
 %%%
 % mmmmm mmm mmm m m m m mmmmm %
 % m m m m m m m m m m %
 % m m m m m m mm m m %
 % m m m m m m m m m m %
 % m mmm mmm mmmm m m m m %
 %%%

 PLEASE READ AND UNDERSTAND THESE INSTRUCTIONS BEFORE PROCEEDING.

 Your programmer's toolkit is supplied in a 4K EPROM which
must be inserted in socket 24 of your Acorn Atom. To fit the
chip, turn the Atom upside down and remove the two large
crosspoint screws which attach the base to the keyb oard Lift off
the base and identify socket 24; this is the 24-pin socket which
lies between two 40-pin sockets, one holdi ng the 6502
microprocessor, and the other the INS 8255 I/0 chip . If a colour
board is fitted this will have to be removed before proceeding, as
it partly obscures socket 24. Insert the Toolkit in socket 24 so
that the end of the chip with the small semi-c ircular indent
points towards the aluminium heatsink at the edge o f the printed
circuit board. Make sure that none of the pins of t he EPROM have
become bent, and that they are all in the socket. When you are
sure that the Toolbox has been inserted correctly, check once more
to be certain, if necessary refit the colour board, then replace
the base and screws.

 -------------------------------------- -

 After the Acorn has been switched on t he Toolkit is
brought into operation by entering LINK #AF00 or LI NK 44800. The
screen will clear and the message

 PROGRAMMERS TOOLKIT

will be displayed (the lower case letters appear in inverse video
on the screen). All the toolkit commands are now available.
Whenever you press the 'Break' key you must re-link the Toolkit to
activate the extra commands. The Toolkit has no effect on the
operation of the Atom until it has been initialised with the LINK
command.
 -------------------------------------- -

THE CASSETTE INTERFACE

 The Toolkit provides you with a cassette system which
operates at 1200 Baud, in addition to the stan dard 300 Baud

system. The Baud rate is automatically set to 1200 by the command
LINK #AFOO (LINK 44800). Each block of data can be recorded and
read in one quarter of the time tahen at 300 Baud . Because the
Atom inserts a long delay between blocks, you will get the maximum
advantage from the increased Baud rate by using unn amed files. You
may find that the level setting of your recorde r needs to be
adjusted for 12O0 Baud. It is also important to kee p the tape head
clean to ensure reliable operation.

 Page 1

 Of course, data must be read at the Baud ra te at which it
was recorded. You can switch between Baud rates in the Toolkit by
using the command VECTOR; VECTOR 0 sets the rate to 300, VECTOR 1
to 1200. Alternatively, you can retain the Baud ra te at 300 when
you initialise the Toolbox by using the command LIN K 04F04 (LINK
44804).
 At either Baud rate the Toolkit pro vides visible
indication of the operation of the cassette interfa ce. Each byte
of data being sent to or received fram the cassette is displayed
at the top right corner of the screen. You can th us always see
that a 'load' is proceeding correctly.
 When using the Toolkit cassette routines it is essential
that you respond to the prompts 'PLAY TAPE' and 'RE CORD TAPE' by
pressing the Space Bar, as specified in the Atom ma nual, and not
the Return key.

 -------------------------------------- -

 THE COMMANDS

COMMAND PAGE COMMAND PAGE COMMAND PAGE C OMMAND PAGE
AUTO . . . 3 FIND . . . 2 OFF. . . . 4 S TOP . . . 5
BEEP . . . 4 HEX. . . . 5 ON ERROR . 7 T RACE. . . 4
CURSOR . . 4 IHEX . . . 3 POP. . . . 5 V AR, . . . 3
DATA . . . 6 INKEY. . . 5 READ . . . 6 V ECTOR . . 4
DELETE . . 3 KEY. . . . 5 RESTORE. . 6 W HILE. , . 6
DUMP . . . 4 LTRACE . . 4 RENUMBER . 2 X IF. . . . 5
ELSE . . . 5 LVAR . . . 3 STEP . . . 3 Z ERO . . . 3
ENDWHILE . 6

 In the command descriptions below, if any part of the
command name is enclosed in brackets the com mand may be
abbreviated by terminating it with a full stop anyw here after the
start of the brackets. Thus REN(UMBER) can be repl aced by REN.,
RENU., etc. Commands marked 'Direct' can only be used in the

direct mode, that is , they cannot be used within p rograms.

FI(ND) "string" Direct
 This command lists the numbers of all lin es in which the
string of characters within the quotation marks occ urs. The string
may be up to 32 characters long.

