Video
Technology

| aser 200

FOREWORD

This manual is intended to provide owners of the®@300 series of personal colour computers withtaaal
information to assist in programming, operation ardansion. All reasonable care has been takenstare that the
information contained herein is accurate and ctirhevever no responsibility can be accepted, iadility assumed for
either its accuracy or suitability for any partaupurpose. Dick Smith Management Pty Ltd resettvesight to make
circuit, software and/or mechanical changes tptioeucts described herein, without notice.

Although much of this information contained heriitl be of interest to all VZ200/300 owners, itdassumed that the
reader is reasonably familiar with the technioaditdf digital computer electronics. It is strongtfgommended that owners
without suitable experience in the field of compstervice techniques not attempt to repair or nyathiéir computer's
equipment.

CONTENTS

FOREWORD........ooirteeeuaseieessoseseeeseecesas sk 1
CONTENTS -oeooeeeeeses e eees et sk Rt 1
THE BASIC COMPUTERSccovutuuuireiassasmmmm e eosss st st s 2
SPECIFICATIONScoocoueeeeesse e seeesmmsss etk 2

WEIGHTING BIT FUNCTION ...ttt seme ettt sr et sre e e e semmmes et sre e see st e neesneenbesnnens 9
LS 0= L] SO R 9
LOF 11T C 1 (3 o 11 1 11 | APPSR 9
VBl @o 1] o] = |1 oo [T OO RRR 9
VDC background COIOUI CONTIOL........oiii ettt ettt ettt se e e eneesneeesnee e as 9
JOV STICKS ...ttt ettt ettt ettt ettt 1ttt £ bbb e btk e sttt es s ememmns 41 h e Rt b e ea btk e es bt b e e ne e e ee e et et 9

VZ200/300 DISK CONTROLLERooiiiiiitiieret ettt se et emmmmms e se e sn e ne et nn e 10

VZ200/300 DISK DRIVEooiiiiiiiiite ittt ettt ettt st s s st sttt et 11

LT 1T L@ 01T =1] o PSSP 11
READ/WRITE and CONTROL ELECTRONICSc.coaiitie ittt semmems e e s 11
DRIVE MECHANISM......cuiitiittit ittt eeeie et see bbb ess s see st et s ebe s semmamss e s be s b essabe e ne et seabeebesneannrsens 11
R/W HEAD POSITIONING MECHANISMccuiuiiiiiime ettt s s b emmemme e s eneese s 11
RIVW HEAD ...ttt ettt bbbt e s he bttt et se a4t et smemmt 44 152 Sbe b eR s e ee e 1t e ben b et e e ne et s e emrcs 12
TRACK O STOPPING MECHANISMoiiiiiiiietsmemee s teiee ettt ese e bsie st s ommamms s ebeebe et ssesnesneane 12
DRIVE SELECTION ...iitiitittitee it ettt e re et et e e ae st seete e s ebasse s bmmmmns s s 1t sh e b e bt se e s b sbenbeneeseesbensannene 12
FILE PROTECTION MECHANISMciiiiiiiiiiiieesie ettt sttt bese e st vemeems e st ene e e 12
FUNCTION Of TEST POINTS .. .ottt etee ettt se et bese s see b s emeams e se e se e be b es s abe e se e beseeneane 12
FUNCTION 0of VARIABLE RESISTORScuoititiitatieeteaie ittt ettt see b sammem e sbe e s st e s 13
TROUBLESHOOTING GUIDE ..ottt eeie ettt sttt s et b e st sae e b e 13
LISTING OF DISK CONTROL PROGRAMc.ciuiitiimmmt ettt see et see et ese s semmemme e e ssene e e 15
VZ200/300 SCREEN CONTROL CODESct e sesuesteseesesiensasseseessestessesmmsmmessesstesssssssessessssnes 17
VZ200/300 SYSTEM POINTERS AND VARIABLE STORAGE LCATIONS ..ot 17
RESERVING SPACE FOR A MACHINE CODE PROGRAM ...ccoei ittt emmme e 18
CALLING A MACHINE CODE ROUTINE FROM BASICcmiieiiiiriineeinieieeie e eve s ememne s 21
USEFUL ROM SUBROUTINES FOR ASSEMBLY PROGRAMMING ..ot 22,
KEYBOARD SCANNING ROUTINE......ccittiitiiirttmanee sttt see sttt seesbessesssre e smemmnee s b ebeesesssssesneene 22
CHARACTER OUTPUT SUBROUTINE.......ccotiit ittt ere e emeecs e s s anee e 22
MESSAGE OUTPUT SUBROUTINEccuttitet it immmme et see st sbessesesseesiessesssse e smemmnsesssseesessesssssessesns 22
COMPARE SYMBOL (EXAMINE STRING) - RST 08H.....cceciiiiiiiriiiienee e emeemsee e e 23
LOAD & CHECK NEXT CHARACTER IN STRING -- RST 10H....cccoioiiiiiiieii e e 23
COMPARE DE & HL REGISTER PAIRS - RST 18H ..ot seemmei e e 24
SOUND DRIVER ...ttt ettt sttt ettt st sttt tb et bes b e eb et et s emems £ eb e 21t e h e b e ebeebesbesberbeeeeseesbenee 24.
BEEP ROUTINEuttttiitiit ittt iememeee s teseete e st et ebeebe st es e s e s e eeemmmes 21t h s e s e et e et eatshebeebeanesbeseesbmm 24
CLEAR SCREEN ...ttt e etttk b et s emems bbb e bt e bt s be s b et eee e b 25.
PRINTER DRIVER ... ottt ittt ettt ettt ettt e s ae bttt e semmem s bk e bt b s b s b et e sbesbe b nbeneas 25.
CHECK PRINTER STATUS ...ttt ittt tmeamee ettt sttt eee e et st b semeems bt 15 b b en e se e se e b neenee e 25
SEND CR-LF TO PRINTERcuiititttitiee st ettt sae sttt ebesee b sbes s smemmet st e e saesbensessesbesbesbanesseses 25
VZ200/300 DISK OPERATING SYSTEM (DOS) ANALYSIS ..ottt semmemmee e 26
DISKETTE FORMATTING ..ottt ettt sttt e be bbb see b emeams s e e ket ess e reene e bseanee e 26
RECORDING TECHNIQUE........c.ciiitiiitiit ettt sttt st se e st bbb smemmme e b ese e st bbb ebe e e enes 26
THE STRUCTURE OF THE DOS ..ottt ettt st s b st e s b et e e b s 26
DISK STRUGCTURE ...ttt ittt st esmesre st sttt see st be bt eseese e s s smemmts e 16 e be b eseabe e st embessabeebesneanens 1.2
DOS ENTRY POINTScoitiitiittit ittt st ettt ebeebe e sbesbessesee e semmams £ b e eeeshesbe b en bt seesbebessabeeseanas 28
DOS SUBROUTINES.ccut ittt st emmie ettt ettt et besbessesee e semmams bt seeshesbe b en bt se e sbe b seabeenee s 28

THE BASIC COMPUTERS

The VZ200/300 computers employ a Z80A microprocessoning at approximately 3.6MHz.

A Microsoft Basic interpreter and I/O routines amatained in 16K of mask-programmed ROM.
Included in the computers are user RAM, a PAL coladeo display circuit, a VHF RF modulator,
a "QWERTY" keyboard, a cassette interface and alsisound effects circuit.

Also included is provision for memory and I/O expiam via two rear edge connectors.

Devices which can be plugged into these connetiohsde a 16K RAM expansion cartridge,
printer interface, floppy diskette interface andnggoysticks.

SPECIFICATIONS

VZ200 VZ300
CPU Z80A Z80A

CLOCK SPEED 3.58MHz 3.54MHz

INTERNAL ROM 16K 16K
INTERNAL RAM 6K 16K
DISPLAY RAM 2K 2K

SCREEN FORMAT

MODE 0

16 lines of 32 characters. 128,upper-case texackens in normal or inverse format plus 128 2 pi@ pixel chunky
graphics characters in 8 colours.

