
OPERATING SYSTEM
REFERENCE MANUAL

© 1983 Apple Computer

Operating System
Reference Manual

for the Lisa™

Licensing Requirements for Software Developers

Appie has a low-cost licensing program, which permits developers of software
for the Lisa to incorporate Apple-developed libraries and object code files
into their products. Both in-house and external distribution require a license.
Before distributing any products that incorporate Apple software, please
contact Software Licensing at the address below for both licensing and
technical information.

©1983 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple, Lisa, and the Apple logo are trademarks of Apple Computer, Inc.

Simultaneously published in the USA and Canada.

Customer Satisfaction

If you discover physical defects in the manuals distributed with a Lisa
product or in the media on which a software product is distributed, Apple
will replace the documentation or media at no charge to you during the
90-day period after you purchased the product.

Product Revisions

Unless you have purchased the product update service available through
your authorized Lisa dealer, Apple cannot guarantee that you will receive
notice of a revision to the software described in this manual, even if you
have returned a registration card received with the product. You should
check periodically with your authorized Lisa dealer.

Limitation on Warranties and Liability

All implied warranties concerning this manual and media, including implied
warranties of merchantability and fitness for a particular purpose, are
limited in duration to ninety (90) days from the date of original retail
purchase of this product.

Even though Apple has tested the software described in this manual and
reviewed its contents, neither Apple nor its software suppliers make any
warranty or representation, either express or implied, with respect to this
manual or to the software described in this manual, their quality,
performance, merchantability, or fitness for any particular purpose. As a
result, this software and manual are sold "as is," and you the purchaser are
assuming the entire risk as to their quality and performance.

In no event will Apple or its software suppliers be liable for direct,
indirect, special, incidental, or consequential damages resulting from any
defect in the software or manual, even if they have been advised of the
possibility of such damages. In particular, they shall have no liability for
any programs or data stored in or used with Apple products, including the
costs of recovering or reproducing these programs or data

The warranty and remedies set forth above are exclusive and in lieu of all
others, oral or written, express or implied. No Apple dealer, agent or
employee is authorized to make any modification, extension or addition to
this warranty.

Some states do not allow the exclusion or limitation of implied warranties
or liability for incidental or consequential damages, so the above limitation
or exclusion may not apply to you. This warranty gives you specific legal
rights, and you may also have other rights that vary from state to state.

i i i

License and Copyright

This manual and the software (computer programs) described in it are
copyrighted by Apple or by Apple's software suppliers, with all rights
reserved, and they are covered by the Lisa Software License Agreement
signed by each Lisa owner. Under the copyright laws and the License
Agreement, this manual or the programs may not be copied, in whole or in
part, without the written consent of Apple, except in the normal use of
the software or to make a backup copy. This exception does not allow
copies to be made for others, whether or not sold, but all of the material
purchased (with all backup copies) may be sold, given, or loaned to other
persons if they agree to be bound by the provisions of the License
Agreement. Copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, a multiuse license
may be purchased to allow the software to be used on more than one
computer owned by the purchaser, including a shared-disk system.
(Contact your authorized Lisa dealer for more information on multiuse
licenses.)

Product Revisions

Unless you have purchased the product update service available through
your authorized Lisa dealer, Apple cannot guarantee that you will receive
notice of a revision to the software described in this manual, even if you
have returned a registration card received with the product. You should
check periodically with your authorized Lisa dealer.

iv

Contents

Chapter 1
frrtroduction

1.1 The Main Functions 1-1
1.2 Using the OS Functions 1-1
1.3 The File System... 1-2
1.4 Process Management 1-3
1.5 Memory Management 1-4
1.6 Exceptions and Events 1-5
1.7 interprocess Crjrnrnunicatlon.... 1-5
1.8 Using the OS Interface 1-6
1.9 Running Programs under the OS 1-6
1.10 Writing Programs That Use the OS 1-6

Chapter 2
The File System

2.1 File Names 2-1
2.2 The Working Directory 2-2
2.3 Devices 2-3
2.4 Storage Devices 2-3
2.5 The Volume Catalog 2-4
2.6 Labels...., 2-4
2.7 Logical and Physical End of File 2-4
2.8 File Access 2-5
2.9 Pipes 2-6
2.10 File System Calls 2-7

Chapter 3
Processes

3.1 Process Structure 3-2
3.2 Process Hierarchy 3-2
3.3 Process Creation 3-3
3.4 Process Control 3-3
3.5 Process Scheduling 3-3
3.6 Process Termination 3-4
3.7 A Process-Handling Example 3-5
3.8 Process System Calls 3-7

029-0415-A
V

Operating System Reference ManuaJ Contents

Chapter 4
Memory Management

4.1 Data Segments 4 - l
4.2 The Logical Data Segment Number 4-1
4.3 Shared Data Segments 4-2
4.4 Private Data Segments 4-2
4.5 Code Segments 4-2
4.6 Swapping..... 4-2
4.7 Memory Management System Calls 4-3

Chapter 5
Exceptions and Events

5.1 Exceptions 5-1
5.2 System-Defined Exceptions 5-2
5.3 Exception Handlers 5-2
5.4 Events 5-5
5.5 Event Channels 5-5
5.6 The System Clock 5-10
5.7 Exception Management System Calls 5-10
5.8 Event Management System Calls 5-17
5.9 Clock System Calls 5-27

Chapter 6
Configuration

6.1 Configuration System Calls 6-1

Appendixes

A Operating System Interface Unit A - 1
B System-Reserved Exception Names B-1
C System-Reserved Event Types c - l
D ErrorMessages D- l
E FS_INFG Fields E-1

tadex

v l

Tables

2-1 DEVICE_COh4TROL FuncUons Required before Using a Device 2-25
2-2 DEVICEjCONTROL OutpUt Functional GTOUpS.. 2-26
2-3 DccodeMnemonlcs 2-28
2-4 DevIcefiTformaUon 2-30
2^5 DfekHardErrorCodes 2-32

Figures

2-1 Disk Hard Error Codes 2-29
2-2 The Relationship of COMPACT and TRUNCATE.. 2-35

3-1 Process Address Space Layout 3-2
3-2 Process Tree 3-3

5-l stack at Exception Handler Invocation 5-4

v l l

Preface

The Contents of Thls Manual
This manual describes the Operating System service calls that are available to
Pascal and assembler programs. It is written for experienced Pascal
programmers and does not explain elementary terms and programming
techniques. We assume that you have read the Lisa owner's Guide and
Workshop User's Guide for the Lisa and are familiar with your Lisa system.

Chapter 1 ls a general introduction to the operating system.

Chapter 2 describes the File System and the available File System calls. This
includes a description of the interprocess communication facility, pipes, and
the Operating System calls that allow processes to use pipes.

Chapter 3 describes the calls available to control processes, and also describes
the structure of processes.

Chapter 4 describes how processes can control their use of available memory.

Chapter 5 describes the use of events and exceptions that control process
synchronization, it also describes the use of the system clock.

Chapter 6 describes the calls you can use to find out about the configuration
of the system.

Appendix A contains the source text of Syscall, the unit that contains the
type, procedure, and function definitions discussed in this manual.

Appendix B contains a list of system-reserved exception names.

Appendix c contains a list of system-reserved event names.

Appendix D contains a list of error messages that can be produced by the
calls documented in this manual.

Appendix E contains a description of the information you can obtain from the
Operating System about files and devices.

Type and Syntax Conventions
Bold-face type is used in this manual to distinguish programming keywords and
constructs from English text. For example, FLUSH is the name of a system
call. System call names are capitalized in this manual, although Pascal does
not distinguish between lower and upper case characters. Italics indicate a
new term whose explanation follows.

029-0416-A
i x

Future Releases
A few features of the Llsa Operating System wlll be changed ln future
releases:

• Pipes wlll not be supported.
• Timed events wlll not be supported.
• Configuration System Calls wlll be changed.

If you want your software to be upwarchcompatlble, please take these changes
lnto consideration. More Information ls provided ln the approprtate sections
of the manual.

x

Chapter 1
Introduction

L 1 TheMataFunctions l - i

12 Usingthe0SFuncttons 1 - 1
13 TheFUeSystem 1-2

L4 Process Management 1-3

1.5 Memory Management 1-4

ljb Exceptions and Events 1-5

1.7 Interprocess Communication 1-5

L8 Using the OS Interface 1 ^

L9 Runrting Programs under the OS l ^

1.10 Writing Programs That Use the OS 1 ^

029-0053-A

Introduction

The Operating System (OS) provides an environment in which multiple processes
can coexist, communicate, and share data. It provides a file system for I/O
and information storage, handles exceptions (software interrupts), and performs
memory management

L 1 The Main Functions
This chapter describes the four main functional areas of the OS: the File
System, process management, memory management, and event and exception
handling.

The File System provides input and output. The File System accesses devices,
volumes, and files. Each object, whether a printer, disk file, or any other type
of object, is referenced by a pathname. Every I/O operation is performed as
an uninterpreted byte stream. Using the File System, all I/O is device
independent. The File System also provides device-specific control operations.

A process consists of an executing program and its associated data Several
processes can execute concurrently by multiplexing the processor between
them. These processes can be broken into segments which are automatically
swapped into memory as needed.

Memory management routines handle data segments. A data segment is a file
that can be placed in memory and accessed directly.

Exceptions and events are process-comn>unication constructs provided by the
OS. An event is a message sent from one process to another, or from a
process to Itself, that is delivered to the receiving process only when the
process asks for that event. An exception is a special type of event that
forces ltself on the receiving process. There is a set of system-defined
exceptions (errors), and programs can define their own. System errors such as
division by zero are examples of system-defined exceptions. You can use the
system calls provided to define any exceptions you want

12 Ustag the OS Functions
Both built-in language features and explicit OS system calls can access OS
routines to perform desired functions. For example, the Pascal writeln
procedure is a built-in feature of the language. The code to execute writeUi
is supplied in IOSPASLIB, the Pascal run-time support routines library. This
code, which is added to the program when the program is linked, calls OS
File System routines to perform the desired output.

You can also call OS routines explicitly. This Is usually done when the
language does not provide the operation you want OS routines allow Pascal
programs, for example, to create new processes, which could not otherwise be
done, since Pascal does not have any built-in process-handling functions.

1 - 1

Operating System Reference Manual Introduction

AH calls to the OS are synchronous, which means they do not return until the
operation ls complete. Each call retums an error code to indicate if anything
went wrong during the operation. Any non-zero value Indicates an error or
waming. Negative error codes indicate warnings. For a list of error codes
and their meaning, see Appendix D.

1.3 The File System
The File System performs all IA) as uninterpreted byte streams. These byte
streams can go to files on disk or to other devices such as a printer or an
alternative console. In all cases, the device or file has a File System name.
Except for device-control functions, the File System treats devices and files
in the same way.

The File System allows sharing of all types of objects.

The File system provides for naming objects (devices, fUes, etc.> A name ln
the File System ls called a pathname A complete pathname consists of a
directory name and a file name. The file name is meaningful only for storage
devices (devices that store byte streams for later use, such as dlsks>

Each process has a working directory associated with it. This allows you to
reference objects with an incomplete pathname. To access an object in the
working directory, you specify lts file name. To access an object in a
different directory, you specify its complete pathname.

Before a device can be accessed, it must be mounted. Devices can be
mounted using the Preferences tool or by using the MOUNT call. See Chapter
2 for an explanation of this call and other File System calls. If the device is
a storage device, the mount operation makes a volume name available. A
volume name is a logical name for a disk, and is saved on the disk itself. The
mount operation logically connects the volume to the system, so that the files
on the volume may be accessed. The volume name can replace a device name
ln a pathname used to access an object on the disk. The volume name allows
you to access a file with the same pathname no matter where the drive is
actually connected.

A device can be accessed if it is specified in the configuration list created by
the Preferences tool, is physically connected to the Lisa, and is mounted.
There are some operations that can be performed on unmounted devices. Two
examples are DEVlCEjCCNTROL calls and scavenging. Logically mounting a
volume on a device makes file access to the volume possible. For storage
devices, a volume is an actual magnetic medium that can contain recorded
files. For non-storage devices, volumes and files are concepts used to
maintain a uniform interface. Files on non-storage devices such as printers
do not store data but act as ports for performing I/O to the devices.

1-2

Operating System Reference Manual Introduction

The basic operaUons provided by the Flle System are as follows:

mount and unmount - make a volume accessible/Inaccessible
open and close - make an object accessible/lnaccesslble
read and write - transfer Information to and from an object
device control functions - control device-specific functions

Some operations apply only to storage devices:

allocate and deallocate - specify slze of an object
manipulate catalog - control naming of objects and creation and

destruction of objects
manipulate attributes - look at or change the characteristics of

the object

In addition to the data in an object, the object ltself has certain
characteristics called attributes, such as the length and creation date of a
file. Calls are available to access the attributes of any File System object. In
addition to its system-defined attributes, an object on a storage device can
have a label The label is available for programs to store information that
they can Interpret

Non-storage devices such as printers are accessed with a limited set of
operations. They must be mounted and opened before they can be accessed.
Sequential read and/or write operations are available as appropriate for the
device. Device-control functions are available to perform any device-
specific functions needed. The file-name portion of the complete pathname
for a nor^storage device is not used by the File System, although you do have
to provide one when you open the devica

For storage devices, the same sequential read and write operations are valid
as for non-storage devices, storage devices also must be mounted, and
particular files opened, before the files can be used. They have appropriate
device-control functions available.

When writing to a disk file, space for the file is allocated as needed. Space
for a file does not need to be contiguous, and in some cases this automatic
allocation can result in a fragmented file, which may slow file access. To
insure rapid access, you can pre-allocate space for the file. Pre-allocating
the flie also ensures that the process wlll not run out of space on the disk.

Four types of objects can be stored on storage devices. These are files, pipes,
data segments, and event channels. Files, already discussed, are simply arrays
of stored data Pipes are objects that provide interprocess communicatioa
Data segments are special cases of files that are loaded into memory along
with program code. Event channels are pipes with a specialized structure
Imposed by the system.

1.4 Process Management
A process is an executing program and the data associated with it. Several
processes can exist at one time, and they appear to run simultaneously
because the CPU ls multiplexed among them. The Scheduler decides what

1-3

Operating System Reference Manual Introduction

process should use the CPU at any one tlme. it uses a generally non-
preemptive scheduling algorithm. This means that a process wlll not lose the
CPU unless lt blocks. The blocked state ls explained later ln this section.

A process can lose the CPU when one of the following happens:

• The process calls an qperaUng system procedure or function.

• The process references one of its code segments that is not currently in
memory.

If neither of these occur, the process will not lose the CPU.

Every process is started by another process. The newly started process is
called the son process The process that started it ls called its fatherprocess
The resulting structure is a tree of processes. See Figure 3-2 for an
illustration of a process trea

When any process terminates, all its son processes and their descendants are
also terminated.

When the OS ls booted, lt starts a shellprocess The shell process starts any
other processes desired by the user.

Every newly created process has the same system-standard attributes and
capabilities. These can be changed by using system calls.

Any processes can suspend, activate, or kill any other process for which the
global ID is known, as long as the other process does not protect itself.

The memory accesses of an executing process are restricted to its own
memory address space. Processes can communicate with other processes by
using shared files, pipes, event channels, or shared data segments.

A process can be in one of three states: ready, running, or blocked. A ready
process ls waiting for the Scheduler to select it to run. A runnlngprocess\%
currently using the CPU to execute its code. A blocked process is waiting for
some event, such as the completion of an l/O operation. It wlll not be
scheduled until the event occurs, at which point it becomes ready. A
terminated process has finished executing.

Each process has a priority from 1 to 255. The higher the number, the higher
the priority of the process. Priorities 226 to 255 are reserved for system
processes. The Scheduler always runs the ready process with the highest
priority. A process can change its own priority, or the priority of any other
process, while it is executing.

1 3 Memory Management
Memory managment is concerned with what is in physical memory at any one
time. Each process can use up to 128 memory segments. Each segment can
contain up to 128 Kbytes. Memory segments are of two types: code segments
and data segments. The total amount of memory used by any one process can
exceed the available RAM of the Lisa The Operating System will swap code
segments in and out of memory as they are needed. To aid the Operating

1-4

Operating System Reference Manual Introduction

system ln swapping data segments, calls are provided to give programs the
ability to define which data segments must be in memory while a particular
part of the program ls executing.

You have control of how your program is divided up. For executable code
segments, you use the segmentation commands of the Pascal compiler to break
the program in pieces.

In addition to residing in memory, data segments can be stored permanently
on disk. They can be accessed with calls similar to File System calls. This
allows you to use a data segment as a direct-access file—a file that is
accessed as part of your memory space.

Calls are provided for making, killing, opening, and closing data segments.
You can also change the size of a data segment and set lts access mode to
read-only or read-write, ln addition, you can make a permanent disk copy of
the contents of a data segment at any time. Other calls give you ability to
force the contents of the data segment to be swapped into main memory so
they can be accessed by your process.

L6 Exceptions and Events
An exception is an unexpected condition in the execution of a process (an
lnterrupt> An event is a message from another process.

An exception can be generated either by the system or by an executing
program. System exceptions are generated by various sorts of errors such as
divide by zero, illegal instruction, and illegal address. System exception
handlers are supplied that terminate the process. You can write your own
exception handlers for any of these exceptions if you want to try to recover
from the error.

User exceptions can be declared and exception handlers can be written to
process them. Your program can then signal this new exception.

Events are messages sent from one process to another. They are sent through
event channels.

A process that expects a message from an event channel executes a call to
wait for an event on that channel. This will glve it the next message, if one
exists, or block the process until a message arrives.

If a process wants to know when an event arrives, but does not want to walt
for it, it can use an event-call channel. This is set up by associating a user
exception wlth the event channel when lt ls opened. The Operating System
will then invoke the corresponding user exception handler whenever a message
arrives in the event channel.

1.7 Interprocess Communication
There are four methods for interprocess communication: shared files, pipes,
event channels, and shared data segments.

1-5

Operating System Reference Manual Introduction

Shared files are used for hl#i volume transfers of lnformaUon. it ls necessary
to coordinate the processes somehow to prevent them from overwriting each
other's information.

Pipes are used for communication between processes with an uninterpreted
byte stream. (Note that pipes wlll not be supported ln future releases of the
Operating System.) The plpe mechanism provides for the needed
synchronization; a process will block lf it is trying to read from an empty
pipe or write to a full one. A read from a pipe consumes the Information, so
it is no longer available. Only one process can real from a given pipe.

Event channels are similar to pipes, except that event channels transmit short,
structured messages Instead of uninterpreted bytes.

A shared data segment can be used to transmit a large amount of data
rapldly. Having a shared data segment means that thls data segment is in the
memory address space of all the processes that want to use i t All the
processes can then directly read and write lnformaUon ln the data segment
It is necessary to provide some sort of synchronization to keep one process
from overwriting another's information.

1.8 Using the 08 Merface
The interface to all the system calls is provided ln the Syscall unlt, found in
Appendix A. This unit can be used to provide access to the calls. See the
Workshop User's Guide for the Llsa for more information on using syscall.

1.9 Running Programs Uhder the OS
Programs can be written and run by using the Workshop, which provides
program development tools such as editing and debugging facilities.

1.10 Writing Programs That Use the OS
You can write a program that calls OS routines to perform needed functions.
Thls program uses the Syscall unit and then calls the routines needed.

1-6

Chapter 2
The File System

2.1 FileNames 2-1

22 The Wotting Directory 2-2

2 3 Devices 2-3

Z4 Storage Devices 2-3

23 The Vdlume Catalog 2-4

2.6 L3bels 2-4

2.7 Logical and Physical End Of Flle 2-4

2.8 FHe Access 2-5

2.9 Pipes 2-6

Z10 File System Calls2-7

2.10.1 MAKE_FILE and MAKE_PIPE 2-8
2.10.2 KILL_OBJECT 2-10
2.10.3 UNKlLL__FILE 2-11
2.10.4 RENAME_ENTRY 2-12
2.10.5 L00KUP 2-13
2.10.6 INFO 2-16
2.10.7 SET_FILEJNFO 2-17
2.ia8 OPEN 2-18
2.10.9 CLOSEJDBJECT 2-19
2.10.10 READ_DATA and WRITE_DATA 2-20
2.10.11 READ_LABEL and WRITE_LABEL2-23
2.10.12 DEVICE_CONTROL 2-24

2.10.12.1 Setting Devlce-Control Information 2-24
2.10.12.2 Obtaining Device-Control Information 2-28

2.10.13 ALLOCATE 2-33
2.10.14 COMPACT 2-34
2.10.15 TRUNCATE 2-35
2.iai6 FLUSH 2-36
2.10.17 SET_SAFETY 2-37
2.10.18 SET_WORKING_piR and GET_WORKING_DIR 2-38
2.10.19 RESET_CATALOG and GET_NEXT_ENTRY 2-39
2.10.20 MOUNT and UNMOUNT 2-40

029-0417-A

The File System

The File System provides device-independent I/O, storage with access
protection, and uniform file-naming conventions.

Device independence means that all I/O is performed in the same way,
whether the ultimate destination or source is disk storage, another program, a
printer, or anything else, in all cases. I/O is performed to or from files
although those files can also be devices, data segments, or programs.

Every file is an uninterpreted stream of eight-bit bytes.

A file that is stored on a block-structured device, such as a disk, is listed in
a catalog(also called a directorj) and has a name. For each such file the
catalog contains an entry describing the file's attributes, including the length
of the file, its position on the disk, and the last backup copy date. Arbitrary
application-defined information can be stored in an area called the file label
Each file has two associated measures of length, the Logical EndofFile
tf-ECFj and the Phy$icaiEndofFilep>EOF) The LEOF is a pointer tu the last
byte that has meaningful data. The PEOF is a count of the number of blocks
allocated to the file. The pointer to the next byte to be read or written is
called the file marker

Since I/O is device independent, application programs do not have to take
account of the physical characteristics of a device. However, on block-
structured devices, programs can make I/O requests in whole-block increments
in order to improve program performance.

All input and output is synchronous in that the I/O requested is performed
before the call returns. The actual I/O, however, is asynchronous, in that
processes may block when performing I/a See Section 3.5, Process Scheduling,
for more information on blocking.

To reduce the impact of an error, the File System maintains distributed,
redundant information about the files on storage devices. Duplicate copies of
critical information are stored In different forms and in different places on
the media All the files are able to identify and describe themselves, and
there are usually several ways to recover lost information. The Scavenger
utility is able to reconstruct damaged catalogs from the information stored
with each file.

2.1 File Names
All the files known to the Operating System at a particular time are organized
into catalogs. Each disk volume has a catalog that lists all the files on the
disk.

Any object catalogued in the File System can be named by specifying the
volume on which the file resides and the file name. The names are separated

2-1

operating System Reference Manual me File System

by the c h a r a c t e r B e c a u s e the top catalog ln the system has no name, all
complete pathnames begin wlth "- M.

For example,

-LISA-FORMAT.TEXT

refers to a f i l e named FORtiAT.TEXT on a volume named LISA. The file
name can contain up to 32 characters. If a longer name is specified, the
name is truncated to 32 characters. Accesses to sequential devices use an
arbitrary dummy filename that is ignored but must be present in the
pathname. For example, the serial port pathname

-RS232B

is insufficient, but

-RS232B-XYZ

is accepted, even though the - XYZ portion ls ignored. Certain device names
are predefined:

RS232A Serial Port A
RS232B ser ia l Port B
PARAPORT Parallel Port
SLOTxCHANy Serial ports: x i s 1, 2, or 3 and y i s 1 or 2
hAiNCONSOLE wrlteta and readttT device
ALTCONSOLE * r i te ln and readta device
UPPER upper Diskette drive (Drive l)
LOWER Lower Diskette drive (Drive 2)
BITBKT Bit bucket data ls thrown away when directed here

See Chapter 6 for more Information on device names.

upper and lower case are not significant ln pathnames: 'TESTVOL' ls the same
object as TestVor. Any ASCII character ls legal in a pathname, including
non-printing characters and blank spaces. However, use of ASCII 13,
RETURN, ln a pathname ls strongly discouraged.

22 The Working Directory
It is sometimes inconvenient to specify a complete pathname, especially when
working with a group of files in the same volume. To alleviate thls problem,
the Operating System maintains the name of a working directory for each
process. When a pathname is specified without a leading the name refers
to an object in the working directory. For example, lf the working directory
ls -LISA the name FORMAT.TEXT refers to the same file as
-LISA-FORMAT.TEXT. The default working directory name is the name of the
boot volume directory.

You can find out what the working directory is with GET_W0RKBsK3JMR.
You can change to a new working directory wlth SET__WORHONG_DIR.

2-2

Operating System Reference Manual The Flle System

23 Devices
Device names follow the same conventions as flle names. Attributes like baud
rate are controlled by using the DEV1CE_C0NTR0L call with the appropriate
pathname.

Each device has a permanently assigned priority. From highest to lowest, the
priorities are:

Power on/off button
Ser ial port A (RS232A)
Serial port B (RS232B. the leftmost port)
l/o s lot l
i/0 s lot 2
1/0 s lot 3
Keyboard, mouse, battery-powered clock
10 ms system timer
CRT vertical retrace interrupt
Parallel port
Diskette 1 (UPPER)
Diskette 2 (LOWER)
Video screen

The device driver associated with a device contains information about the
device's physical characteristics such as sector size and interleave factors for
disks.

