INTRODUCTION . ..

Thank you for purchasing Ross Software's Utility 4K Eprom. This has been
programmed to the highest standards . .

It has the following enhancements:

1200,60C Baud Cussctte Operating System, with visible and aumolc ndxca-
tion of load and save, flashing cursor,

and 33 ncw commands.

"HOW TO INSERT THE 2532 EPROM

The *2532 Eprom’ comes in protective matcrial,
. ..DO NOT TAKE IT OUT OF THIS YET. ..

1) First thing to do is switch off, turn the Atom upside down with tiic
keyboard towards you and remove the bottom by undoing the two
SCrews.

2) Now find iC24° -
‘Ihis is a 24 pin socket in the centre of two large 40 pin chips (6502)
and (8255), and above ‘IC 24" are two small 16 pin chips (74LS132)
and (7445).

3) When loutc,d insert the ‘2532 Eprom’ with the round notch on the
*2532 Eprom’ away from you. Be careful nct to bend ihe pins out of
linc. If this does happen straighten them carefully with pliers.

4) Now replace Acorn Atom bottom and screw back down.

HOW TO START UTILITY EPROM

Simple press break, then enter link 44992,
The cursor will now flash showing that the Eprom is working.

All the new commands are now available and the cassctte high speed of 1260
is iow rcady.

NOTE: The link 44992 must be entcred every time break is pressed,
otherwisc the Atom will be in its original state.

) $SUPG XY, STRING™
“The *STRG command is used to print a string of characters in graphic modes.
X,Y are the ccordinztes at which strirny is to be priated, followed by a string
in qutces of what to priut.
pxample: -
1060 FOR 1=4 TO 0 STEP —! ; CLEAR]
110 *STRG 4,28,** HELLO *»
120 *TCNE 3C00,50 ; *WAIT 50
130 NEXTI;END
This will display “* HELLO *” in mode 4 to 0 ya

*BSTRG X,Y

Tiis command is as sbove, but the current string buffer is printed. (String
bufter = Memory Location #140)
Example:
100 CLEAR O ; DIM A(8) ; $SA="“BUFFER”
110 5= 140=8A ; REM LOAD STRIING BUFFER WITH $A
120 *LSTRG 0,28 ;END
Tl.e above shows how to print a verisble using *BSTRG.

*CHARCX)Y

Tre *Cilai ic w.ad to pont a ASCIL charucter corresponding to the value
of “C’ at X, ccordirates. Where *C’ can have a value of 32 to 127.
Cxample: uzing *CHAR to print ASCI chzracter sct

100 CLEAR 2 ; X=0;Y=88

Tig 10O01=32TO 127

120 7 nAXLX)Y X=X+3 ;1IF X>127 X=0 ;Y=Y-1S

120 NexXT o

140 GOTO 140
#KEZP

Tis commard genemzies a bleeping out of the atoni speaker until a key is
pressed.
flere b asing, 'Wmmueseadd loyhonrd program:

Lo Lo diy el i

110 ~LiY JA G IF §A=Y"GOTO 110

20 1 0ORE S020,Cilv A PIINT SA ; GOYO 110

And hoces La eraspiz o irput a numbor using *Key

100 ¥ piZ "LEV oL ¢y 77

1107 iYL i Wie COT0 116

[N U B)

*RENUMBER X,Y
This commiand renumbers a basic program, sturting with ‘X’ and in steps of
oYi . .
The *Renumber changes all the “GOTO’S™, “GOSUB’S” and
«¥RESTORE'S” to match the line to which they reter.
The two errors that may occur are:
ERROR 106 This error meuns the renumber table his run out of memory.
The program will not have been renuntbered.
ERROR 184 Line number .renumiberiiy 106 lurze Gine number 32767
maxiniun)
If Error 184 docs occur, then renumber the prozrain azain so that thc
numbers don’t go over 32767, by lowering the start ang siep numocs.