MODE 1

64 rows of 128 individually addressable pixels icodours.

VIDEO OUTPUT

1V p-p into 75 ohms composite video, negative sia#d. colour encoded.

RF OUTPUT

ImV into 75 ohms VHF Ch. 1 (57.25Mhz) PAL colourceded.

KEYBOARD

45 key "QWERTY" style.

POWER SUPPLIES

The computer is powered from a 10-12V 800MA dc seur Normally this will be an approved "plug-paeithough
battery powered operation is also possible. lh lbmtdels the raw dc input is regulated by a 3 teamiegulator IC to 5V
dc which powers most of the internal circuitry.

In the VZ200, the colour encoder circuitry requiaes12V rail which is generated from the +5V rajldregulating
inverter circuit.

In the VZ300, additional supply rails of +12V ariV/-are required to power the dynamic RAMS. Thesltages are
generated from the raw dc supply by an inverteudicomprising Q2, Q3 and associated components.

CPU AND ASSOCIATED CIRCUITRY

The CPU is clocked by a 3.5795MHz crystal oscillaomprising 3 inverters (UI3).
The -RESET pulse is generated by a simple RC tiatwi buffered by 2 inverters (UI3).

The -INT input is activated during screen retraegquls by the video circuitry. The interrupt is\deed by a ROM
routine which performs some housekeeping and peswéduser book. The condition of the -INT input afso be sampled
as bit 7 during reads of the keyboard address€XJBI86FFFH).

The signals, -NMI, -WAIT, -RFSH, -MI, -HALT, and@RQ are not used within the machine but are availabthe rear
expansion connectors, as are all of the Z80 addiass, control and status signals with the exoepif -BUSACK and
-BUSREQ.

VZ300

The VZ300 differs in the following ways.

The CPU is clocked at 3.5469MHz. This is obtaingdiivision of the master oscillator by 5 within UIOThe 17.734MHz
master oscillator, comprising 3 inverters (u9glso divided by 4 to provide the 4.43362MHz PAL caibier.

The RC derived -RESET pulse is buffered by 2 irersrof U9.

RAM AND ROM

VZ200

6K of program RAM is provided, implemented as thP&ex 8 static RAMS (U2', U3', U4") mounted on aadindaughter
board. U2'occupies addresses 7800H-7FFFH anthlded by the address decoder circuit on the nebin(g2, U3).
U3' and U4' occupy addresses 8000H-87FFH (U3"8&80DH-8FFFH (U4") and are enabled by UI'.

Another 2K x 8 RAM (U7) is used for the video dapbuffer. The video RAM occupies addresses 760UIHFH and is
enabled for CPU access by U2 and U3. For CPU yéaelvideo RAM data is buffered by U14. The vid®aM address
lines are decoupled from the CPU address lineghgssresistors to avoid conflicts between the @Rt the Video
Display Processor (UI5) at times other than CPlsgto the video RAM.

The BASIC interpreter and 1/O routines are contaiimel 6K of ROM addressed in the range OOOOH-3FFHhl early
VZ200s this is implemented as two 8K x 8 device8,(U10). U9 occupies addresses, 0000-IFFFH andddtOpies
2000H-3FFFH. Later machines use a single 16K YO8/R To address the larger ROM over the 0000-3FFartge,
A13 is taken to the ROM (pin 26) and the ROM cléfest (pin 20) is generated by 'ORing' the two Reédl&ct signals
from U3 with a pair of diodes.

VZ300

16K of program RAM is provided implemented as eiy®K x 1 dynamic RAMS (UIl-B). The RAM occupies théK
address block 7800H-B7FFH. A custom gate arra@{ldbntains all of the necessary circuitry to eadbe RAM,
multiplex the CPU address and provide the cor@atS and refresh timing.

A 2K x 8 RAM (UI6) is used for the video displayffar. The video RAM occupies addresses 7000H-77kfRtHis
enabled for CPU access by the address decodenwdttd. For CPU reads, the video RAM data is befldsy U14. The
video RAM address lines are decoupled from the @Bdltess lines by series resistors to avoid costietween the CPU
and the Video Display Processor (UI5-) at timeepthan CPU access to the video RAM.

The BASIC interpreter and 1/O routines are contaiimea single 16K x 8 ROM enabled for the 0000-3HFeldress range
by address decoding circuitry within U13.

THE KEYBOARD

The 45 keys are arranged in a 6 x 8 matrix. Edtheo8 rows effectively occupies a specific memaagress (actually, a
series of addresses due to the simplified decodiintie range 6800-6FFFH. The individual keysraepped onto the
least significant 6 bits of that location, accoglio the column they occupy.

The 8 least significant bits of the address bukdgnwn the rows of the matrix through diodes. Kagboard is scanned by
software sequentially taking each of these 8 lneslogic low level. If the upper 8 address linegresent 68H (or, in
fact, 69H-6FH) then the condition of the 6 key eohs o the particular row will be enabled onto theadus through U12.

For example, if the '2' key were pressed, it wanaldse bit 1 at address 68V7H to drop to 0. Therd#ti@ved by reading
that address, neglecting the 2 most significastwitich are not driven by the keyboard, would béi3Binary 111101).

The keyboard matrix and its (lowest) row addresseshown below. Note that each key causes alogi@ppear at the
bit position shown, when its row address is read.

ROW BIT POSITION
ADDRESS :5 4 3 2 1 0
68FEH :R Q E W T
68FDH :F A D CTRL 5 G
68FBH :V z C SHFT X B
68F7H :4 1 3 2 5
68EFH : M SPC N
68DFH :7 0 8 9 6
68BFH :U P IRETN O Y
687FH J K L

VZ300

The VZ300 keyboard is logically the same as the @¥<hough it is read through a custom 1/O IC)(1#hysically the
VVZ300 keyboard differs in that it uses the more n@n, moulded keys and has a full space bar.

THE VIDEO INTERFACE

The heart of the video interface is a 6847 videspldiy processor. This IC contains the upper-c&glhand chunky
graphics character generator, and, logic to prothedot addressable graphics, the video timingadsy the video RAM

control and address signals, a video luminanceo(p)ut and 2 matrixed colour outputs (R-Y and B-Y)

50Hz SYNC GENERATION

The 6847 is intended to produce 60Hz vertical syoruization signals and 262 lines per field. Inesrtb produce 50Hz
312 line video signals, 50 extra lines must be dddesach field. This is achieved by 3 counterk3,WJ20, U21 and
associated logic.

When the VDP outputs -FS, the reset inputs to U0eleased, allowing it to count video lines frtira VDP. U20
counts the first 25 lines of the bottom border #ireh inhibits the 3.58MHz video clock via U16 antidU Instead of
clocking the VDP, the clock is fed to U18 whickcenfigured as a divide-by-228 counter. U18 gemsrhbrizontal sync
pulses (between clock edges 208 and 228) duringdhed that the VDP is disabled. U21 counts tidsenmy" video
lines. When 25 additional lines have been comg|ete clock is switched back to the VDP. The \i#Rerates a
further 7 lines before resetting -FS. This agahibits the VDP and allows U18, U21 etc. to ingeftirther 25 "dummy"
lines. The VDP is then allowed to operate as nbfonahe next 230 lines after which the cycle r@fsdtself. In
summary, starting from the falling edge of -FS, 31€ line cycle is as follows:

-25 lines of bottom border (from VDP)

-25 lines of bottom border (from U18 etc.)

-1 line of bottom border (from VDP)

-6 lines vertical retrace (from VDP)

-13 lines of blanking (from U18 etc.)

-12 lines of top border (from U18 etc.)

-38 lines of top border (from VDP)

-192 lines of active display (from VDP)

VIDEO DISPLAY MODES

The video interface operates in one of two modeg/low-res graphics (MODE 0) or hi-res (MODE 1J.he display mode
is determined from the -A/G input on the VDP (p%).3 This input is controlled by bit 3 of the Catstspeaker/VDP
control latch. If bit 3 is set then MODE 1 is efeah

MODE 0

In MODE 0 the screen is organised as 16 rows affé?acters. Each screen location is representedubigue memory
location in the first 512 bytes of the video RAMe(i7000H - 71FFH, or 28672 - 29183 decimal).