2.4 Storage Devices
On storage devices such as disk drives, the File System reads or writes file
data ln terms of pages. A pageX$ the same size as a block. Any access to
data in a file ultimately translates into one or more page accesses. When a
program requests an amount of data that does not fit evenly into some
number of pages, the File System reads the next highest number of whole
pages. Similarly, data ls actually written to a flle only ln whole page
increments.

A file does not need to occupy contiguous pages. The File System keeps
track of the locations of all the pages that make up a file.

Each page on a storage device is self-identifying; the page descrlptorl$ stored
with the page contents to reduce the destructive impact of an I/O error.

The eight components of the page descriptor are:

Version number
volume identif ier
F i le identif ier
Amount of data on the page
Page name
Page position ln the f i l e
Forward l ink
Backward llnk

2-3

Operating System Reference Manual The Flle System

Each volume has a MecttumDescriptorDataFilep%X3F)wWtf\ describes the
various attributes of the medium such as its size, page length, block layout,
and the size of the boot area. The MDDF is created when the volume is
initialized.

The File System also maintains a record of which pages on the medium are
currently allocated, and a catalog of all the files on the volume. Each flle
contains a set of file hints, which describe and point to the actual file data.

2.5 The Volume Catalog
On a storage device, the volume catalog provides access to the files. The
catalog is itself a flle that maps user names into the internal file Identifiers
used by the Operating System. Each catalog entry contains a variety of
information about each file including:

Name
Type
Internal f i l e number and address
Size
Date and time created, last modified, and last accessed
F i le identifier
Safety switch

The safety switch is used to avoid accidental deletions. While the safety
switch is on, the file cannot be deleted. The other fields are described under
the LOOKUP File System call.

The catalog can be located anywhere on the medium.

2.6 Labels
An application can store lts own information about a file ln an area called
the file label The label allows an application to keep the file data separate
from information maintained about the file. Labels can be used for any
object in the File System. The maximum label size is 128 bytes. I/O to labels
is handled separately from file data I/a

2.7 Logical and Physical End of File
A file contains some number of bytes of data recorded in some number of
physical pages. Additional pages which do not contain any file data can be
allocated to the file. There are, therefore, two measures of the end of the
file. The Logical End of File (LEOF) is a pointer to the last stored byte that
has meaning to the application. The Physical End of File pEOF) is a count of
the number of pages allocated to the file.

In addition, each open file has a pointer called the fllemarkerwft\ct\ points
to the next byte in the file to be read or written. When the file is opened,
the file marker points to the first byte (byte number 0> The file marker can
be positioned automatically or explicitly using the read and write calls. For
example, when a program writes to a file opened with Append access, the flle
marker is automatically positioned to the end of the file before new data are
written. The file marker cannot be positioned past LEOF except by a write

2-4

CperatIng System Reference ManuaJ The FJJe System

operation that appends data to a file; in this case the file marker is
positioned one byte past LE0F.

When a file is created, an entry for it is made in the catalog specified in its
pathname, but no space is allocated for the file itself. When the flle is
opened by a process, space can be allocated explicitly by the process, or
automatically by the Operating System. If a write operation causes the file
marker to be positioned past the LEOF marker, LE0F (and PE0F if necessary)
are automatically extended. The new space is contiguous lf possible.

2& File Access
The Flle System provides a devlce-lndependent bytestream interface. As far
as an application program is concerned, a specified number of bytes is
transferred either relative to the file marker or at a specified byte location
in the file. The physical attributes of the device or file are not important to
the application, except that devices that do not support positioning can
perform only sequential operations. Programs can sometimes improve
performance, however, by taking advantage of a device's physical
characteristics.

Programs can request any amount of data from a file. The actual I/O,
however, ls performed ln whole-page increments when devices are block
structured. Therefore, programs can optimize I/O to such devices by setting
the file marker on a page boundary and making I/O requests in whole-page
increments.

A file can be open for access by more than one process concurrently. All
requests to write to the file are completed before any other access to the file
Is permitted. When one process writes to a file, the effect of the write
operation is immediately available to all other processes reading the file. The
other processes may, however, have accessed the file in an earlier state.
Data already obtained by a program are not changed. The programmer must
ensure that processes maintain a consistent view of a shared flle.

When you open a file, you specify the kind of access allowed on the file.
When the file is opened, the Operating System allocates a file marker for the
calling process and a run-time identification number called the refnum The
process must use the refnum in subsequent calls to refer to the file. Each
operation using the refnum affects only the file marker associated wlth that
refnum.

Processes can share the same flle marker. In global access mote each
process uses the same refnum for the file. When a process opens a file in
global access mode, the refnum it gets back can be passed to any other
process, and used by any process. Note that any number of processes can
open a file with Global_Refhum, but each time the OPEN call ls used a
different refnum is produced. Each of those refnums can be passed to other
processes, and each process using a particular refum shares the same file
marker with other processes with the same refum. Processes using different

2-5

operating System Reference Manual The Flle System

refnums, however, always have different flle markers, whether or not those
refnums were obtained wlth Global__Refnum

A flle can also be opened in private mode, which specifies that no other OPEN
calls are to be allowed for that flle. A file can be opened wlth
Glotel_Refnum and private, which opens the flle for global access, but allows
no other process to open that file. By using this call, processes can control
which other processes have access to a file. The opening process passes the
global refnum to any other process that is to have access, and the system
prevents other processes from opening the file.

Processes using global access may not be able to make any assumptions about
the location of the file marker from one access to the next.

2.9 Pipes
Because the Operating System supports multiple processes, a mechanism is
provided for interprocess communication. Thls mechanism is called a plpa
Pipes are similar to the other objects in the File System they are named
according to the same rules, and they can have labels.

NOTE

Pipes will not be supported in future releases of the Operating System.
Do not use the pipe mechanism if you want your software to be
upward-compatible.

As with a file, a pipe is a byte stream. With a pipe, however, information is
queued in a flrst-ln-first-out manner. Also, a pipe can have only one reader
at a time, and once data is read from a pipe it is removed from the pipe.

A plpe can be accessed only ln sequential mode. Although only one process
can read data from a pipe, any number of processes can write data into it.
Because the data read from the pipe ls consumed, the file marker is always at
zero. If the pipe is empty and no processes have it open for writing, EOF (End
Of File) is returned to the reading process. If any process has the pipe open
for writing, the reading process is suspended until enough data to satisfy the
call arrives in the pipe, or until all writers close the pipe.

When a pipe ls created, its size is 0 bytes, unlike with ordinary files, the
initializing program must allocate space to the pipe before trying to write
data into i t To avoid deadlocks between the reading process and the writers,
the Operating System does not allow a process to read or write an amount of
data greater than half the physical size of the pipe. For this reason, you
should allocate to the pipe twice as much space as the largest amount of data
ln any planned read or write operation.

A pipe is actually a circular buffer with a read pointer and a write pointer.
All writers access the pipe through the same write pointer. Whenever either
pointer reaches the end of the pipe, it wraps back around to the first byte. If
the read pointer catchesup with the write pointer, the reading process blocks

2-6

Operating System Reference Manual The File System

unUl data are written or until all the writers close the pipe. Similarly, if the
write pointer catches up with the read pointer, a writing process blocks until
the pipe reader frees up some space or until the reader closes the pipe.
Because pipes have this structure, there are restrictions on some operations.
These restrictions are discussed with the relevant File System calls.

Processes can never make read or write requests bigger than half the size of
the pipe because the Operating System always fully satisfies each read or
write request before returning to the program. In other words, if a process
asks for 100 bytes of data from a pipe, the Operating System waits until there
are 100 bytes of data in the pipe and then completes the call. Similarly, if a
process tries to write 100 bytes of data into a pipe, the Operating System
waits until there is room for the full 100 bytes before writing anything into
the pipe. If processes were allowed to make write or read requests for
greater than half of a particular pipe, it would be possible for a reader and a
writer to deadlock, with neither having room in the pipe to satisfy its
requests.

£10 Flle System Calls
This section describes all the Operating System calls that pertain to the File
System. A summary of all the Operating System calls can be found in
Appendix A. The following special types are used in the File System calls:

Pathname = STRING[hax__Pathname]; (» hax_Pathname = 255 *)
E_Name = STRING[hax_Ename]; (* rtax_EName = 32 *)
Accesses = (Dread, D*rite, Append, Private, Gaobal_Refnum);
ttSet = SET 0F Accesses;
Iohode = (Absolute, Relative, Sequential);

The Fsjnfo record and its associated types are described under the LOOKUP
call. The Dctype record is described under the DEVlCE_C0N^nR0L call.

2-7

Operating System Reference Manual The File System

Z i a i MAKE_FILE and MAKE_PIPE File System calls
MAKEFILE (Var Ecocte:Integer;

Var Path:Pathname;
Label_Size:Integer)

MAKE_PIPE (Var Ecode:Integer;
Var Path:Pathname;

Label_Si2e:Integer)

Label_Size: Number of bytes for the object 's label

M A K E F I L E and MAKE_PPE create the specified type of object with the
given name. If the pathname does not specify a directory name (more
specifically, if the pathname does not begin with a dash), the working
directory is used. Label_Slze specifies the initial size in bytes of the label.
It must be less than or equal to 128 bytes. The label can grow to contain up
to 128 bytes no matter what its initial size. Any error indication ls returned
in Ecode.

Pipes will not be supported ln future releases of the Operating System.
Do not use the pipe mechanism if you want your software to be
upward-compatible.

The MAKE_Ffl_E example on the next page checks to see whether the
specified file exists before opening it.

Ecode:
Path:

Error indication
Name of new object

NOTE

2-8

Operating Systeni Reference Manual The File System

CONST Fi leExlStS = 890;
VAR FileRefNum ErrorCode:INTEGER;

FileName:PathName;
Happy:BOOLEAN;
Response:CHAR;

BEGIN
Happy:=FALSE;
WHILE NOT Happy 00
BEGIN
REPEAT (* get a f l l e name *)
WRITE(Tile name: ') ;
READLN(FileNarae);

UNTIL LENGTH(FileName)>O;
hAKE_FILE(ErrorCode,FlleName,0); (*no label for th l s f i l e *)
IF (ErrorCode<>0) THEN (* does f l l e already ex i s t ? *)
IF (ErrorCode=FileExists) THEN (* yes *)
BEGIN
WRITE(FileName,' already ex i s t s . Overwrite? *) ;
READLN(Response);
Happy:=(Response IN [' y ' * ' Y ']) ; (*go ahead and overwrite*)

END
ELSE WRITELN('Error •,ErrorCode,' while creating f i l e . 1)
aSE Happy:=TRUE;

END;
OPEN(ErrorCode.FiieName.FileRefNunt [Dwrite]);

END;

2-9

Operating System Reference Manual The Flle System

2AB2 HOLL_OBJECT File System Call

KILL_OBJECT (Var Ecode:Integer;
Var Path:Pathname)

Ecode: Error indicator
Path: Name of object to be deleted

KH_L_OBJECT deletes the object given ln Path from the Flle System. Objects
with the safety switch on cannot be deleted. If af l le or pipe is open at the
time of the KB_LJBJECT call, its actual deletion is postponed until it has
been closed by all processes that have it open. During thls period no new
processes are allowed to open it. The object to be deleted need not be open
at the time of the KILL_OBJECT call. A KRJ__OBJECT call can be reversed
by UNKn_L_FlLE, as long as the object ls a file and is still open.

The following program fragment deletes files until RETURN is pressed:

CONST FileN0tF0Und=894;
VAR FileName:PathName;

Errorcode:INTEGER;
BE6IN
REPEAT
*RTTE(Ti le to delete: ') ;
REAOLN(FlleName);
IF (FileName<>") THEN
BEGIN
KILL_OBJECT(ErrorCode,FileName);
IF (ErrorCode<>0) THEN
IF (ErrorCode=FileNotFound) THEN
*aTELN(FileName,' not found. ')

ELSE iRITELN('Error ',ErrorCode,' * r t l e deleting f i l e . ")
ELSE iRlTELN(FlleName,' deleted. ') ;

END
UNTIL (FileName=");

END;

2-10

operating System Reference Manual The File System

Z1Q3 UNKILL_FILE File System Call

UNKILL_FILE (Var Ecode:Integer;
RefNum:Integer;

Var Newname:ename)

Ecode: Error indicator
RefNum: Refnum of the k i l led and open f i l e
Newname: New name for the f l l e being restored

UNK I L LF I LE reverses the effect of KILL_OBJECT as long as the killed
object is a file that is still open. A new catalog entry is created for the file
with the name given in Newname. Newname is not a full pathname: the
resurrected file remains in the same directory.

2-11

Operating System Reference Manual The File System

Zia4 RENAMEJENTRY Flle System Call
RENAME__ENTRY (Var Ecode:lnteger;

Var Path:Pathname;
Var Newname:E_Name)

Ecode: Error Indicator
Path: Object's old name
Newname: Object's new name

RENAME_ENTRY changes the name of an object ln the Flle System.
Newname cannot be a full pathname. The name of the object is changed, but
the object remains ln the same directory. The following program fragment
changes the flle name of F0RMATTER.L1ST to NEWFORMAT.TEXT.

VAR 01dNarae:PathName;
NewName:E_Name;
ErrorCode:INTEGER

BEGIN
01dName: =' 4_ISA-F0RHATTER. LIST" ;
NewNane: = 'NE*FORMAT.TEXT';
RENAME__ENTRY(ErrorCode, OldName, NewName);

END;

The file's full pathname after renaming ls

-L1SA-NEWF0RMAT.TEXT
Volume names can be renamed by specifying only the volume name in Path.
Here is a sample program fragment which changes a volume name. Note that
the leading dash (-j, given ln 0ldName, is not given in NewName.

VAR 01dName:PathName;
NewName:E_Name;
ErrorCode:INTEGER

BEGIN
OldName:="-thomas";
NewName * = * stearns '*
RENAMEENTRY(Errorcode, OldName, Ne*teme);

END;

2-12

Cperatlng System Reference Manual The Flle System

2.1Q5 LOOKUP File System Call

LOOKUP (Var Ecode:lnteger;
Var Path:Pathname;
Var Attributes:Fs_Info)

Ecode: Error indicator
Path: Object to lookup
Attributes: Information returned about path

LOOKUP returns information about an object in the file system. For devices
and mounted volumes, call LOOKUP with a pathname that names the device or
volume without a file name component:

LOOKUP(ErrorCode,DevName,lnfoRec);

lf the device is currently mounted and is block structured, all of the record
fields of Attributes contain meaningful values; otherwise, some values are
undefined.

The Fs_lnfo record ls defined as follows. The meanings of the information
fields are given in Appendix E.

FS_InfO = RECORD
name: e_name;
devnum: IlfFEGER;

CASE QType:iJtfo_type OF
device_t, volume_t:

(lochannel: INTEGER

SlOt_no: INTEGER;
fS_slze: LONGINT;
VOl_slze: LONGINT;
blockstructured,
mounted: BOOLEAN,"
opencount: LONGINT;
prlvatedev,
remote,
lockeddev: BOOLEAN;
mount_pending,
unmount_pending: BOOLEAN;
volname,
password: e_name;
fsversioa
volid,
volnum: INTEGER;

DevName:='HJPPER'; (* Diskette drive 1 *)

devt: devtype;

2-13

Operating System Reference Manual The File System

blocksize.
datasize,
clustersize
filecount: INTEGER;(*Number of f i l e s on vol *)
freecount: LONGINT;(*Nuntoer of free blocks *)
D7VC, (* Date Volume Created *)
DTVB. (* Date Volume last Backed up *)
DTVS:LONGINT;(* Date Volume last scavenged *)
Machine__id.
overmountstamp,
master_copy_id: LONGINT;
privileged,
wrlte_protected: BOOLEAN;
master,
copy.
scavenge_flag: BOOLEAN);

object_t: (
s ize: LONGINT; (*actual no of bytes written *)
psize: LONGINT; (*physical s ize in bytes *)
tysize: INTEGER; (*Logical page size in bytes *)
ftype: f i letype;
etype: entrytype;
DTC, (* Date Created *)
DTA, (* Date last Accessed *)
DTM (* Date last hodified *)
DTB: LONGINT; (* Date last Backed up *)
refnum: INTEGER;
fmark: LONGINT; (* f i l e marker *)
acmode: mset; (* access mode *)
nreaders, (* Number of readers *)
nwriters. (* Number of writers *)
nusers: INTEGER; (* Number of users *)
fu id: uid; (* unique identif ier *)
eof, (* EOF encountered? *)
safety_on, (* safety switch setting *)
kswitch: BOOLEAN; (* has f i l e been k i l led? *)
pr ivate.(* F i l e opened for private access? *)
locked, (* I s f i l e locked? *)
protected:BOOLEAN);(* F i l e copy protected? *)

END;

2-14

Cperatlng System Reference Manual The Flle System

Uld = INTEGER;
Info_Type = (devlce_t, volume_t, object_t);
Oevtype = (diskdev, pascalbd, seqdev, bitbkt, non_lo);
Filetype * (undefined, hDDFFile, rootcat, f ree l i s t ,

badblocks, sysdata, spooL exec, usercat, pipe,
bootfile,s*apdata, svapcode, rarrap, userf i le,
kIlledoDJect);

Entrytype « (emptyentry, catentry, linkentry, f i leentry,
plpeentry,ecentry, kl l ledentry);

The eof field of the Fsjnfd record ls set after an attempt to read more
bytes than are available from the file marker to the logical end of the file, or
after an attempt to write when no dlsk space is available. If the file marker
is at the twentieth byte of a twenty-five byte flle, for example, you can
read up to 5 bytes without setting eof, but lf you try to read 6 bytes, the
File System gives you only 5 bytes of data and eof is set

The following program reports how many bytes of data a given file has:

VAR lnfoRec:Fsjnfo; (*lnformation returned by LOOKUP and INFO*)
FileName:PathName;
ErrorCode:INTEGER;

BEGIN
* t tTE(' F l le : •) ;
READLN(FlleName);
LOOKUP(ErrorCode,FlleName,infoRec);
IF (ErrorCode<>0) THEN

VRITELN('Camot lookup ',FiieName)
ELSE

WRITELN(FlleName,• has MnfoRec .S l ze , ' bytes of data . ') ;
END;

2-15

Cperatlng System Reference Manual The Flle System

2.ia6 nsFO Flle system Call
INFO (Var Ecode:lnteger;

RefNua:Integer;
Var RefInfo:Fs_Info)

Ecode: Error indicator
RefNum: Reference number of object in Flle System
Refinfo: Information returned about RefNum's object

INFO serves a function similar to that of LOOKUP but is applicable only to
objects ln the File System that are open. The definition of the FsJnfo
record is given under LOOKUP and ln Appendix A.

2-16

Operating System Reference Manual The Flle System

2.10.7 SET_F^EJNFO File System call

SET_FILE__INFO (Var Ecode:lnteger;
RefNum:Integer;
Fsi:Fs_Info)

Ecode:
RefNum:
F s i :

Error indicator
Reference number of oDject in Flle system
New Information aDout tne oDject

SET_HLEJNFO changes the status information associated with a given oDject.
This call works ln exactly the opposite way that L00KUP and INFO work, ln
that the status information is given by your program to SETJFILEJNF0L The
Fsi argument is the same type of Information record as that returned by
LOOKUP and VNF0. The object must be open at the time this call is made.

The following fields of the information report may be changed:

file_scavenged
file_closed by_OS
file_left_open
user_type
user_subtype

2-17

Operating System Reference Manual The Flle System

2.lCL8 OPEN File System Call

OPEN (Var Ecode:lnteger;
Var Path:Pathname;
Var RefNum:Integer;

Manlp:hSet)

Ecode: Error indicator
Path: Name of object to be opened
RefNum: Reference number for object
Manip: Set of access types

The OPEN call opens an object so that it can be read or written to. When
you call OPEN, you specify the set of accesses that wlll be allowed on that
file or sequential device. The available access types are:

• Dread — Allows you to read the f l l e
• Dwrite — Allows you to write in the f i l e (to replace existing

data)
• Append — Allows you to add on to the end of the f i l e
• Private — Prevents other processes from opening the f i l e
• Global__Refnum Creates a refnum that can be passed to other

processes

Note that you can glve any number of these modes simultaneously. If you
specify Dwrite and Append in the same OPEN call, Dwrite access will be used.
See Section 2.8 for more information on Global_Refhum and Private access
modes.

If the object opened already exists and the process calls WRITE__DATA
without having specified Append access, the object can be overwritten. The
Operating System does not create a temporary file and walt for the
CLOSEJBJECT call before deciding what to do with the old flle.

An object can be opened by two separate processes (or more than once by a
single process) simultaneously. If the processes write to the file without using
a global refnum, they must coordinate their file accesses so as to avoid
overwriting each other's data

Pipes cannot be opened for Dwrite access. You must use append if you want
to write into the pipe. To set up a private pipe, the reader process opens the
pipe first, specifying Dread mode; the writer process then opens the plpe with
Append, Private access mode.

2-18

Cperatlng System Reference Manual The Flle System

2.ld9 CLOSE_GBJECT Flle System call

CLQSE_OBJECT (Var Ecode:lnteger;
RefNum:Integer)

Ecode: Error indicator
RefNum: Reference number of object to be closed

If RefNum is not global CL0SEJBJECT terminates any use of RefNum for l/0
operations. A FLUSH operation is performed automatically and the flle ls
saved in its current state, lf RefNum ls a global refnum and other processes
have the file open, RefNum remains valid for these processes and other
processes can still access the file using RefNum.

The following program fragment opens a flle, reads 512 bytes from it, and
then closes the file.

TYPE Byte=-128..127;
VAR FileName:PathName;

ErrorCode, FileRefNum:Integer;
ActualBytes:LongInt;
BUffer:ARRAY[0..511] OF Byte;

BEGIN
OPEN(ErrorCode, FileName, fileRefNunt [DRead]);
IF (ErrorCode>0) THEN

waTELN('Cannot open •,FileNarae)
a S E

BEGIN
READ_DATA(ErrorCode,

FileRefNum,
0RD4(aBuffer),
512.
ActualBytes,
Sequential,
0);

IF (ActualBytes<512) THEN
WHTE('Only read ' .ActualBytes, 1 bytes from ',FIleName);

a0SE__0BJECT(ErrorCocte, FileRefNum);
END;

END;

2-19

Cperatlng System Reference Manual The Flle System

ZlQ.10 READ_DATA and WRlTE_DATA Flle System Calls

READ_DATA (Var Ecode:lnteger;
RefNum:Integer;
Data_Addr:LongInt;
Count:LongInt;

Var Actual:LongInt;
hode:Iohode;
Gffset:LongInt);

*RITE_DATA (Var Ecode:lnteger;
RefNum:Integer;
Data_Addr:Longint;
Count:LongInt;

Var Actual:LongInt;
rtode:lohode;
Offset:LongInt);

Ecode: Error indicator
RefNum: Reference number of object for I/O
Data_Addr: Address of data (source or destination)
Count: Number of bytes of data to be transferred
Actual: Actual number of bytes transferred
Mode: I/O mode
Offset: Offset (absolute or relative modes)

READ_DATA reads Information from the device, pipe, or file specified by
RefNum, and WRlTEJDATA writes Information to lt. Data_Addr ls the
address for the destination or source of Count bytes of data. The actual
number of bytes transferred is returned in Actual.

Mode can be absolute, relative, or sequential, in absolute mode, Offset
specifies an absolute byte of the file, in relative mode. Offset specifies a
byte relative to the flle marker. In sequential mode. Offset ls Ignored
(assumed to be zero^ transfers occur relative to the file marker. Sequential
mode (which is a special case of relative mode) ls the only access mode
allowed for reading or writing data in pipes or sequential (non-disk) devices.
Non-sequentlal modes are valid only on devices that support positioning. The
first byte is numbered 0.

If a process attempts to write data past the Physical End of File on a dlsk
file, the Operating System automatically allocates enough additional space to
contain the data. This new space, may not be contiguous with the previous
blocks. You can use the ALLOCATE call to ensure that any newly allocated
blocks are located next to each other, although they may not be located near
the rest of the file.

READ_DATA from a pipe that does not contain enough data to satisfy Count
suspends the calling process until the data arrives in the pipe, lf there are no

2-20

Cperatlng System Reference ManuaJ The File System

writers, the end-of-file Indication (error 848) ls returned ln Ecoda Because
pipes are circular, WRITEJ3ATA to a plpe wlth insufficient room suspends the
calling process (the writer) until enough space is available (until the reader
has consumed enough data^ If no process has the pipe open for reading and
there Is not enough space in the pipe, the end-of-file indication (848) ls
returned ln Ecoda

NOTE

R E A D D A T A from the MAlNCONSOLE or ALTCONSOLE devices must
specify Count - 1.

