. If the procedure name has not been
previously defined, the edit buffer contains only the title line:
TO name and END. If no input is given, the edit buffer has
the title line TO with no name and END.

38

o

Press the Smart Key [Vi |to complete the definition
and exit the Editor. SmartLOGO reads every line from the
edit buffer as though you had typed it outside the Editor.

~~ The lines in the procedure are not executed.

Creating
Procedures
Outside the
Editor

COPYDEF command

COPYDEF name newname
Copies the instructions that make up name into
newname. Newname may be defined or undefined. If
defined, its contents will be replaced.
Example:
= The definition of Hl is replaced by COPYDEF.

TO R
PR [YOU SAY HELLQ?!
END

TO BYE
PR [| SAY GOODBYE]
END

2H |

YOU SAY HELLQ?
?COPYDEF "BYE "HI
2HI

| SAY GOODBYE

—. DEFINE command

DEFINE name list
Makes Jist the definition of the procedure name. The first
element of /istis a list of the inputs to the procedure. If the

39

procedure name has no inputs, the first element of /ist
must be an empty list ([]). Each following element is a list
of instructions, consisting of one line of the procedure
definition. List does not contain END, since END is not part of
the procedure definition. The second input to DEFINE has
the same form as the output of TEXT. DEFINE is used to make
procedures or change procedures without using the Editor.
See TEXT.

Example:

?DEFINE "SQUARE [[:SIDE] [RE—
PEAT 4 [FD :SIDE RT 8011

defines the same procedure as

TO SQUARE :SIDE
REPEAT 4 [FD :SIDE RT 901
END

TEXT operation

TEXT name

Outputs the list of instructions that define the procedure
name. TEXT outputs the same list format that DEFINE accepts
as its input. TEXT and DEFINE are a useful pair for copying or
modifying procedures within programs.

Example:

?PRINT TEXT “SQUARE

[:SIDE] [REPEAT 4 [FD :SIDE —
RT 90

?DEFINE “BOX TEXT "“SQUARE

?PR TEXT "BOX

[:SIDE] [REPEAT 4 [FD :SIDE -
RT 801

40

—~

DEFINEDP and PRIMITIVEP allow you to check if a
procedure or primitive is defined.

DEFINEDP operation

DEFINEDP name
Outputs TRUE if name is a defined procedure currently in
the workspace, otherwise FALSE.

PRIMITIVEP operation

PRIMITIVEP NaMe
Outputs TRUE if name is a primitive, otherwise FALSE.
Example:

PR PRIMITIVEP "FORWARD
TRUE

Y

Drawing
with the Pen

Chapter 4

Each of the 30 SmartLOGO turtles has a pen with which it
draws. The pen’s position is indicated by a small dot in the
turtle’s back.

This chapter describes instructions related to the
creation of graphic designs on the screen. The turtle can be
moved in relation to where it is or in relation to the screen
coordinates. It's important to be aware of the state of the
turtle’s pen when using the following primitives. Even when
a turtle is hidden, its pen will draw, fill, and even stamp the
invisible shape on the screen. For information on the colors
in which the turtle’s pen can draw, see Chapter 5.

BACK, BK command

BACK number
Moves the turtle number steps back. Its heading does not

change.

43

DISTANCE operation

DISTANCE position
Outputs the distance in turtle steps between the turtle and
position.

Examples:

?CS

?FD 50

PR DISTANCE (0 0!
50

The following example uses one turtle’s position as
the input to DISTANCE. The output is the distance between
that turtle and the current turtle.

PTELL 0 BK 40

2ASK 1 [ST RT 45 FD 50!
92PR DISTANCE ASK 1 [POS]
83.237168

DOT command

DOT position
Puts a dot in the turtle’s pen color at the specified position.
The turtle does not move.

Example:

DOT [100 0] puts a dot halfway down the right edge of
the screen.

FILL command

FILL

Fills the screen, or an enclosed area of the screen, in the
turtle’s pen color. FILL starts drawing at the position of the
pen; if the pen is over a drawn line, only that line is filled. Of
course, if the pen is up, nothing is filled. For best results, lift
the pen, put the turtle inside the enclosed area, put the pen
down and fill.

[— -

44

Examples:

The following instructions draw a square, move the
turtle inside the square with its pen up, put the pen down
and then fill the square. The pen color is changed and the
square is filled again.

?REPEAT 4 [FD 50 RT 80!
?2PU

?RT 45 FD 10

?SETPC 13 PD

2PILL

9SETPC 13

RLLL

FORWARD, FD command

FORWARD number
Moves the turtle forward number steps in the direction in

which it is heading.
Examples:

.
FD70

TO SQUARE :SIDE
REPEAT 4 [FD :SIDE RT 801
END

L

SQUARE 30

HEADING operation

HEADING

Outputs the turtle’s heading, a number greater than or
equal to 0 and less than 360. SmartLOGO follows the
compass system in which north (up) is a heading of @
degrees, east (right) 90 degrees, south (down) 180 degrees
and west (left) 270 degrees. When you start SmartLOGO,
or use CLEARSCREEN (CS) or CLEARGRAPHICS (CG) or HOME the
turtle has a heading of 0. See SETHEADING.

North
OO
180°
South
HOME command

HOME

Moves the turtle to the center of the screen and sets its
heading and speed to 0. This command is equivalent to
SETSPEED @ SETPOS [0 0] SETHEADING 0. If the turtle’s pen is down,
the turtle draws a line from its current position to HOME.

HOME

46

LEFT, LT command

LEFT degrees
Turns the turtle left (counterclockwise) the specified
number of degrees. See RIGHT.
Examples:
LT 45 turns the turtle 45 degrees left.
LT 380 turns the turtle 380 degrees left, which is
equivalent to 20 degrees left.
LT -70 turns the turtle 70 degrees right.

PENM command

PEN
Outputs the state of the turtle’s pen in a two-element list.
The first member of the list is the pen’s drawing state
(PENDOWN, PENUP, PENERASE or PENREVERSE), the second is the
pen'’s color number.

Example:

?PR PEN
PENDOWN 13

PENDOWN, PD command

PENDOWN

Puts the turtle’s pen down. When the turtle moves, it draws
a line in the current pen color. Every turtle begins with its
pen down.

47

PENERASE, PE command

PENERASE

Puts the turtle’s eraser down. When the turtle moves, it will
erase any previously drawn lines it passes over. To lift the
eraser use PENDOWN or PENUP.

gl 5

PE FD 85

PENREVERSE, PX command

PENREVERSE

Puts the “reversing pen” down. When the turtle moves, it
draws where there aren't lines and erases where there are
lines. To lift the reversing pen use PENDOWN or PENUP.

Example:

The CLOCK procedure uses PENREVERSE to erase an
existing line and draw a new one, creating the illusion that
the line is moving, like the sweep hand on a clock. It uses
WHEN 0, the timing demon, which executes the list of
instructions once every second.

TO CLOCK

CS HT

PX FD 50

WHEN 0 [BK 50 RT 6 FD 50!
END

?CLOCK

To cancel the demon, use the ERDS (ERase
DemonS) command. PENDOWN puts the drawing pen
down.

?ERDS PENDOWN

PENUP, PU command

PENUP
Lifts the pen up. When the turtle moves, it does not draw
lines.

POS operation

POS
Stands for POSition. Outputs the coordinates of the current
position of the turtle in the form of alist [x y]. When you
start SmartLOGO, the turtle is at [0 0], the center of the
turtle field, also called HOME. See SETPOS for setting the
turtle’s position.

The screen boundaries are as follows:

95y

-123 0 124 X

49

RIGHT, RT command

RIGHT degrees
Turns the turtle right (clockwise) the specified number of
degrees.

Examples:

RT 60 turns the turtle 60 degrees right.

RT 390 turns the turtle 390 degrees right, which is
equivalent to 30 degrees right.

RT -50 turns the turtle 50 degrees left.

SETHEADING, SETH command —~

SETHEADING degrees
Turns the turtle so that it is heading in the direction
specified by degrees. The turtle’s position is not changed.
Note that RIGHT and LEFT produce turns relative to the turtle’s
heading, but SETHEADING sets an absolute heading without
reference to its prior heading. Positive numbers are
clockwise, negative numbers are counterclockwise from
north. See HEADING.

Examples:

925ETH 45 Heads the turtle northeast.
92SETH =45 Heads the turtle northwest.
2PR HEADING

3195

50

SETH 45 SETH —45

SETPEN command

SETPEN /ist
Sets the turtle’s pen to the two elements in /ist. The first
element of /istis the pen’s drawing state (PENDOWN, PENUP,
PENERASE or PENREVERSE) and the second element is the
pen’s color. List matches the list output by PEN.

Examples:

The following instructions put turtle 's pen down,
set its color to light blue, and then check the pen state with
PEN.

2TELL ©
?SETPEN [PD 7]
PR PEN
PENDOWN 7

These instructions set turtle 1's pen state to
whatever turtle @'s pen state is:

2TELL 1
9SETPEN ASK 0 [PENI

Y

SETPOS command

SETPOS position
Stands for SET POSition. Moves the turtle to the position o
indicated by a list of two numbers, [x y]. If either of these
numbers is greater than the screen boundaries (see POS)
the turtle will wrap around the screen. If the turtle’s pen is
down, the turtle leaves a trace between its original and new
positions.

Example:

SETPOS [100 0] moves the turtle to a point half way
down the right edge of the screen.

..

SETPOS [100 0]

SETX command

SETX X
Puts the turtle at a point with x-coordinate x (y-coordinate is
unchanged). If the turtle’s pen is down, it will leave a
horizontal trace.

Examples:

SETX —100 moves the turtle horizontally to the left
edge of the screen.

SETX —100 SETX2* XCOR

SETY command

SETY y
Puts the turtle at a point with y-coordinate y (x-coordinate is
unchanged).

Examples:

SETY — 85 moves the turtle vertically near the lower
edge of the screen.

SETY —85 SETY 2* YCOR

SHADE command

SHADE
Fills the screen, or an enclosed area of the screen, with
stamped copies of the turtle’s shape. The shading is done
by the current pen, in its pen color and its drawing state. If
the pen is up, the area will not be shaded. As with FILL, the
area that is shaded is the area in which the turtle’s pen is
located. If the pen is over a drawn line, nothing is shaded.
Results are best when the pen is lifted (with PENUP) to enter a
closed area, then put down to SHADE.

Example:)

The following instructions draw a circle, move the
turtle inside, put the pen down and shade the circle with
copies of the turtle’s shape.

?REPEAT 38 (FD 10 RT 101!
?PU

?RT 45 FD 10

("

?SHADE

53

The FOLLOW procedure has turtle ® moving around

the screen, and points turtle 1 TOWARDS its position, once a
second.

TO FOLLOW

TELL 1 81

TELL § RU 8%

RT 80 SETSP 10

WHEN [ASK 1 [SETH TOWARDS —
ASK 0 [POSI]1]]

END

?2FOLLOW

To erase the WHEN 0 once-a-second demon, type:
?ERDS

XCOR

operation

XCOR

Outputs the x-coordinate of the current position of the
turtle. See YCOR.

YCOR

operation

YCOR

Outputs the y-coordinate of the current position of the

turtle.

Examples:

?CS
?PR YCOR

0

?FD 85
?2PR YCOR

85

55

Color

Chapter 5

The sixteen colors in the table below are used for the color
of the turtles, their pens, and the background. When
SmartLOGO starts up, the background is light blue (color
number 5) and the turtles and their pens are white (color
number 15).

Changing the colors can result in stunning visual
effects — but you should be aware that if a turtle or a pen is
transparent or the same color as the background, it will
seem invisible. A full set of operations exists to report on the
pencolor, turtle color and background color.

57

Examples:
If you have light green turtle drawings on the screen,
you can change the light green graphics to black:

?CHANGE . COLOR 3 1

Now change all drawings which are black to gray:
2CHANGE .COLOR 1 14

COLOR operation

COLOR
Outputs a number representing the turtle’s color. This is an
integer (color number) from @ through 15. See SETCOLOR
for changing a turtle’s color.

Example:

?PR COLOR
15

COLOR.OVER operation

COLOR.OVER

Outputs the number of the color under the turtle’s pen
(indicated by the clear spot in the turtle’s back). If the
turtle’s pen is down, this may be the color of the turtle’s own
lines rather than the color the turtle seems to be over.
COLOR.OVER detects drawn lines and background colors,
but not other turtles.

Example:

The following procedures sets up a race between 3
turtles. The “finish line” is a square stamped in purple.
COLOR.OVER is used to determine when a turtle gets to the
purple square.

59

Table of Colors
Number Color

0 transparent
1 black
2 medium green
3 light green
4 dark blue
5 light blue
6 red
7 cyan
8 medium red
9 light red
10 yellow
11 light yellow
12 dark green
13 magenta
14 gray
15 white
BACKGROUND, BG operation
BACKGROUND

Outputs a number representing the color of the
background. When SmartLOGO starts, BACKGROUND is
color number 5 (light blue). See SETBG for setting the
background color. Color 0, the transparent color, is black
when used for a background.

CHANGE.COLOR command

CHANGE.COLOR colornumber colornumber

Changes all turtle graphics from the first colornumber to
the second colornumber. It does not affect the
background color or the colors of the turtles themselves.
Only lines which have previously been drawn are affected.

58

SETBG command

SETBG colornumber
Stands for SET BackGround. Sets the background color to
the color represented by colornumber. If the number is
greater than 15, it is set to the remainder of that number
divided by 16.

Example:

The following procedure cycles through all the
possible background colors.

TO CHANGEBG
SETBG 1+BG
WAIT 30
CHANGEBG
END

?CHANGEBG
To stop this procedure, press [ESCAPE/WP |.

SETCOLOR, SETC command

SETCOLOR colornumber
Sets the color of the turtle to colornumber. There are 16
different colors (0 to 15). If the number is greater than 15,
the color is set to the remainder of colornumber divided by
16.

Example:

The following instructions set each turtle’s color to
its own number, that is, turtle 1 turns black (color 1) and
turtle 20 turns dark blue (the remainder of 20/16 is 4).

?TELL ALL €5 ST PU
?EACH [SETH 12*WHO!
?EACH [SETC WHOI
?SETSP 10

Some turtles seem to be invisible; turtles @ and 16
are the transparent color, others are the same color as the
background.

61

SETPENCOLOR, SETPC command

SETPENCOLOR colornumber
Sets the color of the pen to colornumber. Colornumber is
any integer from 0 to 15. SmartLOGO accepts numbers
above 15, and sets the pencolor to the remainder of that
number divided by 16.

Examples:

?SETPC 6
PR PE
6

28ETPL 22
?2PR PC
6

e

63

Shapes

Chapter 6

This list shows the 60 available turtle shapes:

Number Shape Name

0 hexagon

1 octagon

2 small circle

3 i empty circle

4 ‘ filled circle
R

5 i small square

6 i empty square

65

Number Shape Name
7 . filled square
8 : small triangle
9 empty triangle
10 filled triangle
11 filled triangle
12 filled triangle
13 m filled triangle
14 Cross
15 W st
16 diamond (cards)
17 heart (cards)
18 spade (cards)
19 club (cards)
—

Number Shape Name

20 mis flower

21 o flower

22 cat

23 dog

24 : turtle

25 truck

26 airplane

27 rocket

28 : checkered square

29 . ‘ stripes

30 iﬁg brick wall
EFH
blank shapes

67

Number Shape Number Shape

turtle shapes
36 48
v 49
338 Mk 50
39 51
40 52
41 53
42 54
43 25
44 56
45 o7
46 58
47 59

68

You can change a turtle’s shape to any one of these
predefined shapes. When you start SmartLOGO, every
turtle’s shape is number 36. As it changes heading the
shape also changes taking shape 36 through 59.

Any or all of the 60 shapes can be changed using
the SmartLOGO Shape Editor. There are four blank shapes
(32 to 35) that you can use to define your own shapes, but
any of the shapes can be redefined. If you set a turtle’s
shape to one of the first 36 shapes (0 through 35), the turtle
will retain that shape even when the direction of its motion
— its heading — changes.

Shapes 36 through 59 are predefined as the
standard turtle shape in its various orientations. If the
heading is zero, the turtle uses shape 36. If the heading is
90, the turtle uses shape 42 and so on.

This entire set of standard turtle shapes (36 through
59) can be changed into an object having various
headings. You could edit shape 36 to be a rocket headed
straight up. You would then edit shape 42 so that the rocket
would head 90 degrees toward the right, shape 54, 90
degrees to the left and so on. This new set of shapes would
replace the turtle shapes so that when you change the
turtle’s heading it will automatically change the shape to
aim in that direction.

To give the turtle a new shape use the command
SETSHAPE. In order to find out what shape the turtle is using,
type PR SHAPE.

69

L
SmartLOGO
Shape Editor
.=

You can create as many shapes as you want using the
SmartLOGO Shape Editor. There are 60 possible shapes
available at one time. Shapes 36 to 59 are the original turtle
shapes. There are also 32 predefined shapes and 4 blank
shapes.

ES is the command to start the SmartLOGO Shape
Editor. Its input is the shapenumber (0 through 59). These
shapes start out with the predefined shapes every time
SmartLOGO starts up. ES brings the specified shape into
the Editor.

?ES 1

The Shape Editor is a grid made up of 16 boxes by
16 boxes. When you first enter the Editor the cursor, the
flashing white square is in the top left box.

You can move the cursor anywhere in the shape.
You are able to pass over the boxes without changing them,
and can create or change a shape by filling in the boxes or
erasing them using the key or the
[CONTROL |-arrow key combinations. The filled boxes (the
black areas) made up the shape.

Moving the
Cursor
and Changing

the Shape
e ——

Use the arrow keys to move the cursor around without
changing the shape. To change what is under the cursor,
press the key; a blank spot (white) will become
filled (black) and a filled spot will become blank. This is how
you define your shape. Remember to position the cursor

—

before pressing the key. These are the keys that
can be used in the Shape Editor:

EBHII

[CONTROL] [—]
[CONTROL] [~]
[CoNmROL | [1]

CLEAR

[MOVE/COPY |

Leaving the

Shape Editor
s e

Moves the cursor right one space.
Moves the cursor left one space.
Moves the cursor up one space.
Moves the cursor down one space.

Fills an empty space or empties a filled
space.

Fills or empties, then moves right.
Fills or empties, then moves left.
Fills or empties, then moves up.
Fills or empties, then moves down.

Empties the shape, leaving a blank
shape.

Replaces the present edited shape with
the shape that was originally put into the
Editor.

To leave the Shape Editor, press either Smart Key or

[(ESCAPE/WP. |

Smart Key [VI] exits the Shape Editor saving the
changes you have made.

[ESCAPE/WP | quits the Shape Editor without saving

any changes.

"

COPYSH command

COPYSH shapenumber newshapenumber
Copies the shape shapenumber into newshapenumber.
Shapenumber does not lose its shape.

Example:

?COPYSH 25 0
Shape 0 is now the truck shape.

EDITSHAPE, ES command

EDITSHAPE shapenumber

Starts up the SmartLOGO Shape Editor which allows you
to make up your own shapes. ES brings the shape
corresponding to shapenumber into the Editor,
shapenumber being an integer from 0 to 59.

GETSH operation

GETSH shapenumber

Outputs a list of 32 numbers representing the grid of
shapenumber (an integer from 0 through 59). Normally,
one need not be concerned with the representation of the
shape as a list of numbers. All that is important is that GETSH
and PUTSH operate as a pair of instructions. They can be
used to store and retrieve a shape as a list of numbers
which can be saved in a file on tape.

When SmartLOGO starts up, the 60 shapes are
preset. Any new shapes created using the Shape Editor will
be lost when the computer is turned off, unless they have
been created as variables with GETSH. They can then be
saved on tape with the rest of the workspace.

72

Example:

?MAKE “ROCKET GETSH 27

?PR :ROCKET

2 1111171515 31 31 25~
25 17 17 16 128 192 192 182—
192 192 240 248 248 252 252

204 204 196 196 4

Your workspace can now be saved, and the name
ROCKET with its value will be saved. Upon re loading the file,
the name and its value would enter the workspace. Then,
the command:

?PUTSH 27 :ROCKET

would load the list of numbers back into shape 27.
For those who are truly interested, here is how the
number list is generated:

column A B

position 7 6 5 4 3 2 1 @ 7 6 5 4 3 2 1 @

column 18 64 32 16 8 4 2 1 12864 32 16 8 4 2 1

value
oFrT 1l il 11.1.)

— IEEEEEEEEEEEEENENER

value TI1TiLiirrro i 111
I IEEEEEEEEENEEENENENN
IEEEEEEENENENENEENENNEE
sFT1TLiq e i 1.1
I EEEEEEEENENNEENENNDR
TI1 i1l i3 b 1 1.1
sFT 1111161 1.1
T EEEEEEEEEEEEENENER
T'Y ..
RN N I BN ..
N EEEEEEEEEEEENENEN
NN
M EEEEEEEEEEEEEEEN
HTEEEEEEEEENEENENENENN

There are two half-grids of 8 columns by 16 rows,
placed side by side to make a 16 X 16 grid. Each column
has a number, and a value associated with it (see diagram).
)

73

The value is the number as a power of 2; 2 to the power 0 is
1, 2 to the power 2 is 4, and 2 to the power 7 is 128. If filled,
each square in a row assumes the value of the column it is
in, if empty its value is 0.

For each row of each half-grid, the values of each
square are added. There is a different total for each
combination of filled and empty squares: if only @ and 1
were filled, the sum would be 3 (1 + 2, all others are 0); if
only 5 and 7, the total would be 160 (32 + 128). An empty
row gives a sum of 0.

These sums are the numbers output by GETSH. They
are stored in the list according to row number. Row 0's A
sum is the 1st element in the list, and its B sum is the 17th.
Row 1’s A sumn is the 2nd element, and its B sum is the
18th, and so on through the 16 rows. The 16 rows are thus
represented by 32 numbers. See the previous example.

HT ' command

HT
Stands for Hide Turtle. Makes the turtle invisible.

PUTSH command

PUTSH shapenumber shapespec

Gives shapenumber the specified shapespec as its
shape. The output of GETSH can be the input of shapespec
in PUTSH. PUTSH also allows you to define shapes within a
program, as an alternative to using the Shape Editor. See
GETSH.

SETSHAPE, SETSH command

SETSHAPE shapenumber
Sets the shape of the current turtle to the shape specified
by shapenumber.

74

Shapes are numbered @ through 59, with shapes 36
through 59 being the standard turtle shape in its various
headings. See the shape list at the beginning of this
chapter.

Examples:

To make the turtle look like a rocket:

9SETSH 27
And to return it to its turtle shape:
9SETSH 36

SHAPE operation

SHAPE
Outputs the number representing the shape of the turtle.
Do not confuse a turtle’s shape number with its turtle
number. When SmartLOGO starts, SHAPE is 36. See
SETSHAPE.

Examples:

?TELL 3
?SETSH 25
2PR SHAPE

25
?PR WHO

3
To find the shapes of several turtles:

°TELL [0 1 2 3 4]
2EACH (PR SHAPE]

SHOWNP operation

SHOWNP
Outputs TRUE if the turtle is not hidden, otherwise FALSE. The
turtle may not be visible, and yet be “showing’’; it may be

75

the same color as the background, it may be using the
transparent color or it may be off the screen in WINDOW
mode.

SNAP command

SNAP

Copies the pattern of lines under the turtle, into its current

shape number. The result is that the turtle’s shape

becomes a copy of the pattern it's over. Any other turtles

using the same shape number will also take the new shape.
Example:

?SETSH 1

?CS PD

?RT 45

9REPEAT 4 [FD 10 BK 10 RT 90—
]

?7SNAP

?CS

Note that if you SNAP while the turtle is wearing the
standard turtle shape (from 36 to 59) that shape will be
replaced until you restart SmartLOGO.

ST command

ST
Stands for Show Turtle. Makes the turtle visible. See
SHOWNP for some exceptions.

Examples:

PHT
?ST
HT
?7SETSH 21
?S8T

76

Speed

Chapter?

]

This chapter describes the SmartLOGO primitives which
give the turtles motion, making animated scenes of all
kinds possible.

A turtle moving at a speed is different from a turtle
which is obeying a FORWARD command. When a turtle goes
FORWARD, the computer devotes itself to the action. The
flashing cursor goes away until the turtle has stopped
drawing.

Speed is different — when all 30 turtles are in
motion following a SETSPEED command, the SmartLOGO
prompt and cursor are there, indicating that the computer
is ready to accept further instructions.

79

FREEZE command

FREEZE
Halts all turtles and prevents any further movement, with
SPEED, until a THAW command is given. THAW restores all
former speeds, unless some have been changed in the
meantime. FREEZE acts on all turtles, regardless of whether
they are active.

Example:

PIELL 10 1 2 31
?2ST

28ETSP 1

298LL 1

?RT 80

?FREEZE

All turtles stop, even though turtle 1 is the only
current turtle.