The background colour in this mode is determinethleycondition of pin 39 of the VDP (CSS). If CBSet, then the
background colour is orange; if it is reset themltackground is green. CSS is controlled by loit the
Cassette/speaker/VDP control latch.

A total of 256 different characters can be dispthgensisting of 64 upper-case characters, the §dneharacters in inverse
format and 128 lo-res graphic characters. Bit thefvideo character data determines whether theacter is text (bit
7=0) or graphic (bit 7=1).

If bit 7 is reset, indicating a text character rfoét 6 determines whether it is displayed in ndrtbé 6=0, light on dark) or
inverse (bit 6=1, dark on light) format. The remag 6 bits are the character code.

If bit 7 is set, indicating a graphic charactegrttbits 4, 5 and 6 indicate the colour of the attaraand bits 0, 1, 2 and 3
determine its shape. Each of the 4 least sigmifibéis corresponds to a pixel in a 2 x 2 matrixcltoccupies the same

screen area as a text character.

The 3 bit colour code is: Bits 0-3 of the graphibaracter code are mapped onto pixels as showwbelo

B6 B5 B4 HEX COLOUR

0 0 0 0 Green

0 0 1 10 Yellow

0 1 0 20 Blue

0 1 1 30 Red

1 0 0 40 Buff

1 0 1 50 Cyan

1 1 0 60 Magenta

1 1 1 70 Orange
MODE 1

In this mode the screen is organized as 64 roW281Mpixels, giving a total of 8192 pixels. Eackgbican be displayed in
one of four corners, one of which is the backgroomidur. This means that for each of the two gmediackground
colours, each pixel can be either 'turned offtt{ezsame colour as the background), or displayeeénof three colours.

The video RAM coding scheme used for this displaglenuses each byte to encode four adjacent pixetds means that
each pixel is encoded in two bits. To illustrédtisthere is the coding for the first four pixetstbe screen, in the top left
hand corner:

ADDRESS 7000H: B7 B6 B5 B4 B3 B2 Bl BO

The next four pixels along the line are storediration 7001H, and so on. The 2-bit colour codiggd for each pixel is
shown below:

0] Background colour O (green):

00=GREEN (background colour)
01=YELLOW

10=BLUE

I=RED

(i) Background colour 1 (buff):

00=BUFF (background colour)
01=CYAN

10=ORANGE

I=MAGENTA

Note that from BASIC, any pixel may be individuatlyrned on or off usinia the SET(x,y) and RESET)xgmmands, and
given various colours using the COLOR(m,n) command.

Video display worksheets for both mode(o) and mip@eé given at the rear of this manual. Thesebeawery handy for
planning the display screens, menus etc when yowating programs. Feel free to photocopy theseksheets, so you
can use the photocopies in this way.

I/0 MAPPING

The Z80A microprocessor in the VZ200/300 can addPé&s ports in I/O space (ie ports O - FF hex).e fitlowing 1/0
address ranges have been allocated for expansipheels:

/O ADDRESS (hex) DEVICE

00 OF Printer

10 1F Floppy disk controller

20 2F Joystick interface

30 3F Communications MODEM
70 7F Memory bank switch

VZ200/300 CASSETTE/SPEAKER/VDC OUTPUT LATCH
An internal latch is used to generate the caseetfeut, the drive for the internal piezo speakead &vo control signals for
the video display controller chip (6847). The teis write-only and memory-mapped occupying allraddes from 6800H

- 6FFFH (26624 - 28671 decimal) inclusive. InY#200 this latch is Ul (74LS174), whereas in the3@A this latch is
part of U14 (the GA0O4 LSI). A bit-map of the latis shown below:

WEIGHTING BIT FUNCTION

Hex Dec

20 32 5 Speaker B

10 16 4 VDC Background 0 green rdnge (text) buff (graphics)

08 8 3 VDC Display Mode 0 modeéxtt/ low res. 1 mode 1, graphics / hi-res.
04 4 2 Cassette out (MSB)

02 2 1 Cassette out (LSB)

01 1 0 Speaker A

speaker

The speaker is driven in push-pull fashion by 8itsd 5. To make the speaker sound a note, thesefshould toggle bits
0 and 5 alternately at the required rate. ie wtie@ is a logic Oil, bit 5 should be logic 'O’ avide-versa. Note that when
this is done the software should not alter therdtfits of the latch.

Cassette output

Bits 1 and 2 are used to generate the cassettalimgaignal, which is approximately 200 millivofigak-to-peak.

VDC display mode

The VDC display mode is controlled by bit 3. If Biis a logic 10', the VDC will operate in its tdatv-resolution mode.
If bit 3 is made logic '1', the VDC operates inhitgres graphics-only mode.

VDC background colour control

Bit 4 is used to control the VDC background coloun text/low- res mode (mode 0), a '0' on bitdegia green
background colour while a '1' on bit 4 gives amgebackground. In hi-res mode (mode 1) a '0'ioh @ives a green
background, while a '1' gives a buff background.

JOYSTICKS

The two Joystick units are connected to a plug-adute that contains 1/O address decoding and swittnix encoding.

IC U2 (74LS138) enables I/O reads between 20 - &€ HAddress lines AO - A3 are used separateletemate active
LOW signals on the joystick or switch to be reaBiwitch state is then read at the resultant addressData bits DO - D4.
When a switch is ON it provides an active-low Dgita As below:

1 = Right-hand joystick, 2 = Left-hand joystick

I/O Address Hex Joystick Switch Data (Hex)
2E (46 dec.) 1 Up FE
1 Down FD
1 Left FB
1 Right F7
1 Fire EF
2D (45 dec.) 1 Arm EF
2B (43 dec.) 2 Up FE
2 Down FD
2 Left FB
2 Right F7
2 Fire EF
27 (39 dec.) 2 Arm EF

VZ200/300 DISK CONTROLLER

This is a plug-in port-mapped device capable opsuiing two X-7302 disk drives. The Disk Controlézcupies the 1/0
address space from 10 Hex to 1F Hex of the port maffectively only 4 1/O locations are used to ttohand read back
data from the Disk Drives.

I/O address Function
10 Hex Latch (write-only)
Bit O - 3:Stepper-motor control phases (activeH)
Bit 4: Drive 1 enable.(active LOW)
Bit 5: Write data (active HIGH)
Bit 6: Write request (active LOW)
Bit 7: Drive 2 enable (active LOW)
11 Hex DATA (read-only)

Bit 0 - 7: Data byte read from disk

12 Hex POLLING (read-only)

Bit O - 6: not used
Bit 7: clock bit polling input

13 Hex WRITE PROTECT STATUS (read-only)
Bit 0- 6 : not used

Bit 7: 1 = write-protect
0 = no write-protect

VZ200/300 DISK DRIVE

General Operation

The X-7302 VVZ200/300 floppy disk drive consistsedd/write, control and drive motor electronicsyelmechanism,
read/write head, and track positioning mechanishimese components perform the following functions:

i) Receive and generate control signals

ii) Position of the read/write head to the desiraedk
iif) Read/write of data

iv) Control of drive motor speed

READ/WRITE and CONTROL ELECTRONICS

The three electronic boards contain:

i) Stepper motor driver

ii) Write amplifier

iif) Read amplifier and control circuits
iv) File protect sensor

V) Drive enable circuit

Vi) Drive motor control circuit

DRIVE MECHANISM

The drive motor rotates the spindle at 85 rpm tghoa beltdrive system. The speed of the motooiigrolled by a
tachofeedback servo circuit. A hub clamp that nsameconjunction with the door closure mechanisntres and clamps
the floppy disk onto the spindle hub.