The following program copies a file. Note that you must supply the correct
location for Syscall in the second line of the program

PROGRAM CopyFile;
USES (*Syscall.ObJ*) SysCall;
7YPE By te=-128..127;
VAR QldFile.NewFile:PathName;

OldRefNunt NerttefNum: INTEGER;
BytesRead,Bytes*ritten:LONGINT;
E rrorCode: I NTEGER;
Response:CHAR;
Buffer:ARRAY [Q..511] OF Byte;

BEGIN
WRITE('File to copy: ') ;
READLN(OldF1le);
OPEN(ErrorCocte,OldFile,OldRefNuni [DRead]);
IF (ErrorCode>G) THEN
BEGIN

WRlTELNfError •.ErrorCode,* while opening " ,o idFl ie);
EXIT(CopyFile);

END;
WRITE('New f i l e name: •) ;
READLN(NewFlle);
MAKE FILE(ErrorCode, Nerf"ile, 0) ;
OPENflErrorCode.NewFile,NewRefNunt [DWrite]);
REPEAT

READ_DATA(ErrorCode,
01dRefNum,
0RD4(aeuffer).
512. BytesRead, Sequential 0);

IF (ErrorCode=Q) AND (BytesRead>O) THEN
WRITE_DATA (ErrorCode.

NewRefNuHt
0RD4(aBuffer),
BytesRead. BytesWritten,Sequential. 0);

UNTIL (BytesRead=O) OR (Bytesirltten=O) OR (ErrorCode>0);

2-21

Operating System Reference Manual The Flle System

2-22

IF (ErrorCode>O) THEN
WITELN('F i le copy encountered error *,ErrorCode);

CL0SE_08JECT(ErrorCode.Ne*RefNum);
CLOSE_08JECT(ErrorCo*,OldRefNum);

END.

Operating System Reference Manual The Flle System

2 . iail R E A D L A B E L and WRITE_LABEL Flle system calls
READ_LABEL (Var Ecode:lnteger;

Var Path:Pathnaroe;
Data_Addr:Longint;
Count:LongInt;

Var Actual:Longlnt)

WHTEJLABEL (var Ecode:lnteger;
Var Path:Pathname;

Data_Addr:Longlnt;
Count:LongInt;

Var Actual:Longlnt)

Ecode: Error Indicator
Path: Name of object containing the label
Data_Addr: Source or destination of I/O
Count: Number of bytes to transfer
Actual: Actual number of bytes transferred

These calls read or write the label of an object in the File System. lfi)
always starts at the beginning of the label. Count is the number of bytes the
process wants transferred to or from Data_Addr, and Actual is the actual
number of bytes transferred. An error is returned if you attempt to read
more than the maximum label size, 128 bytes.

2~23

Operating System Reference Manual The File System

2.mi2 DEVICE_CONTROL File system call
DEVlCE_CONTROL (Var Ecode:lnteger;

Var Path:Pathname;
Var CParm:Dctype)

Ecode: Error indicator
Path: Device to be controlled
CParm: A record of information for the device driver

DEVICE_CONTROL is used to send device-specific information to a device
driver or to obtain device-specific information from a device driver.

Regardless of whether you are setting device-control parameters or requesting
information, you always use a record of type Dctype. The structure of Dctype
is:

Dctype = RECORD
dcVersion: INTEGER;
dcC0Cte: INTEGER;
dcData: ARRAY[0..9] OF LONGINT
END;

dcVersion: currently 2
dcCode: control code for device driver
dcData: specific control or data parameters

2.iai2.1 Setting DeviceHDontrol Information
Before you use a device, you call DEVlCE_CONTROL to set the device driver.
Once you begin using the device, you call DEVIC^jCONTROL as necessary.

Table 2-1 shows which groups of device-control functions must be set before
using each type of device. Table 2-2 shows which characteristics are
contained in each group. For example, you must set Group A for RS-232
input. As you see in Table 2-2, Group A indicates the type of parity used
with the device. Each group requires a separate call to DEVICE_CONTROL,
and you can set only one characteristic from each group. If you set more
than one from the same group for a particular device, the last one set will
apply.

2-24

tperatJng System Reference h>fatiLM] The File System

Table 2-1
DEVICE_CONTROL Functions Required

before Using a Device

Device Type
Serial RS-232 for
input

Serial RS-232 for
output or printer
ProFile

Parallel printer

Console screen and
keyboard

Diskette drive

Device Name
RS232A or RS232B

RS232A or RS232B

MAINC0NS0LE or
ALTC0NS0LE
UPPER or LOWER

Required Groups
K C. Dy Ey F, G

A. B, a G, Hy I

I

J

SLOTxCHANy (where J
x and y are numbers)
or PARAPORT

SLOTxCHANy (where I
x and y are numbers)
or PARAPORT

Here is a sample program that shows how a device-control parameter is set.
This program sets the parity attribute for the RS232B port to "no parity."
Note that the parity attribute requires only that you set cparm.dccode and
cparm,dcdata[0} Other parameters require that you also set cparm-dcdata[l]
and cparnxdcdata[2} They are set in a similar manner.

VAR
cparm: dctype;
errnum: integer;
path: pathname;

BEGIN
path:=*-RS232B';
cparm.dcversion:=2; (~ always set th is value *)
cparm.dccode:= 1;
cparm.dcdata[0]:= 0;
DEVICE_CONTROL(ermunt path, cparm);

END;

2-25

Operating System Reference Manual me Flle System

Table 2-2 shows how to set cpamufccode, cpanadccteta[Ol cpanadcdata[ll
and cpanadcdata[2] for the various available attributes. Note that any values
ln cparmdcdata past cparradcdata[2] are Ignored when you are setting
attributes documented here.

Table 2-2
DEVICE__CONTROL Output Functional Groups

FUNCTION .dccode .dcdatafOl .dcdatafl1 .dcdataf2l

Group A—Parity:
No parity 1 0
Odd parity, no 1 1
input parity
checking

Odd parity, 1 2
input parity
errors = 00

Even parity, no 1 3
input parity
checking

Even parity, 1 4
input parity
errors = $80

Group B—Output Handshake:
None 11
DTR handshake 2
xoN/xoFF handshake 3
delay after Cr, LF 4 ms delay

Group C--Baud rate:
baud

Group D—Input waiting during ReadJData:
wait for Count bytes 6 ~0
retum whatever rec 'd 6 1

Group E--lnput handshake:

no handshake 7

9 -1 -1 32767

DTR handshake 7

X0N/X0FF handshake 8

2-26

Operating System Reference Manual The Flle system

Table 2-2 (continued)

FUNCTION .dccode .dcdataM .dcdatafl1 .dcdataf2l

Group F—Input typeahead buffer:

f lush only 9 -1 -2 -2
f lush and re-size 9 bytes -2 -2
f lush, re-size. 9 bytes low hi
and set threshold

Group G—Disconnect Detection:

none 10 0 0
BREAK detected 10 0 non-zero
means disconnect

Group H—Timeout on output (handshake interval) :

no timeout 12 0
timeout enabled 12 seconds

Group I—Automatic linefeed insertion:

disabled 17 0
enabled 17 1

Group J—Disk errors (set to 1 to enable, to 0 to disable):

enable sparing 21 sparing rewrite reread

Group K--Break command (never required — available only on ser ial
RS-232 devices):

send break 13 millisecond 0
duration

send break 13 millisecond 1
while lowering DTR duration

Using Group C, you can set baud to any standard rate. However, 3600, 7200,
and 19200 baud are available only on the RS232B port.

"Low" and "Hi" under Group F set the low and high threshold ln the typeahead
input buffer. When "Hi" or more bytes are in the input buffer, XOFF is sent
or DTR is dropped. When "Low" or fewer bytes are in the typeahead buffer,
XON is sent or DTR is reasserted. The size of the typeahead buffer (bytes) can
be any value between 0 and lQ24 bytes inclusive.

In Group J, enabling disk sparing permits the device driver to relocate blocks
of data from areas of the disk that are found to be bad. Enabling disk rewrite

2-27

qperaUng System Reference t*fcnual me Flle system

permits the Operating System to rewrite data that lt had trouDle reading, but
finally managed to reacL This condition is referred to as a soft error
Enabling disk reread tells the Operating System to read data after they are
written to make certain that they were written correctly.

When sending a break command, as shown in Group K, any device control from
Group A removes the break condition even if the allotted time has not yet
elapsed. Also, sending a break will disrupt transmission of any other character
still being sent. If you want to make certain that enough time has elapsed for
the last character to be transmitted, call WRITE_DATA with a single null
character (equal to 0) just prior to calling DEVICE_CONTROL to send the break.

Table 2-3 gives a list of mnemonic constants that you can use in place of
explicit numbers when setting Decode, These mnemonics are provided for
convenience.

Table 2-3
Decode Mnemonics

Decode Mnemonic

1 dvParity
2 dvOutDTR
3 dVOUtXON
4 dvOutDelay
5 dvBaud
6 dvInWait
7 dvInDTR
8 dvInX0N
9 dvTypeahd

10 dvDiscon
11 dvOutNoHS
12 no mnemonic
13 no mnemonic
15 dvErrStat
16 dvGetEvent
17 dvAutoLF
20 dvDiskStat
21 dvDiskSpare

2.iai2.2 Obtaining Device-Control Information
To use DEVlCEjCONTROL to find out about the current state of a particular
device, simply give the pathname for the particular device along with a
function code for the type of information you need. The record of type Dctype
that you supply is returned filled with information.

2-28

Operating system Reference Manual The Flle System

There are three types of Information requests you can make. Note that each
type 8pplies only to some of the available devices. The request types and the
returned Information are described ln Table 2-4.
Table 2-5 shows the error code provided ln response to a Dccode-15
information request This code is given in cpanododatapJj. The code, a long
integer, ls shown in Table 2-5; the blts and bytes are numbered from the right,
counting from 0, as shown in Figure 2-1. The meaning assigned to the bit
applies if the bit is set (equals \ \

b I 3 b e 2 b 1 b B 0

7 0 7 0 7 0 7 0
Figure 2-1

Disk Hard Error Codes

Here is a program fragment that uses DEVICXjCCKTROL to get information
about the upper diskette drive.

VAR
cpar*: cfctype;
ermum: INTEGER;
path: pathname;

BEGIN
path:="HJPPER";
cpar*.dcversion:-2; (* al*ays 9et th is value *)
cpara.dccode := 20;
DEVICEjCONTROL(errnuRt path,cpara);
VITH cpari 00
VRITELN (dcdata[0Ldcdata[l],dcdata[2],dcdata[3],

dcdata[4Ldcdata[5L^cdata[6])
END;

2-29

cperaUng system Reference ManuaJ The Flle System

Table 2-4
Device information

Decode Devices Returned ln Dcdata

15 ProFiles [o] contains disk error status on
last hardware error (see Table
2-5)
[1] contains error retry count
since last system boot

16 Console Screen [0] contains numbers 0-10,
and Keyboard which indicate events:

0 = no event
1 = upper diskette inserted
2 = upper diskette button
3 = lower diskette inserted
4 = lower diskette button
6 = mouse button down
7 = mouse plugged in
8 = power button
9 = mouse button up

10 = mouse unplugged
[1] contains the current state of
certain keys, indicated by set
b i t s (i f the b it i s 1, the key i s
pressed) (b i t s are numbered from
the r ight)

0 = caps lock key
1 = sh i f t key
2 = option key
3 = command key
4 = mouse button
5 = auto repeat

[2] contains X and Y coordinates
of mouse, X in left 2 bytes,Y in
r ight 2 bytes
[3] contains timer value in
milliseconds

2-30

operating System Reference Manual The Flle System

Decode Devices
Table 2-4 (continued)

Returned ln Dcdata

20 ProFile or
Diskette Drive

[0] contains:
0 = no disk present
1 = disk present (but not

accessed yet)
The following Indicate that a
disk l s present and has been
accessed at least once.

2 = bad block track appears
unformatted

3 = disk formatted by some
program other than the
Operating System

4 = OS-formatted disk
[1] contains:

0 = no button press pending
1 = button press pending.

[2] contains number of available
spare blocks, 0-16,
meaningful only when
Dcdata[0] = 4 and for a
diskette

[3] contains:
0 = both copies of the

bad-block directory OK
1 = one copy i s corrupt

(meaningful only when
Dcdata[0] = 4)

[4] contains:
0 * sparing disabled
1 * sparing enabled

15] contains:
0 = rewrite disabled
1 = rewrite enabled

[6] contains:
0 = reread disabled
1 = reread enabled

disk not yet ejected

2-31

cperatlng System Reference Manual me Flle system

Table 2-5
Disk Hard Error Codes

Byte 3
7 = ProFile received <> 55 to i t s last response
6 = Write or write/verify aborted because more than 532 bytes of

data were sent or because ProFile could not read i t s spare
table

5 = Host ' s data i s no longer in RAH because ProFile updated i t s
spare table

4 = SEEK ERROR — unable in 3 t r i e s to read 3 consecutive headers
on a track

3 = CRC error (only set during actual read or verify of
write/verify, not while trying to read headers after seeking)

2 = TIhEOUT ERROR (could not f ind header in 9 revolut ions)— not
set while trying to read headers after seeking

1 = Not used

0 = Operation unsuccessful

Byte 2
7 = SEEK ERROR — unable ln l try to read 3 consecutive headers

on a track
6 = Spared sector table overflow (more than 32 sectors spared)
5 - Not used
4 = Bad block table overflow (more than ioo bad blocks in table)
3 » ProFile unable to read i t s status sector
2 = sparing occurred
1 * seek to wrong track occurred
0 = Not used

Byte 1
7 = ProFile has been reset
6 = inval id block number
5 = Not used
4 = Not used
3 * Not used
2 = Not used
1 « Not used
0 = Not used

Byte 0
This byte contains the number of errors encountered when rereading a
block after any read error.

2-32

Operating System Reference Manual The File System

Ziai3 ALLOCATE FUe System Call
ALLOCATE (Var Ecode:lnteger;

RefNua:Integer;
Contiguous: Boolearu
Count:LongInt;

Var Actual:Irrteger)

Ecode: Error indicator
RefNum: Reference number of oDject to be allocated space
Contiguous: True = allocate contiguously
Count: Number of blocks to be allocated
Actual: Number of blocks actually allocated

Use ALLOCATE to Increase the space allocated to an object If possible,
ALLOCATE adds the requested number of blocks to the space available to the
object referenced by RefNum. The actual number of blocks allocated ls
returned in ActuaL If Contiguous is true, the new space ls allocated in a
single, unfragmented space on the disk. This space is not necessarily adjacent
to any existing file blocks.

ALLOCATE applies only to objects on block-structured devices. An attempt to
allocate more space to a pipe is successful only lf the pipe's read pointer is
less than or equal to its write pointer. If the write pointer has wrapped
around but the read pointer has not an allocation would cause the reader to
read lnvalld and uninitialized datau so the File System returns error 1186 in
thls case.

2-33

operating System Reference Manual The Flle System

2 . iai4 COMPACT File System Call
COMPACT (Var Ecode:lnteger;

RefNum:Integer)

Ecode: Error Indicator
RefNurn: Reference number of object to be compacted

COMPACT changes the Physical End of File to deallocate any blocks after the
block that contains the Logical End of Flle for the flle referenced by RefNum
(See Figure 2-1.) COMPACT applies only to objects on block-structured
devices. As in the case of ALLOCATE, compaction of a plpe ls legal only if
the read pointer is less than or equal to the write pointer, lf the write pointer
has wrapped around, but the read pointer has not, compaction could destroy
data in the pipe. The File System returns error 1188 in this case.

2-34

Operating System Reference Manual The File System

z i a i 5 TRUNCATE File system can
TRUNCATE (Var Ecode:Integer;

RefNuro:Integer)

Ecode: Error indicator
RefNum: Reference number of object to be truncated

TRUNCATE sets the Logical End of File indicator to the current position of
the file marker. Any data beyond the file marker are lost TRUNCATE
applies only to block-structured devices. Truncation of a pipe can destroy
data that have been written but not yet read. As the diagram shows,
TRUNCATE changes only LEOF. COMPACT, on the other hand, changes only
PEOF.

r TRUNCATE-

new
LEOF

COMPACT-i

new
PEOF

mm
ALLOCATED

File Marker old
LEOF

old
PEOF

Figure 2-2
The Relationship of COMPACT and TRUNCATE

In this figure the boxes represent blocks of data Note that LEOF can point to
any byte in the file but PE0F always points to a block boundary. Therefore,
TRUNCATE can reset LEOF to any byte in the file, but COMPACT can reset
PEOF only to a block boundary.

2-35

operating System Reference Manual The File System

2.10.16 FLUSH Flle system Call

FLUSH (Var EcoCte:Integer;
RefNu*:Integer)

Ecode: Error indicator
RefNum: Reference number of destination of i/o

FLUSH forces all buffered Information destined for the object Identified by
RefNum to be written out to that object

A slde effect of FLUSH ls that all FS buffers and data structures are flushed
(as well as the control information for the referenced file^ lf RefNum is
only the global File System ls flushed. This is a method by which an
application can ensure that the File System is consistent

2-36

Operating System Reference Manual The Flle System

z i a i 7 SET_SAFETY Flle System can
SETJSAFETY (Var Ecode:lnteger;

Var Path:Pathnawe;
On__off:Boolean)

Ecode: Error indicator
Path: Name of object containing safety switch
0n_0ff: Set safety switch:

On * true
Off = false

Each object in the File System has a "safety switcrf to help prevent accidental
deletloa If the safety switch is on, the object cannot be deleted.
SET_SAFETY turns the switch on or off for the object Identified by path.
Processes that are sharing an object should cooperate wlth each other when
setting or clearing the safety switch.

2-37

operating System Reference Manual The File System

2.iai8 SET_WGRKD^JGJDB3 and GET_WORKINQ_DIR File System Calls

SETJWRKING_DIR (Var Ecode:lnteger;
Var Path:Pathname)

GET_W0RKING_DIR (Var Ecode:lnteger;
Var Path:Pathnarae)

Ecode: Error indicator
Path: Working directory name

The Operating System uses the working directory name to resolve partially
specified pathnames into complete pathnames. GET_WCRPQNG_DIR returns the
current working directory name in Path. SET_WGRhONG_Dff^ sets the working
directory name.

The following program fragment reports the current name of the working
directory and allows you to set it to something else:

VAR WorklngDlr:PathName;
ErrorCode:INTEGER;

BEGIN
GET_WORKING_DIR(ErrorCode, iorkingDir);
IF (ErrorCode<>0) THEN

*RITELN(*Cannot get the current working directory!')
ELSE WRITELN('The current working directory i s : ',WorkingDir);
WRITE('New working directory name: ') ;
READLN(WorkingDir);
SET_iORKING_DIR(ErrorCode, iorkingDir);

END;

2-58

Operating System Reference Manual The File System

2.iai9 RESET_CATALOG and GET_NEXT_ENTRY Flle System CallS

RESETJDATALOG (Var Ecode:INTEGER;
Var Path:Pathname)

GET_NEXT_ENTRY (Var ECOde:INTEGER;
Var Pref i * ,

Entry:E_Name)

Ecode: Error indicator
Path: Working directory name
Prefix: Beginning of f i l e names returned
Entry: Names from catalog

RESET_CATALOG and GETJNEXT_ENTRY give a process access to catalogs.
RESET_CATALOG sets the catalog file marker to the beginning of the catalog
specified by Path. Path should be a root volume name. GET_NEXT_ENTRY
then performs sequential reads through the catalog file specified ln the
RESET_CATALOG call and returns File System obfect nannes. An enchof-file
error code (848) is returned when GET_NEXT_ENTRY reaches the end of the
catalog. If Prefix ls non-null, only those entries in the catalog that begin with
that prefix are returned. If Prefix is M AB M , for example, only file names that
begin with "AB" are returned. The prefix and catalog marker are local to the
calling process, so several processes can simultaneously read a catalog without
affecting each other.

2-39

Operating System Reference Manual The File System

2.1a20 MOUNT and UNMOJNT File system caUs
MOUNT (Var Ecode:lnteger;

Var VName:EJiame;
Var Password:E_Name
Var Devname:E_Name)

UNMOUNT (Var Ecode:lnteger;
var Vname:E_name)

Ecode: Error indicator
Vname: Volume name
Password: Password for device (currently ignored)
Devname: Device name

MOUNT and UNMOUNT handle access to sequential devices or block-structured
devices. For block-structured devices, MOUNT logically attaches the volume's
catalog to the File System. The name of the volume mounted is returned in
the vname parameter.

UNMOUNT detaches the specified volume from the File System. No object on
that volume can be opened after UNMOUNT has been called. The volume
cannot be unmounted until all the objects on the volume have been closed by
all processes using them.

Devname is the name of the device on which a volume is being mounted.
Devname should be given without a leading dash (->

Vhame ls the name of the volume that was successfully mounted, and ls
returned.

2-40

Chapter 3
Processes

3.1 ProcessStructure 3-2

3 2 ProcessHterarchy 3-2

3 3 ProcessCreaUon 3-3

3.4 Process Control 3-3

3.5 ProcessScheduUng 3-3

3.6 Process Termination 3-4
3.7 A ProcessHHarxfltog Example 3 ^

3.8 ProcessSystemCaUs 3-7

3.8.1 MAKE_PROCESS 3-8
3.8.2 TERMINATE_PROCESS 3-9
3.8.3 INFO_PROCESS 3-11
3.&4 KILL_PROCESS 3-13
3.8.5 SUSPENDJ>ROCESS 3-14
3.8.6 ACTIVATE_PROCESS .3-15
3.8.7 SETPRI0RITY_PROCESS 3-16
3.8.8 YIELD_CPU 3-17
3.8.9 MY ID 3-18

029-0418-A

Processes

A process is an entity in the Lisa system that performs work. When you ask
the Operating System to run a program, the OS creates a specific instance of
the program and its associated data. That instance is a process.

The Lisa can have a number of processes at any one time; they appear to be
running simultaneously. Although processes can share code and data, each
process has its own stack.

Only one process at a time can use the CPU. The Scheduler determines
which process is active at a particular time. The Scheduler allows each
process to run until some condition that would slow execution occurs (an I/O
request, for exampie> At that time, the running process is saved in its
current state. The Scheduler then checks the pool of ready-to-run processes.
When the original process later resumes execution, it picks up where it left
off.

The process scheduling state has three possibilities. A runnIngprocess is
actually executing instructions. A readyprocess is ready to execute but is
being held back by the Scheduler. A hJockedprocess is ignored by the
Scheduler. It cannot continue its execution until something causes it to
become ready. Processes commonly become blocked while awaiting
completion of I/O, although there are a number of other likely causes.

3-1

pperaUng System Reference Manual Pwcesses

3.1 Process Structure
A process can use up to 16 data segments and 106 code segments.

The layout of the process address space for user processes ls shown in Figure
3-1.

Seg#

0

1

106
+

107

122

+
123

+
124

125
•

126

127

Unavailable

User Code Segments

LDSN 1

(data segments)

LDSN 16

Stack

Shared I n t r i n s i c Unit Data

Screen

Reserved

Reserved

Figure 3-1
Process Address Space Layout

Each process has an associated priority, an integer between 1 and 255. The
Scheduler usually executes the highest-priority ready process. The higher
priorities (226 to 255) are reserved for the Operating System.

32 Process Hierarchy
When the system is first started, several system processes exist At the base
of the process hierarchy, shown in Figure 3-2, is the root process, which
handles various Internal Operating System functions. It has at ieast two sons:
the Memory Manager process and the shell process.

The Memory Manager process handles code and data segment swapping.

3-2

Operating System Reference Manual Processes

The sheiiprocess ls a user process that ls automatically started when the OS
ls Initialized. It is typically a command Interpreter, but it can be any
program. The OS slmpiy looks for the program called SYSTEM.SHELL and
executes l t

Root Process

Other

Other User Processes

Figure 3-2
Process Tree

Any other system process (the network control process, for example) is a son
of the root process.

3.3 Process Creation
When a process is created, it is placed in the ready state with a priority equal
to that of the process that created i t All the processes created by a given
process can be thought of as existing in a subtree. Many of the process
management calls affect the entire subtree of a process as well as the process
itself.

3.4 Process Control
Three system calls are provided for explicit control of a process. These calls
allow a process to kill, suspend (block), or activate any other user process in
the system, as long as the process identifier is known. Process-handling calls
are not allowed to control Operating System processes.

3.5 Process Scheduling
Process scheduling is based on the priority established for the process and on
requests for Operating System services.

The Scheduler generally executes the highest-priority ready process. Once a
process is executing, it loses the CPU only under certain circumstances. The
CPU ls lost when there ls some specific request for the process to walt (for
an event, for example^ when there is an I/O request, or when there is a
reference to a code segment that is not in memory. A process that makes

3-3

QperaUng System Refererx^e fi'&nua] Processes

any Operating System call may lose the CPU. The process gets the CPU back
when the Operating System is finished, except under the following conditions:

• The running process requests input or output. The Scheduler starts the
next highest-priority process running while the first process waits for the
l/O to complete.

• The running process lowers its priority below that of another ready process
or sets another process's priority higher than its own.

• The running process explicitly yields the CPU to another process.

• The running process activates a higher-priority process.

• The running process suspends itself.

• A higher-priority process becomes ready.

• The running process needs code to be swapped into memory.

• The running process executes an event-wait call.

• The running process calls DELAY_71ME.

Because the Operating System cannot seize the CPU from an executing
process except in the cases noted above, background processes should be
liberally sprinkled with YIELD_CPU calls.

When the Scheduler is invoked, it saves the state of the current process and
selects the next process to run by examining the pool of ready processes. If
the new process requires that code or data be loaded into memory, the
Memory Manager process is launched. If the Memory Manager is already
working on a process, the Scheduler selects the highest priority process in the
ready queue that does not need anything swapped.