?SETSP 50
? THAW

They all begin moving again, turtle 1 at a higher
speed.

SETSPEED, SETSP command

SETSPEED speed

Sets the current turtle’s speed to speed (without altering its
heading). If speed is greater than 0, the turtle moves
forward. If speed is less than 0, the turtle moves backwards.
If speedis equal to 0, the turtle stops moving. It is an error if
speed is greater than 4128, or less than —128. Note that
SETSP’s input does not need to be an integer.

80

—

Example:

The FLYAND.DRIVE procedure sets two turtles moving
on the screen, one wearing an airplane shape and the other
wearing a truck shape.

TO FLY.AND.DRIVE
TELL 0O

SETSH 26 SETC 8
SETH 80 PU SETY 60
ST SETSP 10

TELL 1

SETSH 25 SETC 14
SETH 80

PU ST SETSP 5

END

SETXVEL command

SETXVEL speed
Sets the horizontal component of the current turtle’s
velocity to speed without changing its vertical component.
SETXVEL, like its counterpart SETYVEL, can affect the
turtle’s speed and heading.
Example:
BOUNCE causes turtle @ to bounce back and forth
between turtles 1 and 2.

TO BOUNCE

TELL 1 RT 90 FD 50 ST

TELL 2 LT 90 FD 50 ST
ON.TOUCH 0 1 [SETXVEL -20I
ON.TOUCH 0 2 [SETXVEL 201
TELL O ST RT 90 SETSP 20
END

2 BOUNCE
To cancel the ON.TOUCH demons, type ERDS.

81

SETYVEL command

SETYVEL speed

Sets the vertical component of the current turtle’s velocity
to speed without changing its horizontal component. See
SETXVEL.

SPEED operation

SPEED
Outputs the turtle’s speed. Note that speed is defined as .
turtle steps per 16/60th’s of a second.

THAW command

THAW
“Melts” a FREEZE and restores all the turtles’ speeds to the
last speed indicated. See FREEZE.

XVEL operation

XVEL

Outputs the horizontal component of the current turtle’s
velocity. SETSPEED and SETHEADING can affect XVEL as well as
SETXVEL.

YVEL operation

YVEL

Outputs the vertical component of the current turtle’s
velocity. SETSPEED and SETHEADING can affect YVEL as well as
SETYVEL.

82

N

83

-]

Controlling
30 Turtles

Chapter 8

-

Any of the SmartLOGO instructions that move a turtle
around, make it draw lines or change its color or shape, can
be sent to any of the 30 turtles, individually or in groups.

When SmartLOGO starts up, only turtle 0 follows your
instructions. The others are there, but they're hidden, and they
aren't listening to your instructions.

The TELL command changes all that. TELL is used to
select those turtles which will listen. Any instructions which
follow a TELL command are sent to those turtles selected. An
operation, used when several turtles are listening, only
outputs information about the first turtle of the selected turtles
(see EACH to get information about all selected turtles). Turtles
that have not been selected will completely ignore
instructions, even if they're still moving on the screen, unless
TELL or ASK addresses them. For example:

?PTELL O
98T SETSP 10
STELL 1
28T SETSP 10

Turtle 0 and turtle 1 are moving on the screen, but
only turtle 1 will follow instructions. We say that turtle 1 is
the “current” or the “active” turtle. To discover which turtle

or turtles are active, use the instruction PRINT WHO.
.

85

If you want turtle 0 to turn, or change its pencolor, or
hide, or whatever, you must include its number in an ASK or
TELL command.

?RT 90 Only turtle 1 follows these
2SETC B instructions.

?SETSP

saBLL IR 1]

2RT 90 Both @ and 1 follow these
?SETSP 20 instructions.

?2CS

The instructions described in this chapter allow you
to control one, several, or all turtles at a time in a variety of
ways. For primitives which detect collisions between turtles,
see Chapter 15, Flow of Control and Conditionals.

ALL operation
ALL
Outputs the list of turtles numbered 0 through 29.
Examples:
PTELL ALL
?PR WHO

@ 123456789 1011 12~
13 14 15 16 17 18 19 20 21 —
22 23 24 25 26 27 28 29

TO BURST
TELL ALL
CS PU
EACH [RT 1
ST SETSP 1
END

WHO]

=2 o

All thirty turtles burst out from the center and move
across the screen.

86

ASK command or operation

ASK turtlenumber instructionlist

ASK turtlienumberlist instructionlist

Temporarily addresses the specified turtle or turtles giving
them the instructions in instructionlist. This does not
change the list of active turtles (which was set by the last
TELL command). Instructionlist may be any command or
operation; if it is an operation, ASK outputs whatever the
operation outputs. FREEZE and THAW apply to all turtles, even
if they are not in the furflenumberiist.

Examples:

The following set of instructions selects the first four
turtles, then points them in four different directions and
gives them a speed. AsK is used to change the color of two
of the moving turtles — without affecting the others — and
to make another turtle show. PR WHO shows that none of
this has affected the list of current turtles, which all obey the
last SETC command.

2TELL (0 1 2 3]

?ST PU

9EACH [SETH 90 = WHOI
?SETSP &

?ASK 1 [SETC 3]

?ASK 3 [SETC 7]

?ASK 4 [ST SETC 1]
?2PR WHO

2 12 3

?8€TC 138

Addressing a specific turtle from the WHO list can be
done using the word and list primitives.

2?ASK FIRST WHO [SETSH 6]
?ASK | TEM 3 WHO (ST FD 30!

EACH command

EACH insfructionlist
Makes each turtle in the current turtle list run the
instructions in insfructionlist, in sequence. If there is more
than one active turtle, the first turtle executes all the
instructions in insfructionlist before the second turtle does
anything. FREEZE and THAW apply to all turtles, even if they
are not in the furflenumberlist.

Examples:

The following instructions make four turtles line up
20 turtle steps apart and set their colors to their
corresponding numbers + 1. WHO outputs the number
corresponding to each turtle. Thus, turtle @ will do SETX @
and SETCOLOR 0+1, turtle 1 SETX 260 and SETCOLOR1+1, and so
on.

?TELL 18 1 @& @)

78T

?HOME

?EACH [SETX WHO = 201
?EACH [SETCOLOR WHO + 1]

In order to find out information about all the current
turtles use EACH with the operation.

2EACH [PR COLORI
1
e
3
4

The following instructions make the turtles draw
squares at once, then one after another:

?CS PD

?REPEAT 4 [FD 15 RT 801!

?CLEAN

PEACH [REPEAT 4 [FD 15 RT 90 —

]]

88

TELL command

TELL furflenumber

TELL furflenumberlist

TELL sets the current turtle or turtles to those specified in
turtlenumber or turtlenumberlist. When SmartLOGO
starts up, the current turtle is turtle 0. See WHO.

Examples:

?TELL W 81
?FD 50

2TELL 1 _8BY
?RT 90 FD 50
2TELL 2 &7
2LT 90 FD 50
?PTELL [0 1)
?SETE 1
TELL 11 21
98ETC 8
?TELL (@ 1 2]
?SETSP 10
2TELL (RLL
28 ST PO

?EACH [SETH 12 = WHO]
?2FD 90 BK 90

To return SmartLOGO to its startup turtle state:

?TELL ALL

?CS HT SETSH 36
?8ETC 15 SETPC 15 PO
?TELL O

78T

89

WHO

operation

WHO

Outputs the numbers of the current turtles. The output is
either an integer or a list of integers, from 0 through 29.

Examples:

*TEEL 1

?PR WHO

1

*TELL 10 14

?PR WHO

0 1

?TELL ALL

?PR WHO

0 1234567828101 12~
13 14 15 16 17 18 19 20 21 —
22 23 24 25 26 27 28 29

A useful trick is to use WHO with EACH. As EACH runs

the instructionlist, WHO outputs the number of each turtle
separately, so each turtle will be given a different number.

90

?TELL ALL

?5T PU

2EACH [SETH 12 * WHOI
2EACH [SETSP WHO]
?ASK 10 [PR SPEED]

10

?ASK 25 [PR SPEEU]

29

_

|

Screen
Commands

Chapter ?

When you start up SmartLOGO, the entire screen is
available for text and graphics. Graphics always occupy the
full screen, but you can set the text display so that it only
uses the bottom of the screen. Turtle graphics commands
are listed in Chapters 4 through 7. Text commands are
listed in Chapter 10.

Clearing
the Screen

CLEAN command

CLEAN
Erases all drawn lines as well as filled, stamped, or shaded
areas, without changing the turtle state or the text
displayed.

Example:

'RT 7 EO
2SETSP 20
?CLEAN

93

CLEARGRAPHICS, CG command

CLEARGRAPHICS
Erases all graphics from the screen, and returns all current
turtles to the center of the screen pointing upwards. The
text is unaffected.

Example:

RT 7 PO
?SETSP 20
?CG

CLEARSCREEN, CS command

CLEARSCREEN
Erases all text and graphics from the screen, and stops all
current turtles, returning them to the center of the screen,
pointing upwards.

Example:

?RT 7 PD

?SETSP 20
?CS

CLEARTEXT, CT command

CLEARTEXT
Erases all text from the current top text line down. Leaves
all graphics intact.

Example:

?SETTEXT D
?CT

94

e

Reducing the
Text Screen

I
SETTEXT

command

SETTEXT /ine
Sets the topmost line on which text will be printed. Line
must be a number from @ to 23, 0 being the top screen line
and 23 the bottem screen line. When SmartLOGO starts
up, text is displayed on the full screen, from line . Printing
above a preset top line is possible with SETCURSOR (see
Chapter 10), but text printed in this manner will not “scroll”
with the other lines and will not be erased with CT. It is
treated as graphics.

Example:

PSETTEXT 18

The text will now only come up to line 18, and will
then “scroll” off the screen.

9SETCURSOR (13 121 PR "HELLO
?2CT

“HELLO” will be printed in the center of the screen,
and will remain despite the CT command. To clear it:

?CS
To use the full screen for text type:
2SETTEXT 0

SETWIDTH ; command

SETWIDTH humber

Sets the width of text lines on the screen. Some televisions
and monitors do not display the full width of text output by
the ADAM™. SETWIDTH allows the user to match the

95

TV/monitor to the computer. Number is an integer from 1
through 6. SETWIDTH 1 sets the left column to column 1,
(column 0 is for the prompt), giving a line length of 30
characters. SETWIDTH 2 sets the left column to column 2,
giving the “standard” line length of 29 characters. A line
length of 29 characters can contain 28 typed characters,
and the arrow (—). The key must be pressed an
extra time after the SETWIDTH command.

?SETWIDTH 4 Text has been cleared.
7 Press
PSETWIDTH 2 Text has been cleared.

Press

2 9
? Back to standard line length.

. ———

The Screen’s

Boundaries

IN.WINDOWP command

IN.WINDOWP
Outputs TRUE if the turtle is within the visible portion of the
screen, otherwise FALSE. Always outputs TRUE in WRAP mode.

WINDOW command

WINDOW

Makes the turtle field unbounded; what you see is a portion
of the turtle field as if you were looking through a small
window around the center of the screen. When the turtle
moves beyond the visible bounds of the screen, it
continues to move but can't be seen.

96

The entire turtle field is 32767 steps high and 32575
steps wide. When SmartLOGO starts up, the screen is in
WRAP mode. See WRAP.

Example:

LOSTIN.SPACE sends a rocket-shape turtle off the
screen and once a second it reports its distance from the
center.

TO LOST.IN.SPACE

WINDOW

SETSH 27 SETSP 10

WHEN 0 [PR DISTANCE (0 01
END

9L0OST. IN.SPACE

To stop the once-a-second WHEN demon, erase the
demon with ERDS.

WRAP command

WRAP

Makes the turtle field wrap around the edges of the screen;
if the turtle moves beyond one edge of the screen it
appears and continues from the opposite edge.

Following a WRAP command, the turtle never leaves
the visible bounds of the screen; when it tries to, it “wraps
around”. Thus, the turtle can move FORWARD (or BACK) an
infinite amount of times without hitting the limits of the
turtle field.

When you give the WRAP command, the screen is
cleared. See WINDOW.

Example:

PWRAP

?RT S

?FD 500

?PRINT POS
43.57789 -77.802612

97

The Screen
Ratio

SCRUNCH command

SCRUNCH
Outputs the current scrunch setting, a single number
representing the size of a vertical turtle step relative to a
horizontal turtle step. When SmartLOGO starts, the
scrunch is setto 1.

Example:

?PR SCRUNCH
1

SETSCRUNCH, SETSCR command

SETSCRUNCH ratio
Sets the aspect ratio (the ratio of the size of a vertical turtle
step to the size of a horizontal one) to ratio. If ratiois a
negative number, FORWARD and BACK both work opposite to
their usual way.

SETSCR 2 makes each vertical turtle step twice the
length of a horizontal one.

Example:

?PR SCRUNCH

1

?REPEAT 36 [FD 5 RT 10]
?SETSCR 2

?REPEAT 36 (FD 5 RT 101
?SETSCR 1

98

Texti
Commands

Chapter 10

This chapter describes those primitives which control the
printing of text on the screen.

The ADAM™ computer displays 24 lines of text on
the screen, with 29 characters on each line. The first
position of each Logo line is for the prompt. The last
position of each screen line is for the arrow (—), which
shows that the Logo line continues on the next screen line.
See SETWIDTH in Chapter 9 to change the number of
characters on a screen line.

The cursor is similar to the turtle — you can print
characters anywhere on the screen by putting the cursor at
the desired place.

For those commands which print out procedures,
variables, and other workspace details (POTS, PONS, POALL
etc.) see Chapter 18, Workspace Management.

CURSOR operation

CURSOR

Outputs a list of two numbers giving the current position of
the cursor. The first number gives the column and the
second, the row or line in which the cursor is located. See
SETCURSOR and the example given there.

— T

101

PRINT, PR command

PRINT object

(PRINT object object ...) o—
Prints its input(s) on the screen, followed by a line feed. The
outermost brackets of lists are not printed. Compare with

TYPE and SHOW.

Examples:
2PRINT "A
A
2PRINT “A PRINT [A B CI
A
ABC
2 (PRINT "A [A B CI)
AABGCGC
2PRINT [|
?
TO REPRINT :MESSAGE :HOWMANY =
|F :HOWMANY < 1 [STOP]
PR :MESSAGE
REPRINT :MESSAGE :HOWMANY - —
1
END
REPRINT [TODAY IS FRIDAY!] —
4
TODAY 1S FRIDAY!
TODAY |IS FRIDAY!
TODAY IS FRIDAY!
TODAY 1S FRIDAY!
e X

102

SETCURSOR command

SETCURSOR position

Sets the cursor to posifion. The first element of position is
the column number; the second, the line number. Columns
on the screen are numbered from 0 to 28, lines from 0 to

23,

0 28

23

The column number must be from 0 to 28, the line
number from 0 to 23. Non-integer inputs will be rounded to
integer values. For example, SETCURSOR [177.2] will place the
cursor at column 2, line 7.

Example:

?SETCURSOR [27 121

Puts the cursor half-way down the right edge of the
screen.

SHOW command

SHOW object
Prints objecton the screen, followed by a line feed. If
objectis alist, it is printed with brackets around it.

103

Compare with TYPE and PRINT.

Examples:

?SHOW "A
A

9SHOW "A SHOW [A B CI
A
[A B Cl

2TYPE “A TYPE [A B C]
AA B C?PRINT “A PRINT [A B C—

]

A

A B C
TYPE command
TYPE object

(TYPE object object ...)

Prints its input(s) on the screen, not followed by a line feed
(the cursor does not move to the next line). The outermost
brackets of a list are not printed. Compare with PRINT and

SHOW.

Examples:

2TYPE "A

A?TYPE “A TYPE (A B C!
AA B C?(TYPE "A [A B CI)
AA B C?

The procedure PROMPT types a message followed by

a space:

104

TO PROMPT :MESSAGE
TYPE :MESSAGE

TERE "% Backslash followed by a space.
END
TO MOVE

PROMPT [HOW MANY STEPS?]
FD FIRST RL

MOVE

END

?MOVE

HOW MANY STEPS? 50
HOW MANY STEPS? 37
HOW MANY STEPS? 2
HOW MANY STEPS? 108

Press | ESCAPE/WP |to stop this procedure. The
variety of ways that you can use text and characters in
SmartLOGO is almost as interesting as turtle graphics
itself. You can use uppercase and lowercase letters; you
can change the background color on which the characters
are printed.

Special
Character
Commands

[\] (backslash)

Tells SmartLOGO to treat the following character as a

regular alpha-numeric character. The backslash, (1), is

used (usually with PRINT and TYPE) when you want one of

SmartLOGO'’s special characters to be printed as a normal

character in text. It is also useful when spaces are needed.
Compare

?PR [(514) 444-1212]
(514) 444 - 1212

?PR [\ (514\) 444\-1212]
(814) 444-1212

105

T e

Music and
Sound Effects

Chapter 11

.

This Chapter describes SmartLOGO’s primitives for
generating music and sound effects. The ADAM™
computer has four sound channels. Three of them can
generate “pitched” sounds, which can be used to create
melodies. The fourth is the noise channel which can be
used to create beeps, buzzes and sounds like wind, snare
drum, and explosion effects.

The TOOT primitive activates any of the three pitched
channels. The NOISE primitive activates the noise channel.
NOISE requires some experience to use; you may prefer to
use the procedures given as examples as a starting point
for experimenting.

107

Music:

The TOOT
Primitive

| —————————— |

TOOT command

TOOT voice freq volume qurafion

Turns on sound channel voice (0, 1, or 2) which sends a
tone at freq (in cycles per second, or Hertz), at a loudness
of volume (a number from 0 through 15) for a time of
duration. A volume of 15 is loudest; 0 is silent. Duration is
timed in 1/60ths of a second from @ through 255. Freq is
pitch; its input can be a number from 128 through 9999.
(See the table of frequencies below.)

All three voices can play at the same time, but a
second TOOT command to the same voice will not be
started until the first TOOT is finished.

Examples:

440 Hertz is A below middle C on a piano, the
“tuning note”.

?TO0T 0 440 15 40
The CHORD procedure plays a three-note chord

T0O CHORD :FREQO :FREQ1 :FREQ—
e

TO0OT @ :FREQQD 15 60
TOOT 1 :FREQT 15 60
TOOT 2 :FREQ2 15 60
END

?CHORD 130.81 164.81 196

will play C-major triad for one second.

108

Using the table of frequencies below, the names of
notes may be used for operations which output the
frequency for the note, for example:

T0 C
oP 130.81
END

10 E
OP 164.81
END

TO0 G
OP 196
END

?CHORD C E G

will now play the same C-major triad.
The following table correlates notes with their
frequencies for two octaves on either side of middle C.

109

Table of Frequencies

Note

W>O0TMMON@>OTMMON

*middle C.

Frequency

130.810
146.830
164.810
174.610
196.000
220.000
246.940
261.630
293.660
329.630
349.230
392.000
440.000
493.880

Note
C*

W>O0TMMOUOUNT>O0OTMOU

Frequency

523.250
587.330
659.260
698.460
783.990
880.000
987.770
1046.500
1174.700
1318.500
1396.900
1568.000
1760.000
1975.500

Higher (or lower) notes may be approximated by

doubling (or halving) the frequency of the
corresponding note in the previous (or next) octave.

To create periods of silence, use a volume of 0.

Sounds Effects

NOISE

command

NOISE fype startvol stepvol steps steplength

Turns on the noise channel which sends a burst of noise

fype (see NOISE TYPES, below). The sound’s volume

“envelope” is set by the last four inputs.

10

N

A sound starts at a certain volume and can go
through a number of changes in volume. A volume of 15is
loudest: 0 is silent. Startvol (0 through 15) sets the volume
of the sound when it starts. Sfeps (0 through 15) sets the
number of changes of volume that will occur. Sfepvol (—7
to + 7) is the amount of change of volume that will occur at
each step. A positive change increases the volume at each
step; a negative change decreases the volume at each step.
Stepvol multiplied by sfeps gives the total volume change
(for a natural-sounding envelope, the total decrease in
volume should not be greater than the starting volume).
Steplength (0 through 15) sets the duration of each step.
The total duration of a noise is the number of steps
multiplied by sfeplength.

Noise Types

There are two general noises available in SmartLOGO: the
first is a kind of buzzing tone called a “sawtooth wave”.
There are four versions of it, each one at a different filter
frequency. A filter is a tone control much like the
treble/bass controls on a stereo. Type inputs 0 to 3 turn on
the tone at various filter settings. The second noise is called
“white noise”, an undefined sort of hissy rumble something
like the sound of wind. It's available in the same four filter
settings, with type inputs 4 to 7. Types 3 and 7 are special in
that the filter setting is the same as the pitch setting of TOOT
voice 2. The ROCKET and BASSOON procedures are examples
of this characteristic.

hi-frequency noise
midrange noise
lo-frequency noise
varying noise

® hi-frequency buzz
1 midrange buzz

2 lo-frequency buzz
3 varying buzz

~NOo O b

M

TO ALARM

NOISE 0 16 1 7 1
ALARM

END

TO SHOOT
NOISE 4 15 1 158 3
END

TO EXPLOSION
NOISE & 15 1 78 18
END

TO FLYPAST
NOISE 2 0 -1
NOISE 2 15 1
END

TO ROCKET

NOISE 7 15 @ 15 15
OFFSOUND 200

END

TO OFFSOUND :FREQ

TOOT 2 :FREQ 0 1

|F :FREQ > 3000 (STOPI
OFFSOUND :FREQ + 40
END

TO BASSOON
BUZZER 20892
BASSOON

END

TO BUZZER :FREQ

|F :FREQ < 500 (STOPI
TOOT 2 :FREQ 0 60
NOISE 3 15 0 4 15
BUZZER :FREQ / 2

END

ol il
armm
—_
aran

112

113

Words,
Numbers
and Lists

Chapter 12

There are two types of objects in Logo: words and lists.
Numbers are treated as words. There are primitives to put
them together, take them apart, and examine them.

This chapter will give you definitions and specific
examples of the primitives that deal with words, numbers
and lists. In order to get a more general understanding of
words and lists read Chapter 2, Logo Grammar.

A word is made up of characters.

Example:

HELLO

X

4

314

314
R2D2
PIGLATIN
PIG.LATIN
WHO?
INOW!

These are all words. Each character is an element

15

of the word. A word may contain only one element; X and 4
are both words. The word HELLO contains five elements:

H E L L o

A word is usually delimited by spaces. That means,
there is usually a space before the word and a space after
the word. The spaces set the word off from the rest of the
line. There are a few other deliminating characters.

[1 () = < > + = «/

SmartLOGO puts a space before and after these
characters. To make any of these characters act like a
normal alphabetic character, (so SmartLOGO won't put in
spaces or perform the operation) put a backslash,\, before it.

Example:
2PRINT "PIG\-LATIN
PIG-LATIN

Note that a quotation mark, “, and colon, :, are not
word delimiters.

A list is made up of Logo objects, each of which is a
word or another list. We indicate that something is a list by
enclosing it in square brackets. The following are all lists:

[HELLO THERE, OLD CHAP]
XYZ]

[HELLO]

[[HOUSE MAISON] [WINDOW FENETRE] [DOG CHIEN]]
[HAL [C3PO R2D2] [QRZ] [ROBBIE SHAKEY]]
(111211717 2]]]

[]

The list [HELLO THERE, OLD CHAP] contains four
elements:

HELLO
THERE,
OLD
CHAP

16

Note that the list [1[4 2] [7 [17 2]]] contains only three
elements, not six; the second and third elements are
themselves lists:

Element1: 1

Element2: [12]

Element 3: [17[17 2]]

Thelist[], alist with no elements, is the empty list.
There also exists an empty word, which is a word with no
elements. You type in the empty word by typing a quotation
mark (*) followed by a space. See the entry for EMPTYP for
examples of both the empty list and the empty word. The
empty list and the empty word are not the same.

SmartLOGO
Object
Manipulators

The operations FIRST, BUTFIRST (BF), LAST and BUTLAST (BL), are
used to break words and lists into pieces. The following
chart shows how they work. Use the command SHOW to see
them displayed on the screen.

Operation Input Outputs
FIRST “JOHN J

BF “JOHN OHN

FIRST [MARY JOHN BILL] MARY

BF [MARY JOHN BILL] [JOHN BILL]
FIRST [[MARY JOHN] BILL] [MARY JOHN]
BF [[MARY JOHN] BILL] [BILL)

FIRST [Jor® error

BF [Jor® efror

LAST and BUTLAST(BL) work in the same way,
separating the last element.

17

SmartLOGO uses five operations to put words and
lists together. These are FPUT, LPUT, LIST, SENTENCE, and WORD.
The following chart compares these five primitives. Use the
SHOW command to display them on the screen.