R/W HEAD POSITIONING MECHANISM

The R/W head is positioned to the desired trackgplying the control signals to the stepper motdhe connection
between the head carriage and the stepper mdtooisgh a steel belt. The stepper motor rotatge(@s per track.

R/W HEAD

The R/W head is used to read/write data to and frenfloppy disk. The R/W head is mounted on thachcarriage which
moves on rails and is positioned by the steppeomothe floppy disk is held on a plane perpendicto the R/W head.

TRACK 0 STOPPING MECHANISM

After powering on and track location failure, thesjtion of the R/W head is indeterminant. In ortteassure proper
positioning of the R/W head after powering on,epsbut operation (recalibration) is performed uihis locked at track 00
by the track 00 stopper.

DRIVE SELECTION

The drive is selected by activating the -BENBL lindfter being selected, the drive motor and th®Ldh the front panel
bezel will be on.

FILE PROTECTION MECHANISM

The file protect mechanism is constructed with ®lahd phototransistor to detect the existenceefitite enable notch
of the disk jacket. When a disk with the notchem@d is installed and the light passing for detecis disturbed, no write
or erase current will flow through the R/W headheTecorded information on the disk is protectedhfian erroneous
input of a write command.

FUNCTION of TEST POINTS

i) TP1, TP3 PCBA Control and R/W amplifier.

Test points for observing the read pre-amplifieipotisignals after passing through the low-passrfil Hence TP1 and
TP3 are used for the check and adjustment of the seek mechanism. ie track alignment.

For observation of the read waveforms, use two mblarof an oscilloscope with one channel set toEHRY mode and then
ADD both channels. Use test point TP2 for thellisziope ground. This method will display full l&aced' signal, if
these modes are unavailable on oscilloscope theered waveform using single oscilloscope chanwoehfeither TP1 or
TP3 and TP2 as ground.

ii) TP2, TP5 are both system ground terminals.

iif) TP6 is a test point for observing read datésps.

iv) TP4 is not used.
13

FUNCTION of VARIABLE RESISTORS

i) VR1 PCBA control and R/W amplifier
VR1 is used for adjusting peak shift of the reathda

i) VR2 PCBA drive motor
VR2 is used for adjusting the rotational speechefdpindle.

TROUBLESHOOTING GUIDE

TOOLS and EQUIPMENT

i) Dual channel oscilloscope with Differential Mooigut (ie ADD, INVERT), of 10MHz or better
ii) Frequency counter

iif) VZ200/300 and Disk Controller

iv) Software: DISK CONTROL program (for controllirtje stepping motor to move the R/W head for aligntrand
TRK 00 recalibration). Refer to suggested listing)

V) DYSAN 48 TPI alignment disk. (#206-10)

Vi) Cleaning disk (if available)

vii) Working disk

viii) Another VZ200/300 Disk Drive (used as workidgsk)

iX) Screwdrivers: PHILIPS screwdriver, 5mm Bladeesedriver, 3mm

X) Hexagon wrench key, 1.5mm

xi) Locking agent (ie nail-polish)

GENERAL PROCEEDURE
i) Remove the top and bottom cases by removingrsgcacrews under unit.
ii) Set up the computer with the working drive asv® 1 and the Drive under test as Drive 2.

iif) Connection and disconnection of connectors.

iv)

Note-complete orientation and position of connechefore removing-them. Be sure to turn the pdeF before
connecting or disconnecting the connectors. WHegging or removing connectors, this should be deitieout applying
excessive force to the cables or post pins.

iv) If the LED on the front bezel is ON but the i¥iMotor remains stationary, check that the corareare securely
connected.

CHECK and ADJUSTMENT of DISK ROTATION SPEED.
i) Install Alignment Disk in disk drive to be chemk Select DRIVE by typing DIR command.
ii) Use the Frequency Counter to monitor the outduéest point TP1 (Ground on TP2).

iy The reading of the frequency counter showdd35.417 kHz.
If the frequency is off by more than 1 kHz (app83%) then adjust VR2 on the Drive Motor PCB.

iv) After checking that this measurement is satigfey, fix VR2 with a small drop of locking agent.

CHECK and ADJUST of TRACK ALIGNMENT

i) connect two channels of the oscilloscope to &Rd TP3 on the Control and R/W amplifier PCB.
ii) oscilloscope setting:20mS/division, CH.A and ®&both AC mode .5V/division

iif) Set one Channel to INVERT and.ADD both charsnel

iv) Load the DISK DRIVE CONTROL program.

V) Install the Alignment disk in the Drive to bested.

Vi) Using the control program, send the head cgerta TRK 16.

vii) The lobe patterns displayed should be withi9s7of each
other, see diagram below. If they are, then nostdjent is required. If they are not, then proceid adjustment.

viii) Loosen the stepper-motor fixing screws andlesbbserving the waveform, turn the stepper mtarorrect the
lobe pattern.

iX) Check that the adjustment is stable by steppif@RK 16 in both directions and returning.

X) once corrected and stable, tighten the steppéomfixing screws, and seal with a small amourboking agent.

CHECK of FILE PROTECT SENSOR

i) Load Disk control Program

ii) Insert a work disk without a write-protect tdiglfway into the disk drive.

iif) Use the 'P' command to check the drive statifie message 'DISK IS WRITE PROTECTED' should appe
iv) Now fully insert and close door, the messad&HIS NOT WRITE PROTECTED' should appear.

NOTE: If any of the above adjustments do not rgdtie Disk Drive's problem, then return the DrigeatDick Smith
Service Dept for a detailed diagnosis.

PREVENTIVE MAINTAINANCE

If the DISK DRIVE is used in a dusty environmentsisuggested that a periodic cleaning is madbeofagnetic-head
suface.

i) Setup DISK DRIVE in position 2.

ii) If a CLEANING DISK is available, insert this drusing the DISK CONTROL program move the R/W HEAD
between track 00 and the innermost track sevenaldti

iif) If CLEANING DISK is unavailable. Remove coweto gain access to R/W HEAD assembly.

iv) Use a cotton swab lightly dampened with pucehbl. Carefully lift the HEAD LOAD PAD ARM and ean the
R/W Head and surrounding area. Wipe the HEAD serfaith a clean dry cloth after the alcohol hapevated. Be sure
to inspect the area for dirt or fluff left on th&KD surface, before letting the HEAD LOAD PAD ARNwN.

V) Reassemble and check for normal operation.

LISTING OF DISK CONTROL PROGRAM

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540

REM DISK CONTROL PROGRAM
REM A. LATCH CONTROL -----
REM /O ADR:10H

REM BIT 0 - BIT 3:

REM STEPPER PHASE CONTROL
REM BIT 4:DRIVE 1 ENABLE

REM BIT 5:WRITE DATA

REM BIT 6:WRITE REQUEST

REM BIT 7:DRIVE 2 ENABLE

REM B.DATASTROBE -
REM I/O'ADR : 11H

REM BITO-BIT 7:

REM DATA BYTE READ FROM
REM DISK DRIVE

REM

REM C.POLLING -----

REM 1/O ADR: 12H

REM BITO-BIT6:

REM NOT USED

REM BIT 7: CLOCK BIT

REM POLLING INPUT

DIM D(4)