3.6 Process Termination

A process terminates under one of the following conditions:

• It callS TERMINArE_PROCESS.

• It reaches an 'END.' statement

• It is referred to in a KH_Lj>ROCESS call.

• Its father process terminates.

• It runs into an abnormal condition.
When a process begins to terminate, a SYS_TERMINATE exception condition is
signaled to the terminating process and all of the processes it has created.
By means of the DECLARE_EXCEP_HDL call (described in Chapter 5), any
process can create an exception handler to catch the terminate exception and
clean up before terminating. The SYS__TERMINATE exception handler will be
executed only once. If an error occurs while the handler is executing, the
process terminates immediately.

3-4

Cperatlng System Refeience ^fanual Pwcesses

A process can call KlLL_PROCESS on any user process whose ProcJd ls
known. TERMlNATE_PROCESS, on the other hand, terminates the process that
called it (and its descendants> TERMINATE_PROCESS also allows an event to
be sent to the father of the terminating process if a local event channel was
specified ln the MAKE_PROCESS call.

Termination involves the following steps:

1. Signal the SYS_TERMlNATE exception on the terminating process.

2. Execute the user's exception handler, if any.

3. Instruct all sons of the current process to terminate.

4. Close all open files, data segments^)ipes, and event channels left open by
the user process.

5. Send the SYS_SON_TERM event to the father of the terminating process
if a local event channel exists.

6. wait for all the sons to finish termination.

3.7 A Process-Handling Example
The following programs illustrate the use of many of the process-management
calls described in this chapter. The program Father, below, creates a son
process and lets it run for a while. It then gives the user a chance to
activate, suspend, kill, or get information about the son,

PROGRAM Father;
USES (*$U Source:SysCall.Obj*) SysCall;
VAR ErrorCode:INTEGER;(*error returns from system ca l l s *)

proc_id:LONGINT; (* process global identif ier *)
progname:Pathname; (* program f i l e to execute *)
null:NameString; (* program entry point *)
Info_Rec:ProcInfoRec; (* information about process *)
i:INTEGER;
Answer:CHAR;

3-5

Operating System Reference Manual Processes

BEGIN
ProgName:='SON.OBJ'; (* this program i s defined belor*)
N u l l : = " ;
MflKE_PROCESS(ErrorCode, Proc_ld, ProgName, Null, 0);
IF (Errorcode<>0) THEN

waTELN('Error ',ErrorCode/ during process management.');
FOR i := l T0 15 00 (* idle for a*hile *)
BEGIN

WITELNCFather executes for a moment.");
YIELD_CPU(ErrorCode,FflLSE); (* let son run *)

END;
W ITE ('K (i l l S(uspend A(ctivate I(nfo');
READLN(Ansver);
CASE Answer OF

"K", "k": KILL_PROCESS(ErrorCode,Proc_Id);
' S ' , * s ' : SUSPEND_PROCESS(ErrorCode,Proc_ld,TRUE (« suspend

family *)) ;
' A ' , ' a ' : ACTIVA7E_PR0CESS(ErrorCode,ProcId, TRUE (* activate

family *)) ;
" I V i " : BEGIN
INFO_PROCESS(ErrorCode. Proc_Id, Info_Rec);
*raTELN("Son"s name i s Mnfo_Rec.ProgPatnName);
END;

END"
IF (ErrorCodeoO) THEN

WRlTELN("Error •,ErrorCode.' during process management.');
END.

The program Son is:

PROGRAM Sorv
USES (*$U Source:SysCall.Obj*) SysCall;
VAR ErrorCocte:INTEGER;

null:NameString;
BEGIN

WHILE TRUE DO
BEGIN

WRITELN('Son executes for a moment.');
YIELD_CPU(ErrorCode. FALSE); (*let father process run*)

END;
END.

3-6

Operating System Reference Manual Processes

3.8 Process System Calls
This section describes the Operating System calis that pertain to process
control. A summary of ali the Operating System calls can be found in
Appendix A. The following special types are used in process-control calls:

Pathname = STRING[255];
Namestrlng = STRING[20];
P_s_eventblock = ^s_eventblock;
S_eventblock = T_event_text;
T_event_text = array [Q..size_etext] of longint;
ProcInfoRec = record

progpathname : pathname;
global_id : longint;
father_id : longint;
priority : 1..255;
state : (pactive, psuspended, pvaiting);
data_in : boolean
end;

3-7

Operating System Reference Manual Processes

3 A 1 MAKE_PROCESS Process System Call

ttAKE_PROCESS (Var ErrNum:Integer;
Var ProcJd:LongInt;
Var ProgFile:Pathname;
Var EntryName:NameString; (* NaraeString = STRIN6[20] *)

Evnt_Chn_RefNum:Integer)

ErrNum: Error indicator
Proc_Id: Process identif ier (globally unique)
ProgFile: Process f i l e name
EntryName: Program entry point
Evnt_Chn_RefNum: Communication channel between cal l ing

process and created process

A son process is created when another process, the father process, calls
MAKE_PROCESS. The son process executes the program identified by the
pathname in ProgFile. lf ProgFile is a null character string, the program name
of the father process is used. A globally unique identifier for the son process
is returned in Proc_Id.

Evnt_Chn_RefNum is a local event channel supplied Dy the father process.
Event channels are discussed in Chapter 5. The Operating System uses the
event channel identified by Evnt__Chn__RefNum to send the father process
events regarding the son process (for example, SYS_SON_TERM> If
Evnt_Chn_RefNum is zero, the father process is not informed when such
events are produced.

EntryName, if non-null, specifies the program entry point where execution is
to begin. Because alternate entry points have not yet been defined for
Pascal, this parameter is currently ignored.

Any error encountered during process creation is reported in ErrNum

3-8

Cperatlng System Reference fi-lanual Processes

3.82 TERMlNATE_PROCESS Process System Call

TERHINA7E_PR0CESS(Var ErrNum:Integer;
Event_Ptr:P_s_eventblk)

ErrNum: Error indicator
Event_Ptr: Information sent to process 's creator

A process can be ended by TERMINATE_PROCESS. This call causes a
SYS_TERMINATE exception to be signaled for the calling process and for all
of the processes it has created. The process can declare its own
SYS__TERMINATE exception handler to handle whatever cleanup it needs to do
before it is actually terminated by the system. When the terminate exception
handler is entered, the exception information block contains a longint that
describes the cause of the process termination:

Excep_Data[0] - 0 Process called TERMINATE_PROCESS.

1 Process executed the 'END.' statement.

2 Process called KILL_PROCESS on itself.

3 Some other process called KILL_PROCESS on the
terminating process.

4 Father process is terminating.

5 Process made an invalid system call (that is, an
unknown calty

6 Process made a system call with an invalid ErrNum
parameter address.

7 Process aborted due to an error while trying to swap
in a code or data segment

8 Process exceeded its maximum specified stack size.

9 Process aborted due to possible lockup of the system
by a data space exceeding physical memory size.

10 Process aborted due to a parity error.

There are an additional twenty-six errors that can be signaled. The entire list
is shown at the beginning of Appendix A.

If the terminating process was created with a communication channel, a
SYS_S0N_JERM event is sent to the terminating process's father. The
terminating process can specify the text of the SYS_SON_TERM with the
Eventj>tr parameter. Note that the first (0'th) longint of the event text is
reserved by the system. When the event is sent to the father, the OS places
the termination cause of the son process ln the first longint This is the same
termination cause that was supplied to the terminating process itself in the

3-9

Operating System Reference Manual Processes

SYS_TERMlNATE exception information block. Any user-supplied data in the
first longint of the event text is overwrittea

If a process specifies an event to be sent in the T E R M ^ T E _ P R O C E S S call
but the process was created without a local event channel, no event is sent to
the father.

If the process was created with a local event channel an event is sent to the
father if the process calls TERMlNATE__PROCESS with a nil Event_Ptr or if
the process terminates by a means other than calling TERMttstfVTEj>ROCESS.
The event contains the termination cause in the first longint and zeroes in the
remaining event text

P_s_eventbIk is a pointer to s_eventblk, defined as:

CONST size_etext * 9; (* event text size - 40 bytes *)
TYPE t_event_text = ARRAY [O..size_etext] OF Longint;

s_eventbU< = t_event_text;

If a process calls TERh'UNATE_PROCESS twice, the Operating System forces it
to terminate even if it has disabled the terminate exception.

3-i0

Operating System Reference Manual Processes

3.83 lNFO_PROCESS Process System Call

INFO_PROCESS (Var ErrNum:Integer;
Proc_Id:LongInt;

Var Proc_Info:ProcInfoRec);

ErrNum: Error indicator
P rocJd: Global identif ier of process
ProcJnfo: Information about the process identified by

Proc_Id

A process can call ttsFO_PROCESS to get a variety of information about any
process known to the Operating System. Use the function M Y J D to get the
ProcJd of the calling process.

ProcInfoRec is defined as:

TYPE ProcInfoRec = RECORD
ProgPathname
Global_id
Priority
state
Data_in

END;

Pathname;
Longint;
1..255;
(PActive, PSuspended, P*aiting);
Boolean

Cteta_ln indicates whether the data space of the process ls currently in
memory.

The procedure on the next page gets information about a process and displays
some of it.

3-11

Operating System Reference Manual Processes

PROCEDURE DisplayJnfo(PTOCjd:L0NGINT);
VAR ErrorCode:INTEGER;

lnfo_Rec:ProcInfoRec;
BEGIN

INFO_PROCESS(ErrorCode, ProcJd. lrrfo_Rec);
IF (ErrorCode=10Q) THEN

iRITELNCAttenpt to display info about nonexistent
process. ')

ELSE
BEGIN

•ITW Xnfo_Rec DO
BEGIN

iRITELN(' programname: ',ProgPathName);
iRITELN(' global i d : ' ,Global_id);
WtfTELN(' pr ior i ty: * ,pr ior i ty) ;
•RITE(' state: ') ;
CASE State OF

PActive: *RITELN('act ive ') ;
PSuspended: WtfTELN('suspended');
P ia i t ing: WRITELN(1 *3iting')

END
END

END
END;

3-12

Operating System Reference Manual Processes

3 A 4 KiLL_PROCESS Process System Call

KILL_PROCESS (Var ErrNum:Integer;
Proc_Id:LongInt)

ErrNum: Error indicator
Proc__Id: Process to be k i l led

KlLL_PROCESS kills the process referred to by Proc_Id and all of the
processes in its subtree. The actual termination of the process does not occur
until the process is in one of the following states:

• Executing in user mode.

• Stopped due to a SUSPEND_PROCESS call.

• Stopped due to a DELAY_TlME call.

• Stopped due to a WAIT_EVENT_CHN or SEND_EVENT_CHN call, or
READJDATA or WRITEJDATA tO a pipe.

3-13

Operating System Reference Manual Processes

3.85 SUSPEND_PROCESS Process System Call

SUSPEND_PROCESS (Var ErrNum:Integer;
ProcJd:LongInt;
Susp_Family:Boolean)

ErrNum: Error indicators
P rocJd: Process to be suspended
Susp_Family: I f true, suspend the entire process subtree

SUSPEND_PROCESS allows a process to suspend (block) any process in the
system. The actual suspension does not occur until the process referred to by
ProcJd is in one of the following states:

• Executing in user mode

• Stopped due to a CCLAY jnME call

• Stopped due to a WAlT_EVENT_CHN call

Neither expiration of the delay time nor receipt of the awaited event causes
a suspended process to resume execution. SUSPEND_PROCESS is the only
direct way to block a process. Processes, however, can become blocked during
I/O, by the timer (see DELAYT IME) , or for many other reasons.

If Susp_FamUy is true, the Operating System suspends both the process
referred to by ProcJd and all of its descendents. If susp_FamUy is false,
only the process identified by ProcJd is suspended.

3-14

Operating System Reference Manual Processes

3.8.6 ACTlVATE_PROCESS Process System Call

ACnvATE_PRQCESS(Var ErrM*n:Integer;
Proc_Id:LongInt;
Act_Family:Boolean)

ErrNum: Error indicator
Proc_Id: Process to be activated
Act_Family: I f true, activate the entire process subtree

To awaken a suspended process, call ACTlVATE_PROCESS. A process can
activate any other process in the system. Note that ACTIVATE_PROCESS can
awaken only a suspended process. If the process is blocked for some other
reason, ACTIVATE_PROCESS cannot unblock it. If Act_Family is true,
ACTWATE_PROCESS also activates all the descendents of the process referred
to by Proc_Id.

3-15

Operating System Reference Manual Processes

3.8J SETPRIORITY_PROCESS Process System Call

SETPRIORITY_PROCESS(Var ErrNum:Integer;
Proc_Id:LongInt;
Ne*_Priority:Integer)

ErrNum: Error indicator
Proc_Id: Global id of process
New_Priority. Process 's new pr ior i ty number

SETPRI0RITY_PROCESS changes the scheduling priority of the process
referred to by ProcJd to New_Priority. The priority value must be between 1
and 225. (Operating System processes execute with priorities between 226
and 255.) The higher the priority, the more likely the process is to be allowed
to execute.

3-16

Operating System Reference Manual Processes

3.8.8 Y M _ D C P U Process system Call

YIELD_CPU(Var ErrNum:Integer;
To_Any:Boolean)

ErrNum: Error indication
To__Any: Yield to any process, or only higher or equal

pr ior ity

Background processes should use YIELD_CPU often to allow other processes to
execute when they need to. Successive yields by processes of the same
priority result in a "round robin" scheduling of the processes. If To_Any is
true, YELD_CPU causes the calling process to yield the CPU to any other
ready process. If Tq__Any is false, YlELD_CPU causes the calling process to
give the CPU to any other ready-to-execute process with an equal or higher
priority. If no process meets the To_Any criterion, the calling process simply
continues execution.

3-17

Operating System Reference Manual Processes

3.8.9 M Y J D Process System Call

HYJD:Longint

M Y J D is a function that returns the unique global identifier (a longlnt) of the
calling process. A process can use M Y J D to perform process handling calls
on itself.

For example:

SetPrlority_Process(ErrNumriyJd. 100)

sets the priority of the calling process to 100.

3-18

Chapter 4
Memory Management

4wl DataSegments 4-1

4 2 TheLoglcalDataSegmentNumter . 4-1

4.3 Shared Data Segments 4-2

4*4 Private Data Segments 4-2

4 5 CodeSegments 4-2

*k6 Swapping 4-2

4 J MemoryManagementSystemCalls 4-3

4.7.1 MAKEJDATASEG 4-4
4.7.2 KILL__DATASEG 4-6
4.7.3 OPEN_DATASEG 4-7
4.7.4 CLOSE_DATASEG 4-8
4.7.5 FLUSH_DATASEG 4-9
4.7.6 SIZEJDATASEG 4-10
4.7.7 INFQ_DATASEG 4-11
4.7.8 INFO_LDSN 4-12
4.7.9 lNFO_ADDRESS 4-13
4.7.10 MEMJNFO 4-14
4.7.11 SETACCESS_DATASEG 4-15
4.7.12 BIND_DATASEG and UNBIND_DATASEG 4-16

029-0419-A

Memory Management

Every process has a set of code segments and data segments which are in
physical memory when they are used. The logical address used by the process
must be translated into the physical address used by the memory controller.
This function is handled by the memory management unit (MMLfy

4.l Data segments
Each process has a data segment that the Operating System automatically
allocates to it for use as a stack. The stack segment's internal structures are
managed by the hardware and the Operating System.

A process can acquire additional data segments for uses such as heaps and
interprocess communication. These additional data segments can be private
(or local) data segments or shared data segments. Private data segments
can be accessed only by the creating process. When the process terminates,
any private data segments still in existence are destroyed. Shared data
segments can be accessed by any process that opens those segments.

The Operating System requires that data segments be in physical memory
before the data are referenced. The Scheduler automatically loads all of the
data segments that the program says it needs. It is the responsibility of the
programmer to ensure that the program declares all its needs by associating
itself with the needed data segments before they are needed.

This process of association is called binding. A program can bind a data
segment to itself in several ways. When a program creates a data segment by
using the MAKEJDATASEG call, the segment is automatically opened and
bound to the program. If a program needs to open a segment that was
created by another program, the OPEN_DATASEG call is used. That call binds
the segment to the calling process, as well as opening the segment for the
process. Since there may be times when a process needs to use more data
segments than can be bound at one time, the UNBD^DJDATASEG call is
provided to unbind the data segment without closing it. The program can then
use BMD__DATASEG to bind another data segment to the program.

The Operating System views all data segments except the stack as linear
arrays of bytes. Therefore, allocation, access, and interpretation of structures
within a data segment are the responsibility of the program.

4 2 The Logical Data Segment Number
The address space of a process allows up to 16 data segments bound to a
process at the same time, in addition to the stack. Each bound data segment
is associated with a specific region of the address space by means of a
Logical Data Segment Number (LDSN> See Figure 3-1 for an illustration of
the address space of a process. While a data segment is bound to the process,
it is said to be a member of the working set of the process.

4-1

Operating System Reference Manual Memory Management

The process associates a data segment wlth a specific LDSN ln the
MAKE_DATASEG or CPEN_DATASEG call.

The LDSN, which has a valid range of 1 to 16, is local to the calling process.
The process uses the LDSN to keep track of where a given data segment can
be found. More than one data segment can be associated with the same LDSN,
but only one such segment can be bound to a given LDSN at any instant and
thus be a member of the working set of the process.

4 3 Shared Data Segments
Cooperating processes can share data segments. Shared segments cannot be
larger than 128 Kbytes In length. As with local data segments, the segment
creator assigns the segment a File System pathname. All processes that share
that data segment then use the same pathname. If the shared data segment
contains address pointers to data within the segment, the cooperating
processes must also use the same LDSN with the segment. This ensures that
all logical data addresses referencing locations within the data segment are
consistent for the processes sharing the segment. A shared data segment is
permanent until explicitly killed by a process.

4.4 Private Data Segments
Data segments can also be private to a process. In this case, the maximum
dze of the segment can be greater than 128 Kbytes. The actual maximum
size depends on the amount of physical memory in the machine and the
number of adjacent LDSNs available to map the segment. The process gives
the desired segment size and the base LDSN to map the segment. The
Memory Manager then uses ascending adjacent LDSNs to map successive 128
Kbyte chunks of the segment. The process must ensure that enough
consecutive LDSNs are available to map the entire segment.

Suppose a process has a data segment already bound to LDSN 2. If the
program tries to bind a 256 Kbyte data segment to LDSN 1, the Operating
System returns an error because the 256 Kbyte segment needs two consecutive
free LDSNs. Instead, the program should bind the segment to LDSN 3 and the
system automatically also uses LDSN 4.

4 5 Code Segments
Division of a program into multiple code segments (swapping units) is dictated
by the programmer through commands to the Compiler and Linker. The M M U
registers can map up to 106 code segments.

4.6 Swapping
When a process executes, the following segments must be in physical memory:

• The current code segment

• All the data segments in the process working set (the stack and all bound
data segments)

The Operating System ensures that this minimum set of segments is in physical
memory before the process is allowed to execute. If the program calls a
procedure in a segment not in memory, a segment swap-in request is Initiated.

4-2

Operating System Reference Manual Memory Management

In the simplest case, this request only requires the system to allocate a block
of physical memory and to read in the segment from the disk. In a worse
case, the request may require that other segments be swapped out first to
free up sufficient memory. A clock algorithm is used to determine which
segments to swap out or replace. This process is invisible to the program.

4.7 Memory Management System Calls
This section describes all the Operating System calls that pertain to memory
management. A summary of all the Operating System calls can be found in
Appendix A. The following special types are used in memory management
calls:

Pathname = STRING[2S5];
Tdstype = (ds_shared, ds_private);
DslnfoRec = Record

mem_size:longint;
disc_size:longint;
numb_open:integer;
LDSN:integer;
boundF:boolean;
presentF: boolean;
creatorF: boolean;
r*access:boolean;
segptr:longint;
volname:e name;

end;
E_name = string [32];

4-3

Operating System Reference Manual Memory Management

4w7.l MAKE_DATASEG Memory Management System Call

ttAKE_DATASEG (Var ErrNum:Integer;
Var Segname:Pathname;

Mem_Size, Di sk_Size:LongInt;
Var RefNum:Integer;
Var SegPtr:LongInt;

Ldsn:Integer
Dstype:Tdstype)

ErrNum: Error indicator
Segname: Pathname of data segment
Mem_Size: Bytes of memory to be allocated to data segment
Disk_Size: Bytes on disk to be allocated for swapping segment
RefNum: Identif ier for data segment
SegPtr Address of data segment
Ldsn: Logical data segment number
Dstype: Type of dataseg (shared or private)

MAKEJDATASEG creates the data segment identified by the pathname,
Segname, and opens it for immediate read-write access. Segname is a File
System pathname.

The parameter Mem_Slze determines how many bytes of main memory are
allocated to the segment. The actual allocation takes place in terms of
5l2-byte pages. If the data segment is private (Dstype is dsj)rtvate),
Mem_Size can be greater than 128 Kbytes, but you must ensure that enough
consecutive LDSNs are free to map the entire segment.

Disk_Size determines the number of bytes of swapping space to be allocated
to the segment on disk. If Disk_Size is less than Mem__Size, the segment
cannot be swapped out of main memory. In this case the segment is memory
resident until it is killed or until its size in memory becomes less than or
equal to its Disk_Size (see SIZE_DATASEG^ The application programmer
should be aware of the serious performance implications of forcing a segment
to be memory resident. Because the segment cannot be swapped out, a new
process may not be able to get all of its working set into memory. To avoid
thrashing, each application should ensure that all of its data segments are
swappable before it relinquishes the attention of the processor.

The calling process associates a Logical Data Segment Number (LDSN) with
the data segment, lf this LDSN is bound to another data segment at the time
of the call, the call returns an error.

RefNum is returned by the system to be used in any further references to the
data segment. The Operating System also returns SegPtr, an address pointer to
be used to reference the contents of the segment. SegPtr points to the base
of the data segment.

Any error conditions are returned in ErrNum.

4-4

Operating System Reference Manual Memory Management

When a data segment is created, it immediately becomes a member of the
working set of the calling process. You can use UNBIND_DATASEG to free
the LDSN.

4-5

Operating System Reference Manual Memory Management

4.7.2 Kfl_L_DATASEG Memory Management System Call

KILL_DATASEG (Var ErrNum:Integer;
Var Segname:Pathname)

ErrNum: Error indicator
Segname: Name of data segment to be deleted

When a process is finished with a shared data segment, it can issue a
KlLL_DATASEG call for that segment. (KlLL_DATASEG cannot be used on a
private data segment.) If any process, including the calling process, still has
the data segment open, the actual deallocation of the segment is delayed until
all processes have closed it (see CLOSEJDATASEG> During the interim period,
however, after a Ktt_L_DATASEG call has been issued but before the segment
is actually deallocated, no other process can open that segment.

KlLLJDATASEG does not affect the membership of the data segment in the
working set of the process. The RefNum and SegPtr values are valid until a
CLOSEJDATASEG call is issued

One important note: normally, when a data segment is closed, the contents
are written to disk as a file with the pathname associated with the data
segment. If, however, the program calls KlLL_DATASEG on the data segment
before closing it, the contents of the data segment are not written to disk and
are lost when the segment is closed.

4-6

Operating System Reference Manual Memory Management

4.7.3 OPEN_DATASEG Memory Management System Call

QPEN_DATASEG (Var ErrNum:Integer;
Var Segname:Pathname;
Var RefNum:Integer;
Var SegPtr:LongInt;

Ldsn:lnteger)

ErrNum: Error indicator
Segname: Name of data segment to De opened
RefNum: Identif ier for data segment
SegPtr Pointer to contents of data segment
Ldsn: Logical data segment number

A process can open an existing shared data segment with OPEN_DATASEG.
The calling process must supply the name of the data segment (Segname) and
the Logical Data Segment Number to be associated with it. The LDSN given
must not have a data segment currently bound to it. The segment's name is
determined by the process that creates the data segment; it cannot be null.

The Operating System returns both RefNum, an identifier for the calling
process to use in future references to the data segment, and SegPtr. an
address pointer used to reference the contents of the segment.

When a data segment is opened, it immediately becomes a member of the
working set of the calling process. The access mode of the newly opened
segment is Readonly. You can use SETACCESS_DATASEG to change the
access rights to Readwrite. You can use UNBMD_DATASEG to free the
LDSN.

You cannot use OPEN on a private data segment, since calling CLOSE on a
private data segment deletes it.

4-7

CperatIng System Reference A^tanua/ ^fcmory fi-tanagement

4.7.4 CLOSEJDATASEG Memory Management System Call

CLOSE_DATASEG (Var ErrNum:Integer;
RefNum:Integer)

ErrNum: Error indicator
RefNum: Data segment identif ier

CL0SEJ3ATASEG terminates any use of RefNum for data segment operations.
If the data segment is bound to a Logical Data Segment Number,
CLCSE_DATASEG frees that LDSN. The data segment is removed from the
working set of the calling process. RefNum is made invalid. Any references
to the data segment using the original SegPtr will have unpredictable results.