Operation Input 1 Input 4 Output

FPUT “LOGO “TIME error

LisT "LOGO “TIME [LOGO TIME]

LPUT “LOGO “TIME error

SENTENCE “LOGO “TIME [LOGO TIME]

WORD “LOGO “TIME LOGOTIME

FPUT “TURTLES [ARE FUN] [TURTLES ARE FUN]

LIST “TURTLES [ARE FUNJ: [TURTLES [ARE FUN]]

LPUT “TURTLES [ARE FUN] [ARE FUN TURTLES)
SENTENCE “TURTLES [ARE FUN] [TURTLES ARE FUN]
WORD “TURTLES [ARE FUN] error

FPUT [AND MORE] [TO COME] [[AND MORE] TO COME]
LIST [AND MORE] [TO COME] [[AND MORE] [TO COME]]
LPUT [AND MORE] [TO COME] [TO COME [AND MORE]]
SENTENCE [AND MORE] [TO COME] [AND MORE TO COME]
WORD [AND MORE] [TO COME] error
—————

SmartLOGO

Object

Reporters

I

The operations EMPTYP, EQUALP, LISTP, MEMBERP, NUMBERP and
WORDP are predicates. They examine the Logo objects that
they are given as inputs and output either TRUE or FALSE.

118

Variables
as Inputs

It is important to keep in mind that the name givento a
Logo object — a variable — can always be used in place of
the literal object as an input to an operation.

9SHOW LAST [1 [12]1 [17 [17 2=
ny

(17 (17 211

PMAKE “NUMS [1 (121 (17 [17 —
PR

?SHOW LAST :NUMS

[17 [17 211

Inputs from
the Keyboard

The word and list primitives can have inputs that are typed
at the keyboard. This is possible with the primitives
READCHAR and READLIST. See Chapter 17.

PR FIRST FIRST READLIST
YES | WANT TO PLAY
Y

19

BUTFIRST, BF operation

BUTFIRST object
Outputs all but the first element of object. BUTFIRST of the

empty word or the empty list is an error.

Examples:

?SHOW BF [BRIAN J. SMITH]I

[J. SMITH]I

?SHOW BF "DOGS

0GS

?SHOW BF [DOGS]!

[1] The empty list.

?SHOW BF [[THE A AN] [DOG CA—
T MOUSE] [BARKS MEOWS]]

[[DOG CAT MOUSE] [BARKS MEOW—
S1]

?PRINT BF

BF DOESN'T LIKE AS AN INPUT
?PRINT BF []

BF DOESN'T LIKE [] AS AN INP-—
ut

To following procedure removes one element at a
time from a word or a list.

TO TRIANGLE :MESSAGE

|F EMPTYP :MESSAGE [STOP]
NT :MESSAGE

ANGLE BF :MESSAGE

PRI
TRI
END
?TRIANGLE "STROLL
STROLL

TROLL
ROLL
OLL
LL
i

120

?TRIANGLE [KANGAROOS JUMP GR—
ACEFULLY]
KANGAROOS JUMP GRACEFULLY
JUMP GRACEFULLY
GRACEFULLY
BUTLAST, BL operation
BUTLAST object

Outputs all but the last element of object. BUTLAST of an

empty word or an empty list is an error.

Examples:

?SHOW BL [YOU HE SHE
[1 YOU HE SHEI

?SHOW BL "FLOWER
FLOWE

?SHOW BL [FLOWER]
[]

| T]

The input to the following procedure should be an

adjective endingin Y:

TO COMMENT :ADJECTIVE

PRINT SE [YOU ARE]

E

PRINT SE [I A
: ADJECTIVE "

END

?COMMENT "FUNNY
YOU ARE FUNNY
| AM FUNNIER

M]
| ER

:ADJECT I V—
WORD BUTLAST—

COUNT operation

COUNT object
Outputs the number of elements in object(aword or a

list).
Examples:

?PRINT COUNT [A QUICK BROWN —
FOX]

NT COUNT [A [QUICK BROWN--
X]

?PRINT COUNT "“COMPUTER
8

?MAKE “CLASS [PAT JENNY CHRI =
S SCOT TOM MARY JUDYI

';PR INT COUNT :CLASS

The following procedure prints a random element of
its input:

TO RANPICK :DATA
PRINT ITEM (1 + RANDOM COUNT=-—
"DATA) :DATA
END
PRANP I CK :CLASS SeelistCLAsS above.
SCOT
2RANPICK “COMPUTER
M
[==

122

EMPTYP

operation

EMPTYP object

Outputs TRUE if objectis the empty word or the empty list;

~—~ otherwise FALSE.

Examples:

?2PRINT
TRUE

tn— —
F mMZ m=
— —

m_
—f

NT

YV —HY MY T
DU DU P>TUT P>TUT
® cD cD rOU Do

—
m_

Th
animals:

— =
—m=

— 2Z2Xr TIE- >
AN ETD—L

>0 O --

—TOomOXxXv M—A—T0O—HA--
—A0Owm I
wn

r——0O

EMPTYP
EMPTYP 0
BF

EMPTYP "UNICORN

EMPTYP BL "U

EMPTYP BF [UNICORNI

procedure TALK matches animal sounds to

LS :SOUNDS
' SOUNDS EMPTYP -
T L —
P

[THAT'S AL
ANIMALS FIRS—

ALS BF :SOUNDS

GS BIRDS PIGS] [BAR-—

0
OINK]
K

|S!

123

EQUALP operation

EQUALP object object
Outputs TRUE if the first object and the second object are
equal numbers, identical words, or identical lists; otherwise
FALSE. A word and a list containing that word are not equal.
Equivalent to =, an infix operation. (See = at the end of
this chapter.)

Examples:

?PRINT EQUALP "RED FIRST [RE-—
D YELLOWI
TRUE

?PRINT EQUALP "YELLOW I[YELLO-
W]
FALSE

?PRINT EQUALP 100 50«2
TRUE

?PRINT EQUALP [THE A AN] [TH-
E Al
FALSE

?PRINT EQUALP " []
FALSE

The empty word and the empty list are not identical.

The following operation outputs the position that the
first input has in the second input. It outputs 0 if the first
input is not an element of the second.

TO RANK :ONE :ALL

|F EMPTYP :ALL [OUTPUT 0]
|F EQUALP :ONE LAST :ALL [OU-
TPUT COUNT :ALLI
OUTPUT RANK :ONE BL :ALL
END
?PRINT RANK “TWO [ONE TWO TH-
REE]
g
?PRINT RANK “S “PERSONAL
4
=

FIRST

operation

FIRST object
Outputs the first element of object. Note that FIRST ofa
word is a single character; FIRST of a list can be a word or a

list. It is an error if the input is the empty word or empty list.

Examples:

}_?‘SHOW FIRST "HOUSE

?SHOW FIRST [HOUSE]

HOUSE

9SHOW FIRST [[THE A AN] [UNI—-
CORN RHINO] [SWIMS FLIES GRO—
WLS RUNSI]I

[THE A AN]

The procedure PRINTDOWN prints each element of its

input on a separate line.

ECT

TO PRINTDOWN BJ

CT [STOPI
:

B

|F EMPTYP :0B
PR FIRST :0BJ
PRINTDOWN BF
END

?PRINTDOWN “HELP

0
JE
EC
< GBJECT

H

E

L

P
FPUT operation
FPUT object list

Stands for First PUT. Outputs a new list formed by putting
object at the beginning of /ist. See the chart at the
beginning of this chapter comparing FPUT with other
operations that combine words and lists.

125

Example:
The procedure REV puts the elements of the input list

in reverse order.

10 REV 2LIST

IF EMPTYP :LIST [TOUTPUT 11

OUTPUT FPUT LAST :LIST REV B-

L LI8T

END

2SHOW REV [[FD 201 PU [RT 90—

] [FD 20] PD [BK 201

[[BK 20] PD [FD 20] [RT 8901 -

PU [FD 2011
ITEM operation
ITEM number list

Outputs the element whose position in /istis number. ltis
an error if number is greater than the length of /ist or if listis
the empty list.

126

Examples:

?MAKE "PETS [DOG CAT HAMSTER-
CANARY]

?PRINT ITEM 3 :PETS

HAMSTER

PPRINT ITEM 1 :PETS
DOG

?PR ITEM 4 "“CUPCAKE
C

LAST

operation

LAST object
Outputs the last element of object. LAST of the empty word
or the empty list is an error.

order:

Examples:

?SHOW LAST [JUDY SUE BRIAN]
BRIAN

?SHOW LAST “VANILLA
A

?SHOW LAST [[THE Al FLAVOR |-
S [VANILLA CHOCOLATE STRAWBE-—
RRY 1]

[VANILLA CHOCOLATE STRAWBERR—
Y]

The following procedure prints a word in reverse

PUT
[STOP]
T

PU

2ZmmTo
e i 0
o ou—
> =
omn<—
~— o

NTBACK "REVERSE
VER?PRINTBACK "SAW

>N Z1TV<TO0
NI O—T1T

Smvy mMmo———
-om —

LIST

operation

LIST object object
Outputs a list whose elements are its inputs. Each input of
LIST can be a word or a list. See SENTENCE.

Examples:

9SHOW LIST "ROSE [TULIP IRIS—~
]
[ROSE [TULIP IRISI]I

?SHOW LIST [ROSEI! [TULIP IRIl—-
S

[[ROSE] [TULIP IRISI]

127

"'MAKE “DICTIONARY [[HOUSE CA-

SA] [SPANISH ESPANOL] [HOW C-

OMO1]

?SHOW :DICTIONARY

[[HOUSE CASA]1 [SPANISH ESPAN-

OoL] [HOW COMOI]

PNEWENTRY [TABLE MESA]

2SHOW :DICTIONARY

[[HOUSE CASA] [SPANISH ESPAN-—

OL] [HOW COMO] [TABLE MESA]]
MEMBER operation
MEMBER object list

Outputs a list composed of object (which must be an
element of /isf) and all following elements. This primitive is
useful for making extremely large lists smaller, to speed up
processing.

Example:

PR MEMBER “FRED [0 1 2 3 FR—~
ED BILL 9 8]
FRED BILL 9 8

MEMBERP operation

MEMBERP object list
Outputs TRUE if object s an element of /isf; otherwise FALSE.
Examples:

?PRINT MEMBERP 3 [2 5 3 6]
TRUE

2PRINT MEMBERP 3 [2 5 (31 B
FALSE

2PRINT MEMBERP [2 5] [2 § 3 -
6]
FALSE

2PRINT MEMBERP BF "FOG [0E F—
0 0G OH]
TRUE

129

The following procedure outputs TRUE if its input is a
vowel, otherwise FALSE:

TO VOWELP :LE
OUTPUT MEMBER
| 0 Ul

END

?PRINT VOWELP “F
FALSE

?PRINT VOWELP "A
TRUE

TTER
P :LETTER [A E -

NUMBERP operation

NUMBERP object
Outputs TRUE if objectis a number; otherwise FALSE.

Examples:

?PRINT NUMBERP 3
TRUE

?PRINT NUMBERP [3]
FALSE

?PRINT NUMBERP “7PM
FALSE

?PRINT NUMBERP
FALSE

?PRINT NUMBERP BF 3165.2
TRUE

130

SENTENCE, SE operation

SENTENCE object object
(SE object object object...)
Outputs a list made up of the elements included in its
inputs. See the chart at the beginning of this chapter
comparing SENTENCE with other operations that combine
words and lists.

Examples:

2 SHOW SE “PAPER "BOOKS
[PAPER BOOKS]I

2 SHOW SE "APPLE [PEAR PLUM B-
ANANA
[APPLE PEAR PLUM BANANA]

9 SHOW SE [TIME AND TIDE] [WA—~
|T FOR NO PERSONI

[TIME AND TIDE WAIT FOR NO P—
ERSON]

SENTENCE can be used to make a list of the results of
operations. The STARS procedure generates a screen full of
random dots.

TO STARS

REPEAT 300 (DOT SENTENCE RAN—
DOM 256 RANDOM 1921

END

? STARS

If SENTENCE has more than two inputs, you must
enclose SE and its inputs in parentheses.

9 SHOW (SE "HOP “STEP "JUMP)
[HOP STEP JUMPI

2 SHOW SE “BONNIE [|
[BONNIE]I

This instruction sets the cursor up two lines from the
current cursor position. SE gives SETCURSOR a list.

»SETCURSOR SE 0 LAST CURSOR —
A

131

WORD operation

WORD word word

(WORD word word word...)

Outputs a word made up of its inputs. If WORD has more

than two inputs, you must enclose WORD and its inputs in

parentheses. WORD does not work with a list as its input.
Examples:

?PRINT WORD “SUN "SHINE
SUNSHINE

?PRINT (WORD “CHEESE "BURG "—
ER)
CHEESEBURGER

?PRINT WORD "BU
WORD DOESN'T LI
INPUT

?PRINT WORD 53 5.75
535.75

The procedure PREFIX puts IN at the beginning of its

RG [ERI
KE [ER] AS AN-—

input:

‘WD

PREFIX
PUT WORD "IN :WD

R
U

mo —
= O

T
D
?PRINT PREFIX "ACTIVE
INACTIVE

WORD is used to create new words in PIG and LATIN,
which translate a sentence into a dialect of Pig Latin:

TO LATIN :SENT

|F EMPTYP :SENT [OP [1]

OP SE PIG FIRST :SENT LATIN -
BF :SENT

END

TO PIG :WORD

|F MEMBERP FIRST :WORD [A E —
| 0 Ul [OP WORD :WORD "AY]

OP PIG WORD BF :WORD FIRST @ -
WORD

END

132

2PRINT LATIN [NO PIGS HAVE E-—
VER SPOKEN PIG LATIN AMONG H-—
UMANS]
ONAY |IGSPAY AVEHAY EVERAY OK-—
ENSPAY |IGPAY ATINLAY AMONGAY—
UMANSHAY
WORDP operation
WORDP object
Outputs TRUE if objectis a word; otherwise FALSE.
Examples:
?PRINT WORDP "ZAM
TRUE
2PRINT WORDP 3
TRUE
2PRINT WORDP [3]
FALSE
PRINT WORDP [E GRESS]
FALSE
= (Equal Sign) ' infix operation

object = object
Outputs TRUE if the first object and the second object are
equal numbers, identical words, or identical lists; otherwise
FALSE. Equivalent to EQUALP, a prefix operation.

Examples:

PPRINT 3 = FIRST "3.1416
TRUE

?PRINT [THE A AN]
FALSE

PPRINT 7. = 7
TRUE

[THE Al

133

A decimal number is equivalent to the
corresponding integer.

PPRINT " = []
FALSE

The empty word and the empty list are not identical.

134

135

Variables

Chapter 13

A Logo word can be used as a variable. A variable is a
“container’” that holds a Logo object. This object is called
the word’s value. A variable can be assigned a value either
by using MAKE or NAME or by using procedure inputs. For
information on the proper use of variables, the difference
between global and local variables, and using operations to
output values, see Chapter 2, Logo Grammar. For further
reference on Logo objects, see Chapter 12, Words,
Numbers and Lists.

Global variables can be made at top level or in the
SmartLOGO Editor. Modifications to variables are also
done in the Editor. A variable name erased in the Editor is
not erased from the workspace. Use EDNS to start up the
Editor with all the variable names and values. The Editor
and editing actions described in Chapter 3 apply to
variables.

137

EDNS command

EDNS
Stands for EDit NameS. Starts up the SmartLOGO Editor
with all names and their values in it. These variables can
then be edited. When you exit the Editor the MAKE
commands are run, so whatever variables and values have
been changed or created in the Editor are changed in the
workspace. See Chapter 3 for an explanation of the
SmartLOGO Editor.

Example:

?EDNS

MAKE “ANIMAL "GIBBON

MAKE "“SPEED 355

MAKE “AIRCRAFT [JET HELICOPT—

ERI

The “prompt” (?) disappears, indicating that the
Editor is operating.

Edit the names so they look like the list below. Then
press Smart Key [V1 | to exit the Editor.

MAKE "“ANIMAL "GRYFFIN
MAKE “SPEED 55
MAKE “AIRCRAFT [JET HELICOPT—

ER BLIMP]I

MAKE command

MAKE hame object

Creates the variable name and gives it the value object.
Once the variable is created, you can have access to its
value by THING name. The abbreviation .nQme means
THING “name. The :(colon) means “the thing that is called”
or “the value of .

138

Examples:

9MAKE “NATIONS [CANADA USA F-—
RANCE GERMANY [TALY]

?PRINT :NATIONS

CANADA USA FRANCE GERMANY [T—
ALY

PPRINT “NATIONS

NATIONS

2PRINT THING “NATIONS

CANADA USA FRANCE GERMANY [T-—
ALY

P'MAKE “USA [WASHINGTON!
?PRINT :USA
WASHINGTON

9PRINT THING FIRST BUTFIRST —

:NATIONS
WASHINGTON

FIRST BUTFIRST :NATIONS is the second element in the
NATIONS list, which is USA, and the value of “USA is
WASHINGTON.

PMAKE “CANADA [OTTAWA]

2PRINT FIRST :NATIONS
CANADA

9PRINT THING FIRST :NATIONS
OTTAWA

139

The following procedure CAPITAL asks for the capital
cities of given countries.

TO CAPITAL :NATIONS

|F EMPTYP :NATIONS [STOP]
MAKE "COUNTRY FIRST :NATIONS
PR SE [THE CAPITAL OF] :COUN—
TRY

MAKE "“ANSWER RL

|F :ANSWER = THING :COUNTRY —

[PR LCORRECT!I] [PR [OH! SIN—-
CE WHEN?1]

CAPITAL BF :NATIONS

END

?CAPITAL :NATIONS

THE CAPITAL OF CANADA
OTTAWA

CORRECT!

THE CAPITAL OF USA
NEW YORK

OH! SINCE WHEN?

NAME command

NAME object name

Gives the value objectto the variable called name. NAME is

equivalent to MAKE, but the inputs are reversed. See MAKE.
Examples:

?NAME 259 "JOB

?PR :JOB

259

?NAME “WELDER "JOB
?PR :J0B

WELDER

?MAKE “J0OB "WELDER
?PR :JOB
WELDER

140

NAMEP operation

NAMEP name

Outputs TRUE if name is the name of a variable that has a

value, that is, if a value for names exists; otherwise FALSE.
Examples:

?PRINT :ANIMAL

ANIMAL HAS NO VALUE
PRINT NAMEP “ANIMAL
FALSE

9MAKE "ANIMAL "AARDVARK
2PRINT NAMEP “ANIMAL
TRUE

PPRINT :ANIMAL

AARDVARK

The procedure INC listed below, under THING, shows
another use of NAMEP.

THING operation

THING name
Outputs the value (or thing) associated with the variable
name. THING “ANY is equivalent to :ANY. The variable can be
created by the command MAKE or NAME or by defining a
procedure with inputs.

Examples:

'MAKE “NUMBERS (0 1 2 3 4 5 —

6 7 8 8]

?PR :NUMBERS

2 3 45678

HING “NUMBERS
6 7 8

0 1
PR T
0 12 3 45

141

THING can be used to access the values of variables

which are themselves values.

?MAKE 0 [A B C DI

?MAKE "A [ERIC BROWN]I

?PR THING FIRST :NUMBERS

A B CD

?PR THING FIRST THING FIRST =
: NUMBERS

ERIC BROWN

This procedure increments (adds 1 to) the value of a

variable:

10 ING X

|F NOT NAMEP :X [STOP]I

|F NUMBERP THING :X [MAKE :X-—-
1 + THING :X]

END

Note the use of MAKE : X rather than MAKE “X. It is not

X that's being incremented. The value of X is not a number,
but the name of another variable. It is the value of the
second variable that is incremented.

142

?MAKE "TOTAL 7
?PRINT :TOTAL
7

?INC “TOTAL
?PRINT :TOTAL
8

?INC "TOTAL
?PRINT :TOTAL
S

For other examples, see MAKE.

N

143

.-

Mathematical
Operations

Chapter 14

SmartLOGO can work with real numbers — integer and
decimal numbers:

3 is an integer.
344 is a decimal number.

SmartLOGO provides primitives that let you add,
subtract, multiply, and divide numbers. You can find sines,
cosines, and square roots; and you can test whether a
number is equal to, less than, or greater than another
number.

Some arithmetic operations (INT, RANDOM,
REMAINDER, ROUND) always output integers. Others vary
depending on the output of the operation.

Decimal numbers with more than nine digits are
converted into exponential form (scientific notation). For
example:

2E6 means 2 times 1¢¢, or 2,000,000,
2 59N2 means 2.59 times 102, or 0.0259

Exponents range from —38 to 37. The largest
number is 9€37 and the smallest number is 1N38.

145

Decimal numbers with more than nine digits are
truncated. For example, the number 2718281828459.045 is
converted to 2.7182818E12.

Addition, subtraction, multiplication, and division
are available as prefix operations or infix operations. An
infix operation goes between its inputs, not before them as
with a prefix operation. Addition and multiplication in the
prefix form take two or more inputs. The following
expressions are equivalent:

2 + 1 (infix)
SUM 21 (prefix)

In addition to the primitives described here, the
primitive EQUALP is often used in conjunction with
arithmetic operations. It is described in Chapter 12, Words,
Numbers and Lists. The infix operation = (Equal Sign) is
equivalent to EQUALP.

The file called TOOLS on the SmartLOGO digital data
pack contains many useful math tools such as a procedure
that calculates the LOG of a number. See Appendix B,
Program Files Included on the SmartLOGO Digital Data
Pack.

146

N\

[T =

Order of
Mathematical
Operations

When there are several math operations in a line, they are
evaluated according to the operation’s precedence. The
order of precedence from highest to lowest is as follows:

— a minus sign immediately before a
number indicating a negative number
(-3) or the additive inverse of its input

(—SPEED)
%,/ multiplication and division
+, — addition and subtraction
> M greater than and less than
= equal to
other math including such primitives as SIN and SQRT
operations as well as user-defined operations
AND, NOT, OR logical operations
PRINT, SHOW primitive commands

This order may be altered with the use of
parentheses. Logo foliows the standard mathematical
practice of performing operations enclosed in parentheses
before others. For example:

?PR 2

10

?PR ¢

12

7PR
4

4 + 8/4

(4 + B/4)

» 4 + B8)/4

147

In the first example 2 * 4 gives 8, and 8 divided by 4
gives 2. 8 is then added to 2 giving 10.

In the second example, the expression inside the
parentheses is evaluated first. Inside the parentheses, the
division is performed first. So 8/4 gives 2, which is added to
4 giving 6. That result is multiplied by 2 giving 12.

In the third example, the expression in the
parentheses is evaluated, and the result divided by 4. 2
times 4 is 8, 8 plus 8 is 16, and 16 is then divided by 4
giving 4.

ARCTAN operation

ARCTAN number

Outputs the arctangent of number, a number between 270

and 360 or 0 and 90; the angle whose tangent is number.

The output is a decimal number in degrees, not radians.
Examples: 7

?PR ARCTAN 2
63.43478

?PR ARCTAN 444
89.870973

The following procedures define ARCSIN, an
operation that outputs the angle whose sine is the input
number, and ARCCOS, an operation that outputs the angle
whose cosine is the input.

TO ARCSIN :X

OP ARCTAN :X [/ (SQRT 1 - X =
* Xl

END

TO ARCCOS : X ey
OP ARCTAN (SQART 1 = X #* X)=-

[X

END

148

COs operation

COS degrees
Outputs the cosine of degrees. The output is a decimal
number. It is an error if degrees is greater than 9999.9999 or
less than —9999.9999

Examples:

2PRINT COS 45
0.7071067

?2PRINT COS 30
0.86602522

Here is a definition of the tangent function:

TO TAN :ANGLE

QUTPUT (SIN :ANGLE) / COS :A-
NGLE

END

2PRINT TAN 45
1

DIFFERENCE operation

DIFFERENCE a b
Outputs the result of subtracting b from a. Equivalent to
—, an infix operation.

Examples:

9PR DIFFERENCE 7 1
6

2PR DIFFERENCE (5+6) (3*7)
-10

2PR DIFFERENCE 10 5
9

92PR DIFFERENCE 6.3 107 .4
-101.1

149

INT

operation

INT humber
Outputs the integer portion of number (by removing the
decimal portion, if it exists). See ROUND.

The procedure INTP tells whether its input is an
integer:

Examples:

?2PR INT 5.21289
5

2PR INT 5.5128
5

2PR INT 5

5

?PR INT -5.8
=9

2PR INT -12.3
-12

TO INTP :N

|F NOT NUMBERP

OT A NUMBERII

OUTPUT :N = INT
END

PR INTP 17

TRUE

?PR INTP 100 / 8
FALSE

?PR INTP "ONE

NOT A NUMBER

?PR

INTP SQRT 50

FALSE

N

N

[OUTPUT

[N~

PRODUCT operation

PRODUCTa b

(PRODUCTODbC...)

Outputs the product of its inputs. Equivalent to *, an infix
operation. If PRODUCT has more than two inputs,
parentheses must enclose PRODUCT and its inputs.

