
Forward Technology

USER's MANUAL

© Forward Technology

FT-1024 USER'S MANUAL

FORWARD TECHNOLOGY
INCORPORATED
2595 Martin Avenue
Santa Clara. CA 95050
(4081 988-2378
TWX 9103382186

TABLE OF CONTENTS

Page #

INTRODUCTION 1

INSTALLATION 2

OPERATION OVERVIEW 4

PROGRAMMING 6

READING FROM THE 1024 10

PROGRAMMING EXAlv1PLE 12

TABLE OF FIGURES

Page #

FIGURE 1 FT-I024 Graphics Controller 2

FIGURE 2 Device Address Switches 3

FIGURE 3 Video Connector Pinouts 3

FIGURE 4 Block Diagram of FT-1024 4

FIGURE 5 Frame Buffer 5

FIGURE 6 Programmable Registers 6

FIGURE 7 Address Bit Assignments 8

FIGURE 8 Read Sequence 11

FT-l024 SPECIFICATIONS

PHYSICAL:

WIDTH: 12.00 in. (30.48 cm)

HEIGHT: 6.75 in. (17.15 cm)

DEPTH: .55 in. (1.40 cm)

WEIGHT: 1 lb

SHIPPING WEIGHT: 1.50 lbs

FORM FACTOR: IEEE P-796

ELECTRICAL:

5 V : 5% 4A (MAX)

ENVIRONMENTAL:

OPERATING TEMPERATURE:

STORAGE TEMPERATURE:

0° C to 50 0 C

0 0 C to 70 0 ('

RELATIVE HUMIDITY: 90% WITHOUT CONDENSATION

INTERFACE:

Bus conforms to IEEE P-796

Pixel clock frequency: 32 MHz

Horizontal frequency: 32 KHz

Vertical frequency: 30 Hz

Separate TTL video and timing signal outputs

Optional ECL video and timing signal outputs

INTRODUCTION

The Forward Technology FT-l024 is a high performance IEEE 796

(Multibus®) compatible graphics controller designed specifically for

systems which need high resolution black and white graphics combined

with high speed pixel updates. The FT-l024 is designed to work in

conjunction with Forward's FT-68M 68000 based l6-bit single board

computer; however, it can be used with any l6-bit Multibus compatible

Cpu.

The FT-l024 overcomes one of the major problems associated with

bit mapped graphics (the tinte required to manipulate the large numbers

of bits in the frame buffer) by implementing in hardware several

functions that have been done traditionally in software. This allows

the FT-l024 to update up to 16 pixels per microsecond (a full frame in

64 milliseconds).

The FT-l024's frame buffer is l024xl024 and is addressable using

cartesian (x,y) coordinates. Location 0,0 is, by definition, in the

upper left hand corner of the screen. Nominally, the video display

is 800xl024 pixels, leaving 224xl024 pixels to store graphic symbols

such as the cursor and character fonts.

The FT-l024 is designed to accomodate either the Ball HD series

of CRT's or Motorola's M4408. Other high resolution interlaced

monitors can be used as long as they require separate synchronization

and video signals and require drive signals of the frequencies listed

in the FT-l024's specifications.

-1-

INSTALLATION

The FT-l024 is available in two versions. These versions are

identical except the -01 version has an ECL video output driver and

a connector at location Jl, whereas the -00 version's video connector

is a J2 and provides TTL level outputs. The FT-l024 is designed to

plug into any standard Multibus@ or P-796 bus. The FT-l024 can be

configured to reside in anyone of eight different memory locations.

The beginning address of the FT-I024 is set by the device address

PCB EeL VIDEO CONNECTOR-OI VERSION ONLY

TTL (J2) VIDEO

DEVICE ADDRESS SWITCHES

FIGURE 1: FT-l024 Graphics Controller

switches (see Figure 1 for switch locations). Figure 2 defines these

switch settings.