If RefNum refers to a private data segment, CLOSEJDATASEG also kills the
data segment, deallocating the memory and disk space used for the data
segment. If RefNum refers to a shared data segment, the contents of the
data segment are written to disk as if FLUSH_DATASEG had been called. (If
KH_L_DATASEG is called before CLOSEJDATASEG, the contents of the data
segment are thrown away when the last process closes the data segment.)

The following procedure sets up a heap for LisaGraf using the memory
management calls:

PROCEDURE lnitDataSegForLisaGraf (var ErrorCode:integer);
CONST HeapSize=16384; (* 16 KBytes for graphics heap *)

DiskSize=16384;
VAR HeapBuf:LONGINT; (* pointer to heap for LisaGraf *)

GrafHeap:PathName; (* data segment path name *)
HeapjRefnum:INTEGER; (* refnum for heap data seg *)

BEGIN
GrafHeap:='grafheap';
0PEN_DATASEG(ErrorCode, GrafHeap, Heap_Refnum HeapBuf,1);
IF (ErrorCode<>0) THEN
BEGIN

WRITELN('Unable to open',Grafheap.'Error Is ErrorCode)
END
ELSE

InitHeap(POINTER(He^3Buf), POINTER(HeapBuf+HeapSize),
aHeapError);

EN0;

4-8

Operating System Reference Manual Memory Management

4.7.5 FLUSH_DATASEG Memory Management System Call

FLUSH_DATASEG (Var ErrNum:Integer;
RefNum:Integer)

ErrNum: Error indicator
RefNum: 0ata segment identif ier

FLUSH_DATASEG writes the contents of the data segment identified by
RefNum to the disk. (Note that CL0SE_DATASEG automatically flushes the
data segment before closing it, unless KlLL_DATASEG was called first.) This
call has no effect upon the memory residence or binding of the data segment.

4-9

Operating System Reference Manual Memory Management

4.7.6 SIZE_DATASEG Memory Management System Call
SIZE_DATASEG (Var ErrNum:Integer;

Refnum:Integer;
DeltahemSize:LongInt;

Var NerftemSize: LongInt;
DeltaDiskSize:LongInt;

Var NewDiskSize:LongInt)

ErrNum: Error indicator
RefNum: Data segment identif ier
DeltahemSize: Amount in bytes of change in memory

allocation
NewMemSize: New actual size of segment in memory
DeltaDiskSize: Amount in bytes of change in disk allocation
NewDiskSize: New actual disk (swapping) allocation

SIZEJDATASEG changes the memory and/or disk space allocations of the data
segment referred to by RefNum. Both DeltaMemSize and DeltaDiskSize can
be either positive, negative, or zero. The changesto the data segment take
place at the high end of the segment and do not destroy the contents of the
segment, unless data are lost in shrinking the segment. Because the actual
allocation is done in terms of pages (512-byte blocks), the NewMemStee and
NewDlskSlze returned by SIZE_DATASEG may be larger than the old size plus
delta size of the respective areas.

if the NewDlskSlze is less than the NewMemSlze, the segment cannot be
swapped out of memory. The application programmer should be aware of the
serious performance implications of forcing a segment to be memory resident.
Because the segment cannot be swapped out, a new process may not be able
to get all of its working set into memory. To avoid thrashing, each
application should ensure that all of its data segments are swappable before it
relinquishes the attention of the processor.

If the necessary adjacent LDSNs are available, SIZE_DATASEG can increase
the size of a private data segment beyond 128 Kbytes.

4-10

Operating System Reference Manual Memory Management

4w7.7 n^FO_DATASEG Memory Management System Call
INFOJDATASEG (Var ErrNum:Integer;

RefNum:Integer;
Var DsInfo:DsInfoRec)

ErrNum: Error indicator
RefNum: Identifier of data segment
DsInfo: Attributes of data segment

WvFO_DATASEG retum$ Information about a data segment to the calling
process. The structure of the DsInfoRec record is:

RECORD
Mem_Size:LongInt (* Bytes of memory allocated to data segment *
Disc_Size:LongInt (* Bytes of disk space allocated to segment *
NurrtbOpen:Integer (* Current number of processes with segment open *
Ldsn:Integer (* LDSN for segment binding *;
BoundF:Boolean (* True i f segment i s bound to LDSN of cal l ing proc *
PresentF:Boolean (* True i f segment i s present in memory *
CreatorF:Booleanm (* True i f the cal l ing process i s the creator *

(* of the segment *
R*Access:Boolean (* True i f the cal l ing process has *rite access *;

(* to segment *;
END;

4-11

Operating System Reference Manual Memory Management

4.7.8 lNFO_LDSN Memory Management System Call

INFQJLDSN (Var ErrNum:Integer;
Ldsn:Integer;

Var RefNura:Integer)

ErrNum: Error indicator
Ldsn: Logical data segment number
RefNum: Data segment identif ier

ttvFOj_DSN returns the refnum of the data segment currently bound to Ldsa
You can then use INFO_DATASEG to get information about that data segment.
If the LDSN specified is not currently bound to a data segment, the refnum
returned is - 1 .

4-12

Operating System Reference Manual Memory Management

4*7.9 INFO_ADORESS Memory Management System Call
INFO_ADORESS (Var ErrNum:lnteger;

Address:Longint;
Var RefNum:Integer)

ErrNum: Error indicator
Address: The address about which the program needs information
RefNum: Data segment identif ier

Thls call returns the refnum of the currently bound data segment that
contains the address given.

if no data segment that contains the address given ls currently bound to the
calling process, an error indication is returned in ErrNum.

4-13

QperatIng System Reference f*tanual Memoryf*tenagement

47.10 MEMJNFO Memory Management System Call

MEH_lNFO (Var ErrNum:Integer;
Var Svapspace;

Dataspace;
Cur_codesize;
Max_codesize:Longint)

ErrNum: Error indicator
Swapspace: Amount, in bytes, of swappable system memory

available to the cal l ing process
Oataspace: Amount, in bytes, of system memory that the

cal l ing process needs for i t s bound data areas,
including the process stack and the shared
int r ins ic data segment

Cur_codesize: Size, in bytes, of the cal l ing segment
hax_codesize: Size, in bytes, of the largest code segment

within the address space of the cal l ing process

This call retrieves information about the memory resources used by the calling
process.

4-14

Operating System Reference Manual Memory Management

4.7.ll SETACCESS_DATASEG Memory Management System Call

SETACCESS_DATASEG (Var ErrNum:Integer;
RefNum:Integer;
Readonly:Boolean)

ErrNum: Error indicator
RefNum: 0ata segment identif ier
Readonly: Access mode

A process can control the kinds of access it is allowed to exercise on a data
segment with the SETACCESS_DATASEG call. Refnum is the identifier for
the data segment. If Readonly is true, an attempt by the process to write to
the data segment results in an address error exception condition. To get
readwrite access, set Readonly to false.

4-15

Operating System Reference Manual Memory Management

4.7.12 BIND_DATASEG and UNBIND_DATASEG Memory Management System Calls

BIND_DATASEG(Var ErrNum:lnteger;
RefNum:Integer)

UNBIND_DATASE6(Var ErrNum:lnteger;
RefNum:Integer)

ErrNum: Error indicator
RefNum: Data segment identif ier

BflsDJDATASEG binds the data segment referred to by RefNum to lts
associated Logical Data Segment Number®. UNBINDJDATASEG unbinds the
data segment from its LDSNs. BIND_DATASEG causes the data segment to
become a member of the current working set. At the time of the
BttsD_DATASEG call, the necessary LDSNs must not be bound to a different
data segment. UNBMD__DATASEG frees the associated LDSNs. A reference to
the contents of an unbound segment gives unpredictable results.
OPENJDATASEG and MAKEJDATASEG define which LDSNs are associated
with a given data segment.

4-16

Chapter 5
Exceptions and Events

5.1 Exceptions 5-1

52 SysterrHDefined Exceptions 5-2

5 3 Exception Handlers 5-2

5.4 Events 5-5

5 5 Event Channels 5-5

5.6 The System Clock 5-10

5.7 Exception Management System Calls 5-10

5.7.1 DECLARE_EXCEP_HDL 5-11
5.7.2 DISABLE_EXCEP 5-12
5.73 ENABLE_EXCEP 5-13
5.7.4 INFO_EXCEP 5-14
5.75 SIGNAL_EXCEP 5-15
5.7.6 FLUSH_EXCEP 5-16

5.8 Event Management System Calls 5-17

5.8.1 MAKE_EVENTCHN5-18
5.8.2 KILL__EVENT_CHN , 5-19
5.8.3 OPEN_EVENT_CHN 5-20
5.8.4 CLOSE_EVENT_CHM 5-21
5.85 INFO_EVENT_CHN 5-22
5.8.6 WAlT_EVENT_CHN 5-23
5.8.7 FLUSH_EVENT_CHN 5-25
5.8.8 SEND_EVENT_CHN 5-26

5.9 Clock System Calls 5-27

5.9.1 DELAY_TIME 5-28
5.9.2 GET_TIME 5-29
5.93 SET_L0CAL_TIMEJ3IFF 5-30
5.9.4 CONVERT__TIME 5-31

029-0420-A

Exceptions and Events

Processes have several ways to keep informed about the state of the system.
Normal process-to-process communication and synchronization employ pipes,
shared data segments, or events. Abnormal conditions, including those your
program may define, employ exceptions (interrupts> Exceptions are signals to
which the process can respond in a variety of ways under your control.

5.1 Exceptions
Normal execution of a process can be interrupted by an exceptional condition
(such as division by zero or reference to an invalid address> Some error
conditions are trapped by the hardware and some by the system software. The
process itself can define and signal exceptions of your choice.

When an exception occurs, the system first checks the state of the exception.
The three exception states are:

• Enabled

• Queued

• ignored

If a system-defined exception is enabled the system looks for an associated
user-defined handler. If none is found, the system invokes the default
exception handler, which usually aborts the process that generated the
exception. If a user-defined exception is enabled, the system invokes the
associated user-defined exception handler. You create a new exception by
declaring and enabling a handler for it.

If the state of the exception ls queued the exception is placed on a queue.
When the exception is subsequently enabled, the queue is examined and the
appropriate exception handler is invoked. Processes can flush the exception
queue.

lf the state of the exception is ignored the system detects the occurrence of
the exception, but the exception is neither honored nor queued. Note that
ignoring a system-defined exception has uncertain effects. Although you can
cause the system to ignore even the SYS_TERMINATE exception, that
capability is provided so that your program can clean up before terminating.
You cannot set your program to ignore fatal errors.

Invocation of the exception handler causes the Scheduler to run, so it is
possible for another process to run between the signaling of the exception and
the execution of the exception handler.

5-1

Operating System Reference Manual Exceptions and E vents

52 SystenrHDeflned Exceptions
Certain exceptions are predefined by the Operating System. These include:

• Division by zero (SYS_ZERO_DIV> The default handler aborts the process.

• value out of bounds (that is, range check error) or illegal string index
(SYS_VALUE_OOB^ The default handler aborts the process.

• Arithmetic overflow (SYS_OVERFLOW> The default handler aborts the
process.

• Process termination (SYS_JERMINATE> This exception is signaled when a
process terminates, or when there is a bus error, address error, illegal
instruction, privilege violation, or 1111 emulator error. The default handler
does nothing. This exception is different from the other system-defined
exceptions in that the program always terminates as soon as the exception
occurs. In the case of other (non-fatal) errors, the program is allowed to
continue until the exception is enabled.

Except where otherwise noted, these exceptions are fatal if they occur within
Operating System code. The hardware exceptions for parity error, spurious
interrupt, and power failure are also fatal.

5.3 Exception Handlers
A user-defined exception handler can be declared for a specific exception.
This exception handler is coded as a procedure but must follow certain
conventions. Each handler must have two input parameters: Envlronment__Ptr
and Data_Ptr. The Operating System ensures that these pointers are valid
when the handler is entered. Environment_Ptr points to an area in the stack
containing the Interrupted environment: register contents, condition flags, and
program state. The handler can access this environment and can modify
everything except the program counter, register A7, and the supervisor state
bit in the status register. Data_Ptr points to an area in the stack containing
information about the specific exception.

Each exception handler must be defined at the global level of the process,
must return, and cannot have any EXIT or global GOTO statements. Because
the Operating System disables the exception before calling the exception
handler, the handler should re-enable the exception before it returns.

If an exception handler for a given exception already exists when another
handler is declared for that exception, the old handler becomes dissociated
from the exception.

An exception can occur during the execution of an exception handler. The
state of the exception determines whether it is honoredjDlaced on a queue, or
ignored. If the second exception has the same name as the exception that is
currently being handled and its state is enabled, a nested call to the exception
handler occurs. (The system always disables the exception before calling the
exception handler, however. Therefore, nested handler calling occurs only if
you explicitly enable the exception.)

5-2

Operating System Reference ManuaJ Exceptions and Events

There is an exception-occurred flag, Ex_occurred_f, for every declared
exception; lt is set whenever the corresponding exception occurs. This flag
can be examined and reset using the INFO_EXCEP system call. Once the flag
is set, it remains set until FLUSH_EXCEP is called.

The following program fragment gives an example of exception handling.

PROCEDURE Handler ^nvironment_Rr^)_env_blk;
Data_Ptnp__ex_datafc

VAR EnNum:IhfTEGER;
BEGIN
(*Environment_Ptr points to a record containing the program *)
(*counter and all registers. Data_Ptr points to an array of 12 *)
(*longInts that contain the event header and text if thls handler *)
(*is associated with an event-call channel (See below) *)

ENABLE_EXCEP(ermum^xcep_name^

END;

BEGIN (*Main program*)

Excep_name^BrKOfDoc;
DECXAREjEXCOMHDUerrnurn^^

SIGNAL_EXC^erfrrKnLexcepj^

At the time the exception handler is invoked for a SYS_TERMINATE
exception, the stack is as shown in Figure 5-1.

5-3

Operating System Reference Manual Exceptions and Events

low address

high address

Link

Program Counter

Data Ptr

Environment Ptr

Terminate Flag

Exception Kind

Function Code (fc)

Access Address (aa)

Instruction Register

status Register

Program Counter

Program Counter

Status Register

D0-D7 and A0-A7

Link

Program Counter

Exception Data Block

(SYS_TERMINATE Exception)

Exception Environment Block

Figure 5-1
Stack at Exception Handler Invocation

The Exception Data Block given here reflects the state of the stack upon a
SYSJTERMINATE exception. The Term_Ex_Data record (described in Appendix
A) gives the various forms the data block can take. The Excep_Klnd field (the
first, or Oth, longlnt) gives the cause of the exception. The status register and
program counter values in the data block reflect the true (current) state of
these values. The same data in the Environment block reflects the state of

5-4

Operating System Reference Manual Exceptions and Events

these values at the time the exception was signaled, not the values at the
time the exception actually occurs.

For SYSJZERO_DIV, SYS_VALUE_OOB, and SYS_OVERFLOW exceptions, the
Hard_Ex_Data record described in Appendix A gives the various forms that
the data block can take.

In the case of a bus or address error, the PC (program counter) can be 2 to 10
bytes beyond the current instruction. The PC and A7 cannot be modified by
the exception handler.
When a disabled exception is re-enabled, a queued exception may be signaled.
In this case, the exception environment reflects the state of the system at the
time the exception was re-enabled, not the time at which the exception
occurred.

5.4 Events
An event is a piece of information sent by one process to another, generally
to help cooperating processes synchronize their activities. An event is sent
through a kind of pipe called an event channel. The event is a fixed-size
data block consisting of a header and some text. The header contains control
information, the identifier of the sending process, and the type of the event.
The header is written by the system, not the sender, and is readable by the
receiving process. The event text is written by the sender; its meaning is
defined by the sending and receiving processes.

There are several predefined system event types. The predefined type "user" is
assigned to all events not sent by the Operating System.

5.5 Event Channels
Event channels can be viewed as higher-level pipes. One important difference
is that event channels require fixed-size data blocks, whereas pipes can
handle an arbitrary byte stream.

An event channel can be defined globally or locally. A global event channel
has a globally defined pathname catalogued in the File System and can be
used by any process. A local event channel, however, has no name and is
known only by the Operating System and the process that opened i t Local
event channels can be opened by user processes only as receivers. A local
channel can be opened by the father process to receive system-generated
events pertaining to its son.

There are two types of global and local event channels: event-wait and
event-call. If the receiving process is not ready to receive the event, an
event-walt type of event channel queues an event sent to i t . An event-call
type of event channel, however, forces its event on the process, in effect
treating the event as an exception. In that case, an exception name must be
given when the event-call event channel is opened, and an exception handler
for that exception must be declared. If the process reading the event-call
channel is suspended at the time the event is sent, the event is delivered
when the process becomes active.

5-5

Cperatlng System Reference Manual Exceptions and Events

When an event channel ls created, the Operating System preallocates enough
space to the channel for typical interprocess communication. If
SEND_EVENT_CHN is called when the channel does not have enough space for
the event, the calling process is blocked until enough space is freed up.

If WAlT_EVENT_CHN is called when the channel is empty, the calling process
is blocked until an event arrives.

The following code fragments use event-wait channels to handle process
synchronization, qperating System calls used in these program fragments are
documented later in this chapter.

Process A:

chn_name := 'event_chamel_r;
exception:= ";
receiver := TRUE;
OPEN_EVENT_CHN (errint, chn_narae, refnural, exception,receiver);
chn_name := 'event_chamel_2";
receiver := FALSE;
OPEN_EVENT_CHN (errint, chn_name, refnum2, exception,receiver);
*ait l ist. length := 1;
vaitlist.refnum[0] := refnuml;
REPEAT

eventl_ptr^.[0] := agreed__upon_value;
interval.sec := 0; (* send event immediately *)
interval.msec := 0;
SENDJEVENTCHN (errint,refnum2,eventl_ptr, interval,clktirae);
iAIT_EVENT_CHN (errint, *3itlist, refnum_signaling, event2_ptr);

(* processing performed here *)

UNTIL AlUtone;

5-6

Operating System Reference Manual Exceptions anc/ Events

Process B:

chn_name := 'event_channel__2';
exception:= M ;
receiver := TRUE;
OPENJEVENT_CHN (errint, cta_name, refnum2, exception, receiver);
chn_rame := *event_channel_r;
receiver := FALSE;
OPEN_EVENTjCHN (errint, chn_name, refnuml, exception, receiver);
*r i t l i s t . length :=
*aitlist.refnum[0] := refnuml;
REPEAT

event2_ptr^.[G] := agreed_upon_value;
interval.sec := 0; (* send event immediately *)
interval.msec := 0;
#AIT_EVENT_CHN (errint, waitl ist, refnum_signaling, eventl_ptr);

(* processing performed here *)

SEND__EVENT_CHN (errint, refnum2, event2_ptr, interval,clktime);
UNTIL A110one;

The order of execution of the two processes is the same regardless of the
process priorities. Process switch always occurs at the WAlT_EVEb4T_CHN
call.

In the following example using event-call channels, process switch may occur
at different places ln the programs. Process A calls YKLD jCPU , which gives
the CPU to Process B only if Process B is ready to run.

5-7

Operating System Reference Manual ExceptlonsandEvents

Process A:

PROCEDURE Handler(Envjrtr:p_envMK;
Datajrtr:p_ex_data);

BEGIN
event2_ptr^.[Q] := agreed_upon_yalue;

(* processing performed nere *)

lnterval.sec := 0; (* send event UnBdlately *)
interval msec ** 0*
SENDjEVEOTjDHN(erTint, refruC event2_ptr, interval, clktime);
to_any :» true;
YIELD_CPU (errlnt,to_any);

END;

BEGIN (* Main program*)

DECLARE_EXCEP_HDL (errint, excep__name__l, aHandler);
chnname := *event_channel_l;
exception:= excepname_l;
receiver := TRUE;
OPENJEVENTJCHN (errint, chn_name, refnuml, exception, receiver);
chn_name := 'eventj*emel_2;
receiver := FALSE;
exception:= " ;
OPENJEVENTJCHN (errint,chn_name, refnum2, exception, receiver);
SENDJEVENTJCHN (errtat, refnume, event2jptr, intervaL clktime);
to_any := true;
YiaD_CPU (errint, toany) ;

5-8

Operating System Reference Manual Exceptions and Events

Process B:

PROCEDURE Handler(Envj)tr:p_env_blk;
Datajptr:p_ex_data);

BEGIN

event2_ptr .̂[0] := agreed_upon_value;

(* processing performed here *)

interval.sec := 0; (* send event immediately *)
interval.msec := 0;
SEND_EVENT_CHN (errlnt,refnuml.event2j)tr.intervaL clktime);
to any := true;
YIELD_CPU (errint,to_any);

END;

BEGIN (*Main program *)

DECLARE_EXCEP_HDL (errint, excep__raraej__l, aHandler)
chn__name := 'event_channel__l';
exception:= excep_name_l;
receiver "= FALSE;
exception:= " ;
OPEN_EVENT-CHN (errint, chnjme, refnuml, exception,receiver);
chn_name := 'event_chamel_21 ;
receiver := TRUE;
0PEN_EVENT_CHN (errint, chn_name, refnum2, exception,receiver);

END.

5-9

Operating System Reference Manual Exceptions and Events

5.6 The System Clock
A process can read the system clock time, convert it to local time, or delay
its own continuation until a given time. The year, month, day, hour, minute,
second, and millisecond are available from the clock. The system clock is set
up through the Workshop shell. For more information, see the Workshop User's
Guide fortheLisa.

5.7 Exception Management System Calls
This section describes all the Operating System calls that pertain to exception
management A summary of all the Operating System calls can be found in
Appendix A. The following special types are used in exception management
calls:

T_ex_name = STRING[16];
Longadr = ^longint;
T_ex_data = Array [0..11] of longlnt;
T_ex_sts = Record

ex_occurred_f :boolearu
ex_state:t_ex_state;
nuroexcep:integer;
hdl_adr:longadr;

end;
T_ex_state = (enabled, queued, ignored);

5-10

Operating System Reference Manual Exceptions andEvents

5.7.1 DECLARE_EXCEP_HDL ExcepUon Management System call

DECLARE_EXCEP_HDL (Var ErrNum:Integer;
Var Excep_Name:t__ex_name;

Entry_Point:LongAdr)

ErrNum: Error indicator
Excep_Name: Name of exception
Entry_Point: Address of exception handler

DECLARE_EXCEP__hDL sets the Operating System so that the occurrence of
the exception referred to by Excep_Name causes the execution of the
exception handler at Entry__Polnt

Excep_Name is a character string name with up to 16 characters that is
locally defined in the process and known only to the process and the Operating
System. If Entry_Polnt is nll and Excep_Name specifies a system exception,
the system default exception handler is used. Any previously declared
exception handler is dissociated by this call. The exception itself is
automatically enabled.

If any Excep_Name exceptions are queued at the time of the
DECLAREJEXCEP_HDL call, the exception is automatically enabled and the
queued exceptions are handled by the newly declared handler.

You can call DECLARE_EXCEP_HDL with an exception handler address ofnIl
to dissociate your handler from the exception. If there is no system handler
defined, the program that signals the exception receives an error 201.

5-11

Cperatlng System Reference Manual Exceptions and Events

5.72 DISABLE_EXCEP Exception Management System Call

DISABLEJEXCEP (Var ErrNum:Integer;
Var Excep_Name:t ex_name;

Queue:BooleanJ

ErrNum: Error indicator
Excep_Name: Name of exception to be disabled
Queue7 Exception queuing f lag

A process can explicitly disable the trapping of an exception by calling
DISABLEJEXCEP. Excep_Name is the name of the exception to be disabled.
If Queue is true and an exception occurs, the exception is queued and is
handled when it is enabled again. If Queue is false, the exception is Ignored.
When an exception handler is entered, the state of the exception in question
is automatically set to queued.

If an exception handler is associated through CPEN_EVENT_CHN with an
event channel and DISABLE_EXCEP is called for that exception, then:

• If Queue is false, and if an event is sent to the event channel by
SEND_EVENT_CHN, the SEND_EVENT_CHN call succeeds, but it is
equivalent to not calling SEND_EVENT_CHN at all.

• If Queue ls true, and lf an event Is sent to the event channel by
SEND_EVENT_CHN, the SEND_EVENT_CHN call succeeds and a call to
WAlT_EVENT_CHN receives the event, thus dequeuing the exception.

5-12

Operating System Reference Manual ExcepUons and Events

5.7.3 ENABLEJEXCEP Exception Management System Call

ENABLEJEXCEP (Var ErrNum:lnteger;
Var Excep^r>ame: t_ex_name)

ErrNum: Error indicator
Excep_Name: Name of exception to be enabled

ENABLE__EXCEP causes an exception to be handled again. Since the
Operating System automatically disables an exception when its exception
handler is entered (see DISABLEJEXCEP), the exception handler should
explicitly re-enable the exception before it returns to the process.

5-13

Operating System Reference Manual Exceptions and Events

5.7.4 B^FO_EXCEP ExcepUon Management System call

INFO_EXCEP (Var ErrNum:Integer;
Var Excep_Name:t_ex_name;
Var Excep_Status:t_ex_sts)

ErrNum: Error indicator
Excep_Name: Name of exception
Excep~Status: status of exception

tfvFO_EXCEP returns Information about the exception specified by
Excep_Name. The parameter Excep_Status ls a record containing information
about the exception. This record contains:

t_ex_sts - RECORD (* exception status *)
Ex_occurred_f:Boolean;(*exception occurred f lag *)
Ex_state:t_ex__state; (* exception status *)
Num_excep: tateger; (*no. of exceptions queued *)
Hdl_adr:Longadr; (*exception handler's address *)

END;

Once Exjoccurred_f has been set to true, only a call to FLUSHJEXCEP can
set it to false.