Examples:
?PR PRODUCT 6 2
12
?PR (PRODUCT 2 3 4)
24
?PR PRODUCT 2.5 4
10
?PR PRODUCT 2.5 2.3
6.25
QUOTIENT operation
QUOTIENTa b

Outputs the result of dividing a by b. Equivalentto /, an
infix operation. It is an error if bis 0.
Examples:

?PR QUOTIENT 72 8
9

?PR QUOTIENT 12 95
2.4

?PR QUOTIENT -12 3
-2.4

?PR QUOTIENT B 2.5
2.4

NT 3.2 0
DE BY ZERO

151

RANDOM operation

RANDOM number
Outputs a random non-negative integer less than number.
Example:
RANDOM 6 could output 0,1, 2, 3, 4, or 5. The
following program simulates a roll of a six-sided die:

TO DB
QUTPUT (1 + RANDOM 6)
END

?PR D6
3
?PR DB
5
?PR DB
B

Note that the outputs of D6 printed here are just
possible numbers and will vary because of RANDOM.

REMAINDER operation

REMAINDER a b
Outputs the remainder obtained by dividing a by b. The
output is always an integer. If @ and b are not integers they
are truncated. lt is an error if bis 0.

Examples:

?PR REMAINDER 13 5
3

13 divided by 5 is 2 and the remainder is 3.

?PR REMAINDER 13 15
13

?PR REMAINDER -13 9
-3

162

The following procedure tells you whether its input
is even:

TO EVENP :NUMBER

OUTPUT 0 = REMAINDER :NUMBER-
2

END

?PR EVENP 5
FALSE

?PR EVENP 12462
TRUE

RERANDOM command

RERANDOM
Makes RANDOM generate the same sequence of numbers,
by returning to the “startup” state of the RANDOM algorithm.
RERANDOM, followed by RANDOM with the same input, will
always output the same number.

Examples:

?RERANDOM

?REPEAT 5 [PR RANDOM 1000
110

125

699

381

746

?RERANDOM REPEAT 5 [PR RANDO-
M 1000

110

129

699

381

746

153

ROUND operation

ROUND number
Outputs number rounded off to the nearest integer.
Compare with examples under INT.

Examples:

?PR ROUND 5.2129
o

?PR ROUND 5.5128
6

INT works differently.

?PR INT 5.51289
5

?PR ROUND .5
1

?PR ROUND -5.8

_8 .

?PR ROUND -12.3
=2

SIN operation

SIN degrees
Outputs the sine value of degrees. See COS.
Example:

?PR SIN 45
0.7071067

SQRT operation

> e

SQRT number
Stands for SQuare RooT. Outputs the square root of
number. It is an error if number is negative.

154

Examples:
?PR SQRT 25

5

?PR SQRT 2589

16.093477
SUM operation
suMab
(SuMabc...)

Outputs the sum of its inputs. Equivalent to +, an infix
operation. If SUM has more than two inputs, SUM and its
inputs must be enclosed in parentheses.

Examples:

?PR SUM &5 2
7

?PR (SUM 1 3 2 -1)
4]

?PR SUM 2.3 2.3561
4.861

+ (Plus Sign) infix operation

a+ b
Outputs the sum of its inputs, @ and b. This is equivalent to
SUM, a prefix operation.

Examples:

?PR 5 + 2
7

2PR 1 + 3 + 2 + 1
7

PR 2.54 # 12.3
14.84

155

— (Minus Sign) infix operation

ad— b
Outputs the result of subtracting b from a. Equivalent to —_
DIFFERENCE, a prefix operation. It may be used as the sign for
a negative number.
Examples:

?PR 7 - 1
6

?PR 7-1
B

?PR PRODUCT 7 -1
~7

?PR -XCOR

-50

This result varies according to the turtle’s position.
The number shown is generated if the turtle’s x-coordinate =~ —
is 50.

PR - 3

There could be confusion between the negative sign
with one input and the minus sign with two inputs.
SmartLOGO resolves this as follows:

?PR 3 = -4

-12

?PR 3 + 4 - 5

2

If there is a space before the “ —" and a number o

immediately after it, SmartLOGO reads that as a negative
number. So7 —1is6,7-1iséand 7— 1is 6, but7 —1is the
pair of numbers 7 and —1.

156

input:

The procedure ABS outputs the absolute value of its

TO ABS :NUM

QUTPUT IF :NUM < 0 [-:NUMI [—
:NUM]

END

?PR ABS -39
39

?PR ABS 35
35

« (Multiplication Sign) infix operation

ax*b

Outputs the product of its inputs aand b. This is equivalent
to PRODUCT, a prefix operation.

Examples:

?PR 6 = ¢
12

?PR 2 + 3 * 4
14

R 1.3 &= -1.3
-1.869

?PR 48 =« (.3 + .2)
24

157

The procedure FACTORIAL outputs the factorial of its
input. For example, FACTORIAL 5 outputs the result of 5+4+3
+2+1(120).

TO FACTORIAL :N
IF :N = 0 [OQUTPUT 11 I
:N = FACTORIAL :N - 1

?PR FACTORIAL 4
24

?PR FACTORIAL 1
1

OUTPUT—
]

/ (Division Sign) infix operation

al/b
Outputs the result of a divided by b. Equivalent to QUOTIENT,
a prefix operation. It is an error if bis 0.

Examples:

PR 6 / 3
2

PR 8 / 3
2.6666666

PR 2.5 /| -3.8
-0.65789473

PR 8 4 7
0

PR 7 | O
CAN'T DIVIDE BY ZERO

158

< (Less Than Sign) infix operation

a<b
Outputs TRUE if ais less than b; otherwise FALSE.
Examples:

?PR 2 < 3
TRUE

PR -7 < -10
FALSE

= (Equal Sign) infix operation

a=>b
Outputs TRUE if @ and b are equal numbers, identical words,
or identical lists; otherwise FALSE. Equivalent to EQUALP, a
prefix operation. See Chapter 12.

Examples:

?PR 100 = 50 = 2
TRUE

2PR 3 = FIRST "“3.1416
TRUE

?PR 7. =7
TRUE

A decimal number is equivalent to the
corresponding integer.

?PR “ = []
FALSE

The empty word and the empty list are not identical.

159

> (Greater Than Sign) infix operation

a>b
Outputs TRUE if @ is greater than b; otherwise FALSE.
Examples:

2PR 4 > 3
TRUE

PR -10 > -7
FALSE

The procedure BETWEEN outputs TRUE if the number

given as the first input is greater than the second input and
less than the third.

TO BETWEEN :N :LOW :HI
OP AND :N > :LOW :HI > :N

END
?PR BETWEEN 15 0 16
TRUE
?PR BETWEEN -5 -2 3
FALSE

T

160

161

]

Flow of
Control

and
Conditionals

Chapter 15

When SmartLOGO runs a procedure, it reads the
procedure definition line by line, following the instructions
given in each line. If a procedure contains a subprocedure,
SmartLOGO reads the lines of the subprocedure before
continuing in the superprocedure. “Flow of control” refers
to the order in which SmartLOGO follows instructions.
There are times when you want to alter SmartLOGO's
normal flow of control. There are several ways to do it.

conditionals “F such-and-such is true, do one thing;
otherwise, do something else.”

demons “WHEN such-and-such occurs, run a list
of instructions, then resume.”

repetition “Run a list of instructions one or more
times.”

halting “STOP this procedure before it reaches
the END.”

Conditionals enable SmartLOGO to carry out
different instructions, depending on whether a condition is
met or not. SmartLOGO predicates, operations that output
TRUE or FALSE, create this condition, which is the first input to
IF.

163

COND operation

COND condnumber

Outputs TRUE if the event specified by condnumber is
happening at the exact time COND is run, otherwise FALSE.
The input is an integer from 0 to 5 indicating which event
you want to check (see WHEN for the listing of events). COND
is most useful when you want to check for an event only
once.

ERCS command

ERCS
Stands for ERase CollisionS. Erases all ON.TOUCH collision
demons.

ERDS command

ERDS
Stands for ERase DemonS. Erases all WHEN and ON.TOUCH
demons.

ERES command

ERES
Stands for ERase EventS. Erases all WHEN event demons.

165

IF command or operation

IF pred instructionlist

IF pred instructionlist instructionlist

The first input, pred, is a predicate or condition that IF tests
to be TRUE or FALSE. If pred is TRUE, the first insfructionlist is
run. If there is a second instructionlistit is run when predis
FALSE.

In either case, if the selected instruction list outputs,
then IF outputs the same thing. If the instruction list does
not output, neither does IF. Note that if you use IF with just
one instruction list, and follow it on the same line with
another command, SmartLOGO will print an error
message.

Examples:

DECISION1, DECISION2 and DECISION3 are three
equivalent procedures. The first two use IF as a command,
one version with two inputs to IF, one with three inputs. The
third version of DECISION uses IF (with three inputs) as an
operation. All three procedures are operations.

IF as a command:

TO DECISION?
|F 0 = RANDOM 2 [OP "YES]

OP “NO
END

TO DECISIONZ

IF 0 = RANDOM 2 [OP "YES] [0-—
P “NOI

END

IF as an operation:

TO DECISIONS

QUTPUT IF 0 = RANDOM 2 ["YES—
] ["NO]

END

166

DECISION4, DECISION2 and DECISION3 will all output YES
or NO.

?PR DECISIONT
YES

DECIDE1 and DECIDE2 are both equivalent procedures.
In DECIDE IF is used as a command. DECIDE2 uses IF as an
operation. Both procedures are commands.

TO DECIDE"

IF 0 = RANDOM 2 [PR "YES] [P—
R “NOI

TO DECIDEZ®

PR IF 0 = RANDOM 2 ["YESI] ["—
NO]

END

DECIDE1 and DECIDE2 print either YES or NO.
?DECIDEZ2

NO

IF can be used inside another IF clause. For example;

TO POSITIVE? :NUM

| F NUMBERP :NUM [IF :NUM > 0—
[PR [POSITIVE NUMBERII [PR —

[NEGATIVE NUMBERI]JII[PR [NOT —

A NUMBERI]

END

?POSITIVE? 10
POSITIVE NUMBER

?POSITIVE? -5
NEGATIVE NUMBER

PPOSITIVE? SUM -10 5
NEGATIVE NUMBER

?POSITIVE? "TEN
NOT A NUMBER

-
I

167

ON.TOUCH command

ON.TOUCH tfurtlenumber turtlenumber instructionlist

This command can be used at top level or within a
procedure. It sets a demon to watch for a collision between
the two turtles specified. When the collision occurs, any
current procedure is temporarily interrupted and
instructionlistis run. If the insfructionlistis the empty list the
demon is erased.

Only ten collisions may be set at one time.

It's a good idea to include, in insfructionlist, a
command which moves at least one of the turtles away
from the other, otherwise the collision may keep on
registering.

Once a demon is set, it will keep watch until it is
erased. To erase demons the ERDS command can be used.
See WHEN.

OUTPUT, OP command

OUTPUT object
This command can be used only within a procedure, not at
top level. It makes objectthe output of this procedure and
returns control to the caller. Note that OUTPUT is itself a
command, but the procedure containing it is an operation
because the procedure is made to output (compare with
STOP).

Examples:

TO MARK.TWAIN
OUTPUT [SAMUEL CLEMENS]I

END
?PR SE MARK.TWAIN (IS A GREA—
T AUTHORI
SAMUEL CLEMENS IS A GREAT AU-
THOR

I

168

SOMEWHERE outputs a 2-element list of random
screen co-ordinates.

TO SOMEWHERE
OP SE RANDOM 256 RANDOM 182

END

?SETP0OS SOMEWHERE
9REPEAT 300 [(DOT SOMEWHERE!

The following procedure tells whether its first input
is a subset of its second input. It outputs TRUE or FALSE. This
is how you make your own predicate.

TO SUBSET :SuUB :ALL

|F EMPTYP :SUB [QUTPUT "TRUE-—
]

|F MEMBERP FIRST :SUB :ALL [—
OP SUBSET BF :SuUB :ALL1 [QP —
“"FALSE]

END

PR SUBSET (W E F1 [AE I 0O =

Ul
FALSE

?IF SUBSET I[|
[PR “VOWELS]I
VOWELS

Ef 1% E | Q U=

POC command

POC furtlenumber turtlenumber
Stands for Print Out Collision. Prints out the specified
ON.TOUCH collision and its instruction list.

POCS command

POCS
Stands for Print Out CollisionS. Prints out all current
ON.TOUCH collisions and their instruction lists.

169

PODS command

PODS
Stands for Print Out DemonS. Prints out all current WHEN
and ON.TOUCH demons and their instruction lists.

POE command

POE conadnumber
Stands for Print Out Event. Prints out WHEN condnumber
and its instruction list.

POES command

POES
Stands for Print Out EventS. Prints out all current WHEN
events and their instruction lists.

REPEAT command

REPEAT number instructionlist
Runs a list of instructions the specified number of times. It
is an error if number is negative. If number is not an
integer it is truncated to an integer.

Examples:

?REPEAT 4 [FD 80 RT 80!
Draws a square with 80 turtle steps on each side.
?REPEAT 5 [(PRINT RANDOM 20

Prints 5 random numbers from 0 to 19.

170

The following procedure draws a polygon:

TO POLY :SIDE :ANGLE

REPEAT 360 / :ANGLE [FD :51D—
E RT :ANGLE]

END

?POLY 50 120

command or operation

RUN instructionlist

Runs the specified list of instructions as if it were typed in
directly. If instructionlistis an operation, then RUN outputs
whatever insfructionlist outputs.

Examples:
The following procedure simulates a calculator:

TO CALCULATOR
PRINT RUN RL
PRINT []
CALCULATOR
END

2CALCULATOR
2 + 3
5

J.9 = @
2.5

2 = 8 * 7]
ALSE
EMAINDER 12 5

nND TS Ol-—

Press [ESCAPE/WP |to stop.
PRINT RUN RL prints the output from any expression

typed in by the user.

17

The procedure WHILE runs a list of instructions while
a specified condition is true:

TO WHILE :CONDITION :INSTRUC—
TIONLIST

|F RUN :CONDITION :INSTRUCTI —
ONLIST [STOPI

WHILE :CONDITION :INSTRUCTIO=
NLIST

END

?RT 90

SWHILE [XCOR < 1001 [FD 25 P—
R POS]

25 0

50 0

75 0

100 0

The following procedure applies a command to
each element of a list in turn:

TO MAP :CMD :LIST
|F EMPTYP :LIST [STOPI

RUN LIST :CMD WORD "* FIRST -
HME-§

MAP :CMD BF :LIST

END

TO SQUARE :SIDE
REPEAT 4 [FD :SIDE RT 80]
END

P?MAP “SQUARE (10 20 40 80!

172

IMAKE “NEW.ENGLAND [ME NH VT-—
MA RI CTI

PMAP “PRINT :NEW.ENGLAND

ME

NH

VT

MA

RI

CT

The FOREVER procedure repeats its input forever
(unless it encounters an error or is stopped with
[(ESCAPE/WP |):

TO FOREVER :INSTRUCTIONLIST
RUN :INSTRUCTIONLIST
FOREVER :INSTRUCTIONLIST
END

FOREVER [FD 1 RT 1]

STARTUP command

STARTUP
Runs the instruction list associated with the STARTUP variable,
if one exists. See Appendix C, Startup.

STOP command

STOP

Stops the procedure that is running and returns control to
the caller. This command is only used within a procedure
— not at top level. Note that a procedure containing STOP is
a command. Compare with OUTPUT.

173

Example:

TO COUNTDOWN :NUM

PR :NUM

|F :NUM = 0 [PR [BLAST OFF!]—
STOP]

COUNTDOWN :NUM - 1

END

?COUNTDOWN 4
4

3
e
1
0
BLAST OFF!

TOUCHINGP operation

TOUCHINGP furflenumber

Outputs TRUE if a collision between the current turtle or any
one of the current turtles and furflenumber is occurring at
the moment TOUCHINGP is run, otherwise FALSE. TOUCHINGP
is useful when the test is to be run only once. Compare with
ON.TOUCH.

WAIT command

WAIT humber

Tells SmartLOGO to wait for number 60ths of a second.
Example:

The procedure SLEEP makes SmartLOGO “sleep” for
a while.

10 SLEEP

PR [FOR HOW MANY SECONDS?]
WAIT (FIRST RL) = 60

PR [THANKS. | NEEDED THAT.]
END

174

?SLEEP

FOR HOW MANY SECONDS?
10 SECONDS

THANKS. | NEEDED THAT.

The input to WAIT is the first item in READLIST,
multiplied by 60.

WHEN command

WHEN condnumber instructionlist

Sets up a WHEN demon for detecting an event
condnumber. Condnumber is an integer from 0 to 5
symbolizing an event. When this event occurs,
instructionlistis run. If the instructionlistincludes turtle
commands, the current turtle(s) (see WHO) carries them
out. If the instructionlistis the emptylist, the demon is
erased.

Note that WHEN's effect is global: this command
needs to be given only once. See POD, POE, PODS and POES
in Chapter 9 for checking which demons are in action.

It is possible to give more than one WHEN command
at one time, but the demons will not be active
simultaneously. Their speed in detecting an event depends
on their strength. WHEN demon 0 is the strongest and
therefore the fastest demon; WHEN demon 5 is the weakest
and slowest. When one demon is busy (the event has
occured and instruction list is running), the other demons
go to sleep and don't wake up until the demon has
completed its task.

When setting up a game or project using demons, it
is helpful to follow these guidelines:

Try to give a WHEN demon a task (instruction list)
that can be executed as fast as possible.

Since only one demon can be active at atime, a
WHEN or ON.TOUCH demon cannot be part of another
demon’s instructionlist. Rather, a test such as COND or
TOUCHINGP should be used.

T

175

Table of events

condnumber event

UhWN—=S

once per second
a key is pressed

joystick on game controller 0 is moved
joystick on game controller 1 is moved
a button on game controller 0 is pressed
a button on game controller 1 is pressed

Examples:

When either button o game controller 0 is pressed
(event 4) SmartLOGO checks whether the current turtle is

touching turtle 1. If so, the current turtle disappears.

176

vigll '8

YWHEN 4 [IF TOUCHINGP

C 011

[BE T =

Whenever the joystick on game controller 0
changes position (event number 2), DRAW is executed,
allowing you to draw with the joystick.

T0O DRAW :DIR

IF :DIR = -1 [STOP]
SETH 45 = :DIR

FD 5

DRAW JOY 0

END

?PWHEN 2 [(DRAW JOY 0]

The following instructions use the button @ demon,
WHEN 4, to change the color and pencolor of the turtle. Tryit
while the turtle is drawing for colorful effects.

oWHEN 4 [SETC COLOR + 1 SETP—-
C COLORI

?2CS

?RT 82

9SETSP 15

Press the button on game controller @ to change the
color of the turtle and of the pen.

177

Logical
Operations

Chapter 16

Predicates are operations that output only TRUE or FALSE.
Most of their names end in P.

There are some SmartLOGO predicates whose
inputs must be TRUE or FALSE. They are called logical
operations. Their names do not end in P. The designers of
SmartLOGO have chosen to retain the traditional names
AND, OR, and NOT for these logical operations. Logical
operations are used to combine predicates into logical
expressions, similar to the way in which arithmetic
operations form arithmetic expressions. Just as arithmetic
operations receive and output only numbers, logical
operations receive and output only TRUE or FALSE.

The inputs to logical operations are usually
predicates. Predicates are found throughout the other
chapters of this manual.

179

Predicate Chapter
COND 15
DEFINEDP 3
EMPTYP 12
EQUALP 12

KEYP | 17

LISTP 12
MEMBERP 12
NAMEP 13
NUMBERP 12
PRIMITIVEP 3
SHOWNP 6
TOUCHINGP 8
WORDP 12

> 14

= 12,14
< 14

AND operation
AND pred pred

(AND pred pred pred. . .)

Outputs TRUE if all its inputs are true, otherwise FALSE. If AND
has more than two inputs, AND and its inputs must be
enclosed in parentheses.

Examples:
2PRINT AND

TRUE

?PRINT AND

FALSE

PPRINT AND

FALSE

PPRINT
SE “TRUE)

FALSE

“"TRUE "TRUE

"TRUE "FALSE

"FALSE "FALSE

(AND “TRUE "TRUE "FAL—

[

180

92PRINT AND PENCOLOR = 0 BACK—
GROUND = 0
FALSE

The infix operation = returns TRUE or FALSE to AND.

2PRINT AND 5 7
7 1S NOT TRUE OR FALSE

The following procedure, DECIMALP, tells whether its
input is a decimal number:

TO DECIMALP :0BJ

OP AND NUMBERP :0BJ CHECK :0-—
BJ

END

TO CHECK :0BJ
|F EMPTYP :0BJ [OP "FALSE]!

|F EQUALP FIRST :0BJ *. [0OP —
"TRUE
OP CHECK BF :0BJ
END
2PRINT DECIMALP 17.2
TRUE
2PRINT DECIMALP 17
FALSE
9PRINT DECIMALP 17.0
FALSE
9PRINT DECIMALP 48.098
TRUE
9PRINT DECIMALP "STOP.STOP
FALSE
FALSE operation

FALSE
FALSE is a special word that is used as an input to AND, IF,
NOT and OR.

181

NOT operation

NOT pred
Outputs TRUE if pred is FALSE; outputs FALSE if pred is TRUE.

Examples:

?PRINT NOT EQUALP “A "B
TRUE

?PRINT NOT EQUALP "A "A
FALSE

?PRINT NOT “A = FIRST "“DOG
TRUE

PPRINT NOT "A
A IS NOT TRUE OR FALSE

VISIBLEP outputs TRUE if the turtle is visible, otherwise
FALSE. The turtle must be showing and “visible” on the
screen, it cannot be transparent or the same color as the
background.

TO VISIBLEP

|F SHOWNP [QUTPUT AND (NOT C—
OLOR = BACKGROUND) (NOT COLO—
R = 0)]

OUTPUT "“FALSE

END

28T
?2S5ETC 0
?PR VISIBLEP

FALSE

9SETC 1
PR VISIBLEP

TRUE

182

The following procedure tells whether its input is a
“word that isn’'t a number":

TO REALWORDP :0BJ

QUTPUT AND WORDP :0BJ NOT NU—
MBERP :0BJ

END

?PRINT REALWORDP "KANGAROO
TRUE

?PRINT REALWORDP HEADING
FALSE

2PRINT REALWORDP FIRST PEN
TRUE

OR operation

OR pred pred

(OR pred pred pred. . .)

Outputs TRUE if one of its inputs is true, otherwise FALSE.
Examples:

2PRINT OR “TRUE "TRUE
TRUE

9PRINT OR “TRUE "FALSE
TRUE

PRINT OR “FALSE "FALSE
FALSE

?PRINT OR 5 7
7 IS NOT TRUE OR FALSE

9PRINT OR COLOR = 0 COLOR = -
BG
TRUE

This outputs TRUE only if the turtle’s color is @ or if the
turtle’s color is the same as the background color.

183

The procedure MOUNTAINS draws “‘mountains:

TO MOUNTAINS
CS

RT 45
SUBMOUNTAIN
END

TO SUBMOUNTAIN

FD 5 + RANDOM 10

|F OR YCOR > 50 YCOR < 0 [SE—
TH 180 - HEADING]

SUBMOUNTAIN

END

?MOUNTAINS

184

TRUE operation
TRUE
TRUE is a special word that is used as an input to AND, IF, NOT,
and OR.

E——T

185

_ eS|

Interacting
with
SmartLOGO:
Peripheral
Devices

Chapter 17

This chapter describes primitives for communicating with
various devices through the computer. The devices include
the game controllers, the keyboard, the printer and optional
accessories such as an extra digital data pack or diskette
storage devices.

fee———— = ___________ -

The Game
Controllers

W

The ADAM™ computer has provisions for two game
controllers. Each game controller has a joystick, a right and
a left button and a numeric keypad. The following
primitives output information about the paddlenumber (0
or 1) given as input. The numeric keypad enters characters
as if they were entered from the keyboard.

187

JOY operation

JOY paddlenumber

Outputs a number from — 1 to 7 representing the position
of the joystick on game controller paddlenumber. If the
joystick is in the center position it outputs —1.

Example:

WHEN 2 sets up a demon which waits for the joystick
on game controller @ to be moved. When this occurs the
DRAW procedure is called. The number that JOY 0 outputs is
multiplied by 45 to give the turtle a new heading, and SETSP
makes the turtle move in the direction of its heading. This
allows you to draw graphic designs using the joystick.

TO DRAW :DIR

|F :DIR = -1 [SETSP 0 STOP]
SETH 45 = :DIR

SETSP 5

DRAW JOY 0

END

?WHEN 2 [DRAW JOY 0]

Use ERDS to erase the demon.

JOYP operation

JOYP paddlenumber
Outputs TRUE if the joystick on game controller
paddlenumber is off-center, otherwise FALSE.

Example:

SETCOURSE sets up an obstacle course of red trucks,
then allows you to move the turtle through the course with
RUNNER. Pressing the left button on the game controller
stops the procedure.