CLS

PRINT:PRINT TAB(6)"'DISK CTRL PROGRAM"
PRINT

PRINT:PRINT TAB(6)"COMMANDS:"
PRINT:PRINT TAB(6)'R RECALIBRATION"
PRINT TAB(6)'G GOTO TRACK
PRINT TAB(6)"l STEP IN

PRINT TAB(6)"O STEP OUT

PRINT TAB(6)"P CHECK WRITE PROTECT"
PRINT TAB(6)"Q QUIT"
PRINT:INPUT "COMMAND ";A$

IF A$="R" THEN GOSUB 410

IF A$="I" THEN GOSUB 560

IF A$="0" THEN GOSUB 700

IF A$="G" THEN GOSUB 900

IF A$="Q" THEN GOSUB 870

IF A$="P" THEN GOSUB 1070
GOTO 330

REM - RECALIBRATE R/W HEAD
P=0

OUT 16,192

FOR J=ITo 24

FOR 1=3 TO 0 STEP -1
D(1)=I:GOSUB 1050

OUT 16,192+LA

D(1)=0:GOSUB 1050

OUT 16,192+LA

NEXT

NEXT
D(0)=:D(1)=0:D(2)=0:D(3)=0

OUT 16,193

TC=0

550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100

GOSUB 840:RETURN

REM MOVE THE R/W HEAD TO
REM INNER TRACKS

IF TC=39.5 THEN RETURN
D(P/2)=0

GOSUB 1050

OUT 16,192+LA

P=P+2

IF P=8 THEN P=0

D(P/2)=I

GOSUB 1050

OUT 16,192+LA

TC=TC+5

GOSUB 840

RETURN

REM - MOVE THE R/W HEAD
REM TO THE OUTER TRACKS
IF TC=0 THEN RETURN
D(P/2)=0

GOSUB 1050

OUT 16,192+LA

P=P-2

IF P=-2 THEN P=6

D(P/2)=I

GOSUB 1050

OUT 16,192+LA

TC=TC-5

GOSUB 840

RETURN

REM - SHOW TRACK NUMBER
PRINT "TRACK = ":TC

RETURN

REM - EXIT THE PROGRAM
OUT 16,40:END

REM - MOVE THE R/W HEAD TO THE DESIRED TRACK
INPUT "ENTER TRACK NUMBER ="TN
IF (TN>39.5) OR (TN<O) THEN GOTO 900
TT=TN-TC

IF TT<=O THEN 990

TT=TT*2

FORCN=ITOTT

GOSUB 560

NEXT

RETURN

IF TT=TC THEN RETURN
TT=TT*(-2)

FORCN=ITO TT

GOSUB 560

NEXT

RETURN
IA=D(3)*8+D(2)*4+D(1)*2+D(O)
RETURN

WP=INP(19)

IF WP>127 THEN PRINT "DISK IS WRITE-PROTECTED"
IF WP<128 THEN PRINT "DISK IS NOT WRITE-PROTEED"
RETURN

VZ200/300 SCREEN CONTROL CODES

The following codes can be used for screen cofrival BASIC:

Cursor left PRINTCHR$(8) Cursor right PRINTCHR$(9)
Cursor up PRINTCHR$(27) Cursor down PRINTCHR$(10)
Rubout PRINTCHR$(127) Insert PRINTCHR$(21)
Home PRINTCHR$(28) Clear screen PRINTCHR$(31)

VZ200/300 SYSTEM POINTERS AND VARIABLE STORAGE LOCATIONS

POINTER or VARIABLE HEX LOC DECIMAL
Top of memory (ptr) 78BI/2 30897/8
Start of BASIC program (ptr) 7BA4/5 30884/5
End of BASIC program (ptr) 78F9/A 30969/70
(also start of simple variable table)

Start of dim. variables table (ptr) 78FB/C 30271/
End of BASIC's stack (ptr)78A0/I 30880/1

(also start of string variable storage area)

Execute address for USR program 788E/F 2336
(note: high byte of address must go in 788F)

Interrupt exit (called upon interrupt) 787D/E/F 836/6/7

Start of BASIC line input buffer ~ 79E8 31208
(buffer is 64 bytes long - 2 screen lines)

Copy of output latch 783B 30779
Cursor position 78A6 30886

output device code 789C 30876

(O=video, 1=printer, -1=cassette)

The contents of the BASIC stack pointer storeddAd/l are basically equal to the contents of thp &f memory' pointer
stored in 78Bl/2, less a figure equal to the nunafdrytes reserved for string storage. The defallie for string storage
space is 50 bytes; this can be modified from withmasic program by using the CLEAR command - i&&R 1000 will
increase the string space to store 1000 bytes.

The VZ200/300 printer interface uses I/O port adsli®@E Hex for the ASCII character code data amdstoutput, and
address OOH for the busy/ready-bar status inptiOfbi

RESERVING SPACE FOR A MACHINE CODE PROGRAM

There are a number of ways to reserve memory gpaesemachine code program, from within a BASICgreon. But
before details of these methods are given, we dradatify the way BASIC normally organizes memopgse.

A range of addresses at the bottom of user RAMdemved for system pointers and variables. Tluisoseis often termed
the communications region'. It includes locatiarsch store pointers to the boundaries of the wariegions in upper
RAM, like the 'Top of Memory' pointer, the 'StaftRASIC program’ pointer and so on. The lattempei is stored at
78A4/5 Hex (30884/5 Decimal).

Normally the BASIC program itself is stored next]acations starting at address 7AE9 Hex. At the &f the BASIC
program text, the system stores a table contathiagprogram's variables. This is known as thedbé list table' (VLT).
This is divided into two sections: first, the simpariable table containing simple numeric variataled pointers to the
simple string variables, and second - the substtipariable table containing dimensioned variables.

As the BASIC program text changes in length, th@\&.moved up or down in memory so that it alwaggihs from the
end of the BASIC program. The pointer to the stéthe VLT is stored in location 78F9/A, and ttairger to the start of
the subscripted variable table in location 78FB/c.

The remaining major regions extend downward froenttip of user RAM. Normally at the very top of RA8/the string
storage area, extending down from the top of RABIr{{er stored at 78BI/2) by either the default figof 50 bytes, or a
different amount established by the CLEAR N commarithe BASIC interpreter's stack then extends doavdvin
memory from the bottom of the string area (poistered in 78A0/1). The space between the topeo¥AlT region and
the bottom of the stack is not used, and is detegnfree’ space So that normally, the RAM orgaimirdooks like this:

METHOD 1: This method of reserving space for a nraelcode program involves shifting the BASIC prograrea
upward in memory from its normal start at 7AE9 atirgg a space immediately above the communicatiegisn. The
machine code program can then be loaded intolaises probably by POKEing it from your main BASItOgram.

Needless to say, the BASIC program area can onthlieed up before your main program is loaded in(d it were done
afterwards, the start of the program would be lo$pt the shifting is quite easy to do, becaukthat is required is A)
change the 'Start of BASIC program' and 'End ofRw/Start of VLT' pointers, together with B) clieatof a new 'null
program'’ at the start of the new program area.

This can be done quite easily from a small BASIGgoam which is fed into the computer ahead of yonain program.
Here is what it looks like if you want to resenay 428 bytes:

10 POKE 31593,0:POKE 31594,0:POKE 31595,0
20 POKE 30884,105:POKE 30885,123
30 POKE 30969,107:POKE 30970,123

Here, line 10 pokes a 'null program' of 3 zero bym¢o the start of the new program area (whichisst 7B69H or 31593).
Line 20 pokes the decimal equivalents of the lod laigh bytes of this new starting address of trogm@m area into its
pointer address, while line 30 pokes in the cowesing values for the EOP/VLT pointer.

Note that this shifting program 'self-destrucshee you run it, the BASIC interpreter loses atbwiedge of its existence
in memory. So if you then try to LIST or RUN, nioth will happen, because as far as the interpigtsoncerned, it now
has nothing in its (new) program storage area.

Once the program has run, however, any BASIC prodoaded will start at the new, higher addressght?28 bytes up),
leaving the space immediately above the commuoicsithirea free for a machine language routine arpno.

Needless to say you can vary the above programjistahe amount of space reserved. You'll needhémge both the
values poked into the pointer locations in linesa@@ 30, and the poke addresses in line 10.

Don't forget that if you use this method, the 'reisg)' program will have to be loaded an ' d rueahof the main program

every time you want to use it. The reserving ofi@nacan't be done from within the main prograrelfts

This is one disadvantage of this method; anothéinaisit is not easy to load in your main BASIC gnam and the machine
language program directly from tape.

METHOD 2: With this method of reserving space fenachine language program,, you create the regsjrace in
between the end of the main BASIC program and téré af the VLT, by shifting the VLT upward in menyo

This is simpler to achieve than method 1, becall$lead is required is to change the 'End of BAgIGgram/start of VLT
pointer stored in 78F9/A Hex (decimal 30969/70h effect, we 'fool' the BASIC interpreter into tking that the BASIC
program is longer than it really is.