5-14

Operating System Reference Manual Exceptions anc/ Emits

5.7.5 SIGNALJEXCEP ExcepUon Management System Cal!

SIGNAL_EXCEP (Var ErrNum:lnteger;
Var Excep_Name:t_ex_name;
Var Excep_Data: t_ex_data)

ErrNum: Error indicator
Excep_name: Name of exception to be signaled
Excep_Data: Information for exception handler

A process can signal the occurrence of an exception by calling
SlGNAL_EXCEP. The exception handler associated wlth Excep_Name is
entered. It is passed Excep_Dat^ a data area containing information about
the nature and cause of the exception. The structure of this information area
is:

array[0..size_exdata] of Longint

SlGNAL_EXCEP can be used for user-defined exceptions and for testing
exception handlers defined to handle system-defined exceptions.

5-15

operating system Reference Manual Exceptions and Events

5.7.6 FLUSH_EXCEP ExoepUon Management System Call

FLUSHJEXCEP (Var ErrNum:Integer;
Var ExcepJtame: t_ex_name)

ErrNum: Error indicator
Excep_Name: Name of exception whose queue i s flushed

F L U S H E X C E P clears out the queue associated wlth the exception
Excep_Name and resets its "exception occurred" flag.

5-16

QperaUng System Reference ^fanuaJ Exceptions andEvents

5.8 Event Management System Calls
This section describes all the qperating System calls that pertain to event
management A summary of all the Operating System calls can be found in
Appendix A. The following special types are used in event management calls:

Pathname = STRING[255];
T_ex_name = STRING[16];
T_chn_sts = Record

chn_type:chn_kind;
num_events:integer;
openjrecv: integer;
open_send:integer;
ec_name:pathname;

end;
chnjcind = (walt_ec, call_ec);
Twa i t l i s t = Record

length:integer;
refnum:array [0..10] of integer;

end;
P_r_eventblk = ^r_eventblk;
R_eventblk = Record

event_header:t_eheader;
event__text:t_event_text;

end;
T_eheader = Record

sendj)id:longint;
event_type: longint;

end;
T_event_text = array [0..9] of longint;
P_s_eventblk = ^s_eventblk;
S_eventblk = T_event_text;
Timestmp_interval = Record

sec:longint;
msec:0..999;

end;
Time_rec = Record

year:integer;
day:1..366;
hOUT:-23..23;
minute:-59..59;
second:G..59;
msec:0..999;

end;

5-17

Operating System Reference Manual Exceptions and Events

5.8JL MAKE_EVENT_CHN Event Management System Call

ttAKE_EVENT_CHN (Var ErrNum:Integer;
Var Event_Chn_Name:Pathname)

ErrNum: Error indicator
Event_Chn_Name: Pathname of event channel

MAKE_EVENT_CHN creates an event channel wlth the name given ln
Event_On_Nama The name must be a File System pathname; it cannot be
null.

5-18

Operating System Reference Manual Exceptions andEt/ents

5.k2 KILLJEVENT_CHN Event Management System Call

KILL_EVENTCHN (Var ErrNum:lnteger;
Var Event_Chn_Name: Pathname)

ErrNum: Error indicator
EventJDhn_Name: Pathname of event channel

To delete an event channel, call KlLLJEVENT_CHM The actual deletion is
delayed until all processes using the event channel have closed it. In the
period between the KRXJEVENT_CHN call and the channel's actual deletion,
no processes can open it. A channel can be deleted by any process that
knows the channel's name.

5-19

Operating System Reference Manual Exceptions and Events

5.83 OPEN_EVENT__CHN Event Management System Call

OPENJEVENT_CHN (Var ErrNum:Integer;
Var EventChn_Name: Pathname;
Var Refnum: Integer;

Excep_Name: texname;
Receiver:Boolean)

ErrNum: Error indicator
Event_Chn_Name: Pathname of event channel
RefNum: Identif ier of event channel
Excep_Name: Exception name, i f any
Receiver: Access mode of cal l ing process

OPEN_EVENT_CHN opens an event channel and defines its attriDutes from the
process point of view. RefNum is returned by the Operating System to be
used in any further references to the channel.

Event_Chn_Name determines whether the event channel is locally or globally
defined. If it is a null string, the event channel is locally defined. If
EventChnName is not null, it is the File System pathname of the channel.

Excep_Name determines whether the channel is an event-wait or event-call
channel. If it is a null string, the channel is of event-wait type. Otherwise,
the channel is an event-callchannel and Excep_Name is the name of the
exception that is signaled when an event arrives in the channel. Excep_Name
must be declared before its use in the OPEN_EVENT_CHN call.

Receiver is a Boolean value indicating whether the process is opening the
channel as a sender (Receiver is false) or a receiver (Receiver is true> A
local channel (one with a null pathname) can be opened only to receive
events. Also, a call-type channel can only be opened as a receiver.

5-20

pperatIng System Reference h-tenual Exceptions and Events

5A4 CLOSE_EVENT_CHN Event Management System Call
CLOSE_EVENT_CHN (Var ErrNum:lnteger;

RefNum:Integer)

ErrNum: Error indicator
RefNum: Identif ier of event channel to be closed

C^C^JEVENT_CHN closes the event channel associated with RefNum. Any
events queued in the channel remain there. The channel cannot be accessed
until it ls opened again.

If the channel has previously been killed with KlLL_EVENTjCHN, you cannot
open it after it has been closed.

lf the channel has not been killed, it can be opened by 0PEN_EVENT_CHN.

5-21

Operating System Reference Manual Exceptions anUEi/ents

5.85 ttsFO_EVENT_CHN Event Management System Call

INFQ_EVENT_CHN (Var ErrNum:Integer;
RefNum:lnteger;

Var Chn_Info:t_chn_sts)

ErrNum: Error indicator
RefNum: Identif ier of event channel
Chn_Info: Status of event channel

INFO_EVENT_CHN gives a process information aDout an event channel. The
Operating System returns a record, Chn_Info, with information pertaining to
the channel associated with RefNum.

The definition of the type of the ChnJnfo record is:

t_chn_sts =
RECORD (* event channel status *)
Chn_type:Chn_kind; (* *ait_ec or call_ec *)
Num_events:Integer; (* number of queued events *)
Open_recv:Integer; (* number of processes reading channel *)
Open_send:integer; (* no. of processes sending to this

channel *)
Ecj>ame:pathname; (* event channel name *)
END;

5-22

Cperatlng System Reference Manual Exceptions and Events

5.a,6 WAIT_EVENT_CHN Event Mragement System Call
IAIT_EVENTCHN (Var ErrNum:lnteger;

Var * a i t _L i s t : t j r a i t l i s t ;
Var RefNum:Integer;

Event_Ptr:p_r_eventblk)

ErrNum: Error indicator
Wait_List: Record with array of event channel refnums
RefNum: Identif ier of channel that had an event
Event__Ptr: Pointer to event data

WAlTJEVENT_CHN puts the calling process in a waiting state pending the
arrival of an event in one of the specified channels. Walt_List is a pointer to
a list of event channel identifiers. When an event arrives in any of these
channels, the process is made ready to execute. RefNum identifies which
channel got the event, and Event_Ptr points to the event itself.

A process can wait for any Boolean combination of events. If it must wait
for any event from a set of channels (an 0R condition), it should call
WAIT_EVENT_CHN with WaitJList containing the list of event channel
identifiers. If, on the other hand, it must wait for all the events from a set
of channels (an AND condition), then for each channel in the set,
WAIT_EVENT__CHN should be called with Wait_List containing just that
channel identifier.

The structure of t_waltlist is:

RECORD
Length:Integer;
Remjn:Array[Q..s izej*ait l i st] of Integer;

END;

Event_Ptr is a pointer to a record containing the event header and the event
text. Its definition is:

P_r_eventblk = ^r_eventblk;
R_eventblk = Record

event_header: t_eheader,-
event_text: t__event_text;

end;
T_eheader = Record

sendj>id:longint;
event_type: longint;

end;

T_event_text = array [0..9] of longint;

Sendj)id is the process id of the sender.

5-23

Operating System Reference Manual Exceptions and Events

Currently, the possIDle event type values are:

1 - Event sent by user process
2 - Event sent by system

When you receive the SYS_SON_TERM event, the fIrst longint of the event
text contains the termination cause of the son process. The cause is same as
that given In the SYS_TERMINATE exception given to the son process. The
rest of the event text can be filled by the son process.

If you call WAIT_EVENT_CHN on an event-call channel that has queued
events, the event ls treated just like an event in an event-wait channel. If
WAIT_EVENT_CHN is called on an event-call channel that does not have any
queued events, an error is returned.

5-24

Operating systeni Reference h-tenual Exceptions and Events

5.8.7 FLUSH_EVENT_CHN Event Management System Call

FLUSH_EVENT_CHN (Var ErrNum:Integer;
RefNum:Integer)

ErrNum: Error indicator
RefNum: Identif ier of event channel to be flushed

FLUSH_EVENTJ>M clears out the specified event channel. All events
queued in the channel are removed. If FLUSH_EVENT_CHN is called by a
sender, it has no effect.

5-25

Operating System Reference Manual Exceptions and Events

5.&8 SEND_EVENT_CHN Event M<ragement System Call

SEND__EVENT_CHN (Var ErrNum:Integer,-
RefNum:Integer;
Event_Ptr: p_s_eventblk;
Interval: Timestmp_interval;
Clktirae:Time_rec)

Interval
Clktlme:

ErrNum:
RefNum:
Event Ptr:

Error indicator
Channel for event
Pointer to event data
Timer for event
Time data for event

SEND_EVENT__CHN sends an event to the channel specified by RefNura
Event_Ptr points to the event that is to be sent. The event data area
contains only the event text; the header is added by the system.

If the event is of the event-wait type, the event ls queued. Otherwise the
Operating System signals the corresponding exception for the process receiving
the event.

lf the channel is opened by several senders, the receiver can sort the events
by the process identifier, which the Operating System places in the event
header. Alternatively, the senders can place predefined identifiers, which
identify the sender, in the event text.

The Interval parameter indicates whether the event is a timed event.

Timed events will not be supported in future releases of the Operating
System. The interval and Clktlme parameters will be ignored in future
releases. If you want your software to be upward-compatible, always
set both fields of the taterval parameter to zero.

TlmestmpJnterval is a record containing a second and a millisecond field. If
both fields are 0, the event Is sent immediately. If the second given is less
than 0, the millisecond field is ignored and the Timejrec record is used. If
the time in the Timejnec has already passed, the event is sent immediately.
If the millisecond field is greater than 0, and the second field is greater than
or equal to 0, the event ls sent that number of seconds and milliseconds from
the present

A process can time out a request to another process by sending itself a timed
event and then waiting for the arrival of either the timed event or an event
indicating the request has been served. If the timed event Is received first,
the request has timed out A process can also time its own progress by
periodically sending ltself a timed event through an event-call event channel.

NOTE

5-26

Operating System Reference Manual Exceptions and Events

5.9 Clock System Calls
This section describes all the Operating System calls that pertain to the clock.
A summary of all the Operating System calls can be found in Appendix A.

The following special types are used in clock calls:

Timestmp_interval = Record
sec:longint;
msec:Q..999;

end;
Time_rec = Record

year:integer;
day:1..366;
hOUT:-23..23;
minute:-59..59;
second:0..59;
msec:0..999;

end;
Hour_range = -23..23
Minute_range = -59..59;

5-27

Operating System Reference Manual Exceptions and Events

5.9.1 DELAY_TIME Clock System call
DELAY_TIME (Var ErrNum:lnteger;

Interval: Timestnp_interval;
Clktine:Time_ree)

ErrNum: Error indicator
Interval: Delay timer
Clktime: Time information

DELAYJTCME stops execution of the calling process for the number of seconds
and milliseconds specified in the lntenral record. If this time period is zero,
CELAYjnME has no effect If the period is less than zero, execution of the
process is delayed until the time specified by Clktime.

5-28

Operating System Reference Manual Exceptions ana Events

532 GETjnME Clock System Call
GET_TCME (Var ErrNum:Integer;

Var Sys_Tirae:Time__rec)

ErrNum: Error indicator
SysJTime: Time information

GET_TIME returns the current system clock tlme ln the record SysJTima The
msec field of SysJTlme always contains a zero on return.

5-29

Operating System Reference Manual Exceptions and Events

5.9.3 SET__LOCAL_TIME_DFF ClOCk System Call
SET_LOCALJlME_piFF (Var ErrNum:Integer;

Hour :Hour_range;
Minute:Minute_range)

ErrNum: Error indicator
Hour: Number of hours difference from the system clock
Minute: Number of minutes difference from the system clock

SET_LOCAL_Tff^E__DIFF informs the Operating System of the difference in
hours and minutes between the local time and the system clock. Hour and
Mlnute can be negative.

5-30

Operating System Reference Manual Exceptions ana Events

5.9.4 CGNVERT_T^E Clock system Call
CONVERT_HME (Var ErrNum:Integer;

Var Sys_Time:Time_rec;
Var Local_Time: Time__rec;

To_Sys:Boolean)

ErrNum: Error indicator
SysJTime: System clock time
LocalJttme: Local time
To_Sys: Direction of time conversion

CONVERT_TW^E converts between local time and system clock time.

To_Sys is a Boolean value indicating in which direction the conversion is to
go. If To_Sys is true, the system takes the time data in Local_Tlme and puts
the corresponding system time in Sys_Time. If To_Sys is false, the system
takes the time data in SysJTCme and puts the corresponding local time ln
Local_TUne. Both time data areas contain the year, month, day, hour, minute,
second, and millisecond.

5-31

Chapter 6
Configuration

&1 Configuration System CaUs 6-1

6.1.1 CARDS_EQUIPPED 6-2
6.1.2 GET_CONFIG_NAME 6-3
6.1.3 OSB0OTV0L 6-4

029-0421-A

Configuration

Every Lisa system is configured using the Preferences tool. Preferences
places the configuration state of the system in a special part of the system's
memory called parameter memory Although parameter memory is not
contained on a disK, it is supplied with battery power so that the contents are
kept even when the system is turned off. The batteries are charged as long
as the Lisa is plugged in, even if the unit is powered off. If line power is
lost, the batteries will keep parameter memory secured for several hours. In
addition, every time parameter memory is changed, a copy of the new data is
made on the boot disk. If the contents of parameter memory are lost, this
disk copy is automatically restored to parameter memory.

Since the devices actually connected may differ from the configuration stored
in parameter memory, three calls are provided that allow programs to request
information about the configuration of the system.

NOTE

Configuration System Calls will be changed in future releases of the
Operating System. Do not use these calls if you want your software to
be upward-compatible.

6.1 Configuration System Calls
This section describes all the Operating System calls that pertain to
configuration. A summary of all the Operating System calls can be found in
Appendix A. Special data types used by configuration calls are defined along
with the calls.

6-1

Cperatlng System Reference Manual Configuration

6.l.l CARDS_EQLOPPED Configuration system call

CARDS_EQUW>PED (Var ErrNu*:Integer;
Var In_Slot:Slotjarray)

ErrNum: Error code
ln_Slot: Identifies the types of cards configured

Thls call returns an array showing the types of cards which are ln the various
card slots.

The definition of Slot_array is:

slot_array = array [1..3] of card_types;

where:

card_types * (no_card,
apple_carcL
nJx>rtjcar0,
netjcarct
laser_card);

6-2

Operating System Reference Manual Configuration

6.12 GETjCONFIQ__N^E Configuration System Call

GETjDONFIG_NAME (Var Errnum:Integer;
Devpostn:Tports;

Var Devname:E_Name)

Errnum: Error code
Devpostn: A port identifier
Devname: The name of the device attached to the port

Thls call returns the name of the device configured at the port given ln
Devposta see OSBO0rrV0L for the definition of Tports. Type E_Name ls
defined as:

E_Name = STRING [32];

6-3

Operating System Reference Manual Configuration

6J.3 0SB007V0L configuration system call

0S800TV0L (Var ErrNum:Integer) : Tports

ErrNum: Error code
Tports: Identifies the port to which the boot volume i s attached

OS8OCrrV0L is a function that returns the identifier for the port attached to
the boot volume. This port might not be the port configured for the boot
volume, since it is possible for the user to override the default boot. Note
that the port identifier is not the same as the device name. You can use
GET_CONFIGJNAME to find out the name of the device attached to the port.

Tports Is a set that has this definition:

Tports = (uppert*ig, lowertwig, parallel,
s lo t l l , slotl2, s lotl3, slotl4,
SlOt21, SlQt22, SlOt23, SlQt24,
slot31, slot32. slot33, slOt34.
seriala, serialb, main_console, alt_console,
t_mouse, t_speaker, t_extral, t_extra2, t_extra3);

6-4

Appendixes

A Operating System Interface Unit A-1

B SystenW3eserved Exception Names B-l

C SystenH3eserved Event Types - C - l

D Error Messages O- l

E FSJNFOFleldS E-1

029-0422-A

Appendix A
Operating System Interface Unit

UNIT syscall;
INTRINSIC;

INTERFACE

CONST
max_ename = 32;
maxjpathname = 255;
max_label_size = 128;
len_exname = 16;
size_exdata = 11;

(* system ca l l definitions unit *)

(* maximum length of a f i l e system object name
(* maximum length of a f i l e system pathname
(* maximum size of a f i l e label, in bytes
(* length of exception name
(* 48 bytes, exception data block should havc the

same size as r_eventblk, received event block

size_etext = 9; (* event text size - 40 bytes
size_waitlist = 10; (* size of vait l i s t - should be same as reqptr_list

(* exception kind
call_term = 0;
ended = 1;
self_killed = 2;
ki l led = 3;
fthr_term = 4;
bad_syscall = 5;
bad_ermum = 6;
s*ap_error = 7;
s tkoverf lo* = 8;
data_pverflow = 9;
parity_err = 10;

definitions for 'SYS_TERttINATE1 exception
'* process called terminate_process
* process executed 'end' statement
* process called kill_process on self
* process vas k i l led by another process
* process's father i s terminating
* process made invalid sys ca l l - subcode bad
* process passed bad address for ermum parm
* process aborted due to code s*ap-in error
* process exceeded max size (+T nnn) of stack
* process tried to exceed max data space size
* process got a parity error *hile executing

def_div_zero = 11;(* default handler for div zero exception vas called
def_value_oob = 12; (* " for value oob exception
def_ovf* = 13; (* " for overflow exception
def_nmi_key = 14; (* " for NMI key exception
defjrange = 15;(* " for 'SYS_VALUEJXB' excep due to value range err
def_str_index = 16; (* " for 'SYS_VALUE_00B' excep due to string index err *)

A-1

Cperatlng System Reference Manual Operating System interface Unit

bus_error = 2U
addr_error = 22;
i l l gL inst = 23;
priv_yiolation =
lInejL01Q = 26;
line 1111 = 27;

unexpected_ex = 29;

div_zero
value_ooD
ovfw
nmijcey
value_range
str index

31;
32;
33;
34;
35;
36;

(* Dus error occurred
(* address error occurred
(* i l lega l instruction trap occurred

24; (* privilege violation trap occurred
(* line 1010 emulator occurred
(* line 1111 emulator occurred

(* an unexpected exception occurred

(* exception kind definitions for hardware exception

(* excep kind for value range and string index error
(* Note that these two cause •SYS_VALUE_00B' excep

*)
*)
*)
*)
*)
*)

*)

*)

(*OEVlCE_CONTROL functions*)

dvParity = 1;
dvOutDTR = 2;
dvOutXON = 3;
dvOutOelay = 4;
dvBaud = 5;
dvInVait = 6;
dvInD7R = 7;
dvInXON = 8;
dvTypeahd = 9;
dvOiscon = 10;
dvOutNoHS = 11;
dvErrStat = 15;
dvGetEvent = 16;
dvAutoLF = 17;
dvOiskStat = 20;
dvOiskSpare = 21;

TYPE
pathname = string [maxjpathname];
e_name = string [max_ename];
namestring = string [20];
procinfoRec = record

pathname;
longint;

(*RS-232*)
(*RS-232*)
(*RS-232*)
(*RS-232*)
(*RS-232*)
(*RS-232, CONSOLE*)
(*RS-232*)
(*RS-232*)
(*RS-232*)
(*RS-232*)
(*RS-232*)
(*PROFILE*)
(*C0NS0LE*)
(*RS-232, CONSOLE, PARALLEL PRINTER*) (*not yet*)
(*OISKETTE, PROFILE*)
(*OISKETTE, PROFILE*)

progpathname :
glotoal_id
father_id
priority
state
data_in

longint;
1..255;
(pactive,
boolean

psuspended, pwaltlng);

A-2

end;

Operating System Reference Manual Operating System Interface Unit

Tdstype = (ds_shared, dsj>rivate); (* types of data segments *)

dsinfoRec = record
mem_size : longint;
disc_size: longint;
numb_open : integer;
ldsn : integer;
boundF : boolean;
presentF : boolean;
creatorF : boolean;
rwaccess : boolean;
segptr : longint;
volname: e_name;

end;

t_ex_name = string [len_exname]; (*
longadr = "longint;
tex_state = (enabled, queued, ignored); (*
p"ex_data = ^t_ex_data;
t_ex_data = array [0..size__exdata] of longint; (*
t_ex_sts = record (*
ex_occurred_f : boolean; (*
ex_state : t_ex_state; (*
num_excep : integer; (*
hdl_,adr : longadr; (*
end;
p_env_blk = ^env_blk;
env_blk = record

pc longint;
sr . integer;
d0 • longint;
dl . longint;
d2 longint;
d3 . longint;
d4 longint;
d5 longint;
d6 longint;
d7 longint;
a0 longint;
al longint;
a2 longint;
a3 longint;
a4 longint;
a5 . longint;
a6 : longint;
a7 : longint;

exception name

exception state

exception data blk
* exception status
exception occurred flag
exception state
number of exceptions q'ed
handler address

*)
*)
*)

(* environment block to pass to handler *)
(* program counter *)
(* status register *)
(* data registers 0 - 7 *)

(* address registers 0 - 7

end;

A-3

Operating System Reference Manual Operating System Interface Unit

p_term_ex_data = ^term_ex_data;
term_ex_data = record (* terminate exception data block

case excep_kind : longint of
call_term
ended,
self_killed,
kil led,
fthr_term
bad_syscall,
bad_errnum,
swap_error,
stkjwerflow,
data__pverflo*,
parity__err : () ; (* due to process termination

i l lgLlnst,
priv_yiolation,

line_1010,
l i n e _ l l l l ,
def_div_zero,
def_value_oob,
def_pvfv,
def_nmi_key

(* due to i l legal instruction, privilege
violation *)

(* due to llne 1010, l l l l emulator *)

end;

(* terminate due to default handler for hardware
exception *)

: (sr : integer;
pc : longint); (* at the time of occurrence *)

defjrange,
def_str_index (* terminate due to default handler for

'SYS_VALUE_pOB' excep for value range or string
indexerror *)

: (value_check : integer;
upper_bound : integer;
lo*er_bound : integer;
return_pc : longint;
caller_a6 : longint);

bus_error,
addr_error (* due to bus error or address error *)

: (fun_field : packed record (* one integer *)
f i l l e r : 0..$7ff; (* 11 bits *)
r_w_flag : boolean;
i_n_flag : boolean;

fun code : 0 . .7; (* 3 bits *)

A-4

Operating System Reference Manual Operating System interface Unlt

access_adr : longint;
inst_register : integer;
sr_error : Integer;
pc_error : longint);

end;

p_hard_ex_data = ^hard_ex_data;
hard_ex_data = record (* hardware exception data block *)

case excep_kind : longint of
div_zero, value_oob, ovfw
: (sr : integer;
pc : longlnt);
value_range, str_index
: (value_check : integer;
upper_bound : integer;
iower_bound : integer;
retum_pc : longint;
caller_a6 : longint);

end;

accesses » (dread, dwrite, append, private, global_refnum);
mset = set of accesses;
iomode = (absolute, relative, sequential);

UIO = record (*unique id*)
a,b: longint

end;

timestmp_interval = record (* time interval *)
sec : longint; (* number of seconds *)
msec : 0..999; (* number of milliseconds within a second *)

end;

info_type = (device_t, volume_t, object_t);
devtype = (diskdev, pascalbd, seqdev, bitbkt, non_io);
filetype = (undefined, MD0Ffile, rootcat, freel ist, badblocks,sysdata,

spool, exec, usercat, pipe, bootfile,swapdat^, swapcode, ramap,
userfile, killedobject);

entrytype= (emptyentry, catentry, llnkentry, fileentry, pipeentry, ecentry,
killedentry);