NOTE: The renumber uses memory starting at =8200 fur ¢ tble of refer-
ences for GOTO'S, GOSURB’'S and *RESTORE’S. Two bytes are
used for each.

*AUTO XY

This commmand provides automatic line numbering for Lic CoORVIRienT ¢hily
of basic programs. The user hus to specity e starddine number N aid e
increment of the line number Y.

If the line already exists, the fact is flagged by a bleep. This is in case tie
user does not wish to change that Lire.

To stop tiic automatic line nurabering press the ESC key. The number dis-
played will not be put into the prograni. :

*BSAVE “FILE NAME” -
This command saves a basic programi so that it can be lowded and run witi
*RUN.)
This command is the same as the ‘SAVE’ conuiund, but it saves thie auto run
address.
NOTE: Only works with named cassctic files.

*Vali

This command prints out the vaiucs of the integer variables A to Z.
This cun be very uscful whea debugging programs.

*DATA AND *READ STATEMENTS

Duta and Read Statements are used together to assign values to variables
within ¢ program. Every time & *Data Statement is encountered, the valies
in the srgument ficid are assigned sequentially to the next available position
of a data buffer. ‘

All Data Statements, no matter where they occur in a program, arc com-
bined into a continuous list.

x20ad Statements cause values in the data buffer to be accessed scquentially
and assigned to the vartables named in the *Read Statement. They start with
the first *Data Element from the first Data Statement, then the ncxt
clenent, und so on to the end of the first Data Statement, and then to the
first element of the second Data Statement, etc.

Fach time a #Read command is encountered, it reads the next data value
that has not been assigned to a variable.

If 1 *Read is executed and there is no more data, an Error 1 is generated.
Nureric and String Data may be intermixed. However, they must be used in
the apotoprizte order to assign the data to the appropriate variables.

#Data «nd *Read Statements may be placed anywhere within the program.
For example:

10 DinEAI(9),M(12)
20 *DATAJANUARY,17,1982 -
30 *DATASMITI

40 *RESTORE 20
50 *READ $M,DY,$N

The statements shown above are equivalent to the following:

10 DN M9),N(12)
20 $M=“SJANUARY”
30 D=17
40 Y=1982
50 $N=“SMITH”

*R‘ESTORE N
The *Restore Statement seis"the data buffer to the line number speciﬁed.v

The *Read will start looking for data from that point.

N = line number to restore data buffer to.

*BLOCK N X,Y,X1,Y2

This command will fill a graphic block.

N =1, 2 or 3 set, invert or clear block

X,Y = The coordinates of botiom left hand comer
X1 = The X length from X point

Y1 =The Y length from Y point.

Example:
10 CLEAR 0 ; *BLOCK 1 30,22,4,4 ; END

This will draw a square graphic block of 4 * 4 pixels, in the mxdd‘e of the
screen. ,

*SHAPE N X,Y *TABLET

The *Shape command is used together with the *Table to draw complex
shapes anywhere on the screen in any graphic mode.

Where ‘N’ is the shape number the user wants to draw.
X,Y are the coordinates at which shape is to be displayed.
T is the memory address of the shape table.

[N

SHAPE TABLE DATA

The shape command nceds data to draw each shape. The data is held in
memory locations of which each byte holds two vectors.

The way *Shape works is this, it reads the first vector, plots a point at its
current location and moves in a direction represeated by the vector.

The data can represent in movement in one of 8 directions:

0 = No move (do nothing)

1 = Move up

2 = Move down

4 = Move lcft

5 = Move up left

6 = Move down left

8 = Move right

9 = Move up right

A = Move down right

.3,7,8,C, D, E and F are all not used.

To change the point locationwithout drawing, a zero byte should be entered.
To change buck to draw mode 2gain enter another zero byte.
To indicate the end of shape data, enter two zero bytes.

An overlap flag has been set up a¢ location #DE, it will be set to zero 1f the
shape draws over any point that was "‘re 2dy sei.