How do you work out this hew value for the EOP/Mhdinter? Probably the best way is to PEEK at tilaerof the
pointer when your main program is loaded in norgpahd then add to this figure the amount you rieeglour machine
language routine plus a small amount (say 64 bftes) safety margin.

Let's say again you want to reserve 128 bytesst [iad in your main basic program, then key is timmand:

PRINT PEEK(30969) + 256*PEEK(30970)

The answer you get is the current value of the BQPpointer, in decimal. In other words it repras¢he actual end of
your BASIC program. So add say 192 to this (128 @l saftey margin), to get the new EOP/VLT pointdue.

Say the value you get is 32800. Now find the detiaquivalents of the high and low pointer byteastlfis figure, by
keying in this line:

P=32800:PRINT INT(P/256),P-(256*INT(P/256))

The first number you get is the pointer high bytetlfis case 128), while the second is the poioterbyte (here 32).
obviously if you get a different value from 3286@y this into the above line to get the correspogdalues.

Now all you have to do is fit these values intcair pf POKE statements at the very start of youinmBsASIC program:
1 POKE 30969,32:POKE 30970,128

This line must be right at the start of your pragyao that the EOPNLT pointer is moved beforegragram introduces or
uses any variables. Otherwise the variables woaltbst'.

This method allows you to load save and run the BASogram normally, without any prior preparationce you have
loaded the machine language program into the redespace between the BASIC program and its VLT,cgualso save

and re-load it along with the BASIC program.Notattthe 64 byte 'safety margin' allows for the srimfease in program
length when you add line 1 above.

Method 3: This method of reserving space for a nm&clanguage program involves changing the 'Tddemory' (TOM)
pointer so that it points to an address lower tharactual top of memory. This forces the BASI@iipreter to move its
string storage area and stack downward, leaviqmpeesfor your machine language program at the tojge Method 2,
this is quite easy to do and it can be done frothiviyour BASIC program.

First, you need to PEEK the current value of thevT@inter. This is found quite easily by:

PRINT PEEK(30897) + 256*PEEK(30898)

ie This will give you 36863 for a basic VZ200 (532fr a VZ200 with 16k expanded memory).

Then you simply subtract from this figure the amoofrspace you want to reserve for the machinedagg program, to

give anew TOM address. Then it's simply a mattgroking the low and high byte figures for thiglesks into the TOM
pointer, at the start of your program.

For example, say you want to reserve 256 bytesyandhave a basic VZ200 so the normal TOM is 368&2 the new
artificial TOM will be 36863-256, giving 36607. Teork out the two new pointer bytes in decimal type

T=36607:PRINT INT(T/256),T-(256*INT(T/256))

The first number you get is the pointer high byteré, 142), while the second is the low byte (2&%). If you have a
different value of TOM (for the VZ300 for examplgpu will get corresponding values.

Having found these values all you need do is adddlowing line to the start of your program:

1 POKE 30897,255:POKE 30898,142

The pointer must be changed before the programatiseg variables or the stack, otherwise the systeuld ‘crash'.

Note that this method allows your BASIC progranb#oloaded, saved and run normally. However it césllow the
machine language program to be loaded directlythtageserved area at the same time. The macbderust be loaded
either separately, or POKED into the reserved byghe BASIC program itself after the pointer iswbed.

FINDING THE TOP OF YOUR VZ200/300's MEMORY

This is somewhat more simple - type in the line:

PRINT PEEK(30897) + 256*PEEK(30898)

CALLING A MACHINE CODE ROUTINE FROM BASIC

The standard way of calling a machine languagerpro@r routine from BASIC is to use the USR(X) coamu. But
before this command can be used, the starting ssldifdhe machine language routine must be loadedtie USR
program pointer, stored at address 788E/F Hex1ftw@0862/3). This can be done using POKE statesmen

As it happens, the BEEP subroutine in the VZ2008BASIC ROM can easily be called to do this, ugmyUSR(X)
command. The calling address for the routine 5034ex, so the decimal figures for the USR poibtges are 80 (low
byte, equal to 50 Hex) and 52 (high byte, equ8ktdiex).

So if you want to produce a 'beep' at various glacgour BASIC program, all you need to do is thig line near the start
of the program (before the first beep is needed).

20 POKE 30862,80:POKE 30863,52

This sets up the USR pointer. Then, wheneverep'lie required in the program, simply use the camuin

X=USR(X)

Note that before control is passed to the useimeutt the designated address, the value of thevangt variable X is
stored in locations 31009/31010 (7921/2 Hex). f#®dan be used to 'pass' a parameter value tesdreoutine. If the

routine doesn't need any parameters (like the "beefine above), simply use a 'dummy' variable adike X, as shown.

The same general technique is used for calling otizehine language routines, whether they areddcatROM or RAM.
It's simply a matter of poking the start addresthefroutine into 30862/3, and then using the USRmand.

you aren't limited to calling a single machine cooletine. You can call a number of routines imtigimply by poking
each routine's start address into 30862/3 befareuge the USR command to call it. Just remembRQKE the right

routine address into the pointer each time!

USEFUL ROM SUBROUTINES FOR ASSEMBLY PROGRAMMING

KEYBOARD SCANNING ROUTINE

The keyboard scanning routine resides at 2EF4 HExis routine scans the keyboard once and retutha.key is pressed,
the A register will contain the code for that ketherwise this register will contain zero. Regist&F, BC, DE and HL
are all modified by the routine, so if the contenftthese registers must be preserved they sheuplibhed onto the stack
before the routine is called. The following exaenghows how the routine would be used to waitferRETURN key to
be pressed:

SCAN CALL 2EF4H ;scan keyboard once
OR A ;any key pressed ?
JR Z,SCAN ;back if not
CP ODH ;was it RETN key ?
JR NZ,SCAN ;back if not

:otherwise continue

CHARACTER OUTPUT SUBROUTINE

A routine which outputs a single character to titeo display is located at 033A Hex. The codetiercharacter to be
displayed must be in the A register, while the abtar will be displayed on the screen at the pwsitbrresponding to the
current value of the cursor pointer. All registers preserved. Here is how the routine is catletisplay the word 'HI'
followed by a carriage return:

LD A4IH ;load reg A with code
CALL O033AH ;& display

LD A4IH ;same with |

CALL 033AH

LD A,0DH ;now load A with CR code
CALL 033AH ;& update screen

MESSAGE OUTPUT SUBROUTINE

A very useful subroutine located at 28A7 hex capldiy a string of character codes as a messadeatiteen. The string
of character codes must end with a zero byte. Hiheegister pair must be set to the start of thiagthefore the
subroutine is called. All registers are used keyghbroutine. Here is how it is used:

LD HL,MSG ;load HL with start of string
CALL 2BA7H ;and call print subroutine

MSG DEFM 'READY' ;main message string
DEFB ODH ;carriage return

DEFB 0 ;null byte to terminate

COMPARE SYMBOL (EXAMINE STRING) - RST 08H

A routine which is called using the RST 08H instiore can be used to compare a character in a gigirged to by the HL
register, with the value in the location followittee RST 08H instruction itself. If there is a ngtcontrol is returned to
the instruction 2 bytes after the RST 08H, with ltHeregister incremented by 1 and the next charadtthe string in the A
register. This allows repeated calls to checlafoexpected sequence of characters. Note thatdfteh is not found, the
RST 08H routine does not return from where it ifedabut jumps instead to the BASIC interpretersut phase after

printing the 'SYNTAX ERROR' message. Here is howroutine is used to check that the string poitddaly HL register
is '"A=B=C"

RST 08H

DEFB 41H

RST OBH

DEFB 3DH

RST 08H DEFB 42H RST 08H DEFB 3DH RST 08H DEFB 43H

;test for ‘A’
;hex value of A for comparison ;must have foundirgdor ;hex value of '=' ;OK so far, try for 'B'

;now look for second ;finally check for 'C'
;must have been OK, so proceed

LOAD & CHECK NEXT CHARACTER IN STRING -- RST 10H

The RST 10H instruction may be used to call a nawihich loads the A register with the next chamaof a string pointed
to by the HL register, and clears the CARRY flagh&racter is alphanumeric. Blanks and controes@®H and OBH are
skipped automatically. The HL register is incretedrbefore each character is loaded, thereforeefirst call the HL

register should be set to point to the address BEF-@e location of the first string character tadésed. The string must
be terminated by a null byte.