-2-

SW# 'ON' STARTING ADDRESS

I x 'EOOOO'

2 x 'COOOO'

3 X 'AOOOO' FIGURE 2:

4 x '80000' Device Address switches

5 x '60000'

6 x '40000'

7 x '20000'

8 x '~~~~~'

Note: Only 1 switch may be
on at a time

It is the customer's responsibility to fabricate the necessary

cabling to connect the FT-l024 to the CRT. The video and synchroni-

zation signals are available at connector J2 (on the -00 version) and

at connector Jl (on the -01 version). Figure 3 defines the pin outs for

each connector. Both Jl and J2 use a 10-pin right angle header. The

SIGNAL NAME J2 PIN # Jl PIN # (ECL)

VIDEO 3 I

VIDEO 5 2 FIGURE 3:

HSYNC 7 6 Video Connector Pinouts

HSYNC NA 5

VSYNC 9 8

VSYNC NA 7

GND 1,2,4,6,8,10 3,4,9,10

matching connector for this header is an SAE CP63l0BRS.

-3-

OPERATION OVERVIEW

Figure 4 is a block diagram of the FT-1024. The FT-1024

utilizes a frame buffer, a source register, a mask register, and

a set of command registers (function, width, control and interrupt)

and four sets of x & y address registers in addition to a function

unit to control display data sent to the frame buffer. Data from the

frame buffer or the data bus is used to load the source and mask

registers. Data from the frame buffer is sent to the video circuitry

where it will be serialized for use by the CRT.

Frame Buffer,

Function Frame Buffer Video

Data Bus

Address Bus
Address Video Sync
Logic t----~~--1 Refresh

FIGURE 4: Block Diagram of FT-1024

-4-

The frame buffer is divided into l024xl024 locations. Each

location represents a single pixel on the CRT. Each pixel is address

able and can be modified using one of the 256 raster operations .

(rasterops) which perform bit-wise logic functions on the data contained

in the frame buffer and the source and mask registers. The host

processor accesses each pixel within the frame buffer via one of the

x & y register pairs. The four pair of x,y registers allow the

programmer to maintain simultaneous pointers to up to four graphical

objects using FT-1024 hardware. Coordinate location ~,~ is, by

definition, the upper left hand corner of the CRT. From one to 16

pixels may be read from or written to the frame buffer in one cycle

(one microsecond).

Visible display

Size:

Visible:

Invisible:

Updates:

00 x

Invisible

.,

L----~I----....&.-_ t023.10za

1024 • 1024 pixels

800 • 1024 pixels

224 • 1024 pixels
16 pixels/cycle (max)

FIGURE 5: Frame Buffer

-5-

The FT-1024 can be programmed to provide an interrupt every vertical

blanking interval so that the software and the display update can

be synchronized. The interrupt level is also programmable; that is,

the programmer determines which of the eight bus interrupt signals

will be generated (BINT~-BINT7). This allows the programmer to control

the priority the FT-1024 will have on the bus.

PROGRAMMING THE FT-1024

The programmer has four different registers he can access and

modify in order to produce a display on the CRT. (See Figure 6).

I~

Source
I "- Register ~
"

, ,
Frame Function

Mask Unft "- Buffer , , Displ ay
.... , Register ,

....

~
,

Function ,
Register

FIGURE 6: Programmable Registers

The FT-1024 is initialized by either clearing (all ~s) or setting

(all 1s) the frame buffer. Once the programmer has done this, any

change to the display (i.e., pattern generation) is done by loading

the source register with the data to be displayed, loading the mask

register with the appropriate pattern information, and then loading

the function register with an opcode derived from the resultant of

the type of boolean operation desired. The programmer can perform

the following boolean functions between any combination of the frame

buffer, the mask register, and the source register: OR, NOR, XOR,

-6-

NXOR, AND, NAND, and DO NOTHING. To accomplish this boolean function,

the CPU must do a like function and load the resultant opcode into

the FT-I024's function register. The FT-I024 will then perform the

boolean function in its function unit, and load the resultant into

the frame buffer. The frame buffer contents will then be displayed.

The purpose behind being able to do all of these boolean functions

(256 combinations) is to allow the programmer to merge different pieces

of data in such a manner as to create realistic images on the display.

There is a unique code associated with the frame buffer, the

mask register, and the source register. These codes are:

Frame Buffer Only x 'AA'
Mask Register Only x 'F~'

Source Register Only x ICC'

Clear Frame Buffer x '~~'

Set Frame Buffer x 'FF'

By selecting one of these codes and loading it into the function

register the appropriate register or buffer will be accessed and its

contents will be placed in the frame buffer at the location addressed

by the x & y registers.

If the programmer desires to perform a boolean function (such

as "AND") between two registers, all that is necessary is to perform

the "AND" function between the code associated with the registers and

load the resultant opcode into the function register. For example:

to "AND" the frame buffer contents with the source register contents,

the programmer would "AND" x 'AA' and x ICC' and send the resultant

opcode (x 'BB') to the function register.