REN(UMBER) x, y Direct
 This command renumbers a program, starti ng with x in
steps of y. If only one number is entered, this wi ll be used for
the start and step. If no number is entered the de fault value is
10. The program is first checked to see that renum bering will not
produce a line number greater than 32767, which is not permitted
in Atom Basic. All GOTOs and GOSUBs are changed to match the line
to which they refer, with the exception of 'indirec t' jumps, such
as GOS. (A+3*B). The RENUMBER routine lists the ne w number of all
lines containing such indirection, so that you can edit the
program after renumbering. If a program contains many indirect
GOTOs and GOSUBs, you may find that some of the line numbers
scroll off the screen. Enter CONTROL/N and do ano ther RENUMBER.
The indirect lines uill now be listed one screenful at a time.
 You should not start a program with a line number greater

 Page 2

than 255. When you recover a program after a 'Brea k' by the use
of OLD, the Atom assumes that the first byte of t he first line
number is zero; a number greater than 255 is theref ore changed by
OLD. Far example, 1000, which is stored as #03, #E 8, is changed
to 232, Stared as #00, #E8.

AU(TO) x, y Direct
 This initialisas the automatic generation of line numbers
for use in Basic programs, starting at x in steps o f y. If only
one number is entered after AUTO, this will be used for the start
and step; if no number is entered. the start and st ep will be 10.
Generation of the line numbers is turned on and off with
CONTROL/A; if CONTROL/A is entered beware the start and step have
been initialisad line numbers will be produced, but the start and
step will be unpredictable. When the routine is tur ned on, a new
line number is produced whenever RETURN is pressed.

DE(LETE) x, y Direct
 All lines in a program from x to y inclusi ve are deleted.
DE. x deletes line x; DE. x, deletes all lines f rom x to the
end of the program; DE., x deletes all lines from the start of
the program to x. An error message is produced if there is no

line x or line y in the program.

V(AR) [#] D irect
 Prints the vaues of variables A - Z in t wo columns on
the screen; if followed by the symbol #, it prints the values in
hexadecimal.

LV(AR) [#] VIA Direct
 Outputs the values of the variables A - Z to a printer
connected to the Atom's Centronics interface. If f allowed by the
symbol # the values are printed in hexadecimal.

ZE(RO)
 This command can be used directly from the keyboard or in
programs to set variables A - Z to zero.

 H(EX) yyyy Direc t
 The bytes stared in memnry, starting at address yyyy,
are tabulated in hexadecimal and in ASCII. The f ormat of each
line is:- address (hexadecimal), four bytes of data (hexadecimal),
the four ASCII characters corresponding to those bytes. Eight
lines are printed, the routine then waits for a Icy to be pressed.
The SPACE bar causes a further block of eight lin es to appear,
while the RETURN key terminates the command. The s tarting address
can be specified in decimal or hexadecimal.

IH(EX) YYYY Direct
 Tabulates the hexadecimal codes in memor y starting at
address yyyy in instruction format; that is, one, two or three
bytes of data appear on a line, d ╗pending on the number of bytes
used by the instruction represented by the first by te. As in the
case of HEX, eight lines are tabulated at a time, a nd yyyy may be
specified in decimal or hexadecimal.

S(TEP) VIA Direct
 For this command to operate, the Atom must be fitted with

 Page 3

the VIA chip (6522), and link 2 (the IRQ link) must be in place.
The command allows line-by-line single stepping whe n a program is
RUN. The current line number is displayed .at the top left of the
screen (unless a graphics mode is selected). The pr ogram halts at
each line and waits for a key to be pressed. You can quit the
program at any point with the escape key, when you can, for
example, list the values of the variables with the VAR command.

TR(ACE) x VIA Direct
 Can only be used with the VIA chip and IRQ link in place.
Operates in the same way as the step command, e xcept that it
pauses for a predetermined period on each line. Th e delay is set
by x, which should be a number, variable or expr ession in the
range 0 - 255. If x is not entered, a value of #55 is used, which
gives approximately 3 steps in tw0 seconds.

LT(RACE) VIA Direct
 Prints the numbers of the lines as they ar e executed on a
printer connected the the Atom's Centronics interfa ce.

O(FF)
 Turns off the TRACE, LTRACE, and STEP c ommands. These
commands must be turned off before you edit a progr am - editing a
program with any of these three commands still in o peration could
result in corruption of the program.

DU(MP)
 The printer is enabled, the contents of t he screen are
printed out line-by line (unless a graphics mode is selected), and
the printer is turned off.

VEC(TOR) x
 If x is zero the command sets the cassette Baud rate to
300; if x is one, the Baud rate is 1200. If oth er values are
entered, the command is ignored.