Here is an example of this routine in use. No# ihit is used immediately after the RST 08H1instion as shown, the
HL register will automatically be incremented targdo the next character in the string:

RST 08H ;test for
DEFB 3DH
RST 10H :fetch & check next char

JR NC,VAR ;will go to VAR if alpha
:continues if numeral

COMPARE DE & HL REGISTER PAIRS - RST 18H

The instruction RST 18H may be used to call a neuvhich compares the contents of the DE and Histexgpairs. The

routine uses the A register only, but will only \wdor unsigned or positive numbers. Upon returnthg result of the
comparison will be in the status register:

HL < DE : carry set
HL > DE : no carry
HL <> DE :NZ

HL = DE:Z

Here is an example of its use. Assume the DE paitains a number and we want to check that it feillsin a certain
range - say between 100 and 500 (decimal):

LD HL,500 ;load HL with upper limit
RST 18H ;& call comparison routine
JR C.ERR ;carry means num>500
LD HL,100 ;now set for lower limit
RST 18H ;& try again

JR NC,ERR ;no carry means num < 100
;if still here, must be OK

SOUND DRIVER

Located at 345C hex is a routine which can be tsedoduce sounds via the VZ200/300's internalpsgmaker. Before
calling the routine, the HL register pair must baded with a number representing the pitch (frequeof the tone to be
produced, while the BC register pair must be loadi#al the number of cycles of the tone requiredifeduration in
cycles). Allregisters are used. The frequendirapused is inversely proportional to frequeneythie smaller the
number loaded into the HL register pair, the higherfrequency. As a guide, the low C producetheywZ200/300's
SOUND command in BASIC can be produced using tloéntl# number 526, the middle C using 529 and tijh & using
127. Here is how you would use the routine tosggt75 cycles of the middle C:

LD HL,259 ;set frequency code

LD BC,75 ;set number of cycles
CALL 345CH ;& call sound routine

'‘BEEP' ROUTINE

The routine which is used by BASIC to produce thers'beep’ when a key is pressed is located atdtieess 3450 hex.
It disturbs all registers except the HL pair. Tak® a beep:

CALL 3450H ;make a 'beep'

CLEAR SCREEN

A routine located at 0IC9 hex may be used to dlearideo screen, home the cursor and select gispdae (0). it disturbs
all registers. Again it is used by simply callilhg

CALL 01C9H :.clear screen, home cursor etc.

PRINTER DRIVER

The printer driver routine is located at 058D heko send a character to the printer, load the ¢aracASCII code into the
C register and call the driver - After printingetbharacter code will be returned in both the A@rrégisters. All other
registers are disturbed. For example to printdtter 'A' (ASCII code 97 decimal), you would use:

LD C,97 ;set up code in C register
CALL 058DH ;& call printer driver

A line feed character (OAH) is automatically ingerafter a carriage return (ODH). If the drivecddled with a null byte
in the C register, it will simply check the prin&atus and return with bit O of the A registeheiitset or cleared. The
routine does check for a BREAK key depression,ifode is detected, it will return with the cartgd set.

CHECK PRINTER STATUS

A routine to check printer status is located at@B€x. When called it loads the printer statu® (brt 00H) into the A
register and returns. Bit O will be set (1) if énter is busy, or cleared (0) if it is ready.o bther registers are disturbed.
An example:

TEST CALL 054CH ;check is printer ready
BIT 0,A ;test bit O
JR NZ,TEST ;loop if busy -continue if ready

SEND CR-LF TO PRINTER

A routine located at 03AE2 hex may be used to secalriage return and line feed combination topifiier. No registers
need be set up before calling, but all registezsdésturbed. If the break key is pressed whilatprg occurs (or while the
printer driver is waiting for the printer to sigrieady’), the routine will return with the cartgd set:

CALL 3AE2H ;00 send CR-LF to printer
JP C,BRK ;check if BREAK key is pressed
;apparently not

VZ200/300 DISK OPERATING SYSTEM (DOS) ANALYSIS

Information is included here to describe the openaand structure of the VZ200/300 DOS. The infation will cover
the format of the diskette, the recording technjdfoe DOS entry points and the structure of the DOIScan be used to
allow direct assembly language access to the DxSalgo to allow advanced programmers to enharieDOS.

DISKETTE FORMATTING

The VZ200/300 DOS initializes the diskette intotdgrks, with 16 sectors per track. They numbenféoto 39, track 00
being the outermost track and track 39 the innetiite stepper motor (which moves the R/W-head aan)position the
disk arm over 80 '‘phases’. To move the arm froentrack to the next, two phases of the steppermmotist be cycled.
The DOS uses only even phases. Programmers mdlyisideature to generate protected disks by usittgphases or
combinations of the two, provided that no two tsaeke closer than two phases from one another.th8esction on the
disk controller /O addresses for the control @& sepping motor.

The DOS subdivides the track into 16 sectors.s tiié smallest unit of 'updatable’ data on theetlisk The DOS reads or
writes a sector at a time. This is to avoid usifgrge chunk of memory for a buffer to read otevan entire track. The
DOS uses 'soft sectoring' to divide a track intcs&étors without the use of the INDEX hole of tigkd Each sector may
contain 128 bytes of data, sectors are arrangedigtsector interleave sequence to reduce thesitioge. The sequence
of the sector arrangement is: 0, 11, 6, 1, 12, 7328, 3, 14, 9, 4, 15, 10, 5. Each sector islsidted into fields. See the
following diagram for the structure of a sector anack.

RECORDING TECHNIQUE

The VZ200/300 DOS uses the recording techniguévb{ffequency modulation) to write data on the digke In FM
format, each data bit is enclosed within a bit.célVhen data is read back from the diskette itddke form of the
following diagram.

As the diagram shows, the data bits (if presemt)raterleaved. The presence of a data bit bettweerlock bits
represents a binary 1, the absence of a datathiebe two clock bits represents a binary 0. Théngnof each bit cell is
shown below:

In the DOS the length of each cell is 32.2uS wWithdata bit appearing 13uS behind the clock bit.

Due to the low signal transfer rate, the spindtation speed is reduced from 300 RPM (as in othees) to 85 RPM to
keep a high recording capacity.

THE STRUCTURE OF THE DOS

The DOS is a ROM based DOS which is located in #0@05FFFH. When the computer is powered up, th8IE
interpreter will jump to the DOS after initializirtge BASIC pointers. The DOS will reserve a DOS8toeof 310 bytes at
the top of memory available. The DOS vector is\p to by the index register IY and this vectarsed to keep track of
all DOS operations. Programmers should avoid mpodjfthe 1Y register, otherwise the DOS will probabrash.