A-5

Operating System Reference Manual Operating System interface unit

fs_lnfo = record
name : e_name;
dir_path : pathname;
machine_id : longint;
fs_overhead : integer;
result_scavenge : integer;
case otype : info_type of
device_t, volume_t: (
iochannel : integer;
devt : devtype,-
slot_no : integer;
fs_size : longint;
vol_slze : longint;
blockstructured, mounted : boolearv
opencount : longint;
privatedev, remote, lockeddev : boolearv
mount__pending, unmount_pendlng : boolean;
volname, password : e_name;
fsversiorv volnum : integer;
volid : UID;
backup_volid : UID;
blocksize, datasize, clustersize, filecount : integer;
label_size : integer;
freecount : longint;
D7VC, DTCC, D7VB, OTVS : longint;
master_copy_id, copy_thread : longint;
overmount__stamp : UID;
boot_code : integer;
boot_environ : Integer;
privileged, write_protected : boolean;
master, copy, copy_flag, scavenge_flag : boolean;
vol_left__mounted : boolean);

object_t : (
size : longint;
psize : longint; (* physical f i l e size in bytes *)
lpslze : integer; (* logical page size ln bytes for thls f i l e *)
ftype : filetype;
etype : entrytype;
DTC, DTA, OTTt DTB, OTS : longint;
refnum : integer;
fmark : longint;
acmode : mset;
nreaders, nwriters, nusers : integer;
fuid : UI0;
user_type : integer;
user_subtype : integer;

A-6

Operating System Reference Manual Operating System Interface Unit

system_type : integer;
eof, safety_on, kswitch : boolean;
private, locked, protected, master_file : boolean;
file_scavenged, file_closed_by_0S, file_left_open:boolean)

end;

dctype = record
dcversion : integer;
decode : integer;
dedata : array [0..9] of longint; (* user/driver defined data *)

end;

t_waitlist = record (* wait l i s t *)
length : integer;
refnum : array [O..size_waitlist] of integer;

end;

t_eheader = record (* event header *)
sendj)id : longint; (* sender's process id *)
event_type : longint; (* type of event *)

end;

t_event_text = array [0..size_etext] of longint;
p_r_eventblk = "r_eventblk;
r_eventblk = record

event_header : t_eheader;
event_text : t_event_text;

end;

p_s_eventblk = "s_eventblk;
s_eventblk = t_event_text;

time_rec = record
year : integer;
day : 1..366; (* Julian date *)
hour : -23..23;
ndnute : -59..59;
second : 0..59;
msec : 0..999;

end;

A-7

Operating System Reference Manual Operating System Interface Unit

chn_kind = (*ait_ec, call_ec);
t_chn_sts = record

chn_type : chn_ktad;
num_events : integer;
open_recv : integer;
open_send : integer;
ec_name : pathname;

end;

hour_range = -23..23;
mlnute_range = -59..59;

{configuration stuff: }

tports = (uppert*ig, lo*ert*ig, parallel,
s l o t l l , slotl2, slotl3, slotl4,
slot21, slot22, slot23, slot24,
SlOt3L SlOt32, SlOt33, SlOt34,
se r i a l^ serialb, main_console, alt_console,
t_mouse, t__speaker, t__extral, t_extra2, tjextra3);

card_types = (no_carcL apple_card, n_port_carcl net_carcL laser_card);

slot_array = array [1..3] of card_types,-

{ Lisa Office System parameter memory type }

pmByteUnique = -L28..127;
phenftec = array[1..62] of pmByteUnique;

(* File System ca l l s *)

procedure MAKEJFILE (var ecode:integer; var path:pathname;
label_size:integer);

procedure MAKE_PIPE (var ecode:tateger; var path:pathname;
label_size:integer);

procedure ttAKE_CATALOG (var ecode:integer; var path:pathname;
label_stee:integer);

procedure HAKEJLINK (var ecode:integer; var path, ref:pathname;
label_size:integer);

A-8

(* channel status *)
(* channel type *
(* number of events queued *
(* number of opens for receiving *;
* number of opens for sending *
* event channel name *

CpeiatJng System Reference Manual Cperatlng System Interface unit

procedure KILL_OBJECT (var ecode:integer; var path:pathname);

procedure UNKILL_FILE (var ecode:lnteger; refnum:integer; var
new_name:e_name);

procedure OPEN (var ecode:integer; var path:pathname; var refnum:integer;
manlp:mset);

procedure CLOSEJBJECT (var ecode:integer; refnum:integer);

procedure READ_DATA (var ecode:lnteger; refnum:integer; data_addr:longint;
count:longint; var actual:longint; mode:iomode;
offset:longint);

procedure WRITEJDATA (var ecode:integer; refnuntinteger; data_addr:longint;
count:longint; var actual:longint; mode:iomode;
offset:longint);

procedure FLUSH (var ecode:integer; refnum:integer);

procedure LOOKUP (var ecode:integer; var path:pathname; var
attributes:fs_info);

procedure INFO (var ecode:lnteger; refnun:integer; var refinfo:fs_info);

procedure ALLOCATE (var ecode:integer; refnuntinteger; contiguous:boolean;
count:longlnt; var actual:longint);

procedure TRUNCATE (var ecode:lnteger; refnuntinteger);

procedure COMPACT (var ecode:integer; refnuntinteger);

procedure RENAffE_ENTRY (var ecode:integer; var path:pathname; var
newname:e_name) ;

procedure READ_LABEL (var ecode:integer; var path:pathname;
data_addr:longint; count:longint; var actual:longint);

procedure WRITE_LABEL (var ecode:integer; var path:pathname;
data__addr*.longint; count:longint; var actual:longint) ;

procedure HOUNT (var ecode:integer; var vname : e_name; var password :
e_name ;var devname : e_name);

procedure UNttQUNT (var ecode:lnteger; var vname : e_name);

A-9

Operating System Reference Manual Operating System interface unit

procedure SET_WORKING_DIR (var ecode:integer; var path:pathname) ;

procedure GET_WORKlNG_DIR (var ecode:integer; var path:pathname) ;

procedure SET_SAFETY (var ecode:integer;var path:pathname;on_off:boolean) ;

procedure DEVICE_CONTROL (var ecode:integer; var path:pathname;
var cparm : dctype) ;

procedure RESET_CATALOG (var ecode:integer; var path:pathname);

procedure GET_NEXT_EN7RY (var ecode:integer; var prefix, entry:e__name);

procedure SET_FILE_INF0 (var ecode :integer; refnuntinteger; fsi:fsJLnfo);

(* Process Management system calls *)

function My_ID:longint;

procedure Info_Process (var ermuntinteger; proc_icfclongint; var
proc_info:procinfoRec);

procedure Yield_CPU (var errnuntinteger; to_any:boolean);

procedure SetPriority_Process (var errnuntinteger; proc_iddongint;
new _prlority:integer);

procedure Suspend_Process (var ermuntinteger; proc_ichlongint;
susp_family:boolean);

procedure Activate_Process (var errnuntinteger; proc_icfclongint;
act_family:txx)lean);

procedure Kill_Process (var errnuntinteger; proc_id:longint);

procedure Terminate_Process (var errnuntinteger; event_ptr:p_s_eventblk);

procedure Make_Process (var errnuntinteger; var proc_icbiongint; var
progfile:pathname; var entryname:namestring;
evnt_chn_refnunt integer);

A-10

LperaUng System Reference Manual OperaUng System interface Unit

(* ttemory Management system calls *)

procedure make_dataseg(var errnum: integer; var segname: pathname; mem_size,
d iscs ize : longint; var refnum: integer; var secptr:
longlnt; ldsn: integer; dstype: Tdstype);

procedure kill_dataseg (var errnuntinteger; var segname:pathname);

procedure open_dataseg (var errnuntinteger; var segrran**pathname; var
refnuntinteger; var segptr:longint; ldsndnteger);

procedure close_dataseg (var errnuntinteger; refnuntinteger);

procedure size_dataseg (var errnuntinteger; refnuntinteger;
deltamemsize:longint; var newmemsize:longint;
deltadiscsize: longint; var newdiscsize: longint);

procedure info__dataseg (var errrxjntlnteger; refnuntinteger; var
dsinfo:dsinfoRec);

procedure setaccess_dataseg (var errnuntinteger; refnuntinteger;
readonly:boolean);

procedure unbinddataseg (var errnuntinteger; refnuntinteger);

procedure bind_dataseg(var errnuntinteger; refnuntinteger);

procedure info_ldsn (var errnuntinteger; ldsn: integer; var refnum: integer);

procedure flush_dataseg(var errnum: integer; refnum: integer);

procedure mem_info(var errnum: integer; var swapspace. dataspace,
cur_codesize, max_codesize: longint);

procedure info_address(var errnum: integer; address: longint; var refnum:
integer);

(* Exception Management system calls *)

procedure declare_excep_hdl (var errnuntinteger; var excep_name:t_ex_name;
entryjx)int:longadr);

procedure disable_excep (var errnuntinteger; var excep_name:t_ex_name;
queue:boolean);

A-11

OperaUng System Reference h>Janual QperaUng System interface unit

procedure enable_excep (var errnuntinteger; var excep_name:t_ex_name);

procedure signal_excep (var errnuntinteger; var excep_name:t_ex_name;
excep_data:t_ex_data);

procedure info_excep (var errnuntinteger; var excep_name:t_ex_name; var
excep_status:t_ex_sts);

procedure flusn_excep (var errnuntinteger; var excep_name^_ex_name);

(* Event Channel management system calls *)

procedure make_event__chn (var errnuntinteger; var event_chn_name:pathname);

procedure kill__event_chn (var errnuntinteger; var event_chn_name:pathname);

procedure open_event_chn (var errnuntinteger; var event_chn_name:pathna»ne; var
refnuntinteger; var excep_nane:t_ex__name;
receiver:boolean);

procedure close__event_chn (var errnuntinteger; refnuntinteger);

procedure info_event_chn (var errnuntinteger; refnuntinteger; var
chn_info:t_chn__st s) ;

procedure wait_event_chn (var errnuntinteger; var wait_list:t_waitlist; var
refnuntinteger; event_ptr:p_r_eventblk);

procedure flush_event_chn (var errnuntinteger; refnuntinteger);

procedure send_event_chn (var errnuntinteger; refnuntinteger;
event_ptr:p_s__eventblk; interval:timestmp_interval;
clktime:time_rec);

(* Timer functions system calls *)

procedure delay_time (var errnuntinteger; interval:timestmp_interval;
clktime^lme_rec);

procedure get_jtime (var errnuntinteger; var gmt__time:time_rec);

procedure set_local_time_dlff (var errnuntinteger; hour:hour_range;
minute:minute_range);

A-12

QperaUfxi System Reference Manual Operating System interface unit

procedure convert_time (var errnuntinteger; var gmt_time:time_rec; var
local_time:time_rec; to_gmt:boolean);

{configuration stuff}

function 0SB00TV0L(var error : integer) : tports;

procedure GET_CONFIG_NAfC(var error:integer; devpostn:tports; var
devname:e_name);

procedure CARDS_EOUIPPED(var error:integer; var in_slot:slot_array);

IMPLEMENTATION

procedure MAKE_FILE; external;

procedure MAKE_PIPE; externals-

procedure MAKE_CATALOG; external;

procedure MAKE_LINK; external;

procedure KILL_OBJECT; externals-

procedure OPEN; external;

procedure CLOSE_OBJECT; externals-

procedure READ_DATA; external;

procedure WRITE_DATA; external;

procedure FLUSH; externals-

procedure LOOKUP; externals-

procedure INFO; external;

procedure ALLOCATE; externals-

procedure TRUNCATE; external;

procedure COMPACT; external;

A-13

Operating System Reference Manual Operating System Interface Unit

procedure RENAME_ENTRY; external;

procedure READ_LABEL; externals-

procedure W*ITE_LABEL; external;

procedure MOUNT; externals-

procedure UNMOUNT; external;

procedure SETJiORKING_DIR; externals-

procedure GET__iORKINGJDIR; externals-

procedure SET_SAFETY; external;

procedure DEVICE_CONTROL; externals-

procedure RESET_CATALOG; external;

procedure GET_NEXT_ENTRY; externals-

procedure GET_DEV_NAME; externals-

function My_ID; externals-

procedure InfoJProcess; externals-

procedure Yield_CPU; externals-

procedure SetPriority_Process; externals-

procedure Suspend_Process; externals-

procedure Activate_Process; externals-

procedure Kill_Process; externals-

procedure Terminate_Process; externals-

procedure Make_Process; external-

procedure Sched_Class; external;

A-14

Operating System Reference Manual Operating System Interface Unit

procedure raake_dataseg,- external;

procedure kill_dataseg,- external;

procedure open_dataseg,- externals-

procedure close_dataseg; externals-

procedure size_dataseg; externals-

procedure tafo_dataseg; external;

procedure setaccess_dataseg; external

procedure unbind_dataseg; external-

procedure bind_dataseg; external

procedure info_ldsn; external;

procedure flush_dataseg; externals-

procedure mem_lnfo; externals-

procedure declare_excep_hdl; externals-

procedure disable_excep; externals-

procedure enable_excep; external;

procedure slgnal_excep; externals-

procedure lnfo_excep; external;

procedure flush_excep; externals-

procedure make_event_chn; externals-

procedure kill_event_chn; externals-

procedure open_event_chn; externals-

procedure close_event_chn; external;

A-15

Operating System Reference Manual Operating System Interface Unit

procedure lrrfo_event_chrv external;

procedure *ait_event_chn; external;

procedure flusn_event_chn; external;

procedure send_event_chrv external;

procedure delay_tlme; externals-

procedure get_time; external;

procedure set_local_time_diff; external;

procedure convert_time; externals-

procedure set_file_info; externals-

function ENABLEDBG; external;

function 0S800TV0L; external;

procedure GET_CONFIG_NAME; externals-

function DISK_LIKELY; external;

procedure CARDS_EQUIPPED; externals-

procedure Read_Phenv externals-

procedure *rite_Phenu external;

end.

A-16

Appendix B
SystenrHteserved
Exception Names

SYS OVERFLOW Overflow exception. Signaled when the TRAPV instruction is
executed and the overflow condition is on.

SYS_VALUE_O0B Value-cwt-of-bound exception. Signaled when the CHK
instruction is executed and the value is less than 0 or greater
than upper bound.

SYS_ZEROJDIV Division by zero exceptioa Signaled when the DIVS or DIVU
instruction is executed and the divisor is zero.

SYSTERMINATE Termination exception. Signaled when a process is to be
terminated.

B-1

Appendix C
System-Reserved

Event Types

SYS_SON_TERM "Son terminate" event type. If a father process has created a son
process with a local event channel, this event is sent to the
father process when the son process terminates.

C-1

Appendix D
Error Messages

-6081 Endofexecfileinput
-6004 Attempt to reset text file with typed-file type
-6003 Attempt to reset nontext file with text type
-1885 ProFile not present during driver initialization
-1882 ProFile not present during driver initialization
-1176 Data in the object have been altered by Scavenger
-1175 Fileorvolumewasscavenged
-1174 File was left open or volume was left mounted, and system crashed
-1173 FilewaslastclosedbytheCS
-1146 Only a portion of the space requested was allocated
-1063 Attempt to mount boot volume from another Lisa or not most recent boot

volume
-1060 Attempt to mount a foreign boot disk following a temporary unmount
-1059 The bad block directory of the diskette is almost full or difficult to read
-696 Printer out of paper during initialization
-660 Cable disconnected during ProFile initialization
-626 Scavenger indicated data are questionable, but may be OK
-622 Parameter memory and the disk copy were both invalid
-621 Parameter memory was invalid but the disk copy was valid
-620 Parameter memory was valid but the disk copy was invalid
-413 Event channel was scavenged
-412 Event channel was left open and system crashed
-321 Data segment open when the system crashed. Data possibly invalid.
-320 Could not determine size of data segment
-150 Process was created, but a library used by program has been scavenged and

altered
-149 Process was created, but the specified program file has been scavenged and

altered
-125 Sepcified process is already terminating
-120 Specified process is already active
-115 Specified process is already suspended
100 Specified process does not exist
101 Specified process is a system process
110 Invalid priority specified (must be 1..225)
130 Could not open program file
131 File System error while trying to read program file
132 Invalid program file (incorrect format)
133 Could not get a stack segment for new process
134 Could not get a syslocal segment for new process
135 Could not get sysglobal space for new process
136 Could not set up communication channel for new process

D-1

Operating System Reference Manual Error Messages

138 Error accessing program file while loading
141 Error accessing a library file while loading program
142 Cannot run protected file on this machine
143 Program uses an intrinsic unit not found in the Intrinsic Library
144 Program uses an intrinsic unit whose name/type does not agree with the

Intrinsic Library
145 Program uses a shared segment not found in the Intrinsic Library
146 Program uses a shared segment whose name does not agree with the Intrinsic

Library
147 No space in syslocal for program file descriptor during process creation
148 No space in the shared iu data segment for the program's shared IU globals
190 No space in syslocal for program file description during List_LibFiles

operation
191 Could not open program file
192 Error trying to read program file
193 Cannot read protected program file
194 Invalid program file (incorrect format)
195 Program uses a shared segment not found in the Intrinsic Library
196 Program uses a shared segment whose name does not agree with the Intrinsic

Library
198 Disk 1/0 error trying to read the intrinsic unit directory
199 Specified library file number does not exist in the Intrinsic Library
201 No such exception name declared
202 No space left in the system data area for Declare_Excep__Hdl or

Signal_Excep
203 Null name specified as exception name
302 InvalidLDSN
303 NodatasegmentboundtotheLDSN
304 Data segment already bound to the LDSN
306 Data segment too large
307 Input data segment path name is invalid
308 Data segment already exists
309 Insufficient, disk space for data segment
310 An invalid size has been specified
311 Insufficient system resources
312 Unexpected File System error
313 Data segment not found
314 Invalid address passed to lnfo_Address
315 Insufficient memory for operation
317 Disk error while trying to swap in data segment
401 Invalid event channel name passed to MakejEvent_Chn
402 No space left in system global data area for Open_Event_Chn
403 No space left in system local data area for Open_Event_Chn
404 Non-block-structured device specified in pathname
405 Catalog is full in Make_Event_Chn or Open_Event_Chn
406 No such event channel exists in Kill_Event_Chn
410 Attempt to open a local event channel to send

D-2

Operating System Reference ManuaJ Error Messages

4 l l Attempt to open event channel to receive when event channel has a receiver
413 Unexpected File System error in Open_Event_Chn
416 Cannot get enough disk space for event channel in Open_Event_Chn
417 Unexpected File System error in Close_Event_Chn
420 Attempt to wait on a channel that the calling process did not open
421 Wait_Event_Chn returns empty because sender process could not complete
422 Attempt to can wait_Event__Chn on an empty event-call channel
423 Cannot find corresponding event channel after being blocked
424 Amount of data returned while reading from event channel not of expected

size
425 Event channel empty after being unblocked, Wait_Event_Chn
426 Bad request pointer error returned in Wait_Event_Chn
427 walt_List has illegal length specified
428 Receiver unblocked because last sender closed
429 Unexpected Flle System error ln wait_Event_Chn
430 Attempt to send to a channel which the calling process does not have open
431 Amount of data transferred while writing to event channel not of expected

size
432 Sender unblocked because receiver closed in Send_Event_Chn
433 Unexpected File System error in Send_Event_Chn
440 Unexpected File System error in Make_Event_Chn
441 Event channel already exists in Make_Event_Chn
445 Unexpected File System error in KHl_Event_Chn
450 Unexpected File System error in Flush_Event_Chn
530 Size of stack expansion request exceeds limit specified for program
531 Cannot perform explicit stack expansion due to lack of memory
532 insufficient disk space for explicit stack expansion
600 Attempt to perform I/O operation on non i/o request
602 No more alarms available during driver initialization
605 Call to nonconfigured device driver
606 Cannot find sector on floppy diskette (disk unformatted)
608 Illegal length or disk address for transfer
609 Call to nonconfigured device driver
610 No more room in sysglobal for I/O request
613 Unpermitted direct access to spare track with sparing enabled on floppy

drive
614 No disk present in drive
615 Wrong call version to floppy drive
616 Unpermitted floppy drive function
617 Checksum error on floppy diskette
618 Cannot format or write protected, or error unclamping floppy diskette
619 No more room in sysglobal for I/O request
623 Illegal device control parameters to floppy drive
625 Scavenger indicated data are bad
630 The time passed to DelayjNme, convert_Time, or Send_Event_Chn has

invalid year
631 Illegal timeout request parameter

D-3

Cperatlng System Reference h-tancjal Erwr h-tessages

632 No memory available to initialize clock
634 Illegal timed event id of -1
635 Process got unblocked prematurely due to process termination
636 Timer request did not complete successfully
638 Time passed to Delay_Time or Send__Event_Chn more than 23 days from

current time
639 Illegal date passed to Set__Time, or illegal date from system clock in

Get_Time
640 RS-232 driver called with wrong version number
641 RS-232 read or write initiated with illegal parameter
642 Unimplemented or unsupported RS-232 driver function
646 No memory available to initialize RS-232
647 unexpected RS-232 timer interrupt
648 Unpermitted RS-232 initialization, or disconnect detected
649 Illegal device control parameters to RS-232
652 N-port driver not initialized prior to ProFile
653 No room in sysglobal to initialize ProFile
654 Hard error status returned from drive
655 Wrong call version to ProFile
656 Unpermitted ProFile function
657 Illegal device control parameter to ProFile
658 Premature end of file when reading from driver
659 Corrupt File System header chain found in driver
660 Cable disconnected
662 Parity error while sending command or writing data to ProFile
663 Checksum error or CRC error or parity error in data read
666 Timeout
670 Bad command response from drive
671 Illegal length specified (must - 1 on input)
672 Unimplemented console driver function
673 No memory available to initialize console
674 Console driver called with wrong version number
675 Illegal device control
680 Wrong call version to serial driver
682 Unpermitted serial driver function
683 No room in sysglobal to ir utialize serial driver
685 Eject not allowed this device
686 No room in sysglobal to initialize n-port card driver
687 Unpermitted n-port card driver function
688 Wrong call version to n-port card driver
690 Wrong call version to parallel printer
691 Illegal parallel printer parameters
692 N-port card not initialized prior to parallel printer
693 No room in sysglobal to initialize parallel printer
694 unimplemented parallel printer function
695 Illegal device control parameters (parallel printer)
696 Printeroutofpaper

D-4

Operating System Reference Manual Error Messages

698 Printeroffline
699 No response from printer
700 Mismatch between loader version number and Operating System version

number
701 OS exhausted its internal space during startup
702 Cannot make system process
703 Cannot kill pseudo-outer process
704 Cannot create driver
706 Cannot initialize floppy disk driver
707 Cannot initialize the File System volume
708 Hard disk mount table unreadable
709 Cannot map screen data
710 Too many slot-based devices
724 The boot tracks do not know the right File System version
725 Either damaged File System or damaged contents
726 Boot device read failed
727 The OS will not fit into the available memory
728 SYSTEM.OSismissing
729 SYSTEM.CONFIG iS corrupt
730 SYSTEM.OSiSCOrrupt
731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is Corrupt
732 SYSTEM.LLD is corrupt
733 Loader range error
734 Wrong driver is found. For instance, storing a diskette loader on a ProFile
735 SYSTEM.LLD is missing
736 SYSTEM.UNPACK is missing
737 Unpack of SYSTEM.OS with SYSTEM.UNPACK failed
801 IOResult <> 0 on I/O using the Monitor
802 Asynchronous I/O request not completed successfully
803 Bad combination of mode parameters
806 Page specified is out of range
809 Invalid arguments (page, address, offset, or count)
810 The requested page could not be read in
816 Not enough sysglobal space for File System buffers
819 Bad device number
820 No space in sysglobal for asynchronous request list
821 Already initialized I/O for this device
822 Bad device number
825 Error in parameter values (Allocate)
826 No more room to allocate pages on device
828 Error in parameter values (Deallocate)
829 Partial deallocation only (ran into unallocated region)
835 Invalid s-file number
837 Unallocated s-file or I/O error
838 Map overflow: s-file too large
839 Attempt to compact file past PEOF
841 Unallocated s-file or I/O error

D-5

Operating System Reference Manual Error Messages

843 Requested exact fit, but one could not De provided
847 Requested transfer count is <- 0
848 End of file encountered
849 Invalid page or offset value in parameter list
852 BadunitnumDer
854 No free slots in s-list directory (too many s-files)
855 No available disk space for file hints
856 Device not mounted
857 Empty, locked, or invalid s-file
861 Relative page is beyond PEOF (bad parameter value)
864 No sysglobal space for volume bitmap
866 Wrong FS version or not a valid Lisa FS volume
867 Badunitnumber
868 Bad unit number
869 unit already mounted (mount)/no unit mounted
87 0 No sysglobal space for DCB or MDDF
871 Parameter not a valid s-file ID
872 No sysglobal space for s-file control block
873 Specified file is already open for private access
874 Device not mounted
875 invalid s-file ID or s-file control block
879 Attempt to postion past LEOF
881 Attempt to read empty file
882 No space on volume for new data page of file
883 Attempt to read past LEOF
884 Not first auto-allocation,but file was empty
885 Could not update filesize hints after a write
886 No syslocal space for I/O request list
887 Catalog pointer does not indicate a catalog (bad parameter)
888 Entry not found in catalog
890 Entry by that name already exists
891 Catalog is full or is damaged
892 Illegal name for an entry
894 Entry not found, or catalog is damaged
895 Invalid entry name
896 Safety switch is on—cannot kill entry
897 invalid bootdev value
899 Attempt to allocate a pipe
900 Invalid page count or FCB pointer argument
901 Could not satisfy allocation request
921 Pathname invalid or no such device
922 Invalid label size
926 Pathname invalid or no such device
927 lnvalidlabelsize
941 Pathname invalid or no such device
944 Objectisnotafile
945 Fileisnotinthekilledstate