188

TO SETCOURSE :STICKNUM

CS

SETPC 8

SETSH 25

REPEAT 20 [PU SETPOS SE RAND—
OM 255 RANDOM 181 PD STAMPI
PU

SETSH 36

SETC 135

SETSP 10

RUNNER :STICKNUM

END

TO RUNNER :STICKNUM

|F LBUTTONP :STICKNUM [SETSP—
0 STOPI

|F JOYP :STICKNUM [SETH (JOY—
:STICKNUM]) = 451

RUNNER :STICKNUM

END

?SETCOURSE 0

LBUTTONP

LBUTTONP paddienumber
Outputs TRUE if the left button on game controller
paddlenumber is depressed, otherwise FALSE.

Examples:
The following line moves the turtle FD 75 if the left

button on the game controller @ is pressed, otherwise
moves the turtle BK 75.

2/F LBUTTONP 0 [(FD 751 [BK 7—+
o]

189

operation

GROWSQ draws a bigger square each time it is run.
Pressing the left button on joystick 0 stops this recusive
procedure.

TO GROWSQ :SIZE

|F LBUTTONP 0 [(STOPI
SQUARE :SIZE

GROWSQ :SIZE + 5
END

TO SQUARE :SIZE
REPEAT 4 [FD :SIZE RT 80]
END

?GROWSQ 10

PADDLE operation

PADDLE paddienumber

Outputs a number from @ to 247, representing the rotation
of the joystick knob on game controller paddlenumber.
This primitive works with Super Action™ Controllers, Roller
Controller, and Expansion Module #2 (the driving
controller).

RBUTTONP operation

RBUTTONP paddlenumber

Outputs TRUE if the right button on game controller

paddlenumber is depressed, otherwise FALSE.
Examples:

? I F RBUTTONP 0 [PR "YES] [PR—
“NOI

COLORSPI draws a spiral. Each time the right button
on game controller @ is pressed the pen color is changed.
Pressing the left button stops the procedure.

190

T0O COLORSPI :SIDE :ANGLE :IN-—
#

|F LBUTTONP 0 [STOP!

|F RBUTTONP 0 [SETPC PENCOLO—
R + 11

FD :SIDE

RT :ANGLE

COLORSP! :SIDE + :INC :ANGLE—

* | NC
END

92COLORSPI 4 80 2

S e .
The Keyboard
e = .

SmartLOGO can accept characters, words or sentences
input from the keyboard, and use them in user-defined
procedures, with the following primitives:

KEYP operation

KEYP
Outputs TRUE if there is at least one character waiting to be

read from the keyboard, FALSE if no character is waiting to
be read.

Example:

The following procedure will continue to draw a
spiral until you press a key. The turtle will then stop
drawing. The IGNORE procedure accepts the character that
was read from the keyboard as input. The value is not used

for anything; it is ignored.

191

TO SPIRAL :SIDE :ANGLE :INC
FD :SIDE RT :ANGLE

|F KEYP [IGNORE RC STOP]
SPIRAL :SIDE + :INC :ANGLE :—
INC

END

TO IGNORE :KEY
END

?SPIRAL 10 150 2

READCHAR, RC operation

READCHAR
Stands for READ CHARacter. Outputs the first character
read from the keyboard. If no character is waiting to be
read, RC waits until the user types something. This
character is not echoed on the screen. See KEYP.

Examples:

Keys which do not print characters on the screen
can also be used if they have ASCII codes (see the primitives
ASCIl and CHAR). To easily find the ASCII value of a character:

PPRINT ASCI | RC
13 Press a key, in this case, the
key.
The following procedures give the turtle a slow
speed, then use single keystroke commands, R and L, to

turn. If the key is pressed, the turtle’s speed is set
to zero and the procedures stop.

TO DRIVE
SETSP 2
TURN RC
END

192

]
]
SETSP 0 —

?DRIVE

READLIST, RL operation

READLIST
Outputs as a list the first line of words read from the

keyboard. If no list is waiting to be read, RL waits for the user
to type something. If more than one line has already been
typed, it outputs the first line that has been typed but not yet
read. Whatever you type will be echoed on the screen.

Examples:

TO GET.USER
PRINT [WHAT IS YOUR NAME?]

MAKE "USER RL
PRINT SE [WELCOME TO SMARTLO—

GO,] :USER

END

?GET.USER

WHAT 1S YOUR NAME?

BARBARA

WELCOME TO SMARTLOGO, BARBAR—
A

193

READWORD outputs the first element of READLIST. RW is
the short form.

TO READWORD
OP FIRST READLIST
END

TO RW
OP READWORD
END

The following procedure asks your age and then
prints how old you will be next year.

TO AGE

PRINT [HOW OLD ARE YOU?I
PRINT MESSAGE RW

END

TO MESSAGE :AGE

OP SE [NEXT YEAR YOU WILL BE—
] zABE + 1

END

?AGE

HOW OLD ARE YOU?

cee

NEXT YEAR YOU WILL BE 23

?AGE

HOW OLD ARE YOU?

28

NEXT YEAR YOU WILL BE 29

Using
Special

Characters
|

ASCIl and CHAR make it possible to use special characters
that don’t show on the screen or that can’t be accessed
from the keyboard. These two primitives have very special
uses alone or with the keyboard primitives described
earlier.

l————

194

AsCll operation

ASCIl character
Outputs the ASCIl code for character. If the input word
contains more than one character, ASCIl uses only the first
character. ASCIl can access characters that don't show on
the screen. See CHAR.

Examples:

?SHOW ASCII "B
66

To find out the AsCll value of a character:

?2PRINT ASCI | RC
163 The was pressed.

The procedure SECRETCODE makes a new word by
using the Caesar cipher (adding 3 to each letter):

TO SECRETCODE :WD

|F EMPTY :WD [OUTPUT ")
OUTPUT WORD CODE FIRST :WD S—
ECRETCODE BF :WD

END

TO CODE :LET

MAKE “NUM (ASCII :LET) + 3

|F :NUM > ASCII “Z [MAKE "NU-—-

M :NUM - 261
QUTPUT CHAR :NUM

END

?PRINT SECRETCODE “CAT
FDW

9PRINT SECRETCODE "CRAYON
FUDBRQ

195

CHAR operation

CHAR number

Outputs the character whose ASCIl code is number, an
integer from @ through 255. CHAR can output characters
that can not be accessed from the keyboard. See ASCIL.

Examples:
?TYPE CHAR 32
? This types an empty space.
2PRINT CHAR 0
— An arrow.
2PRINT CHAR 22
d A half note.
?PRINT CHAR 4
v A heart.

To see all the available characters use the following
procedure:

TO SEE.CHAR :NUM

|F :NUM > 127 [STOP]
TYPE ASCII (CHAR :NUM)
TYPE CHAR 32

PR CHAR :NUM

SEE.CHAR :NUM + 1

END

?SEE.CHAR 0

Both these procedures, in different ways, check to
see if the | SPACEBAR | has been pressed.

TO SPACE?1 :K

IF :K = CHAR 32 [PR “STOP] —
[PR “CONTINUE]

END

TO SPACE?2 :K
|F (ASCI I :K)
Pl [PR "CONTI
END

= 32 [PR "ST0-
NUE]

—
196

2SPACE?1 RC

STOP is pressed.
9 SPACE?2 RC
CONTINUE Any other key is pressed.

This procedure outputs the lowercase alphabet
character of the input. If you give ita character other than a
letter of the alphabet, it outputs the same character.

TO LOWERCASE :LETTER

MAKE “S8 32 + ASCII| :LETTER
|F AND :88 > 8B :88 < 123 [0
P CHAR :S5S1 [OP :LETTERI

END

92PRINT LOWERCASE "A
a

2PRINT LOWERCASE "R

P
[Ees e e]
The
SmartWRITER
Printer

— -

The ADAM™ computer has a printer which allows you to
make hard copies of your work. You can use the primitives
in Chapter 10 and Chapter 18 to display your workspace or
your files.

197

NOPRINTER command

NOPRINTER
Turns off the output channel to the SmartWRITER printer.
See PRINTER.
Example:
The following commands print the contents of the
named file onto the printer, then turn off the printer.

?PRINTER
?POFILE "TOOLS
NOPRINTER

PRINTER command

PRINTER
Turns on the output channel to the SmartWRITER printer.
All information subsequently displayed on the screen will
also be printed on the printer. The NOPRINTER command —
turns the channel off.
Example:
The following commands print on paper all
procedures, variables and properties in the workspace,
then turn off the printer.

?PRINTER
?POALL
PNOPRINTER

198

Optional
Devices
P e

The optional file storage devices for the ADAM™ computer
are: a second digital data pack drive and one or two diskette
drives.

DEVICE operation

DEVICE
Outputs the number representing the current drive. See
SETDEVICE.

Example:

?PR DEVICE

0

SETDEVICE command

SETDEVICE number

Sets the device to number. Number must be an integer
from O to 5, with 0 addressing the standard digital data
pack drive and 1 addressing an optional second digital data
pack drive. 4 and 5 address the diskette drives. Whe
SmartLOGO starts it is set to device 0. -

199

Workspace
Management

Chapter 18

Your workspace consists of the procedures, variables and
properties that SmartLOGO knows about at a given time.
It does not include primitives or demons.

Running a demon’s instruction list does use
workspace, but demons are not affected by any of the
following workspace management primitives. The
primitives that deal with demons are explained in Chapter
15, Flow of Control and Conditionals.

There are several primitives that let you see what
you have in your workspace. You can selectively erase
procedures, variables and properties from your workspace.
It is possible to examine the size of your workspace and
to free space.

The workspace is a temporary space. Your
procedures, variables and properties will be erased when
you turn off the computer. If you want to keep them for
future use, you must store them on a digital data pack in
the form of files. See Chapter 19 for information on files.

If you want to use the printer to make hard copies of your
workspace contents, see Chapter 17.

201

ERALL command

ERALL

Stands for ERase ALL. Erases all procedures, variables and
properties from the workspace. It does not erase demons.
Make sure that all the procedures, variables and properties
you want to keep are saved in a file on tape before you use
this command. Use RECYCLE after ERALL to free all nodes.

ERASE, ER command

ERASE Nname
ERASE namelist
Erases the named procedure or procedures from the
workspace. This command does not affect any procedures
saved in a file on tape.

Examples:

?ERASE "TRIANGLE

Erases the TRIANGLE procedure.

?ERASE [TRIANGLE SQUARE]
Erases the TRIANGLE and SQUARE procedures.

ERN command

ERN name
ERN namelist
Stands for ERase Name. Erases the named variable or
variables for the workspace.
Examples:

?2ERN “LENGTH

Erases the LENGTH variable.

?ERN [LENGTH PI]

Erases the LENGTH and Pl variables.

202

ERNS command

ERNS
Stands for ERase NameS. Erases all variables from the

workspace.

ERPROPS command

ERPROPS

Stands for ERase PROPertieS. Erases all the properties of
all property lists. See REMPROP, in Chapter 20, to erase
individual properties.

ERPS command

ERPS
Stands for ERase ProcedureS. Erases all procedures from
the workspace.

NODES operation

NODES

Outputs the number of free nodes. This gives you an idea
of how much space you have left in your workspace for
procedures, variables, properties and the running of
procedures. NODES is most useful if run immediately after
RECYCLE. See Appendix D, Memory Space.

203

PO command

PO name
PO namelist
Stands for Print Out. Prints the definitions of the named

procedure or procedures. You cannot print out any
SmartLOGO primitives.
Examples:

PO "POLY

TO POLY :SIDE :ANGLE
FD :SIDE

RT :ANGLE

POLY :SIDE :ANGLE
END

10 ‘GREET
PRINT [HI THERE]
END

POALL command

POALL

Stands for Print Out ALL. Prints the definition of every

procedure, the name and value of every variable and the

name, property and value of all properties in the workspace.
Example:

?POALL

TO POLY :SIDE :ANGLE
FD :SIDE

RT :ANGLE

POLY :SIDE :ANGLE
END

204

TO GREET
PRINT [HI THERE]

END

TO SPI :SIDE :ANGLE :INC
FD :SIDE

RT :ANGLE

SPI :SIDE + :INC :ANGLE
END

MAKE "“ANIMAL “AARDVARK
MAKE “LENGTH 3.98
MAKE “NAMES [LINDA MIKE]

: INC

PPROP “RELATIVE1 “NAME [AUNT—

MADGE]

PPROP “RELATIVE1 "“ADDRESS [5—

5 MAPLE STREETI

PPROP "RELATIVE1 “PHONE [234-—

- 55551
PONS command
PONS

Stands for Print Out NameS. Prints the name and value of

every variable in the workspace.
Example:

?PONS

MAKE “ANIMAL “"AARDVARK
MAKE “LENGTH 3.88

MAKE “NAMES [LINDA MIKEI]

205

POPS command

POPS
Stands for Print Out ProcedureS. Prints the definition of
every procedure in the workspace.

Example:

?POPS

TO POLY :SIDE :ANGLE
FD :(SIDE

RT :ANGLE

POLY :SIDE :ANGLE
END

TO GREET
PRINT [HI THERE]I
END

TO SPI :SIDE :ANGLE :INC

FD :SIDE

RT :ANGLE

SP| :SIDE + :INC :ANGLE :INC
END

POTS command

POTS
Stands for Print Out TitleS. Prints the title line of every
procedure in the workspace.

Example:

?POTS

TO POLY :SIDE :ANGLE

TO GREET

TO SPI :SIDE :ANGLE :INC

206

/\

PPS command

PPS
Stands for Print PropertieS. Prints out all property lists in the
workspace.
Example:
?PPS
PPROP “RELATIVE1 "NAME [AUNT—>
MADGE]
PPROP “RELATIVE1 "ADDRESS [5—
5 MAPLE STREET]I
PPROP “RELATIVE1 "“PHONE [234—
- 555851
RECYCLE command
RECYCLE

Performs a “garbage collection”, freeing as many nodes as
possible. When you don't use RECYCLE, a garbage collection
happens automatically whenever necessary, but it takes a
small amount of time, during which execution pauses.
Running RECYCLE before a time dependent activity prevents
the automatic garbage collector from slowing things down
at an awkward time. See NODES.

207

.]
File
Management

Chapter 19

The procedure and variables you created in the workspace
are erased when you turn off the computer. If you want to
keep them for future use, you can store them on a digital
data pack. The information is organized in files. You decide
what should go into each file.

There are two types of files; text files and picture
files. Picture files use SAVEPICT and LOADPICT. All text files use
LOAD but text files can be saved according to what you want
them to contain. It is possible to save only procedures, or
only variables, or only properties, or the entire workspace in
a file. All text files are edited, erased, printed out and loaded
in the same manner.

The name of a file can be 1 to 10 characters in
length

SmartLOGO can have a special file called STARTUP
which will automatically load when SmartLOGO
starts up. There is also a variable called STARTUP which will
automatically run a list of instructions when a file is loaded.
See Appendix C for information on STARTUP.

209

CATALOG command

CATALOG
Prints out the names of all the files on the digital data pack.

EDFILE command

EDFILE filename
Stands for EDit FILE. Starts up the Editor with the file
filename in the Editor so that all procedures, variables and
properties can be edited at once. The procedures, variables
and properties do not enter the workspace nor does
replacing the file save any of the workspace. If filename
does not exist, the file is created. When the Smart Key
is pressed, all the changes are stored on tape, replacing
the existing contents of filename.

All editing keys (see Chapter 3, the SmartLOGO
Editor) exist, including the [ESCAPE/WP | key to cancel
editing.

ERASEFILE, ERF command

ERASEFILE filename
Erases the file flename from the digital data pack. It is an
error if filename does not exist.

Example:

2ERF "BEAR
Erases the file called BEAR from the digital data pack.

LOAD command

LOAD filename

Loads the contents of filename into the workspace, as if
typed in directly. It is an error if filename does not exist.
The [ESCAPE/WP | key interrupts LOAD.

210

A listing of all procedure names in filename is
printed on the screen as they are loaded.

After the file is loaded, you can verify the contents
of your workspace using various print out commands.
See Chapter 18, Workspace Management.

Example:

2ERALL

Your workspace is now empty.

? L OA j 2 C AR

EYES DEFINED
PLAY DEFINED
JOYH DEFINED

LOADPICT command

LOADPICT filename

Stands for LOAD PICTure. Loads the picture file filename
(see SAVEPICT) onto the screen. You must have saved the
picture using SAVEPICT in order to use this command.

POFILE command

POFILE filename
Stands for Print Out FILE. Prints out the contents of
filename. The contents of filename do not enter the
workspace. Files of text (for instructions or menus) can
be edited with EDFILE and displayed with POFILE, so that
the text is displayed without wasting workspace.
Example:
The following example prints the contents of a file
on the printer.

2PRINTER

2POF I L
9NOPRINTER

1M

-

C) |
- VUL J

SAVE command

SAVE filename
Saves the whole workspace in a file called filename which
includes all procedures, variables and properties.

Never use the [ESCAPE/WP | key when a file is being
saved; you might lose your workspace.

It is good practice to check what you are saving, and
erase the procedures, variables and properties you don't
need, before you use SAVE. See POALL and other workspace
management primitives in Chapter 18.

Example: ’

?SAVE "MARIO

Saves the content of the workspace into the file
called MARIO on the digital data pack.

SAVENS command

SAVENS filename
Stands for SAVE NameS. Creates a file called filename in
which all variable names and their values are saved. No
procedures or properties are saved in this file. Use LOAD
filename to load the file. This primitive is very useful when
you only want to save the variables, such as the ones
representing new turtle shapes created in Chapter 6.
Example:

?PSAVENS "SHAPES

212

SAVEPICT command

SAVEPICT filename
Stands for SAVE PICTure. Saves the current screen image
as a picture file on the digital data pack in a file called
filename. The resulting file can only be loaded with the
LOADPICT command.

NOTE: Picture files are quite large. They consume
12 “blocks” of tape storage, as opposed to 1 to 3 blocks
for most SmartLOGO files. If possible, it is best to keep
a separate digital data pack for picture files only.

SAVEPROPS command

SAVEPROPS filename

Stands for SAVE PROPertieS. Creates a file called filename

in which only the properties in the workspace are saved.

Use LOAD filename to load the file. This primitive is useful

when only properties in the workspace need to be saved,

such as the turtle properties created in Chapter 20.
Example:

?SAVEPROPS “TURTLEPROPS

SAVEPS command

SAVEPS filename

Stands for SAVE ProcedureS. Creates a file called filename
which contains all the procedures in the workspace. Use
LOAD filename to load the file. It is not necessary to erase
names and properties from the workspace before using
SAVEPS.

213

Creating a
Digital Data Pack
for File Storage

INITIALIZE command

INITIALIZE name number
This is a dangerous primitive that must be used only when
using a new digital data pack or one with replaceable data
on it. Whatever data is on the digital data pack will be
destroyed. INITIALIZE gives name to the digital data pack.
The second input, a number from 1 to 5, indicates the size
of the directory.

Example:

To be used on a new digital data pack:

2INITIALIZE "MYNAME 2
?CATALOG
?DIRECTORY :MYNAME

214

215

Property Lists

Chapter 20

Any SmartLOGO word can have a special list called a
property list associated with it. A property list consists of an
even number of elements. Each pair of elements consists
of the name of a property and its value. For example, you
might want a property list associated with the word TURTLE®
which represents the first TURTLE. The property list named
TURTLE® would then look like this:

[SHAPE 36 COLOR 15 SPEED 50]

Files of data may be created using property lists,
and the properties stored using SAVEPROPS command.
SAVEPROPS saves only properties, whereas SAVE saves the
whole workspace. See Chapter 19. A typical property list
of reminders about Aunt Madge might be:

[NAME [AUNT MADGE] ADDRESS [55 MAPLE STREET] PHONE
[234-5555] BIRTHDAY [NOV. 15] AGE 53 SIZE 10]

217

You cannot create a property list with the MAKE or
NAME commands. Property lists are built by assigning
property-value pairs using the PROP primitive. A property list
has the form [PROPERTY1 VALUE1 PROPERTY2 VALUE2..]. Property
lists cannot be accessed as normal variables. To print or
count TURTLE@'s property list, you must use PLIST to tell
SmartLOGO that TURTLEO is the name of a property list not
an ordinary variable. PPS prints out all the property lists.
Property lists can be very useful in keeping records
or any data requiring a structured data base. Suppose you
want to keep track of the properties of the turtles. TURTLEO
acts as a placekeeper for the first turtle.
You can create the property list by typing in the
following:
9PPROP "TURTLED "SHAPE 36
2PPROP "TURTLEO "COLOR 139
2PPROP “TURTLEO "SPEED ol

To examine the TURTLED property list type:

PR PLIST “TURTLED
SHAPE 36 COLOR 15 SPEED 50

2PR GPROP "“TURTLEO "SHAPE
36

You can manipulate property lists using the
primitives in this chapter. These primitives apply only to
property lists. All of the list handling and reporting features
can also be used with property lists.

9PR COUNT PLIST “TURTLED
B

The following procedure formats the printing of a
property list so that each property-value pair is printed on a
separate line.

n
"

218

TO POPROPS :PROPS
|F EMPTYP :PROPS ([STOP]
PR (SE ITEM 1 :PROPS ITEM 2 -

:PROPS)
POPROPS BF BF :PROPS
END

9POPROPS PLIST "TURTLED
SHAPE 36
COLOR 15
SPEED 50

You can use GPROP to write procedures that search
through the list of turtles to do such things as find a given
turtle’s shape or list all the turtles with the same color.

Following the definitions and examples of the
property list primitives, are some examples which show the
uses for most of the property list primitives in this chapter.

ERPROPS command

ERPROPS

Stands for ERase PROPertieS. Erases all property lists. See
REMPROP to erase individual properties. Note that ERALL
erases all properties as well as all procedures and variables.

GPROP operation

GPROP name prop

Stands for Get PROPerty. Outputs the value of the prop
property of name; outputs the empty list if there is no such
property. See PPROP and PLIST.

219

Examples:

9SHOW GPROP "TURTLEO "SHAPE
36

9SHOW GPROP “AIDS "ANY
[]

9SETSP GPROP "TURTLEO "SPEED

See the PRINT.PROP procedure at the end of this
chapter.

PLIST operation

PLIST name
Outputs the property list associated with name. This is a
list of property names paired with their values, in the form
[PROPERTY4 VALUE41 PROPERTY2 VALUEZ...].

Example:

?PR PLIST "TURTLED
SHAPE 36 COLOR 15 SPEED 50

See the examples at the end of this chapter.

PPROP command

PPROP name prop object
Stands for Put PROPerty. Gives name the property prop
with value object.

Examples:

To create the property list TURTLE1 enter the following:

9 PPROP “TURTLE1 "SHAPE 25
?PPROP “TURTLE1 "COLOR 8

PR PLIST “TURTLE"
SHAPE 25 COLOR 8

220

You can add another property to this list in the
following way:

9PPROP “TURTLET “SPEED 25

9PR PLIST “TURTLE1
SHAPE 25 COLOR 8 SPEED 235

PPS command

PPS
Stands for Print PropertieS. Prints the properties of all
property lists in the workspace.

Example:

2PPS

PPROP “TURTLE1 "“SHAPE 25
PPROP “TURTLE?1 "COLOR 8
PPROP “TURTLE1 "“SPEED 25
PPROP "“TURTLEO "SHAPE 36
PPROP “TURTLEO "“COLOR 15
PPROP “TURTLEO "SPEED 50

REMPROP command

REMPROP name prop
Removes property prop and its value from the property list
of name. See ERPROPS and ERALL.

Example:

If you have a property list HEART you can remove
properties from it in the following way:

92PR PLIST "HEART
SPEED 10 HEADING 40 COLOR 8 —

SHAPE 17
9 REMPROP "HEART "“HEADING

PR PLIST "HEART
SPEED 10 COLOR 8 SHAPE 17

221

A Sample
Project
Using
Property Lists

This sample project uses the primitives described in this
chapter as well as the list handling primitives. By using
these primitives, property lists can be created to represent
the turtles’ properties. These property lists can later be used
to assign properties to the turtles. These properties can be
saved and then loaded when needed.

This example uses two variables, PROPERTIES and
SETPROPERTIES. Both contain lists consisting of the names of
the turtles’ properties — they are the names of operations or
commands listed in Chapters 4 through 7.

9MAKE "PROPERTIES [[PEN] [SP—~
EED] [COLOR] [SHAPE]l [POS] [—
HEADING]]

PMAKE “SETPROPERTIES [[SETPE~
N] [SETSP] [SETC] [SETSH] [S—
ETPOS] [SETHI]

Creating
Properties

The TURTLE.STATE procedure takes a turtle number as input. It
calls another procedure, MAKE.T.STATE, that makes a property
list for the turtle whose number was input. TURTLE.STATE then
outputs the property list made by MAKE.T.STATE. Since
TURTLE.STATE outputs a property list (uses PLIST) it can be used
directly as the input to commands like PRINT, COUNT and
POPROPS (defined above).