The DOS vectors contain the following elements:

DOSVTR = IY
NAME BYTES OFFSET
FILNO 1 IY+O FILE#
FNAM 8 IY+l FILENAME
TYPE 2 IY+9 FILE TYPE
DK 1 IY+ll SELECTED DRIVE# PATTERN
RQST 1 IY+12 REQUEST CODE
SOURCE 1 IY+13 SOURCE DRIVE FOR DCOPY
UBFR 2 IY+14 USER BUFFER ADDRESS
DESTIN 1 IY+16 DEST DRIVE FOR DCOPY
SCTR 1 IY+17 USER SPEC. SECTOR NUMBER
TRCK 1 IY+18 USER SPEC. TRACK NUMBER
RETRY 1 IY+19 RETRY COUNT
DTRCK 1 IY+20 CURRENT TRACK NUMBER
NSCT 1 IY+21 NEXT SCTR NUMBER
NTRK 1 IY+22 NEXT TRK NUMBER
FCB1 13 IY+23 FILE CONTROL BLOCK 1

OPEN FLAG, STATUS, FNAM, TRK#, SCTR#,
ENTRY IN SCTR

FCB2 13 IY+36 FILE CONTROL BLOCK 2
OPEN FLAG, STATUS, FNAM, TRK#, SCTR#,
ENTRY IN SCTR

DBFR 2 IY+49 DATA BUFFER ADDRESS
LTHCPY 1 IY+51 COPY OF LATCH

MAPADR 2 IY+52 TRACK/SECTOR MAP ADDRESS
TRKCNT 1 IY+54 TRKCNT FOR DCOPY

TRKPTR 1
PHASE 1
DISK STRUCTURE

IY+55 TRKPTR FOR DCOPY
IY+56 STEPPER PHASE

The DOS uses TRK 0, sector 0 to sector 14 as tketdiry. TRK 0 sector 15 is used to hold the tnaelp of the disk with
one bit corresponding to a sector used. Eachtdingentry contains 16 bytes. Therefore 1 seaorhwld 8 entries and 1
diskette can have a maximum of 112 entries.

File type 1 byte
Delimitor (3AH) 1 byte
File name 8 byte
Start address 2 byte
End address 2 byte
Start track 1 byte
Start sector 1 byte

DOS ENTRY POINTS

A jump table to the DOS subroutines is positionetthe fixed address from 4008H to 4044H.

following elements:

ADDRESS CONTENT
4008H JP PWRON
400BH JP PWOFF
400EH JP ERROR
4011H JP RDMAP
4014H JP CLEAR
4017H JP SVMAP
401AH JP INIT
401DH JP CSI
4020H JP HEX
4023H JP IDAM
4026H JP CREATE
4029H JP MAP
402CH JP SEARCH
402FH JP FIND
4032H JP WRITE
4035H JP READ
4038H JP DLY
403BH JP STPIN
403EH JP STPOUT
4041H JP DKLOAD
4044H JP SAVEOB

DOS SUBROUTINES

PWRON

DOS SUBROUTINE

Disk power ON

Disk power OFF

Error handling routine

Read the track map of the disk
Clear a sector of the disk
Save the track map to the disk
Initialize the disk

Command string interpreter
Convert ASCII to HEX
Read identification address mark
Create an entry in directory
Search for empty sector
Search for file in directory
Search empty space in directory
Write a sector to disk

Read a sector from disk
DelaymSinreg C

Step in

Step out

Load a file from disk

Save a file to disk

The juaipe contains the

Turn ON the power of the drive selected in DOSeebt+DK. To turn ON drive 1, 10H should be weitt to 1Y+DK.

To turn ON drive 2, 80H should be written to 1Y+Di¢fore calling PWRON.

Entry parameter: None
Exit parameter: None
Registers affected: A
PWROFF

Turn OFF the power to the disk. Both disks areedrOFF with the write request line set high atstime time.

Entry parameter: None
Exit parameter: None
Registers affected: A
ERROR

This subroutine reads the content of register Agirds the .error message before going back tolIBAS

Entry parameter: Error code in A
Exit parameter: None
Registers affected: The subroutine will re-inizalithe BASIC pointers and jump to BASIC.

ERROR CODE ERROR

0 No error

1 Syntax error

2 File already exists
3 Directory full

4 Disk write protected
5 File not open

6 Disk 1/O error

7 Disk full

8 File already open

9 Sector not found

10 Checksum error

11 Unsupported device
12 File type mismatch
13 File not found

14 Disk buffer full

15 lllegal read

16 lllegal write

17 Break

RDMAP

Read the track map from the disk and place it. finéoaddress pointed to by IY+MAPADR.

Entry parameter: Disable interrupt
Exit parameter: Error code in A
Registers affected: A, BC, DE, IIL
CLEAR

Clear the sector specified in [Y+TRCK and IY+SCTR.

Entry parameters: Disable interrupt
Track number in IY+TRCK
Sector number in IY+SCTR

Exit parameter: Error code in A
Registers affected: A, BC, DE, HL
SVMAP

Save the track map in the address pointed by IY+KBR to track 0 sector 15 of the disk.

Entry parameter: Disable interupt
Exit parameter: Error code in A

Registers affected: A, BC, DE, HL

INIT

Initialize a blank disk.

Entry parameter: None

Exit parameter: None
Registers affected: A, BC,DE
CsSl

This subroutine reads the user specified filenanaepaits into IY+FNAM if the syntax is correct.

Entry parameter: Input message pointed to by HL
Exit parameter: Error code in A

Registers affected: A, BC, HL

HEX

This subroutine converts 4 bytes of ASCII pointedy HL into DE reg pair.

Entry parameter: HL points to 4 bytes of ASCII
Exit parameters: Carry=I if error found, DE indal
Carry=0 if no error, DE=2 bytes of HEX HL advandsd4
Registers affected: A, DE, HL
IDAM

Search for the identification address mark (IDAM}te disk.

Entry parameters: Desired track in IY+TRCK
Desired sector in IY+SCTR
Disable interrupt

Exit parameter: Error code in A

Registers affected: A, BC, DE, HL

CREATE
Generate an entry in the directory.
Entry parameters: File name in IY+ENAM

File type in IY+TYPE
Disable interrupt

Exit parameter: Error code in A
Registers affected: A, BC, DE, HL
MAP

Search for an empty sector in the track map.

Entry parameter: Track map in buffer pointed ydY»+MPADR
Exit parameters: Error code in A

Next sector available in [Y+NSCT

Next track available in 1Y + NTRK
Registers affected: A, BC, DE, HL

SEARCH

Search for matching of filename in IY+FNAM with tha the directory.

Entry parameters: Disable interrupt.

File name in 1Y + FNAM
Exit parameter: Error code in A
Registers affected: A, BC, DE, HL
FIND

Search for an empty space in the directory.

Entry parameter: Disable interrupt
Exit parameter: Error code in A
Registers affected: A, BC, DE, HL
WRITE

Write the content of the buffer pointed to by IY+BB to the track#, sector# specified by IY+TRCK &a¥idSCTR.

Entry parameters: Track number in IY+TRCK
Sector number in TRK+SCTR
Data to be written in buffer pointed to by IY+DBKFR28 bytes)

Exit parameter: Error code in A.
Registers affected: A, BC, DE, HL, BC', DHL'
READ

Read the content of track#, sector# specified byTIRCK and IY+SCTR into the buffer pointed to by IDBFR.

Entry parameters: Track number in IY+TRCK
Sector number in IY+SCTR
Disable interrupt

Exit parameter: Error code in A

Read data in buffer pointed to by IY+DBFR (138ds)
Registers affected: A, BC, DE, HL
DLY

Delay N mS specified by B.

Entry parameters: Disable interrupt
Number of mS to be delayed in B
Exit parameter: None
Registers affected: A, BC
STPIN

St - ep the stepper N tracks inwards specifiedelyister B.

Entry parameters: Disable interrupt
Number of tracks to be stepped in B.
Exit parameter: None
Registers affected: A, BC
STPOUT

Step the stepper N tracks outwards specified bigtexdB.

Entry parameters: Disable interrupt
Number of tracks to be stepped in B.
Exit parameter: None
Registers affected: A, BC
DKLOAD

Load the file specified in IY+FNAM to the memory.

Entry parameters: Disable interrupt
Filename in IY+FNAM
Exit parameters: Error code in A.
File in memory
Registers affected: A, BC, DE, HL
SAVEOB

Save the filename specified in IY+FNAM and pointedy 78A4H to the disk.

Entry parameters: Disable interrupt
Filename in IY+FNAM
File start address in 78A4H
File end address in 78F9H

File type in IY+TYPE
Exit parameter: Error code in A
Registers affected: A, BC, DE, HL, BC', DE','HL