-7-

Selecting the frame buffer only (x 'AA') will result in a

DO NOTHING; as the hardware will simply rewrite the current contents

of the frame buffer back into the frame buffer.

The FT-1024 PCB decodes 20 of the IEEE P-796 address lines.

Each line is assigned a specific function, as indicated in Figure 7.

Up to eight FT-1024's can reside on the same bus. Each FT-1024 must

have a unique starting address (See Figure 2 for details).

L 01.7

2· 1 lDI .. L o· Function

1 • Width

0= No operation
1= Load Command Registers
2= Load Mask Register
3= Load Source Register

2 • Control
~ • Int.rrupt

cl •• r

FIGURE 7: Address Bit Assignments

Figure 7 defines the 20 address lines which are decoded and

identifies the meaning assigned to each bit. The following text

describes these bit assignments:

-8-

BITS

17-18-19

16

14-15

*
*

12-13

11

1-10

FUNCTION

These address lines are decoded to determine which
FT-1024 is being accessed.

This bit, when set (1)
be updated (modified).
can update the command
frame buffer.

will allow the frame buffer to
When zero (0) the programmer

registers without affecting the

These bits select which registers will be updated.

15 14 -
0 0
0 1

1 0
1 1

* NOTE:

No operation (x and y registers will be loaded)
Load command registers (as defined by address
bits 1 and 2)
load source register
load mask register (the number of bits loaded
is determined by the width register)

If these registers are selected during a
processor write, the data loaded will come
from the data bus. If they are selected
during a processor read, the data loaded
will come from the frame buffer.

These bits are used to select which x or y register will be
loaded. There are 4 x and 4 y registers. On any and
every operation an x or y register will be updated.

Determines if the register identified by bits 12 and 13
is an x or y register. ~ = x, 1 = y.

These bits define the address within the frame buffer
that data is to be sent to. If bits 14 and 15 define a
"load command registers" operation, bits 1 and 2 will be
used to define which command register is to be loaded.

Bit 2 1 Selected Register

0 0 Function register
0 1 width register
1 0 Control register
1 1 Clear interrupts

The width register specifies the number of bits which can
be loaded into the source register (~-15) and the number
of pixels which will be updated in the frame buffer.
The control register is used to enable interrupts (bit 8),
set the interrupt level (bits 13, 14, and 15) and enable

-9-

the video output (bit 9). If interrupts are enabled the
FT-I024 will generate an interrupt every vertical blanking
interval so that software can be synchronized with the
display update.

By using bits 13, 14, and 15 the programmer can specify
which interrupt the FT-I024 will generate (B INT~-B INT7).

BUS BIT 15 14 13 INTERRUPT GENERATED

0 0 0 BINT~
0 0 1 BINTI
0 1 0 BINT2
0 1 1 BINT3
1 0 0 BINT4
1 0 1 BINT5
1 1 0 BINT6
1 1 1 BINT7

Pending interrupts can be cleared by having both bits
1 and 2 active (lIs).

Bit ~ should always be a ~.

READING FROM THE FT·-I024

The FT-I024 provides the programmer with the ability to read

information from the source register and presents this informa

tion to the multibus. The programmer can load the source register

with the contents of the frame buffer in order to facilitate a

frame buffer read. The programmer can also read the mask register:

it is necessary to load the mask register contents into the frame

buffer and then into the source register.

The information sent to the multibus is high-order bit justified.

The "word length" of the information reaching the bus is deter

mined by the width register (i.e., if the width was set for 16

bits, all 16 bits of the information would be valid: if the width

were set at 1 only bit, 15 would be valid).
. 15 14 13 12 11 10 9 8 7 6 5 4

In Inl nln Inlnl nln In In\ Iii nlri
3

valid data ~
Valid data bits determined by width register

-10-

2

n

1 o
nln

bit#

Because of hardware constraints, reading information from the

FT-1024 is a two-step process. See Figure 8.

r-1ASK
REGISTER

x ... y
ADDRESS

FRAME

BUFFER

WIDTH
REGISTER

SOURCE

REGISTER

SHIFT

REGISTER

FIGURE 8 FT-1024 READ SEQUENCE

DATA

LATCH

DATA
BUS

Data to be read from the addressed XY location in the frame buffer

is first loaded into the source register by doing a read operation

(the number of valid data bits is determined by the width register).