BE(EP) v, y
 This generates a nate whose pitch depe nds on x and
duration on y. Both x and y may be numbers, variables or
expressions between 0 and 255 (if they are outsid e this range,
only the least significant byte will be used). The lower the
value of x the higher the note will be; if x is le ss than 8 no
nate will be heard - this can be used to qive a programmable
delay. The duration can lie between about 20 mill iseconds (y=1)
and six seconds (y=255).
 'Space invader' sound effects can be prod uced with the
BEEP command, e.g.,

 100 FOR J=1 TO 5
 110 FOR K=40 TO 80 STEP 4
 120 BEEP K, 1
 130 NEXT; NEXT; END

 Music can be produced by first reading the pitches of the
notes of the scale into an array (using READ and DA TA statements,
see below), and then specifying the desired array e lement as the

pitch in a series of BEEP statements. Alter natively, the
durations and pitches of the notes of a tune can be placed in a

 Page 4

series of DATA statements, and you can then READ th em as you play
the tune. The note values are given in the table b elow.

 N0TE VALUE VALUE VALUE NOTE VALUE VALU E VALUE

 A 246 121 60 D# 173 86 42
 Bb 231 114 57 E 163 81 39
 B 217 108 54 F 154 76 37
 C 205 102 50 F# 145 72 35
 C# 194 96 47 G 137 68 33
 D 183 91 45 G# 129 64 51

CU(RSOR) x, y
 Repositions the cursor to the xth column on line y, where
x and y can be numbers, variables or expressions. The leftmost
position corresponds to x=0, the rightmost to x=3 1; if x lies
outside this range, only the least significant 5 b its are used.
The top line of the screen corresponds to y=O, the bottom line to
y=15; only the least significant 4 bits are used. If only the
first value is entered, the cursor is repositione d to the xth
column on the current line.

KEY A
 The keyboard is scanned once and the value of the ASCII
code of any key pressed is returned in the vari able specified
after the command. If no key was pressed, a zero i s returned.

INK(EY) $A
 This command operates in a similar way to K EY, but returns
the character corresponding to the key pressed in the designated
string. Normally one of the string variables A - Z will be used
(this must have been previously dimensioned), but forms such as
INKEY $TOP or INKEY $#B200 are valid. If no key ha s been pressed
a null string is recurned. The LOCK, COPY, CURSO R CONTROL and
RETURN keys will also give a null string.

STOP
 If a program is misbehaving, you can insert STOP commands
at several points throughout the program. When the STOP is
reached the computer prints STOP AT, fallowed by th e line number,
and then waits for a key to be pressed before c ontinuing. If

ESCAPE is pressed control returns to the Basic moni tor, when you
can list the variables with VAR. Once the pro gram has been
debugged, the STOP statements can be removed.

POP
 This removes references to a current subrou tine free the
stack, so that you can jump directly fram the subr outine to any
point in the main program, rather than going back t o the command
after the GOSUB which called the subroutine.

XIF ... THEN ... EL(SE)
 The XIF command has the same action and the same syntax as
the normal IF command in Atom Basic, except that it sets a flag
(in location #A7) to indicate the result of the IF condition.
THEN is used with XIF in the same way and with the same syntax as
with IF. The ELSE command tests the flag set by the preceeding

 Page 5

XIF. If the condition in the XIF line was true, t he whole line
following ELSE will be skipped; if false, howev er, everything
after the ELSE will be executed. For example:-

 100 XIF A=1 AND B=0 THEN PRINT "C ORRECT"
 110 ELSE PRINT "THAT'S WRONG"

 The ELSE must not be placed on the same line as XIF,
because it would then be skipped if the condition w ere false. It
can be placed anywhere after that line, and in fact the XIF could
be followed by several lines containing ELSE, as t hey would all
use the flag value set by the last XIF command. I f an ELSE is
encountered before an XIF it will not produce an error message.
but the results will be unpredictable.

W(HILE) ... END(WHILE)
 The statements between these two commands are executed
repeatedly for as long as the condition specified in the WHILE
command is true. This loop differes from the DO .. . UNTIL loop in
two repects:-

 (a) The condition is tested at the start o f the loop, not
 at the end. Thus if the condition is false on entry,
 the entire loop will be skipped.
 (b) The loop is repeated while the conditi on is true; the
 DO ... UNTIL loop is executed whiie th e condition is
 false.

 WHILE can be followed by any testable inte ger expression
(with the conjunctions AND and OR if desired). END WHILE takes no
argument - it just serves as a marker for the end of the loop.
WHILE/ENDWHILE loops can be nested inside each o ther up to a
maximum depth of 18.
 Please note that WHILE/ENDWHILE is a struct ured loop, and
the structure should be adhered to. Don't try jump ing in and out
of the loop with GOTO commands.

READ .. DA(TA) ... RES(TORE)
 These statements provide a convenient way o f incorpocating
data (numerical or character strings) in a pro gram. A data
painter is initialised to the start of the current text space by
the RESTORE command. Each READ statement searche s through the
program for the next DATA.