D-6

Operating System Reference Manual Error Wssages

946 Pathname invalid or no such device
947 Not enough space in syslocal for File System refdb
948 Entry not found in specified catalog
949 Private access not allowed if file already open shared
950 Pipe already in use, requested access not possible or dwrite not allowed
951 File is already opened in private mode
952 Badrefnum
954 Bad refnum
955 Read access not allowed to specified object
9 % Attempt to position FMARK past LE0F not allowed
957 Negative request count is illegal
958 Nonsequential access is not allowed
959 System resources exhausted
960 Error writing to pipe while an unsatisfied read was pending
961 Badrefnum
962 No WRITE or APPEND access allowed
963 Attempt to position FMARK too far past LEOF
964 Append access not allowed in absolute mode
965 Append access not allowed in relative mode
966 Internal inconsistency of FMARK and LEOF (warning)
967 Nonsequential access is not allowed
968 Badrefnum
971 Pathname invalid or no such device
972 Entry not found in specified catalog
974 Badrefnum
977 Bad refnum
978 Page count is nonposItive
979 Not a block-structured device
981 Bad refnum
982 No space has been allocated for specified file
983 Not a block-structured device
985 Bad refnum
986 No space has been allocated for specified file
987 Not a block-structured device
988 Badrefnum
989 Caller is not a reader of the pipe
990 Not a block-structured device
994 Invalid refnum
995 Not a block-structured device
999 Asynchronous read was unblocked before it was satisfied

1021 Pathname invalid or no such entry
1022 Nosuchentryfound
1023 Invalid newname. check for '- ' in string
1024 New name already exists in catalog
1031 Pathname invalid or no such entry
1032 lnvalidtransfercount
1033 Nosuchentryfound

D-7

Cperating System Reference Manual Error Messages

1041 Pathname invalid or no such entry
1042 Invalid transfer count
1043 Nosuchentryfound
1051 No device or volume by that name
1052 A volume is already mounted on device
1053 Attempt to mount temporarily unmounted boot volume just unmounted from

this Lisa
1054 The bad block directory of the diskette is invalid
1061 Nodeviceorvolumebythatname
1062 No volume is mounted on device
1071 Not a valid or mounted volume for working directory
1091 Pathname invalid or no such entry
1092 Nosuchentryfound
1101 Invaliddevicename
1121 Invalid device, not mounted, or catalog is damaged
1128 Invalid pathname, device, or volume not mounted
1130 File is protected;cannot open due to protection violation
1131 No device or volume by that name
1132 No volume is mounted on that device
1133 No more open files in the file list of that device
1134 Cannot find space in sysglobal for open file list
1135 Cannot find the open fileentry to modify
1136 Boot volume not mounted
1137 Boot volume already unmounted
1138 Caller cannot have higher priority than system processes when calling ubd
1141 Boot volume was not unmounted when calling rbd
1142 Some other volume still mounted on the boot device when calling rbd
1143 No sysglobal space for MDDF to do rbd
1144 Attempt to remount volume which is not the temporarily unmounted boot

volume
1145 No sysglobal space for bit map to do rbd
1158 Track-by-track copy buffer is too small
1159 Shutdown requested while boot volume was unmounted
1160 Destination device too small for track-by-track copy
1161 Invalid final shutdown mode
1162 Powerisalreadyoff
1163 Illegalcommand
1164 Device is not a diskette device
1165 No volume is mounted on the device
1166 A valid volume is already mounted on the device
1167 Notablock-structureddevice
1168 Devicenameisinvalid
1169 Could not access device before initialization using default device

parameters
1170 Could not mount volume after initialization
1171 '- ' is not allowed in a volume name
1172 No space available to initialize a bitmap for the volume

D-8

Operating System Reference Manual Error Messages

1176 Cannot read from a pipe more than half of its allocated physical size
1177 Cannot cancel a read request for a pipe
1178 Process waiting for pipe data got unDlocked because last pipe writer closed

it
1180 Cannot write to a pipe more than half of its allocated physical size
1181 No system space left for request block for pipe
1182 writer process to a pipe got unblocked before the request was satisfied
1183 Cannot cancel a write request for a pipe
1184 Process waiting for pipe space got unblocked because the reader closed the

pipe
l l86 Cannot allocate space to a pipe while it has data wrapped around
1188 Cannot compact a pipe while it has data wrapped around
1190 Attempt to access a page that is not allocated to the pipe
1191 Badparameter
1193 Premature end of flle encountered
1196 Something is still open on device—cannot unmount
1197 Volume is not formatted or cannot be read
1198 Negative request count is illegal
1199 Function or procedure is not yet implemented
1200 Illegal volume parameter
1201 Blankfileparameter
1202 Error writing destination file
1203 lnvalidUCSDdirectory
1204 Filenotfound
1210 Boot track program not executable
1211 Boottrackprogramtoobig
1212 Error reading boot track program
1213 Error writing boot track program
1214 Boot track program file not found
1215 Cannot write boot tracks on that device
1216 Could not create/close internal buffer
1217 Boot track program has too many code segments
1218 Could not find configuration information entry
1219 Could not get enough working space
1220 Premature EOF in boot track program
1221 Positionoutofrange
1222 Nodeviceatthatposition
1225 Scavenger has detected an internal inconsistency symptomatic of a software

bug
1226 Invaliddevicename
1227 Device is not block structured
1228 Illegal attempt to scavenge the boot volume
1229 Cannot read consistently from the volume
1230 Cannot write consistently to the volume
1231 Cannot allocate space (Heap segment)
1232 Cannot allocate space (Map segment)
1233 Cannot allocate space (SFDB segment)

D-9

Operating System Reference Manual Error Messages

1237 Error rebuilding the volume root directory
1240 Illegal attempt to scavenge a non-OS-formatted volume
1296 Bad string argument has been passed
1297 Entry name for the object is invalid (on the volume)
1298 S-list entry for the object is invalid (on the volume)
1807 No disk in floppy drive
1820 Write-protect error on floppy drive
1822 Unable to clamp floppy drive
1824 Floppydrivewriteerror
1882 Bad response from ProFile
1885 ProFile timeout error
1998 Invalid parameter address
1999 Badrefnum
6001 Attempttoaccessunopenedfile
6002 Attempt to reopen a file which is not closed using an open FIB (file info block)
6003 Operation incompatible with access mode with which file was opened
6004 Printeroffline
6005 File record type incompatible with character device (must be byte sized)
6006 Badinteger(read)
6010 Operation incompatible with file type or access mode
6081 Prematureendofexecfile
6082 Invalid exec (temporary) file name
6083 Attempt to set prefix with null name
6090 Attempt to move console with exec or output file open
6101 Badreal(read)
6151 Attempt to reinitalize heap already in use
6152 Bad argument to NEW (negative size)
6153 Insufficient memory for NEW request
6154 Attempt to RELEASE outside of heap

Operating System Error Codes
The error codes listed below are generated only when a nonrecoverable error
occurs while in Operating System code.

10050 Request block is not chained to a PCB (Unblk__Req)
10051 Bld_Req is called with interrupts off
10100 An error was returned from SetUp_Directory or a Data Segment routine

(SetupJUInfo)
10102 Error > 0 trying to create shell (Root)
10103 Sem_Count>l(InH__Sem)
10104 Could not open event channel for shell (Root)
10197 Automatic stack expansion fault occurred in system code (Check_Stack)
10198 Need_Mem set for current process while scheduling is disabled

(SimpleScheduler)
10199 Attempt to block for reason other than I/O while scheduling is disabled

(SimpleScheduler)
10201 Hardware exception occurred while in system code
10202 No space left from Sigl_Excep call in Hard_Excep

D-10

Cperating System Reference Manual Error Messages

10203 No space left from Sigl_Excep call in Nmi_Excep
10205 Error from WaitJEvent_Chn called in Excep_Prolog
10207 No system data space in Excep_Setup
10208 No space left from Sigl_Excep call in range error
10212 Error in Term_Def_Hdl from Enable_Excep
10213 Error in Force_Term_Excep, no space in Enq_Ex_Data
10401 Error from Close_Event_Chn in Ec_Cleanup
10582 Unable to get space in Freeze_Seg
10590 Fatal memory parity error
10593 Unable to move memory manager segment during startup
10594 Unable to swap in a segment during startup
10595 Unable to get space in Extend_MMlist
10596 Trying to alter size of segment that is not data or stack (Alt_DS__Size)
10597 Trying to allocate space to an allocated segment (Alloc_Mem)
10598 Attempting to allocate a nonfree memory region (Take_Free)
10600 Error attempting to make timer pipe
10601 Error from Kill_Object of an existing timer pipe
10602 Error from second Make_Pipe to make timer pipe
10603 Error from Open to open timer pipe
10604 No syslocal space for head of timer list
10605 Error during allocate space for timer pipe, or interrupt from nonconfigured

device
10609 interrupt from nonconfigured device
10610 Error from info about timer pipe
10611 Spurious interrupt from floppy drive #2
10612 Spurious interrupt from floppy drive # l , or no syslocal space for timer list

element
10613 Error from Read_Data of timer pipe
10614 Actual returned from Read_Data is not the same as requested from timer

pipe
10615 Error from open of the receiver's event channel
10616 Error from Write_Event to the receiver's event channel
10617 Error from ciose_Event_Chn on the receiver's pipe
10619 No sysglobal space for timer request block
10624 Attempt to shut down floppy disk controller while drive is still busy
10637 Not enough memory to initialize system timeout drives
10675 Spurious timeout on console driver
10699 Spurious timeout on parallel printer driver
10700 Mismatch between loader version number and Operating System version

number
10701 OS exhausted its internal space during startup
10702 Cannot make system process
10703 Cannot kill pseudo-outer process
10704 Cannot create driver
10706 Cannot initialize floppy disk driver
10707 Cannot initialize the File System volume
10708 Hard disk mount table unreadable

D - l l

OperatJng System Reference Mamja} Error Messages

10709 Cannotmapscreendata
10710 Toomanyslot-baseddevices
10724 The boot tracks do not know the right File System version
10725 Either damaged File System or damaged contents
10726 Boot device read failed
10727 The OS will not fit into the available memory
10728 SYSTEM.OSismissing
10729 SYSTEM.CONFIG ls corrupt
10730 SYSTEM.OSlSCOrrupt
10731 SYSTEM.DEBUG or SYSTEM.DEBUG2 ls corrupt
10732 SYSTEM.LLDiSCOrrupt
10733 Loaderrangeerror
10734 wrong driver is found. For instance, storing a diskette loader on a ProFile
10735 SYSTEM.LLD is missing
10736 SYSTEM.UNPACK is missing
10737 Unpack Of SYSTEM.OS with SYSTEM.UNPACK failed
11176 Found a pending write request for a pipe while in Close_Object when it is

called by the last writer of the pipe
11177 Found a pending read request for a pipe while in Close__Object when it is

called by the (only possible) reader of the pipe
11178 Found a pending read request for a pipe while in Read_Data from the pipe
11180 Found a pending write request for a pipe while in Write_Data to the pipe
118xx Error xx from diskette ROM (See OS errors 18xx)
11901 Call to Getspace or Relspace with a bad parameter, or free pool is bad

D-12

Appendix E
FS INFOFields

* defined for mounted or unmounted devices
$ defined for mounted devices only

All other fields are defined for mounted block-structured devices only.

DEVICE_L VOLUME_T:

backup_volid
blocksize

* blockstructured
boot_code
boot_environ
clustersize
copy
copy_flag
copy_thread
datasize

* devt
M dir_path

DTCC
DTVB
DTVC
DTVS
filecount
freecount
fs__overhead

fs_size
fsversion

* iochannel

label_size

$ lockeddev
machine_ID
master
master_copy_ID

* mounted
$ mount_pending
* name
$ opencount

overmount_stamp
password

ID of the volume of which this volume is a copy.
Number of bytes in a block on this device.
Flag set if this device is block-structured.
Reserved.
Reserved.
Reserved.
Reserved.
Flag set if this volume is a copy.
Count of copy operations involving this volume.
Number of data bytes in a page on this volume.
Device type.
Pathname of the volume/device.
Date/time volume was created if it is a copy.
Date/time volume was last backed-up.
Date/time volume was created.
Date/time volume was last scavenged.
Count of files on this volume.
Count of free pages on this volume.
Number of pages on this volume required to store
File System data structures.
Number of pages on this volume.
Version number of the File System under which
this volume was initialized.
Number of the expansion card channel through
which this device is accessed.
Size in bytes of the user-defined labels associated
with objects on this volume.
Reserved.
Machine on which this volume was initialized.
Reserved.
Reserved.
Flag set if a volume is mounted.
Reserved.
Name of this volume/device.
Count of objects open on this volume/device.
Reserved.
Password of this volume.

E-l

Operating System Reference Manual FSJNFO Fields

$ privatedev
privileged

$ remote
result_scavenge
scavenge_flag

* slot_no

$ unmount_pending
volid
voljeft_mounted

volname
volnum
vol_size

write j)rotected

Reserved.
Reserved.
Reserved.
Reserved.
Flag set Dy the Scavenger if it has altered this
volume in some way.
Number of the expansion slot holding the card
through which this device is accessed.
Reserved.
unique identifier for this volume.
Flag set if this volume was mounted during a
system crash.
Volume name.
Volume number.
Total number of blocks in the File System volume
and boot area on this device.
Reserved.

OBJECT T:

acmode Set of access modes associated with this refnum.
dir_path Pathname of the directory containing this object.
DTA Date/time object was last accessed.
DTB Date/time object was last backed-up.
DTC Date/time object was created.
DTM Date/time object was last modified.
DTS Date/time object was last scavenged.
eof Flag set if end of file has been encountered on

this object (through the given refnum).
etype Directory entry type.
file_closed_by_OS Flag set if this object was closed by the Operating

System.
file_left_open Flag set if this object was open during a system

crash.
file_scavenged Flag set by the Scavenger if this object has been

altered in some way.
fmark Absolute byte to which the file mark points,
fs_overhead Number of pages used by the File System to store

control information about this object,
ftype Object type,
fuid Unique identifier for this object,
kswitch Flag set when the object is killed,
locked Reserved,
lpsize Number of data bytes on a page.

E-2

OperaUng System Reference Manual FS_INFO Fields

machinejD Machine on which this object may be openea.
master_file Flag set if this object is a master.
name Entry name of this object.
nreaders Number of processes with this object open for

reading.
nwriters Number of processes with this object open for

writing.
nusers Number of processes with this object open.
private Flag set if this object is open for private access.
protected Flag set if this object is protected.
psize Physical size of this object in bytes.
refnum Reference number for this object (argument to

INFO).
result_scavenge Reserved.
safety_on Value of the safety switch for this object.
size Number of data bytes in this object (LEOF).
system_type Reserved.
user_type User-defined type field for this object.
user_subtype User-defined subtype field for this object.

E-3

Index

Please note that the topic references in this Index are by section number.

accessing devices 1.3, 2.8
ACTIVATE_PROCESS 3.8.6
ALLOCATE 2.10.13
Append access 2.10.8
attribute 1.3, 2.10.5

CONVERT_TIME 5.9.4
creating

a data segment 4.7.1
an event channel 5.8.1
an object 2.10.1
a process 3.3, 3.8.1

baud rate 2.10.12.1
binding 4.1
BIND_DATASEG 4.7.12
blocked process 1.4,

3 (introduction), 3.8.5
buffer 2.9, 2.10.12.1, 2.10.16,

5.5, 5.8

_ c

CARDS__EQUIPPED 6.1.1
catalog 2.1, 2.5, 2.10.19
changing f i l e size 2.10.13-2.10.15
clock 5.6
clock system calls 5.9
CL0SE_DATASEG 4.7.4
CLOSE_EVENT_CHN 5.8.4
CL0SE_08JECT 2.10.9
code segment 4.5
communication between processes 1.7
COMPACT 2.10.14, 2.10.15
configuration 6 (introduction)
configuration system calls 6.1
controlling

a device 2.10.12
a process 3.4

data segment
creating 4.7.1
private 4.1, 4.4
shared 1.7, 4.1, 4.3
swapping 4.6

Decode mnemonics 2.10.12
Dcdata 2.10.12
Dctype 2.10.12
Dcversion 2.10.12
DECLARE_E XCEP_HDL 5.7.1
DELAYJIME 5.9.1
deleting

a process 3.8.2, 3.8.4
an object 2.10.2

device 2.3-2.7, 2.10.12
accessing 1.3, 2.8
control information 2.10.12
mounting 1.3, 2.10.20
names 2.1, 2.3, 2.10.12.1
priority 2.3
storage 2.4

DEVICE_CONTROL 2.10.12
directory 2 (introduction)
DISABLE_EXCEP 5.7.2
disk hard error codes 2.10.12.2

CM27-A
Index-1

Cperatlng System Reference Manual Index

division by zero 5.2, 8
Dread, Dwrite access 2.10.8

E

ENABLEJXCEP 5.7.3
end of f i l e 2.7, 2.10.14, 2.10.15
eof 2.10,5; see also end of f i l e .
error

disk hard error codes 2.10.12.2
error messages D
soft error 2.10.12.1
See also exception,

event 1.6, 5.4, C
event channel l .7, 5.5, 5 .8 . l
event management system calls 5.8
event types C
exception 1.6, 5.1-5.3, B
exception handler 5.1, 5.3
exception management system calls

5.7
exception names B

F
father process 1.4, 3.6, 3.7,

3.8.1, 3.8.2
f i l e 2 (introduction)

access 2.8
attributes 2.10.5-2.10.7
changing size 2.10.13-2.10.15
label 2.6, 2.10.11
marker 2.7, 2.10.15
name 2.1, 2.10.1
private 2.8
shared 1.7, 2.8

Fi le System 1.3, 2
File System calls 2.10
FLUSH 2.10.16

FLUSHJDATASEG 4.7.5
FLUSH_EVENT_CHN 5.8.7
FLUSH_EXCEP 5.7.6
FSJNF0 fields E

Q
GE T_CONF 16__NAME 6.1.2
GET_NEXT_ENTRY 2.10.19
GET_TIME 5.9.2
GET_WORKING_DIR 2.10.18
global access to f i les 2.8
global event channel 5.5
Global_Refnum 2.8, 2.10.8

H

handshake 2.10.12.1
hierarchy of processes 3.2

1
INF0 2.10.6
INF0_ADDRESS 4.7.9
INFO__DATASEG 4.7.7
INFO_EVENT_CHN 5.8.5
INF0_EXCEP 5.7.4
INF0_LDSN 4.7.8
INF0_PR0CESS 3.8.3
interface unit A
interprocess communication 1.7, 2.9
1/0 2 (introduction)

K
KILL_DATASEG 4.7.2
KILL_EVENT_CHN 5.8.2
KILL_OBJECT 2.10.2
KILL PROCESS 3.8.4

Index-2

Operating System Reference Manual index

L
label, f i l e 2.6, 2.10.11
LDSN 4.2, 4.4, 4.7.8
LEOF. See end of f i l e ,
local data segment 4.1
local event channel 5.5
logical data segment number 4.2,

4.4, 4.7.8
logical end of f i l e . See end of

f i l e .
LOOKUP 2.10.5

n

MAKEJDATASEG 4.7.1
MAKE_EVENT_CHN 5.8.1
MAKE_FILE 2.10.1
MAKE__PIPE 2.10.1
MAKE_PROCESS 3.8.1
memory management 1.5, 4.1-4.6
memory management system calls 4.7
memory, parameter 6 (introduction)
MEM_INF0 4.7.10
mnemonics for 0ccode 2.10.12.1
MOUNT 2.10.20
mounting a device 1.3, 2.10.20
MY ID 3.8.9

N

naming an object 2.1, 2.10.1,
2.10.4

0
object 1.3

creating 2.10.1
deleting 2.10.2
naming 2.1, 2.10.1
renaming 2.10.4

OPEN 2.10.8
0PEN_DATASEG 4.7.3
0PEN_EVENT_CHN 5.8.3
OS interface A
0SB00TV0L 6.1.3

page 2.4
parameter memory 6 (introduction)
parity 2.10.12.1
pathname 1.3, 2.1, 2.2
PE0F. See end of f i l e ,
physical end of f i l e . See end of

f i l e .
pipe 1.7, 2.9. 2.10.1, 2.10.8
priority of devices 2.3
priority of processes 3.5, 3.8.7,

3.8.8
private access to fi les 2.8, 2.10.8
private data segment 4.1, 4.4
process 1.4, 3

blocked 1.4, 3 (introduction),
3.8.5

creating 3.3, 3.8.1
father 1.4, 3.6, 3.7, 3.8.1,

3.8.2
hierarchy 3.2
priority 3.5, 3.8.7, 3.8.8
queuing 3.5, 3.8.5-3.8.8
scheduling 3.5, 3.8.5-3.8.8
shell 1.4, 3.2
son 1.4, 3.7, C
starting 3.8.1, 3.8.6
stopping 3.8.2, 3.8.4
structure 3.1
termination 1.4, 3.6, 5.2, B, C

process system calls 3.8

Index-3

Operating System Reference Manual Index

Q
queuing a process 3.5, 3.8.5-3.8.8

R

range check error 5.2, B
READ_DATA 2.10.10
READJ_ABEL 2.10.11
refnum 2.8; see also Global_Refnum.
RENAME_ENTRY 2.10.4
renaming an object 2.10.4
RESET_CATALOG 2.10.19
running a program 1.4, 1.9, 3.8.1,

3.8.6

S
safety switch 2.5, 2.10.17
Scheduler 3
scheduling processes 3.5,

3.8.5-3.8.8
SEND__EVENT_CHN 5.8.8
SE TACCE SS_DA TASE6 4.7.11
SETPRIORITY_PROCESS 3.8.7
SET_FILE_INF0 2.10.7
SET_LKAL_TIME_DIFF 5.9.3
SET_SAFETY 2.10.17
SETJtfORKING_DIR 2.10.18
shared data segment 1.7, 4.1, 4.3
shared f i l e 1.7, 2.8
shell process 1.4, 3.2
SIGNAL_EXCEP 5.7.5
SIZE_DATASEG 4.7.6
soft error 2.10.12.1
son process 1.4, 3,7, C
sparing 2.10.12
starting a process 3.8.1, 3.8.6
stopping a process 3.8.2, 3.8.4
storage device 2.4
SUSPEND PROCESS 3.8.5

swapping 4.6
Syscall unit A
system calls

clock 5.9
configuration 6.1
event management 5.8
exception management 5.7
f i l e 2.10
rnemory management 4.7
process 3.8

system clock 5.6, 5.9
system-defined exceptions 5.2, B
SYS_0VERFL0W 5.2, B
SYS__S0N_TERM C
SYS_TERMINATE 5.2, B
SYS_VALUEJD0B 5.2, B
SYS_ZER0_DIV 5.2, B

T

terminated process 1.4, 3.6, 5.2,
B, C

TERf1INATE__PROCESS 3.8.2
timed events 5.8.8
tree, process 3.2
TRUNCATE 2.10.15

U
UNBIND_DATASEG 4.7.12
UNKILL_FILE 2.10.3
UNMOUNT 2.10.20
user-defined exception handler 5.3

v

value out of bounds 5.2, B
volume catalog 2.1, 2.5, 2.10.19
volume name 1.3

Index-4

Operating System Reference Manual Index

u
WAIT_EVENT_CHN 5.8.6
working directory 2.2
working set 4.2
WRITE_DATA 2.10.10
WRITE_LABEL 2.10.11
writing buffered data 2.10.16

Y
YIELD_CPU 3.8.8

lndex-5

His MANUAL was produced using
LisaWrite, LisaDraw, and

LisaList.

LL P R w n N G was done with an
Apple Dot Matrix Printer.

the Lisa™
...we u s e i t o u r s e l v e s .

Qperating System Reference hf&wal PtelI-Back Foim

Apple publications would like to learn about readers and what you think about this
manual in order to make better manuals in the future. Please fill out this form, or
write all over it, and send it to us. we promise to read it.

How are you using this manual?
[] learning to use the product [] reference [] both reference and learning

[] other

ls it quick and easy to find the information you need in this manual?
[] always [] often [] sometimes [] seldom [] never

Comments

What makes this manual easy to use?

What makes this manual hard to use?

What do you like most about the manual?

What do you like least about the manual?

Please comment on, for example, accuracy, level of detail, number and usefulness of
examples, length or brevity of explanation, style, use of graphics, usefulness of the index,
organization, suitability to your particular needs, readability.

What languages do you use on your Lisa? (check each)

[] Pascal [] BASIC [] COBOL [] other

How long have you been programming?

[] 0-1 years [] 1-3 [] 4-7 [] over 7 [] not a programmer

What is your job title?

Have you completed:

[] high school [] some college [] B A ^ S [] MAA^lS [] more

What magazines do you read?

Other comments fclease attach more sheets if necessary)

029-0408-A

FOLD

FOLD

PLACE
$mr
HERE

^ a p p k z c o m p u t e r

POS Publications Department

20525 Mariani Avenue

Cupertino, California 95014

TAPE OR STAPLE