222

TO TURTLE.STATE :TNUM
MAKE.T.STATE :TNUM :PROPERTI-
ES

OUTPUT PLIST WORD "TURTLE :T—
NUM

END

TO MAKE.T.STATE :TNUM :PROPS
|F EMPTYP :PROPS [STOPI

PPROP WORD "TURTLE :TNUM FIR—
ST FIRST :PROPS ASK :TNUM [R—
UN FIRST :PROPS]

MAKE.T.STATE :TNUM BF :PROPS
END

The following examples show possible properties of
turtles 2 and 3:

?POPROPS TURTLE.STATE 2
PEN PENUP 13

SPEED 5

COLOR 6

SHAPE 6

POS 54.4687 56.4414
HEADING 45

?PR TURTLE.STATE 3

PEN [PENDOWN 9] SPEED 0 COLO—
R 12 SHAPE 36 POS [0 01 HEAD—
ING 0

9PR COUNT TURTLE.STATE 3
12

You can see from TURTLE.STATE 2 that turtle 2 is
actually moving. Its SPEED property is 5, so its POS (position)
property is a momentary position taken “on the fly”, at the
moment the procedure is executed.

223

Assigning
Properties
I

After creating property lists for some of the turtles by using
TURTLE.STATE or PROP, CREATE.TURTLE will give these properties
to the turtle. If a file contains turtle properties, it can be
loaded and the properties assigned to the turtles. When a
turtle number is given as input, CREATE.TURTLE uses the
SETPROPERTIES and PROPERTIES variables as well as the
CREATE.T.STATE procedure to determine the properties and
give them to the turtle.

TO CREATE.TURTLE :TNUM

TELL :TNUM

ST

CREATE.T.STATE :TNUM :SETPRO—
PERTIES :PROPERTIES

END

TO CREATE.T.STATE :TNUM :SET—
PROPS :PROPS

|F OR EMPTYP :SETPROPS EMPTY-—
P :PROPS (STOPI

RUN LIST FIRST FIRST :SETPRO—
PS GPROP WORD "“TURTLE :TNUM -
FIRST FIRST :PROPS
CREATE.T.STATE :TNUM BF :SET-—
PROPS BF :PROPS

END

?CREATE.TURTLE 2

9ASK 2 (PR SPEEDI
5

?CREATE.TURTLE 3

?ASK 3 [PR SPEEDI
0

224

~

Accessing
the value

of a property
e

A procedure like PRINT.PROP can be used to access the value
of any property of any turtle whose property list has been
created. If a property list has not been created for the turtle
whose number is input, PRINT.PROP returns an empty list

€ D

TO PRINT.PROP :TNUM :PROP
SHOW GPROP (WORD “TURTLE :TN-—

UM) :PROP

END

?PRINT.PROP 2 "COLOR
B

?PRINT.PROP 3 "SPEED
9

2PRINT.PROP 5 "HEADING
[]

To see all these properties type PPS.

?PPS

PPROP “TURTLE3 “PEN [PENDOWN—
9]

PPROP “TURTLE3 "“SPEED O

PPROP “TURTLE3 “COLOR 12
PPROP “TURTLE3 "SHAPE 36
PPROP “TURTLE3 “P0OS [0 0!
PPROP “TURTLE3 "HEADING 0
PPROP “TURTLE2 “PEN [PENUP 1-—
o]

PPROP “TURTLE2 “SPEED 3

PPROP “TURTLE2 "COLOR B

PPROP “TURTLE2 "SHAPE B

PPROP “TURTLE2 “P0OS [54.4687—
56.4414]

PPROP “TURTLE2 "HEADING 453

225

-

Special
Primitives

Chapter 21

.

This chapter presents special primitives, some of which
may affect the SmartLOGO system itself. Some machine
language programming is required to use many of them
successfully. They give you the power of directly accessing
the computer memory, or modifying what's in it. At the
same time, they are dangerous primitives, because you
can lose the contents of your workspace by using them
carelessly. If that happens, you will need to restart
SmartLOGO. The names of these primitives start with a dot
to warn you that they are dangerous. You should save your
work before experimenting with them.

A note on inputs: With the primitives below, byte
and address must be positive numbers in decimal format;
any fraction will be ignored. Byfe may range from 0 through
255. Address may range from 0 through 65535.

227

ALLOCATE command

ALLOCATE byte
Reserves byfe bytes of memory for special use.
This command allocates a block of memory to hold
a machine language subroutine, or for other direct data
storage (see .CALL and .DEPOSIT below). The highest
machine address in this allocated block of bytes will always
be 31740, and the lowest address will be 31740 — byfe + 1.
Note that ALLOCATE decreases the number of nodes
available to hold text during editing. One node will be
eliminated for every five bytes, or fraction of five bytes,
reserved.

.CALL command

.CALL address

Transfers control to a machine language subroutine
starting at address. A RET instruction in your subroutine
returns control back to SmartLOGO. Saving registers or
status flags is not necessary. Your subroutine should not
attempt to change values in memory locations occupied by
SmartLOGO, such as page zero.

Examples:

The following procedures will install a machine
language subroutine in memory, beginning at the starting
address provided as the first input. The second input to the
INSTALL procedure should be a list of the machine language
opcodes and operands of the subroutine, in hexadecimal
format.

228

TO .INSTALL :BASE.ADR :BYTE.=—
LIST

|F EMPTYP :BYTE.LIST [STOPI
.DEPOSIT :BASE.ADR DEC FIRST—

¢BYTE.LIBY
.INSTALL :BASE.ADR + 1 BF :B—
YTE:LLST
END

TO DEC :HEXN
|F EMPTYP :HEXN [OP 0]
|F EMPTYP BL :HEXN [OP SUM A—

SCI| :HEXN IF NUMBERP :HEXN —
[-48] [-551]

OP 16 * (DEC BL :HEXN) + DEC—
LAST :HEXN

END

? ALLOCATE 3
?MAKE “START.ADR 31740 - 2
?2 INSTALL :START.ADR [C3 AE 38!

CALL might also be used to access a few
subroutines in the Logo code itself. For example, the
three-byte subroutine installed above causes control to
jump to machine address 14766. The Logo code
beginning at that address halts program execution. The
following procedure uses this routine to terminate a
program immediately, and return control directly to
toplevel:

TO THROW.TOPLEVEL
.CALL :START.ADR
END

.CONTENTS operation

.CONTENTS

Outputs a list of all the objects that SmartLOGO knows
about, other than primitives. These objects include your
procedures, names, and properties, and any other unique
words and symbols you have typed. The .CONTENTS list will
become empty again each time you type ERALL and then
RECYCLE.

.DEPOSIT command

.DEPOSIT address byte
Writes the value byfe into memory at machine address
address.

Example:

The special primitives .DEPOSIT and .EXAMINE can be
used to access integer data directly, in a block of memory
allocated for this purpose. The procedures below imitate a
one-dimensional array for integers in the range — 128
through + 127. This could be useful for the efficient
storage of Cartesian coordinates. The procedure
THROW.TOPLEVEL is listed elsewhere in this chapter.

T0O DIMENSION :START.ADR :S|Z—

—

MAKE BASE. ARRAY START . ADR
MAKE IAX. INDE SI|ZE
T N - — — \ ' r
0 JTARRAY NDE X VALUE
| F OR DE X 0 NDEX M—
A NUE X RANGE . ER PUTARRA -
Y NDE X
“CnoNoe T 0 A DA\ A D
VEPPUY OHM ARRAY NDE —
\ Al -~
X VAL o
END

230

TO GETARRAY : INDEX

|F OR :INDEX < 0 :INDEX > :M—
AX.INDEX [RANGE.ERR "GETARRA—
Y :INDEX

OP (.EXAMINE :BASE.ARRAY + '—
INDEX) - 128
END

TO RANGE.ERR :PROC.NAME :INP—
urt
PR (SE :PROC.NAME [DOESN'T.L—

|KE1 :INPUT [AS INDEX])
THROW. TOPLEVEL
END

?.ALLOCATE 23

PDIMENSION (31740 - 22) 20
PPUTARRAY 0 898

?PR GETARRAY 0

798

.EXAMINE operation

EXAMINE address

Outputs the byte currently stored at machine address
address. The value output will be an integer from 0
through 255.

.PRIMITIVES command

PRIMITIVES
Prints out all the SmartLOGO primitives.

231

Error
Messages

Appendix A

Logo reads procedure definitions line by line and from left
to right (the only exceptions are described in Chapter 14,
Mathematical Operations, and Chapter 2, Logo Grammar).
When Logo comes upon an expression that it cannot
execute, it stops the current procedure and prints a
message on the screen. The message attempts to describe
the condition or “error” that must be remedied for Logo to
execute the procedure. This appendix contains a fuller
explanation of all the error messages SmartLOGO can
send.

NOT ENOUGH SPACE TO EDIT

The edit buffer does not have the amount of room required
to edit. Split a very large procedure into several smaller
procedures or if you were trying to edit many procedures,
edit only one or two.

NOT ENOUGH SPACE TO PROCEED

Your workspace is almost completely filled. It's best to
erase some procedures and/or names from your
workspace.

233

PRIMITVE DOESN'T LIKE OBJECT AS AN INPUT
An incorrect input was given to a primitive.

WORD HAS NO VALUE
A variable was used that was not given a value.

NOT ENOUGH ITEMS I[N LIST
A list does not have the required number of elements.

PRIMITVE 1S A PRIMITIVE
A primitive name was given as an input to TO or EDIT.

OBJECT 1S NOT TRUE OR FALSE

An input was given to IF, AND, OR, or NOT that was not a
predicate (didn’t output TRUE or FALSE).

FILENAME NOT FOUND
The file name given as input to LOAD is nonexistent.

| CAN'T OPEN FILENAME
The input to SAVE or LOAD is incorrect.

YOU'RE AT TOPLEVEL

The command STOP or OUTPUT was used outside of a
procedure.

STOPPED!!!

The [ESCAPE/WP | key was pressed, interrupting whatever
was running.

CAN'T DIVIDE BY ZERO
A command was given to divide a number by zero.

235

FILENAME ALREADY EXISTS

A file whose name already exists can not be saved. Erase
the existing file and then save, or use another file name.

DEVICE UNAVAILABLE

There is either no digital data pack in the drive or the
specified device is not present.

TAPE FULL

There is no space left on the tape to save files. Old files
must be erased or the digital data pack exchanged in order
to save new files.

| 'M HAVING TROUBLE WITH THE TAPE
This indicates a problem with your tape.

|'M HAVING TROUBLE WITH THE PRINTER
This indicates a problem with your SmartWRITER printer.

FILENAME ALREADY OPEN

A file command can not be performed while a file is
loading.

TO0O MANY DEMONS

A total of 16 demons can be addressed at one time; all 6
WHEN demons and no more than 10 ON.TOUCH demons.

TO0 COMPLEX TO FILL OR SHADE

The irregular closed area to be filled or shaded has too
many sides.

236

TURTLE NOT IN WINDOW

COLOR.OVER, FILL and SHADE can not be performed while the
turtle is beyond the visible bounds of the screen.

|1 1LOGO SYSTEM BUG!!!
Should not occur. Please write to Logo Computer Systemns
Inc. if it does.

237

Program Files
Included on

the SmartLOGO
Data Pack

Appendix B

Along with the file that is SmartLOGO itself, there are quite
a few files provided to teach SmartLOGO, to help you build
your procedures, and to help young children acquire a
familiarity with the computer.

EXPLORING SMARTLOGO is a set of 9 files, each
dealing with an area of SmartLOGO. Each file may be
loaded on its own, or the EXPLORE file may be loaded, and
the file selected from the menu.

The DEMOS are demonstration programs which
illustrate SmartLOGO'’s graphic, word and list and music
features.

The EASY files are programs which act as aids.
There is a typing tutor for beginning typists and a Shape
Editor aid.

The TOOLS are to help you construct your own
procedures. The tools are divided into sections: Graphics
Tools, Math Tools and Programming Tools. Some of these
procedures appear elsewhere in this manual (refer to the
Index).

Erasing these files is not recommended; someone
else may want to learn SmartLOGO, or you may want to
examine the programs, in order to learn more advanced
SmartLOGO programming. All the files on the
SmartLOGO Data Pack are programmed in SmartLOGO.

239

Using the
Tutorial Files

== &

From start-up

1. Turn ADAM™[ON |.
2. Insert the SmartLOGO digital
data pack.
3. Press the Computer button.

SmartLOGO is loaded when the tape drive stops
and the screen shows:

COPYRIGHT 1884

LOGO COMPUTER SYSTEMS INC.
WELCOME TO SMARTLOGO
TUTORIALS? YES OR NO

Type YES and press [RETURN |

Or, at any time you can type:

?ERALL
9 LOAD "EXPLORE

Then select any subject from the menu.

You can step through the programs at your own
rate. When the picture of two arrows appears at the bottom
of the screen:

Press the right arrow to go on to the next section.
Press the left arrow to go back a bit, something like turning
back a couple of pages.

[——— -

240

Using the
Demonstration
Programs

These demonstration programs can be entered by typing
LOAD “DEMO, or each program can be loaded separately.
Once a file has been loaded it will run automatically,
starting with a brief description. The programs are:

Program File Name
Poetry generator POETRY
Hangman game HANGMAN
Simon game SIMON
Castle scene CASTLE
Recursive patterns CURVES

The poetry generator prints short poems that are
randomly created. Hangman is a game in which you must
guess the letters of a word. The list of words that the user
must guess can be altered by editing the procedure called
WORDS and changing the list of words defined by MAKE
“WORDS. The Simon game is a musical memory game. The
computer plays a note or a sequence of notes and you '
must repeat them. Each time you respond correctly a note
is added to the sequence. The castle scene is a
SmartLOGO picture that uses animation. There are five
different selections in the recursive patterns programs.
Each one draws a design on the screen. These programs
are examples of good SmartLOGO programming. Look at
them closely; they show what SmartLOGO can do.

241

= ——=————
Using the
EASY programs

There are two EASY programs which can be loaded
separately at any time. It's a good idea to ERALL before
loading either of them.

These two programs are:

EASYSHAPE, a program that lets the user create turtle
shapes with the Shape Editor. The program makes and
saves the shape variables and stores them on tape.
EASYSHAPE starts automatically once loaded. A number
must then be given. This number will be the first shape
number put into the Shape Editor. The following ten
shapes will then be edited if desired. After ten shapes have
been created, or when the user has stopped editing, these
shapes can be saved in a file. Whenever this new file is
loaded, the new shapes will automatically be placed in their
shape numbers, replacing the contents of those shape
numbers.

EASYTYPE guides the user to type specific keys to spell
out SmartLOGO instructions. The predefined list of
SmartLOGO instructions may be expanded. After each
instruction is typed correctly, SmartLOGO runs the
instruction.

Using the
Useful Tools
e et e T |

The TOOLS file contains Graphics Tools, Math Tools and
Programming Tools. The file is loaded by typing:

?ERALL
?LOAD “TOOLS

e
242

These procedures can be incorporated into your
programs, or used to calculate math problems, or to help
you debug your programs.

Following is an explanation of each of the TOOLS.
Some tools use subprocedures which are not mentioned
but are in the TOOLS file:

Graphics Tools
[|

ARCR and ARCL draw right and left turn arcs, respectively.
Their inputs are :RADIUS, the radius of the circle from which
the arc is taken, and :DEGREES, the degrees of the arc (the
length of the edge).

Examples:

2ARCR 36 30
9ARCL 45 180

CIRCLER and CIRCLEL draw right and left circles with a
specified radius as input.
Examples:

?CIRCLER 60
2CIRCLEL 25

INIT.TURTLE clears the screen and resets the screen and
turtles to their initial state.
Example:

2INIT.TURTLE
POLY draws a polygon over and over. lts inputs are the

length of the side and the angle. Press [ESCAPEWP |to stop
POLY.

Examples:

2P0OLY 25 75
9POLY 40 133

Math Tools

ABS outputs the absolute value of its input.
Example:

?2PR ABS -50 v
50

CONVERT converts its first input, a number, from a base
value, the second input, to another base value, the third
input.

Examples:

9PR CONVERT 34 10 2
100010

2PR CONVERT 1111 2 7
el

DECTOHEX uses CONVERT to convert its input (a decimal
number) to a hexadecimal number.

HEXTODEC uses CONVERT to convert its input (a hexadecimal
number) to a decimal number.

Examples:

9PR DECTOHEX 77
4D

9PR HEXTODEC "4D
77

DIVISORP outputs TRUE if its first input divides evenly into its
second, otherwise outputs FALSE. '
Example:

2PR DIVISORP 3 111
TRUE

LOG returns the logarithm to the base 10 of its input
number. It uses the LN procedure.
Example:

9PR LOG 1000
2.99988966

244

LN uses many math procedures, that are in the file, as
subprocedures to calculate the natural logarithm of its
input number.

Example:

?PRINT LN 50

3.9120229
2PRINT LN 2.71828

0.99999931

PWR returns the value of its first input to the second input
power. If the second input is a fraction and the first input is
not equal to 1, PWR uses the natural functions EXP and LN. If
the first input is less than 0 and the second input is a
fraction, the result should be a complex number.
EXP is the natural exponential function, calculated using a
Taylor series.

Examples:

?PRINT PWR 23

8
?PRINT PWR 32
S
?PRINT PWR 30

1

Programming

Tools
e S

COMMENT allows you to embed comments in your
programs. They are not seen when the program is
executed, only when edited or printed out. They must be in
this form: ; [THIS 1S A COMMENT].

245

Example:

?P0 "COLORS

TO COLORS:X

, [SHOWS ALL COLORS, USE ESC-
APE/WP TO STOP]I

SETBG : X

COLORS :X + 1

END

FOREVER runs a list of instructions until [ESCAPE/WP | is
pressed or the power is turned off.

Example:

?PFOREVER [PR [ON ANDI]
ON AND

ON AND

ON AND

STOPPED!!'!

MAP applies a command to every element of a list.

Example:
?MAP “SQ (50 40 30 20 10

SORT takes a list of words and outputs them alphabetically.
SUPERSORT arranges them in a flat list.

Examples:

?MAKE “SORTLIST SORT [A D E —
FT B2] 1 1}

?PR SUPERSORT :SORTLIST
A CDETFT!Z

Then type

?MAKE “SORTLIST SORT [FOO BA—
R BAZ] :SORTLIST

?PR SUPERSORT :SORTLIST

A BAR BAZ C D E F FOO T Z

?2PR SUPERSORT SORT [(DOG CAT —
HORSE MOUSE]
CAT DOG HORSE MOUSE

246

WHILE repeats a group of instructions, the second input,
until its first input becomes FALSE.
Example:
?RT 45
SWHILE [XCOR < 751 [FD 10 8T—+
AMP]

247

Startup

Appendix C

SmartLOGO has special features allowing you to
automatically load a file when SmartLOGO starts up, and to
automatically run a list of instructions when a file is loaded.
These are both called STARTUP; the STARTUP file and the
STARTUP variable.

When you first boot the SmartLOGO digital data
pack, you are asked the question TUTORIALS? YES OR NO. This
question is not part of SmartLOGO itself, it's in the
provided STARTUP file, and it's automatically printed on the
screen by the STARTUP variable contained in that file. You
may cancel the question and load in your preferred
SmartLOGO procedures by modifying the STARTUP file.

The STARTUP File
e = ———]

When SmartLOGO boots up, it looks for the existence of a
file named STARTUP. There can be only one. [f it finds a file
named STARTUP, it loads it into the workspace, just as if you
had typed in LOAD “STARTUP. Apart from this feature, the
STARTUP file is no different from any other.

249

[e
The STARTUP
Vary:ble

When any file is loaded, SmartLOGO looks for a variable
named STARTUP. The STARTUP variable, if it exists, must have
an instruction list as its value. If the STARTUP variable is found,
SmartL OGO immediately runs that list of instructions. Any
file may contain a STARTUP variable, even the STARTUP file. The
STARTUP variable instruction list may even include a
command to load another file.

Changing

The STARTUP File:
A Note of
Caution

SmartLOGO contains a STARTUP file, which uses the STARTUP
variable to ask a question. Depending on the answer to that
question, the tutorial files may be loaded. Changing the
STARTUP file may remove this feature. You should save the
file under a different name in case you want it back. To do
this, first, clear the workspace with an ERALL command.
Then type:

?LOAD “STARTUP

When the question TUTORIALS? YES OR NO appears, do
not answer, press [ESCAPE/WP | to cancel the procedure.
Then save the file under the name OLDSTART or any name
you prefer. For example:

?SAVE "OLDSTART

250

(== -——__ .

A Sample
sTARTUP File and
Variable

P

Having copied the STARTUP file under another name, bring
the old file into the Editor with the command:

9EDFILE "STARTUP

The tape file contents will appear in the Editor. To
entirely change the file, use the CLEAR key to erase each line.
Then write a procedure such as WELCOME.

TO WELCOME

PR [HELLO AGAIN, ERICI

TYPE [HOW ARE YOU TODAY?]

MAKE “ANSWER FIRST RL

|F MEMBERP :ANSWER [FINE OK —
GREAT] [PR [GOOD TO HEAR ITl—

STOPI
PR [WELL, LET'S HOPE LOGO-IN-

G WILL HELP]
END

Any other procedures may be added, and they will
be loaded in directly after SmartLOGO itself. For WELCOME
to greet you, it must be in the STARTUP variable instruction
list.

Variable are stored at the end of a tape file, so move
the cursor there using the down-arrow key. Find the line
beginning with MAKE “STARTUP (if you haven't erased it). Edit
it to look like this:

MAKE “STARTUP [WELCOMEI

%
Press the Smart Key [VI | to replace the old STARTUP

variable with the new one, and try it out by rebooting
SmartLOGO.

251

Memory
Space

Appendix D

SmartLOGO procedures and variables take up space;
more space is used when the procedures are run.

Some SmartLOGO users may wish to know how
space is used in SmartLOGO and how to conserve it. In
general, saving space is not something you should worry
about. Instead you should try to write procedures as clearly
and elegantly as possible. However, we recognize that
SmartLOGO has a finite memory. This appendix discusses
how space is allocated in SmartLOGO and how you can
use less of it.

I e———
How It Works

Space in SmartLOGO is allocated in nodes, each of which
is five bytes long. All SmartLOGO objects and procedures
are built out of nodes. The internal workings of
SmartLOGO also use nodes. The interpreter knows about
certain free nodes that are available for use. When there are
no more free nodes, a special part of SmartLOGO called
the garbage collector looks through all the nodes and
reclaims any nodes that are not being used.

253

For example, during execution of the following
statements:

?MAKE "NUMBER 7
?MAKE "NUMBER 80

When you enter MAKE “NUMBER 7, NUMBER is assigned
to two nodes that hold the value 7. After executing MAKE
“NUMBER 90, the nodes containing the 7 can be reused; they
will be reclaimed as free nodes the next time the garbage
collector runs. The garbage collector runs automatically
when necessary, but you can make it run with the
SmartLOGO comand RECYCLE. ERALL cleans the whole
workspace but needs to be followed by RECYCLE in order for
the garbage collection to be done immediately.

The operation NODES outputs the number of free
nodes. However, to know the actual number of free nodes
available, RECYCLE must be run before printing NODES.

?RECYCLE PRINT NODES

How Space
Is Used

Every SmartLOGO word used is stored only once: all
occurrences of that word are actually pointers to the word.
The first time a word is used it takes up four nodes, plus
one node for every two letters in its name. Each time a word
is used, other than the first time, it uses only one node. This
is true for all SmartLOGO words (procedure names,
variables and properties). A list takes one node for each
element. A number, whether integer or decimal, takes up
two nodes (exponent and mantissa).

254

[____ N

Space Saving
Hints

.

It is considered bad form to save space by writing
procedures that are less readable because of the use of
short or obscure words. Here are some ways of saving
space:

|

2.

Rewrite the program using procedures to replace
repetitive sections of the program.

Avoid using new words. The names of inputs of
procedures can be the same as names of inputs
of other procedures. The names of procedures
and primitives can also be used as variable
names.

SE takes up more node space than LIST or FPUT. So
if you have the choice, use LIST or FPUT.

The ways of doing repetition are ordered as
follows in terms of least to most space: tail
recursion (no commands after the recursive line),
REPEAT, true recursion.

Note that if the recursive call is enclosed in brackets

(a list), this is interpreted as true recursion.

255

Parsing

Appendix E

When you type a line in Logo, it recognizes the characters
as words and lists, and builds a list which is Logo’s internal
representation of the line. This process is called parsing.
This appendix will help you understand how lines are
parsed.