DA(TA)
 This can be followed by any string at char acters, or by
several strings separated by commas. Each time d ata is to be
read, the next string will be taken. Depending on the form of the
statement, either the data string will be taken exactly as it
stands (i.e., all the characters between the commas), or it will
be evaluated as an integer expression. Where numer ical data is to
be evaluated in this manner, ordinarily it will be simple numbers,
such as:-
 DATA 1, 10, 250, #FF
but there is no reason why a complicated expre ssion such as
ABSRND%6+4 should not be evaluated.
 Where data is read as a string rather than as a numerical
expression, any spaces in the string will also be read, except

 Page 6

that spaces immediately following DATA are ignored. If the first
data string has leading spaces, place a comma after the word DATA.
DATA statements must not be included in multiple st atement lines;
they must have a line to themselves and can not be preceeded by a
label.

READ
 This can take three different types of arguments - a
variable, a string ($ followed by anything which e valuates to a
valid address where the string will be stored), or an array
element (the array must of course have be en previausly
dimensioned). Each READ statement may have more th an one argument

if desired. Each argument will be read in turn e.g. , READ $A, X,
AA(X).

RE(STORE)
 This command must be used before the f irst READ, to
initialize the data pointer. It can be used at any other point in
the program to reset the pointer.

ON(ERROR)
 When this is encountered in a program the normal Basic
error-handler vector (locations 16 and 17) is chang ed to the start
of the statement immediately following ON ERROR, an d the rest of
the line, including any multiple statements, is s kipped. Every
time an error occurs the normal error message is suppressed and
execution will recommence after the ON ERROR com and. All the
interpreter stacks are cleared to ensure correct op eration if the
error occurs in a FOR, DO or WHILE loop or in a su broutine. This
means that you should not jump into the middle of a loop or
subroutine with an ON ERROR command; if you do, th e end of the
loop or subroutine will itself cause an error, s ending control
back to the ON ERROR statement, and the program wil l go round in
circles.
 A program can contain more than one ON ER ROR statement.
For example, if a program has a series of input st atements, each
one can be supplied with its own error handling r outine of the
type:-
 100 ON ERROR PRINT "NUMBERS ONLY"
 110 INPUT "TYPE A NUMBER",A

 -------------------------------------- -

 ERROR MESSAGES

 Any programming errors will still produce t he normal Atom
error messages, even if the error occurred as the result of the
incorrect use of a toolkit command. For example, i f you try to
renumber a program with too large a step, so that t he line number
would become greater than 32767, the message ERROR 109 <number too
large) will be displayed. Nate that if the line number in an
error message corresponds to to a READ statement, t he error could
be in the DATA statement currently being read. The line number of
this DATA statement can be obtained by printing the value stored
at #A8 and #A9, by entering PRINT !#A85#FFFF.

 -------------------------------------- -

 Page 7

 ADDRESSES USED BY THE TOOLKIT

 The Toolkit makes use of a series of addres ses in the free
area on page zero (#80 - #AF), and these should no t be used by
programs. If a program does not contain any Too lkit commands,
only location #86 need be avoided. Programs which contain Toolkit
commands should confine their zero-page workspace t o #90 - #A5.
The function of the following addreses may be of in terest:-

 #80-#85 These locations are used by STEP and TRACE;
 problems will occur if yau use these c ommands with
 programs which access these addresses.
 #86 If this location is zero, auto line n umbering is
 turned off; if it contains a 1, it is turned on; any
 other value at this address preven ts line
 numbering being turned off.
 #8B Contains a number which is one les s than the
 position in the command table of the current
 Toolbox command. Thus the numbers c orresponding
 to the commands are:-

 0 FIND 1 kEY 2 READ 3 DATA 4 RESTORE
 5 WHILE 6 ENDW. 7 TRACE 8 LTRACE 9 STEP
 10 OFF 11 VAR 12 LVAR 13 AUTO 14 RENUM.
 15 STOP 16 BEEP 17 VECTOR 18 DUMP 19 ON E.
 20 POP 21 ZERO 22 HEX 23 IHEX 24 CURSOR
 25 INKEY 26 DELETE 27 ELSE 28 XIF

 #A6 The number of WHILE loops currently active is
 stored here
 #A7 The XIF flag, zero if the condition i n the last XIF
 statement was false.
 #A8,#A9 The line number of the current DATA st atement.
 #AC,#AD The data pointer.
 #AE Normally zero, this location is set to -1, when a
 Toolbox command is being executed.

 The memory locations form #21C to #23F are used for the
WHILE/ENDWHILE stack. This region is available for other purposes
if a program does not contain these commands.

 Page 8