An additional read operation must be performed to load the contents

of the source register into the data latch. The contents of the

data latch are made available to the data bus. Note that the data

latch will always contain the contents of the source register.which

was loaded on the previous read cycle. The data latch is, in effect,

1 step behind the current read cycle.

When reading on other than 16 bit boundaries, the shift register

(see Figure 8) automatically "justifies" the data in the data latch.

The following example illustrates this:

11

-EE---- 16 bit boundary -----i ... ~

, ,
I

2 offset ,
I

5 offset
* When read on the first 16 bit boundry , data = F~F~

* When read off-set by 2, data = C3C3

* When read off-set by 5, data = 1E1E

* Assumes width register is set to 16

PROGRru~ING EXAMPLE

·GRAPHMACS • h

#inc1ude "graphics.hl!

#define GXBITMAPSIZE (1024) /*length of side of bitmap */

#ifndef XBIAS
#define XBIAS (150) /*x-offset from edge of screen to (0,0) */
#endif XBIAS

#ifndef YBIAS
#define YBIAS (256) /*y-offset from edge of screen to (0,0) */
#endif YBIAS

#define SHOWPOINT GXset
#define ERASEPOINT GXc1ear

/*
*POINT(x,y) sets the given point to whatever the prevailing
*function is.
*/

#define POINT(X,y)~,
GXsetX«x)+XBIAS)i\
* (short*) (GXUnitOBaseIGxupdateIGxsourceIGxse1ect~«(Y)+YBIAS)«1»=\

~ OxFFFFi'

/*
*SETGXFUNC(f)sets the function register to f
*/ .

#define SETGXFUNC(f) GXfunction=(f);

12

/*
*SETGXWIDTH(w) sets operation width to w
*/

#define SETGXWIDTH(w) GXwidth=(W)i

/*
*SETPOINT{x,y) turns on the point at (x,y)
*/

#define SETPOINT(x,y)~\
SETGXFUNC(SHOWPOINT)i\
POINT (x, y) i\

j
/*

*CLEARPOINT(x,y) turns off the point at (x,y)
*/

#define CLEARPOINT(x,y)l\
SETGXFUNC(ERASEPOINT)i'
POINT (x, y) i\

}

Rastercopy. c

#include "graphmacs.h"

Rastercopy(xsrc,ysrc,h,w,xdst,ydst,funct,erase}

f

/*

*/

register short h,w;/*d7, d6 */
short xdst,xsrc,ydst,ysrc,funct
char erase;

short tempi
register short /*a5,4,a3,a2*/

*y Dst Address=
(short*) (GXUnitOBase\GXsourceIGXupdateIGXselectY+(ydst~<l»,

X_Dst_Address=(short) (GXUnitOBaseiG selectX+(xdst«l»,

Temporarily, we will not use a second address cache.

*y Src Address=
Tshort*) (GXUnitOBaseI GXselectY+(ysrc< I»,

*X Src Address=
(short*) (GXUnitOBasetGXselectX+(xsrc < I»,

register i,ji /*dS,d4 */

GXfunction = functi /*Move(Source Reg)to dest. */

/*

/*

/* If erase == 1 then Erase the source after Reading it */
if {erase)f

}

GXfunction = ERASEPOINT;
Y_SrC_Address+=GXupdate;

/* Precompute iteration for both the x and y loops */
GXwidth = 16;

for (i=w/16; i)O ; i--)i

/* Do the first read now to get the pipeline started */
*X Src Address=l;

temp=*YXSr'c _ Address++;

for (j=h; j>O; j--){
*X Src Address=l;

- temp=*Y_Src_Address++i

*X Dst Address = 1;

/*
if

- *y-nst_Address++ = tempi

Y Dst Address-=h;
Y~Src-Address-=(h+l);
X-Dst-Address+= 16;
X-Src-Address+= 16;

'd h perform one special iteration */
if there was any leftover Wl t
(y &=OxF)t /*set a narrower width */
OXwidth = Wi

*X Src Address =1;
temp =-*Y_Src~ddress++;

for (j=h; j)O; j--)1
*X Src Address=l;

- temp = *Y_SrC~ddress++i
*X-Dst Address =li

*Y-Dst Address++ = temp;