Ll
Delimiters
|

A word is usually delimited by spaces. That is, there is a
space before the word and a space after the word; they set
the word off from the rest of line. There are a few other
delimiting characters:

[1 () = () + = =/

There is no need to type a space between a word
and any of these characters. For example, to find out how
this line is parsed:

21F 1(2[PRINT(3+4)/5]1[PRINT —~

: X+6]

257

Enter:

T8 TEST
IF 1(2[PRINT(3+4)/5]1[PRINT -

X+61
END

2ED “TEST
The procedure will look like this:

TO TEST

IF 1 (2 [PRINT I
51 [PRINT :X + 61
END

To treat any of the characters mentioned above as a
normal alphabetic character, puta backslash “\" before it.
For example:

9PRINT “SAN\ FRANCISCO
SAN FRANCISCO

3 + 4) | -~

|

Infix Procedures

l

The characters =, >, <, +, —, %, / are the names of infix
procedures. They are treated as procedures with two
inputs, but the name is written between the two inputs.

Brackets and
Parentheses

Left bracket “[” and right bracket “]” indicate the start and
end of a list or sublist.

Parentheses () group things in ways SmartLOGO
ordinarily would not, and vary the number of inputs for
certain primitives.

258

If the end of a SmartLOGO line is reached (that is,
the key is pressed) and brackets or parentheses
are still open, all sublists or expressions are closed. For
example:

9REPEAT 4 [(PRINT [THIS [I8 [—

A [TEST

THIS [1S [A [TESTI1I)
THIS (1S [A [TESTII]I
THIS (1S [A [TESTIII
THIS [1S [A [TESTI1I]]

If a right bracket is found for which there was no
corresponding left bracket, SmartLOGO stops execution of
the rest of the line or procedure. For example:

2 1PRINT "ABC
il |

S e

Quotes and
Delimiters

== = _________ =

Normally, you have to put a backslash before the
characters|[,], +, — %/ =,(), >, <, and \ itself, but the
first character after a quotation mark (*) does not need to
have a backslash preceding it. For example:

PPRINT "=

3*

If a delimiter is occupying any position but the first
after the quotation mark, it must have a backslash
preceding it. For example:

PPRINT "o
NOT ENOUGH INPUTS TO =*

259

The only exception to the above general ruleis|[]
(brackets). You must always precede a bracket that is being
quoted by the backslash.

PPRINT "I

YOU DON'T SAY WHAT T0 DO WIT—

H []
GPRINT "\

[
P __——1
The Minus Sign
)

The way in which the minus sign “—" is parsed is an
unusual case. The problem here is that one character is
used to represent three different things:

1. Part of a number to indicate that it is negative, as
in —3.

2. A procedure with one input, called unary minus,
which outputs the additive inverse of its input, as
in —XCOR or —:DISTANCE.

3. A procedure with two inputs, which outputs the
difference between its first input and its second,
asin7 — 3 and XCOR —YCOR.

The parser tries to be clever about this potential
ambiguity and figure out which one was meant by the
following rules:

1. Ifthe “—" immediately precedes a number, and
follows any delimiter (including a space) except
right parenthesis “)”, the number is parsed as a
negative number. This allows the following
behavior:

260

9PR 3 = -1 pagees as 3 times

-3 negative 1

92PR 3%-4 parses as 3 times
-12 negative 4

2PR FIRST [- 3 4] prints -

9PR FIRST [-3 4] prints -3

-3

If “ — " is preceded by a numeric expression, it
works like an infix “—".

2PR 3-4
-1

2PR XCOR - YCOR
The following are interpreted the same way:

9"MAKE “A SE XCOR -YCOR 3
9MAKE "“A SE XCOR - YCOR 3
9MAKE “A SE XCOR-YCOR 3

If “— " is not preceded by a numeric expression, it
works like a unary minus.
92PR -XCOR
?2PR -(3+4)
.

261

Summary of
SmartLOGO
' Primitives

Appendix F

This appendix lists the SmartLOGO primitives in alphabetic
order. Examples and a brief explanation of each primitive
are also given. For complete information on each primitive,
see the appropriate chapter.

A number sign (#) indicates a procedure which can
take more than the number of inputs indicated,; if you give it
other than the number indicated, the primitive and its input
must be included in parentheses.

ALL
TELLALL PR WHO
Outputs the numbers 0 through 29.

#AND pred pred
IF AND (XCOR < 60) (YCOR < 0) [HT] [ST]
Outputs TRUE if all its inputs are true.

ARCTAN number
PR ARCTAN 4
Oututs tangent value in degrees (— 90 to 90).

ASCIll character
PR ASCII “S
Outputs ASCIl number of the input character.

263

ASK furtlenumber instructionlist

ASK furtlenumberlist instructionlist

ASK 0 [SETSH 6]

Makes the turtle(s) run the instruction list, does not change
the WHO list.

BACK, BK number
BK 40
Moves the turtle back the input number of steps.

BACKGROUND, BG
PRBG
Outputs the background color number.

BUTFIRST, BF object
PR BF WHO
Outputs all but the first item of the input list.

BUTLAST, BL object
PR BL WHO
Outputs all but the last item of the input list.

CATALOG

CATALOG

Prints the names of the files on the current digital data
pack.

CHANGE.COLOR colornumber colornumber
CHANGE.COLOR4 6

Changes everything on the screen from the first color
number to the second color number.

CHAR nhumber
PRCHAR4
Outputs the character of the input ASCII number.

CLEAN

CLEAN

Cleans the graphics screen without changing the turtle
state.

264

o~~~

CLEARGRAPHICS, CG
CG
Clears graphics and sends the current turtle HOME.

CLEARSCREEN, CS

CS

Clears the screen of text and graphics, sends the current
turtle HOME.

CLEARTEXT, CT
CT
Clears text from screen.

COLOR
PR COLOR
Outputs the turtle’s color.

COLOR.OVER
PR COLOR.OVER
Outputs the number of the color beneath the turtle’s pen.

COND condnumber
IF COND 2 [SETC 0]
Outputs TRUE if event given as input is happening.

COPYDEF hame newname

COPYDEF “OLDNAME “NEWNAME

Copies the definition of the first input into a new procedure,
the second input.

COPYSH shapenumber newshapenumber

COPYSH 513

Copies the shape of the first input into the new shape, the
second input.

COS degrees
PRCOS 3
Outputs the cosine (in degrees) of its input.

265

COUNT object

PR COUNT[012 3]

PR COUNT “BILLY

Outputs the number of items in the input (alist or a word).

CURSOR
PR CURSOR
Outputs the position of the cursor.

DEFINE name list

DEFINE “HI [[] [PR “HELLO]]

DEFINE “OK [[J] [OP:J]]

Defines a new procedure without the Editor; generally used
within a procedure.

DEFINEDP name
PR DEFINEDP “HI
Outputs TRUE if the input is a defined procedure.

DEVICE
PR DEVICE
Outputs a number representing the present device (drive).

DIFFERENCE 0 b

PR DIFFERENCE 10 5

Outputs the result of the second input subtracted from the
first input.

DISTANCE posifion

PR DISTANCE [10 0]

Outputs the distance from the turtle to the position given as
input.

DOT position
DOT [20 50]
Puts a dot at the specified position.

EACH insfructionlist

EACH [ST SETSP WHO]

Causes a sequential run of the instruction list by each
current turtle.

266

EDFILE filename
EDFILE “PROGRAMFILE
Places entire file in Editor, saving it when the Smart Key

il is pressed.

EDIT, ED name

EDIT namelist

EDIT “POLY

EDIT [POLY SPI]

Invokes the Editor (identical to TO but can take a list).

EDITSHAPE, ES shapenumber
ES4
Puts the input shape number in the shape Editor.

EDNS
EDNS
Places all variables and their values in the Editor.

EMPTYP object
~ PR EMPTYP “NAMELIST [STOP]
Outputs TRUE if the input (a list or word) is empty.

END
END
Ends the procedure definition started by TO.

EQUALP object object
IF EQUALP :Q 0 [STOP]
Outputs TRUE if the inputs are equal.

ERALL

ERALL

Erases all procedures, variables and properties from the
workspace.

ERASE, ER hame

ERASE namelist

ER “POLY

Erases the named procedure(s) from the workspace.

267

ERASEFILE, ERF filename
ERF “PROGRAMFILE
Erases the named file from the digital data pack.

ERCS
ERCS
Erases all ON.TOUCH collision demons.

ERDS
ERDS
Erases all demons (collisions and events).

ERES
ERES
Erases all WHEN event demons.

ERN name

ERN namelist

ERN “VAR.NAME

Erases the named variable(s) from the workspace.

ERNS
ERNS
Erases all variables from the workspace.

ERPROPS
ERPROPS
Erases all properties from the workspace.

ERPS
ERPS
Erases all procedures from the workspace.

FALSE
Special input for AND, IF, NOT, OR.

FILL
FILL
Fills an area with the current turtle’s pen color.

FIRST object
PR FIRST WHO
Outputs the first item of the input (a list or word).

268

FORWARD, FD humber
FD 50
Moves the turtle forward the input number of steps.

FPUT object list
PRFPUT1[2 3]
Outputs a list, with the first input as the first item.

FREEZE
FREEZE
Suspends turtle speed until THAW.

GETSH shapenumber

MAKE “HEART GETSH 17

Outputs a list of 32 numbers representing the turtle shape.
See PUTSH.

GPROP name prop
GPROP “TURTLE1 “COLOR
Outputs the value of the second input of the named

property list.

HEADING
PR HEADING
Outputs the turtle’s screen heading, in degrees.

HOME

TELL © [HOME]

Sends the current turtle to the center of the screen [0 0]
with a heading of 0.

HT
HT
Makes the current turtle invisible.

IF pred instructionlist

IF pred instructionlist instructionlist

IF XCOR = 0 [RT 180] [RT 90]

If the first input outputs TRUE, the first instructionlist is run. If
FALSE, the optional second instructionlist is run.

269

IN.WINDOWP

IF NOT IN.WINDOWP [HOME]

Outputs TRUE if the turtle is within the visible portion of the
screen (see WINDOW and WRAP).

INT hnumber
PR INT 1.714
Outputs the integer value of input number (truncated).

ITEM humber list

PRITEM2[012]

PR ITEM 2 “BLABLA

Outputs the first input item of the second input (a list or a
word).

JOY paddlenumber

PRJOYD

Outputs a number representing the current position of the
joystick on the paddle number given as input.

JOYP paddlenumber

IF JOYP 0 [SETH JOY 0* 45]

Outputs TRUE if the joystick on the paddle number given as
input is off center.

KEYP
IF KEYP [STOP]
Outputs TRUE if a key has been typed but not yet read.

LAST object
PRLAST[012 3 4]
Outputs the last item of the input (a list or a word).

LBUTTONP paddlenumber

IF LBUTTONP 0 [PR “FINISHED]

Outputs TRUE if the left button on joystick number given as
input is pressed.

LEFT, LT degrees
LT90
Turns the turtle left the input number of degrees.

-

270

LIST object object

SETPOS LIST35* 2 66

PR LIST “ ONE [TWO THREE]

Outputs a list composed of its inputs, including a list of lists
(see SE).

LISTP object
IF LISTP :Q [RUN :Q]
Outputs TRUE if the input is a list.

LOAD filename
LOAD “TOOLS
Loads the named file into the workspace.

LOADPICT filename
LOADPICT “PICTURE
Loads the named picture file onto the screen.

LPUT object list
PR LPUT “ONE [2 3]
Outputs a list with its first input as the last item. (See FPUT.)

MAKE hame object

MAKE “MYNAME “ERIC

MAKE “NUMLIST [12 3]

MAKE “GANG WHO

Sets a global variable. Gives the first input (the name,
quoted) the second input as value. The value remains until
reset or erased.

MEMBER object list

PR MEMBER “M[AG MP §]

Outputs a list containing the first input and all following
members of the second input (a list).

MEMBERP object list

IF MEMBERP “ERIC : NUMLIST [PR “YES]

Outputs TRUE if the first input is a member of the second
input (a list).

271

NAME object name

NAME 4.25 “AMOUNT

Sets a global variable. Gives the second input (the name)
the first input as value. The value remains until reset or

erased.

NAMEP Nname
PR NAMEP “MYNAME
Outputs TRUE if the input is a global variable name.

NODES
PR NODES
Outputs the size of available workspace, in nodes.

NOISE fype staritvol stepvol steps steplength

NOISE 615133

Sound primitive with 5 inputs (0to 7,0to 15, — 7to 7,
Oto 15,0to 15).

NOPRINTER
NOPRINTER
Turns off the output channel to the printer.

NOT pred
IF NOT @ = HEADING [DO.IT]
Outputs TRUE if the input is FALSE.

NUMBERP object
IF NUMBERP FIRST: NUMLIST [DO.IT] [DON'T]
Outputs TRUE if the input is a number.

ON.TOUCH furtlenumber turflenumber instructionlist

ON. TOUCH 01 [RT 90]

Sets a demon to wait for a collision between the two input
turtles, then run the instruction list.

OR pred pred
IF OR (:X < 2) (X > —2) [STOP]
Outputs TRUE if any of its inputs are TRUE.

272

—

OUTPUT, OP object
Stops the current procedure and outputs (a list, word, TRUE
or FALSE). Used within a procedure only.

PADDLE paddlenumber

SETSP PADDLE 0

Outputs a number (0 to 247) representing the rotation of
paddle knob on the paddle number given as input. Works
only with additional game paddles.

PEN
PR PEN
Outputs the state and color of the turtle’s pen.

PENCOLOR, PC
PRPC
Outputs the current turtle’s pen color.

PENDOWN, PD
PD
Sets the current turtle’s pen to draw lines.

PENERASE, PE
PE
Sets the current turtle’s pen to erase any lines crossed.

PENREVERSE, PX

PX

Sets a pen mode which draws lines unless over a drawn
line; in that case it erases the line.

PENUP, PU
PU
Raises the current turtle’s pen.

PLIST name
PLIST “TURTLE®
Outputs the property list associated with the input.

273

PO namelist

PO “POLY

PO [POLY SPI]

Prints out the named procedure(s).

POALL
POALL
Prints out the entire contents of the workspace.

POC furtlenumber furflenumber
POC 01
Prints out the named ON.TOUCH collision demon.

POCS
POCS
Prints out all ON.TOUCH collision demons.

PODS
PODS
Prints out all demons and their instruction lists.

POE condnumber
POE 0
Prints out the specified WHEN event demon.

POES
POES
Prints all WHEN event demons.

POFILE filename
POFILE “MENU
Prints out the named file.

PONS
PONS
Prints out all global variables and their values.

POPS
POPS
Prints out all procedures in the workspace.

274

POS
PR POS
Outputs the screen position of the current turtle.

POTS
POTS
Prints out the titles of all procedures in the workspace.

PPROP name prop object

PPROP “TURTLE® “SHAPE 8

Gives the first input the property (second print) with the
third input as the value.

PPS
PPS
Prints out all properties in the workspace.

PRIMITIVEP hame
PR PRIMITIVEP “FD
Outputs TRUE if the input is a primitive.

PRINT, PR object
PR “HELLO
Prints its input on the screen, followed by a carriage-return.

PRINTER
PRINTER
Turns on the output channel to the printer.

#PRODUCT O D
PR PRODUCT 35
Outputs the product of its two inputs (multiplies).

" R

PUTSH shapenumber shapespec

PUTSH 15 :HEART

Gives the named shape number the form defined by the
_ second input (a list of 32 numbers). See GETSH.

QUOTIENT 0 b

PR QUOTIENT 6 3

Outputs the result of dividing the first input by the second
input.

275

RANDOM number

PR RANDOM 8
Outputs a random integer between 0 and its input — 1.

RBUTTONP paddlenumber

IF RBUTTONP 0 [PR “START]

Outputs TRUE if the right button on joystick number given as
input is pressed.

READCHAR, RC
PRRC
Reads one keyboard character.

READLIST, RL
MAKE “NAME RL
Outputs the list input from the keyboard. (Pressing the

key signifies the end of the list.)

RECYCLE
RECYCLE
Forces a “garbage collection” freeing unused nodes.

REMAINDER O b
PR REMAINDER 10 3
Outputs the remainder of the first input divided by the

second input.

REMPROP hame prop
REMPROP “TURTLE “SHAPE
Removes the named property and its value from the named

property list.

REPEAT number instructionlist
REPEAT 3 [FD 50 RT 120]
Runs the input instruction list the specified number of

times.

RERANDOM

RERANDOM

PR RANDOM 10

Generates the same sequence of random numbers.

276

RIGHT, RT degrees
RT75
Turns the turtle right the input number of degrees.

ROUND number
PR ROUND 3.7
Outputs the rounded integer value of the input number.

RUN insfructionlist
RUN [FD 69]
Runs the input instruction list.

SAVE filename
SAVE “NEWFILE
Saves all the workspace as a file onto the digital data pack.

SAVENS filename

SAVENS “SHAPES

Saves only variables in the workspace onto the digital data
pack.

SAVEPICT filename
SAVEPICT “SCENE
Saves the screen image onto the digital data pack.

SAVEPROPS filename

SAVE “TURTLES

Saves only property lists in the workspace onto the digital
data pack.

SAVEPS filename

SAVE “GAME

Saves only procedures in the workspace onto the digital
data pack.

SCRUNCH
PR SCRUNCH
Outputs the current aspect ratio of the screen.

277

SENTENCE, SE object object

PR (SE “ONE [TWO THREE 4])

SETPOS SE 510 35

Makes the inputs into a single list; removing inner brackets
(see LIST).

SETBG colornumber
SETBG 1
Sets the background color to the input color number.

SETCOLOR, SETC
SETC 3
Sets the color of the current turtle.

SETCURSOR posifion
SETCURSOR [10 10]
Sets the text cursor to the specified text position.

SETDEVICE number
SETDEVICE 0
Sets the device to the device represented by the input.

SETHEADING, SETH degrees
SETH 270
Sets the heading of the current turtle, in degrees (absolute).

SETPEN /ist
SETPEN [PD 5]
Sets the color and state of the current turtle’s pen.

SETPENCOLOR, SETPC colornumber
SETPC 5
Sets the color of the current turtle’s pen.

SETPOS position
SETPOS [20 —65]
Sets the turtle’s screen position (absolute).

SETSCRUNCH, SETSCR rafio

SETSCRUNCH 2

Changes the size of a turtle step on the x-axis relative to the
y-axis (normally set to 1).

278

SETSHAPE, SETSH shapenumber
SETSH 10
Sets the turtle’s shape, (0 to 59).

SETSPEED, SETSP
SETSP 30
Sets the turtle’s speed, (—128 to 128).

SETTEXT /ine
SETTEXT 18
Sets the topmost line for text (0 top, 23 bottom).

SETWIDTH humber

SETWIDTH 2

Sets the width of the text lines. The input number sets the
left column.

SETX X
SETX 90
Places the turtle at the given x-coordinate.

SETXVEL speed
SETXVEL 0
Sets the x-component of the turtle’s speed.

SETY
SETY — 65
Places the turtle at the given y-coordinate.

SETYVEL speed
SETYVEL ASK 0 [YVEL]
Sets the y-component of the turtle’s speed.

SHADE
SHADE
Shades the area of the screen containing the turtle with

copies of its shape.

SHAPE
ASK FIRST WHO [PR SHAPE]
Outputs the turtle’s shape number.

279

SHOW object

SHOW [HELLO THERE]

Prints its inputs followed by a carriage return (does not
remove brackets).

SHOWNP
IF SHOWNP [HT]
Outputs TRUE if the turtle is in a ST state.

SIN degrees
PR SIN 1.1417
Outputs the sine of the input (in degrees).

SNAP

SNAP

Replaces the shape of the current turtle with the graphic
image under the turtle.

SPEED
PR SPEED
Outputs the turtle’s speed.

SQRT number
PR SQRT 4
Outputs the square root of the input number.

ST
ST
Makes the turtle visible.

STAMP
STAMP
Stamps a copy of the current turtle’s shape on the screen.

STARTUP insfructionlist

MAKE “STARTUP [BEGIN]

SAVE “MYFILE

Signals SmartLOGO to automatically run the value (an
instruction list) of the variable called STARTUP when a file is
loaded.

280

/\

—

—

STARTUP (file)

SAVE “STARTUP

Signals SmartLOGO to automatically load the file called
STARTUP when SmartLOGO is booted.

STOP
IF HEADING = :DEGREES [STOP]
Stops the current procedure. Used within a procedure only.

SUMab
PRSUM 6 4
Outputs the sum of the two inputs (adds).

TELL furflenumber turtlenumberlist
TELL [0 6 21]
Makes the list of current turtles.

TEXT name
TEXT “SQUARE
Outputs the definition of the named procedure as a list.

THAW
THAW
Following a FREEZE, resets previous turtle speeds.

THING name
PR THING “MYNAME
Outputs the contents of the variable.

TO name
TO SQUARE
Invokes the Editor.

TOOT voice freq volume duration

TOOT 2 44015 180

Sound primitive with 4 inputs (0 to 2, 128 t0 9999, 0 to 15,
0 to 255).

/OUCHINGP furflenumber

IF TOUCHINGP 1 [CRASH]

Outputs TRUE if there is a collision between any of the
current turtles and any turtle given as input.

281

TOWARDS position

SETH TOWARDS [20 20]

Outputs the heading from the turtle towards the input
position.

TRUE
Special input for AND IF NOT or OR.

TYPE object

TYPE “HELLO

Prints the input (a word or a list) with no carriage return
following.

WAIT humber
WAIT 60
Causes a pause in operation, in 60ths of a second.

WHEN condnumber instructionlist

WHEN 0 [FD 1 RT 1]

Sets a demon to wait for the specified event, and then run
the instruction list.

WHO
PR WHO
Outputs the list of current turtle.

WINDOW

WINDOW

Sets a graphic mode in which the screen is a “window”
onto a much larger area. See WRAP.

WORD word word
PR WORD “BIG “WORD
Outputs the inputs as one word, with no spaces.

WORDP object
PR WORDP “HI
Outputs TRUE if the input is a word.

282

WRAP

WRAP

Sets a graphics mode in which the turtle wraps around the
screen if it leaves the visible screen area. This is the default
screen mode. See WINDOW.

XCOR
PR XCOR
Outputs the turtle’s x-coordinate.

XVEL
PR XVEL
Outputs the x-axis component of the turtle’s speed.

YCOR
SETY (YCOR + 30)
Outputs the turtle’s y-coordinate.

YVEL
SETYVEL —(YVEL)
Outputs the vertical component of the turtle’s velocity.

()

IF1 + (WHO*3) = 0[CS]

Round brackets group for clarity and to impose a sequence
of operations.

a+b
PR8 + 2
Outputs the result of the arithmetic operation (infix).

alb
PR14/2
Outputs the result of the arithmetic operation (infix).

a*p

PR3*5

Outputs the result of the arithmetic operation (infix).
a-b

PR12 - 6

Outputs the result of the arithmetic operation (infix).

283

a<b
IF :SIDE < 0 [STOP]
Outputs TRUE if the first input is less than the second input.

a>b
IF XCOR > 100 [SETX 0]
Outputs TRUE if the first input is greater than the input.

a=b
IF HEADING = :DEGREES [STOP]
Outputs TRUE if the inputs are equal.

Dangerous
Primitives
)

These primitives may destroy data. Use with caution.

ALLOCATE byfe
Reserves the specified amount of bytes of memory for
special use.

.CALL address
Calls the machine language subroutine at the address of

the input.

.CONTENTS
Outputs a list containing names and other words that have

been typed.

.DEPOSIT address byte
Stores the value of the second input at the specified
address.

.EXAMINE address
Outputs the byte stored at the specified address.

284

JANITIALIZE word number
ANITIALIZE “LOGOFILES 2
Dangerous. Redivides the directory and gives it the name

specified. All files will be lost.

.PRIMITIVES
PRIMITIVES
Prints out a list of all primitives.

285

Glossary

Appendix G

address
The location of a register, a particular part of memory, or
some other data source or destination.

allocate
To assign a resource, such a disk file or a part of memory,
to a specific task.

alphanumeric
Information containing both numeric and alphabetic
characters.

ASCII

(American Standard Code for Information Interchange)
The standard code used for exchanging information about
data processing systems and associated equipment.

binary

Something that has two possible values or states. Also
refers to the base 2 numbering system.

bit

A binary digit.

boot

The process of loading a language or application program
into the computer’s memory, as in when you start up Logo.

287

buffer

An area of memory for temporary storage of data used
when transferring data from one device to another. Buffer
usually refers to an area reserved for an input output
operation into which data is read or from which data is
written.

bug
An error in a program.

byte
Eight bits.

call
To bring a computer program, a procedure, or a
subprocedure into effect.

carriage return
A character which causes the cursor to move to the first
position on the line.

case
The form of letters being used. For example, CANADA is
printed in uppercase letters.

catalog

A table on a digital data pack of the names of all the files on
that digital data pack, along with information that tells the
operating system where to find the files.

character
A letter, digit, or other symbol that is used as part of the
organization, control, or representation of data.

command

A Logo procedure, either a primitive or one that you define,
that has no output. CLEARSCREEN, FORWARD, and PRINT are
examples of commands. See operation.

conditional
A statement that causes Logo to carry out different
instructions, depending on whether a condition is met.

[

288

coordinates
Numbers which identify a location on the display screen.

cursor
A movable marker that is used to indicate a position on the
display screen.

debug
To find and eliminate mistakes in a program.

default
A value or option that is provided by the program when
none is specified.

delete buffer
The portion of the computer’'s memory which is reserved
for last line of text entered, or stored by pressing the

key.

demon

A parallel procedure which can be set to continually watch
for a specific event or collision between turtles. When the
collision or event occurs, any currently executing
procedure is interrupted and the demon’s instruction list is
run.

device
Anything attached to the computer, such as a printer, video
display, or data drive.

diskette (or floppy disk)
A removable magnetic file storage medium. Diskettes are
514" in diameter and are encased in protection sleeves.

edit
To enter, modify, or delete data.
edit buffer

The portion of the computer’'s memory that contains all the
text that is in the Logo Editor.

element
A member of a set in particular, an item in a series.

289

empty list
A list that has no elements. You write the emptylistas[|.

empty word
A word that has no characters. You write the empty word

X3

as

erase
To remove information permanently from either the
workspace or a file.

envelope

The changes in the volume of a sound as it occurs; ifa
sound starts out loud and becomes gradually quieter, that
is its envelope.

execute
To perform an instruction or a computer program.

file
An organized collection of information that can be
permanently stored for specific purposes.

garbage collection
Cleaning the computer's memory to make more space
available for storage.

global variable

A variable that is always in the workspace, such as a
variable you create with the MAKE primitive. See local
variable.

grammar
The rules by which Logo instructions are written.

hard copy
A printed copy of machine output in a visually readable
form.

infix notation

A way of expressing an arithmetic operation where the
operation symbol is placed between the two numerical
inputs. See prefix notation.

290

input
The information that a Logo primitive or procedure needs
to begin execution.

instruction
In a programming language, any meaningful expression
that specifies one command and its inputs.

integer
A positive or negative number that does not contain any
fractional parts.

interactive
A program that creates a dialogue between the computer
and the user.

interrupt
To stop a process in such a way that it can be resumed.

K
When referring to storage capacity, two to the tenth power
or 1024 in decimal notation.

line feed
A character that causes the print or display position to
move to the corresponding position on the next line.

list
A collection of Logo objects, a sequence of words or lists
that begins and ends with brackets.

literal word

An explicit representation of a value, especially the value of
a word or list. A literal word is preceded by the quotation
mark character ().

local variable
A variable that exists only when a procedure is being
executed. See global variable.

location
Any place in which data may be stored.

2N

logical operation
A predicate whose input must be either TRUE or FALSE.

menu
A list of choices displayed on your screen from which you
select an action or setting.

name
A word used as a container for a value in the workspace.

node
A division of your workspace. Each node is five bytes long.

object
A word, a list or a number.

operation

A Logo operation, either a primitive or one that you define,
that has some kind of output, SUM, POS are examples of
operations. See command.

output
The information that a Logo primitive or procedure gives to
another primitive or procedure.

parse

The process by which phrases are associated with the
component names of the grammar that generated the
string. In Logo, to make sense out of a Logo line.

predicate
A procedure that outputs either TRUE or FALSE.

prefix notation

A way of expressing an arithmetic operation where the
operation symbol or primitive is placed before the
numerical inputs. See infix notation.

primitive
A procedure that is built into Logo.

292

procedure
A single instruction or a sequence of instructions to Logo,
which has a name and can be permanently stored.

procedure call

A request to execute a named procedure. You calla
procedure either from the top level or from within another
procedure.

program
A set of procedures that work together.

prompt
A question the computer asks or a signal it displays when it
wants you to supply information.

property list

A list consisting of an even number of elements. Each pair
of element consist of a property (such as 1.D.) and its value,
a word or list (such as Robin).

real number
Any positive or negative decimal number.

recursive procedure
A procedure that calls itself as a subprocedure.

reserved
An area of the computer or a name having a restricted use.

scientific notation
The expression of nuinbers using an exponen.

scroll

To move all or part of the display image vertically so that
new data appears at the bottom and old data disappears
from the top.

subprocedure
A procedure used in the definition of another procedure.

superprocedure
A procedure that calls another procedure.

293

syntax
The rules governing the structure of a language.

top level
The mode in which commands can be executed directly

without being embodied in a program.

truncate
To remove the ending elements from a word. For a
number, to remove the fractional part.

value
The contents of a variable.

variable
A container that holds a value and has a name.

word
A series of characters with no spaces treated as a unit.

workspace

The part of the computer’'s memory that holds variables,
procedures, and properties only as long as the computer is
turned on.

294

Every effort has been made to
ensure the accuracy of the
product documentation in this
manual. However, because we
are constantty improving and
updating our computer
software and documentation,
Logo Computer Systems Inc. is
unable to guarantee the
accuracy of printed material
after the date of publication
and disclaims liability for
changes, efrors or omissions.

No reproduction of this
document or any portion of its
contents is allowed without the
specific written permission of
Logo Computer Systems Inc.

© 1984 Logo Computer
Systems Inc.
All rigths reserved.

COLECO ™ ™

Logo Computer Systems Inc.
9960 Cébte de Liesse Road
Printed in U.S.A. 14381 Lachine, Québec, Canada H8T 1A1

INDEX

Index

T indicates a page in Turtle Talk.

R indicates a page in the SmartLOGO Reference Manual.
App. indicates a listing in an Appendix.

143, R157 A

143,890 ALLOCATE R228

*
+
—~ 143, R156, App.E ABS R127. ADDB
/ T44, R158)
active turtle R85
\ R12, R105, App.E e
addition R155
: 154, R11, R24
" e AGE R194
: ALARM R112
[R11,R24
ALL R86
] R11,R24
= R133, R159 e R180
N ' ARCCOS R148
> R159
< RI60 ARCL AppB
(ok ARCR App.B
) o ARCSIN R148

ARCTAN R148
arctangent R148
ASCII R195

ASK R87

key T18,R9,R36,R71

key T18,R9,R35,
R36, R71

key T18,R9,R36,R71

key T18,R9,R36,R71

BACK, BK T7,R43
BACKGROUND, BG RS8

background color R57.

RS58
backslash R12, R105
[BACKSPACE | key R10,
R36
BASSOON R112

BETWEEN R160
BIRDS 154
booting R6
BOUNCE T66, R81
BOX R6

brackets, [] R
buffer R10, R35, App.G
BURST R86
BUTFIRST, BF R120
BUTLAST, BL R121
BUZZER R112

BYE R39

byte R228

C

CALL R228
.CONTENTS R230

C R109

CALCULATOR R171

CAPITAL R140

CARS 133

CASTLE App.B
CATALOG 160, R210

CHANGE.COLOR R58
CHANGEBG R&1
CHAR R196
character R8, R194
CHECK R181

CHORD RI08

CIRCLEL AppB

CIRCLER AppB

CLEAN R93

key T47,R10,
R35, R37

CLEARGRAPHICS, CG R?4

CLEARSCREEN, CS T8, R94
CLEARTEXT, CT 161, R94
CLOCK R48

CODE R195

collision R168

colon (:) 154, R11, R24
COLOR T37,R59

color, background R57.
RS58
color, list R58
color, pen R57, R60
color, turtle R57,R59 -
COLOR.OVER R59
COLORSPI R191
command T8,R25
COMMENT R121
COMMENT(;}) AppaB
computer
button 15, R7
COND R165
conditionals R163
key R70
CONVERT App.B
COPYDEF R39
COPYSH R72

COS R149

cosine R149
COUNT R122
COUNTDOWN R174
CREATE.TURTLE R224
CREATE.STATE R224

current turtle R85

CURSOR R101

cursor motion R35, R36,
R70

CURVES App.B

D

.DEPOSIT R230

Dé R152

DEC R229

DECTOHEX App.B

DECIDE1 R167

DECIDE2 R167

decimal number R145

DECIMALP R181

DECISION1 R166

DECISION2 R166

DECISION3 R166

DEFINE R39

DEFINEDP R41

defining

procedures R33

delete buffer R10

key T25R10,
R36

delimiter R16, App.E

DEMO App.B

demon R163

DEVICE R199

DIFFERENCE R149

Digital data pack 15,
App.B

DIMENSION R330

DISTANCE R44

division sign, / R158

DIVISORP App.B

DOT R44

DRAW
DRIVE

R176, R188
R192

EXAMINE

E R109

EACH T40, R88

EASYSHAPE App.B

EASYTYPE App.B

EDFILE R210

EDGE 132

EDIT,ED R38

edit buffer App.G

EDITSHAPE, ES T18,R72

EDNS R138

element R116

empty list R117

empty word R117

EMPTYP R123

END R38

EQUALP R124

equal sign R133

ERALL R202

ERASE, ER T27,R202

ERASEFILE, ERF R210

ERCS R165

ERDS R165

ERES R165

ERN R202

ERNS R203

ERPROPS R203, R219

ERPS R203

error message

[ESCAPE/WP | key
R38, R70

EVENP

events

R231

AppA
T39.R9,

R153
R176

EXP App.B global variable R28

EXPLORE App.B GROWSQ R190
EXPLOSION R112 GPROP R219
exponent R145 greater than, > R159
exponential form R145 GREET R24, R34

F H

FACTORIAL R158 HANGMAN App.B
FALSE R181 HEADING R46

file name R209 HEXTODEC App.B
files R209 HI R39

FILL T65, R44 HOME T10, R46

FIRST R125 key T18,R36,R70
FLAG 125 HOUSE R6

FLAP R48 HT T10,R74

FLIP R26

flow of control R163 i

FLY.AND.DRIVE R81
FLYPAST R112

FOLLOW R55

FOREVER R173, App.B
FORWARD, FD T6, R45
four-turtles-in-a-line rule

INSTALL R229

IF R166

IGNORE R192
IN.WINDOWP R96
INC R142
INIT.TURTLE App.B

R18
L RS nput 16,126 R14 R23
' R19

G key R10,R36
instruction T26, R85,

G R109 R164

game controller R187 instruction list R164

garbage INT R150

collector App.D integer R145

GETARRAY R231 INTP R150

GET.USER R193 invisible color R57

GETSH T61,R72 ITEM R126

J

JOY R188
JOYP R188
joystick R187

keyboard
KEYP R191

R8, R191

L

LANES 133
LAST R127
LATIN R132
LBUTTONP R189
LEFT, LT T7,R47
less than, <
line buffer
LIST R127
LISTP R128
LN App.B
LOAD T60, R210
LOADPICT T60, R211
local variable R28
LOG App.B

Logo line R29

Logo object R14, R115
LOST.IN.SPACE R97
LOWERCASE R197

R160
R29,R35

LPUT R128

M

MAKE R138

MAKE.T.STATE R223

MAP R172

MARK.TWAIN R168, App.B
MEMBER R129

MEMBERP R129
memory App.D
MESSAGE R194
minus sign, —
MOUNTAINS
MOVE R105
| MOVE/COPY | key R10,
R35, R37
multiplication sign, *
R157

R156
R184

N

NAME T51, R140
NAMEP R141
NEWENTRY R128
NEWROAD 132
NEXT 138

node R203, App.D
NODES R203
NOISE R110

Noise Types R111

NOPRINTER T34, R198
NOT R182

number R115, R145
NUMBERP R130

(o)

Object

Manipulators R117
Object Reporters R118
OFFSOUND R112

ON.TOUCH T66, R168
operation T44, R24, R117
OR R183

order of math operations
R147

order of precedence predicate R179

for turtles R16 PREFIX R132
OUTPUT, OP R168 primitive R1
PRIMITIVEP R41
P PRINT, PR 137, R102

PRINT.PROP R225
PRINTBACK R127
PRINTDOWN R125
PRINTER T34, R198
PRINTMESSAGE R35
PRODUCT R151
prompt R7,R34
PROMPT R105
property list R217
PUTARRAY R230
PUTSH 161, R74

PRIMITIVES R231
PADDLE R190
parentheses () R12
PEN R47

PENCOLOR, PC R60
PENDOWN, PD 19, R47
PENERASE, PE T10, R48
PENREVERSE, PX R48
PENUP, PU T9,R48
picture files R209

PIG R132
PLST R220 PWR ApPpSB
plus sign, + R155 Q
PO R204
POALL 134, R204 quotation mark (") R1
POC R169 QUOTIENT R151
POCS R169
PODS R170 R
= = e s
RANDOM R152
POETRY App.B
RANGE.ERR R231
POFILE R211 RANK R124
POLY R34,R171,AppB
PONS R205 RANPICK R122
POPROPS R219 RBUTTONP R190
POPS R206 READCHAR, RC R192
POS RAO READLIST, RL R193

READWORD R194
REALWORDP R183
recursion 139,R23
RECYCLE R207
REMAINDER R152
REMPROP R221

position R43, R101
POSITIVE? R167
POTS 134, R206
PPROP R220

PPS R207, R221

~— REPRINT

REPEAT T10, R170

reporters (operations)
137

R102

RERANDOM R153

key

R36
REV
RIGHT, RT
ROAD
ROCKET
ROUND
RUN
RUNNER
RW

R126
18, R50
T31
R112
R154
R171
R189
R194

S

SAVE
SAVENS
SAVEPICT
SAVEPROPS
SAVEPS
SCRUNCH
SECRETCODE
SEE.CHAR
SENTENCE, SE
SETBG R61
SETCOLOR, SETC
SETCOURSE
SETCURSOR R103
SETDEVICE R199
SETHEADING, SETH
—~ SETPEN R51
SETPENCOLOR, SETPC
R&1
SETPOS R52
SETSCRUNCH, SETSCR

159, R212
T61, R212
160, R213

R213

R213

R98
R195

R196
R131

R189

T6, R8, R3S,

T14, R&1

RS0

115,

R98

SETSHAPE, SETSH
SETSPEED, SETSP
SETTEXT R95
SETWIDTH R95
SETX R52
SETXVEL R81
SETY R52
SETYVEL R82
SHADE R53
SHAPE 139, R75
Shape list R65
key R8
SHOOT R112
SHOW R103
SHOWNP R75
SIMON App.B
SIN R154
SLEEP R174
Smart Key R
Smart Key T19, R9,
R37,R71
SmartLOGO Editor
T24,R33
SmartLOGO Shape
Editor T18,R70
SmartWRITER printer
R197
SNAP R76
SOMEWHERE
SORT App.B
[SPACEBAR | R8
SPACE? R196
SPACE?2 R196
SPEED 139, R82
SPI R205
SPIRAL R192
SQRT R154
SQUARE T23, R40

T4,R74
T13, R80

R169

ST T10, R76

STAMP R54

STAR T26

STARS R131

startup 15, R7,App.C
STARTUP R173, App.C
STOP R173
SUBMOUNTAIN R184
subprocedure 131, R23
SUBSET R169

SUM R155
superprocedure R23

T

Table of Frequencies
R10

TALK R123

TAN R149

TELL T15, R89
TEST R60

TEXT R40

THAW T66, R82
THING R141
THROW.TOPLEVEL R229
TO R38

TOOLS App.B
TOOT 149, R108
top level R22
total turtle trip

theorem 130
TOUCHINGP R174
TOWARDS R54
TRACKS R54
transparent color R57
TRI R6
TRIANGLE R120

TRUE R184

TURN R193

turtle field R97
TURTLE.STATE R223
tutorials R7, App.B

TYPE R104

Vv

variables R26, R119, R137

VISIBLEP R182
VOWELP R130

W

WAIT T38,R174
WARMWELCOME R22
WELCOME R22

WHEN R175

WHILE R172, App.B
WHO 140, R90
WINDOW R96
word R14,R115

WORD R132
WORDP R133

workspace R201, App A
WOW 139

WRAP R97

X

XCOR R55

XVEL R82

Y

YCOR RS5

YVEL R82

TURTLE TATTLE

It’'s Okay!

SmartLogo™ is a wonderful programming language that is
easy to learn. It lets you teach the computer how to do

many exciting things. Like most programming languages,
SmartLogo™ has certain quirks or limitations. At first you may
think that either you or the computer is doing something
wrong. This may not be the case. Of course, you should always
check your work to be sure you haven't made any careless
mistakes. If your work looks okay, you may have found one of
SmartLogo™'s limitations. Here are some examples of quirks:

SETSP used in combination with PENREVERSE can produce
spotty lines, or no lines.

Depending on the shape of an object, FILL may cause color to
spill out of the boundary lines.

If you fill a shape with the same color as the screen back-
ground, the boundary lines may be erased.

Show Me!

The DEMO programs were included to show you some of
SmartLogo’s features, and to give you some ideas as to

the kinds of programs you can write. These demos are not
intended to be fully-developed game programs, and therefore,
may have some limitations.

For example, you should always use the keyboard when play-
ing the SIMON game. If you're really good, and Simon must
play a 10-15 note sequence, the musical notes may sound be-
fore the square flashes. In the HANGMAN game, when you have
more than 10 guesses, two sets of dashes will appear on the
screen.

Oops, We Goofed!
On menu #2, screen 4 of the on-line tutorials, Instructions is
missing the “r.”

Some of the procedures in the TOOLS file need to be cor-
rected before they will run properly. The procedures that need
to be corrected are listed below in their corrected form. The
lines that have been changed are printed in green. See Chapter
3 in the Reference Manual if you need help making the changes.

To SAVE a copy of your corrected TOOLS procedures, see
page 212 of the Reference Manual.

The first screen of the EASYTYPE procedure displays the line
beginning “You can stop after drawing a complete shape.” This
line should be omitted.

TO EFRAC :FRAC :COUNT :TERM

IF :COUNT > 9 [OP 0]

MAKE "TERM :TERM * s$FRAC / :COUNT

OP :TERM + EFRAC :FRAC :COUNT + 1 :TERM
END

T0 EXP :X

MAKE "E 2.71828

IF :X - (INT :X)= O [OP INTPWR :E :X]

%P (INTPWR :E INT :X) * (1 + EFRAC (:X - INT :X) 1 1
ND

T0O BEFORE :A :B

IF OR EMPTYP :A EMPTYP :B [OP EMPTYP :4]

IF NOT EQUALP FIRST :A FIRST :B [OP (ASCII :A) < (ASCII :B)]
OP BEFORE BF :A BF :B

END

T0 WHILE :CONDITION :INSTRUCTIONLIST
IF NOT RUN :CONDITION [STOP]

RUN :INSTRUCTIONLIST

WHILE : CONDITION : INSTRUCTIONLIST
END

TO SORT :ARG :LIST
IF EMPTYP : ARG [OP :LIST]

MAKE "LIST INSERT FIRST :ARG :LIST
OP SORT BF :ARG :LIST

END

Quick
Reference
Guide

(=fe)

|

Editing
Procedures

TO NnaMe
Invokes the Editor.

EDIT, ED NOMe
epiT namelist
Invokes the Editor (identical to TO but can take a list).

END
Ends the procedure definition started by TO.

(Variables)

NAME object name

Sets a global variable. Gives the second input (the
name) the first input as value. The value remains until
reset or erased.

MAKE name object

Sets a global variable. Gives the first input (the name,
quoted) the second input as value. The value remains
until reset or erased.

THING NaMeE
Outputs the contents of the variable.

GETSH number
Outputs a list of 32 numbers representing the turtle
shape. See PUTSH.

PUTSH number shapespec
Gives the named shape number the form defined by
the second input (a list of 32 numbers). See GETSH.

Flow of
Control

L ______ .

REPEAT number instructionlist
Runs the input instruction list the specified number of
times.

IF pred instructionlist

IF pred instructionlist instructionlist

If the first input outputs TRUE, the first instructionlist is
run. If FALSE, the optional second instructionlist is run.

STOP
Stops the current procedure. Used within a procedure
only.

ouTPUT, OP Object
Stops the current procedure and outputs (a list, word,
TRUE or FALSE). Used within a procedure only.

=
Words and
Lists

FIRST Object
Outputs the first item of the input (a list or word).

LAST object
Outputs the last item of the input (alist or a word).

ITeM number list
Outputs the first input item of the second input (alist
or a word).

COUNT object
Outputs the number of items in the input (a listor a
word).

SENTENCE, SE Object object
Makes the inputs into a single list; removing inner
brackets (see LIST).

LIST object object
Outputs a list composed of its inputs, including a list
of lists (see SE).

worb word word
Outputs the inputs as one word, with no spaces.

Turtle
Graphics

FORWARD, FD number

Moves the turtle forward the input number of steps.

BACK, BK number
Moves the turtle back the input number of steps.

RIGHT, RT degrees
Turns the turtle right the input number of degrees.

LEFT, LT degrees
Turns the turtle left the input number of degrees.

HOME
Sends the current turtle to the center of the screen
[0 @] with a heading of 0.

SETPOS position
Sets the turtle’s screen position (absolute).

POS
Outputs the screen position of the current turtle.

PENDOWN, PD
Sets the current turtle’s pen to draw lines.

PENUP, PU
Raises the current turtle’s pen.

PENERASE, PE

Sets the current turtle’s pen to erase any lines crossed.

PENREVERSE, PX
Sets a pen mode which draws lines unless over a
drawn line; in that case it erases the line.

SETPENCOLOR, SETPC number
Sets the color of the current turtle’s pen.

PENCOLOR, PC
Outputs the current turtle’s pen color.

DOT position
Puts a dot at the specified position.

FILL
Fills an area with the current turtle’s pen color.

SHADE
Shades the area of the screen containing the turtle
with copies of its shape.

STAMP
Stamps a copy of the current turtle’s shape on the
screen.

HT
Makes the current turtle invisible.

ST
Makes the turtle visible.

SETCOLOR, SETC humber
Sets the color of the current turtle.

COLOR
Outputs the turtle’s color.

SETSHAPE, SETSH number
Sets the turtle’s shape, (0 to 59).

SHAPE
Outputs the turtle’s shape number.

SETHEADING, SETH degrees
Sets the heading of the current turtle, in degrees
(absolute).

HEADING
Outputs the turtle’s screen heading, in degrees.

Clearing the Screen

CLEARGRAPHICS, CG
Clears graphics and sends the current turtle HOME.

CLEARTEXT, CT
Clears text from screen.

CLEAN
Cleans the graphics screen without changing the
turtle state.

CLEARSCREEN, CS
Clears the screen of text and graphics, sends the
current turtle HOME.

Moving

SETSPEED, SETSP
Sets the turtle’s speed, (— 128 to 128).

SPEED
Outputs the turtle’s speed.

FREEZE
Suspends turtle speed until THAW.

THAW
Following a FREEZE, resets previous turtle speeds.

Turtles

TELL turtlenumber
TELL turtlenumberlist
Makes the list of current turtles.

ALL
Outputs the numbers 0 through 29.

EACH instructionlist
Causes a sequential run of the instruction list by each
current turtle.

WHO
Outputs the list of current turtle.

Demons

ON.ToucH turtlenumber turtlenumber instructionlist
Sets a demon to wait for a collision between the two
input turtles, then runs the instruction list.

WHEN condnumber instructionlist
Sets a demon to wait for the specified event, and then
run the instruction list.

ERDS
Erases all demons (collisions and events).

PODS
Prints out all demons and their instruction lists.

This procedure restores the screen and the turtles to
the original state.
TO RESTORE

ERDS

THAW

SETBG 5

TELLALL

CSHTPD

SETSH 36

SETC 15 SETPC 15
TELL@ ST

END

= ——— 1§
Making
Sounds

100t Voice freq volume duration
Sound primitive with 4 inputs (0 to 2, 128 to 9999,
0to 15,0 to 255).

Noist fype startvol stepvol steps steplength
Sound primitive with 5 inputs (0 to 7,0 to 15, —7to 7,
0to 15,0to0 15).

Demons

ON.TOUCH turtlenumber turtlenumber instructionlist
Sets a demon to wait for a collision between the two
input turtles, then runs the instruction list.

WHEN condnumber instructionlist
Sets a demon to wait for the specified event, and then
run the instruction list.

ERDS
Erases all demons (collisions and events).

PODS
Prints out all demons and their instruction lists.

This procedure restores the screen and the turtles to
the original state.
TO RESTORE

ERDS

THAW

SETBG 5

TELLALL

CSHTPD

SETSH 36

SETC 15 SETPC 15
TELL@ ST

END

Making
Sounds

TooT voice freq volume duration
Sound primitive with 4 inputs (0 to 2, 128 to 9999,
0to 15, 0 to 255).

Noisk type startvol stepvol steps steplength
Sound primitive with 5 inputs (0 to 7,0 to 15, —7to 7,
0to 15,0to 15).

Shape Editor

EDITSHAPE, ES number
Puts the input shape number in the shape Editor.

Printing

PRINT, PR Object
Prints its input on the screen, followed by a
carriage-return.

POTS
Prints out the titles of all procedures in the workspace.

PONS
Prints out all global variables and their values.

POALL
Prints out the entire contents of the workspace.

On the Screen

SETCURSOR position
Sets the text cursor to the specified text position.

SETTEXT line
Sets the topmost line for text (0 top, 23 bottom).

On the Printer

PRINTER
Turns on the output channel to the printer.

NOPRINTER
Turns off the output channel to the printer.