NOTE: Flagonly worksin modes 1, 2,3 and 4.

SHAPE TABLE
The shupe tzble can be put into any convenicnt part of memory.
This is how the shape table is constructed, using memory 2t #2800.

280004 — Number of shapes on tab!c
2801 2809 — Address of shape O
2803 280D — Address of shape |
2305 2810 — Address of shape 2
2307 2815 — Address of shape 3
Shape 0 Data
2809 14 22
250B 00 CO (end of shape 0)
Shupe 1 Data
280D 66
230B 00 GO
Shape 2 Data
2810 29 Al 85
2213 C0 00
Shape 3 Data
231522 AA 8814
2¥19 0000
Now hore an example prograni using ihe *Shape command.
OO CLEAR G M=#2800
1 10 LS TORE 200 71 ABLE M
120 *READ N ; IF N=--1 GOTO 14C ; REM PUT SHAPE TABLE
130 20M=N; M= \I* :GOTO 120 ; REM iN1O MEMORY

140 $=RND &3 : X=S*12+8
130‘(Y —1301(1 -5 STEP? —-1

lou “ 51 2AFE SNJY *TONE 999,Y 5 REM DRAW SHAPE & SOUND

170 \n SPE S NLY S NEXT Y ; REMM CLZAR SIiAPE
180 PLOT 13, (R\D&Go) (R\D&E}l)
!00(010 140
‘Q”) 1)31!\4 =08 3209 a2y) ,l<r I NUMZER CF SHAPES &
*DATA 28, #'C =08,:425 R \‘ ADDRESS GF SHAPES
2:'(& 1) TA r-:r.il aA L FES9 5228 SHAPE O
30 UATA --ZA, -UuU
2 l)“\ TA ‘,—']9 U1,549,#89 ; REM SHAPE |
230 *DATA =A== 8,# ,28,0,0
260 *DATA ’9 SJ,"‘) ALY KIEM SHAPE 2
270 *DAT \ 5 \x) #6A4,#A8,0,0
280 uATY 1301968620066 REN STTAPE 3
290 AT \ ')' "‘)1 EA, r'l-?,?,i-‘n".
360 *DA TA = v..._, 43 0 O -1

Follows are nine memosy bytss ueed by the Eprom commands.
y J !

#0030 w0235, #023F Used by "oy
HOCAE | #00AF Ursd by *Hiape (ol table pomter)
#O0AC | #00AD Gl by 71 s Lo ot ponaten)

2R A A LA A 1D tlealbe 220,00 fn<..uta Haat

*MC

The *MC command is a machinc code monitor entry. \

The monitor has three commands, memory change, hexdump and textdump.

MEMORY CHANGE ‘

This command lets the user change memory locations very casily as in the i
following example: |

*MC Machine code monitor entry
CMD ? M2800 Enter memory change command ‘M’
----- Followed by memory location

2800 C 43 Press space key to look at riext byte
2801 A 41 $T Pross ‘$’ key then “T* key to store character ‘T in
memory 2801

2802 COD - Press ‘' key to step back memory locaiiun

2301 T 54 80 To change contents of Loc. 280i to 80 cnter 80

2802 CO0OD Press ‘ESC’ key to escape from memory change command
The memory change command prints out in the following forinat:
Memory location, ASCIi character then data by:e.
NOTE: If the ASCII code is a control character an inveried ‘C’ is printed.

HEXDUMP

The Hexdump prints out 64 memory locations as follows:

CMD 7?7 HAQGOD

AGO0 5348 41 50 45 A4 96 42

AOQ0S 4C 4F 43 4B A9 D6 54 53 Ornly 32
A010 45 43 AFFO 54 4D 47 4F bytes shown
AO18 AF FO 4B 45 59 A2 23 54

TEXTDUMP

The Textdump prints 64 memory locations as characters:
CMD ? T8400

8400 THI S IS

§408 WHAT TEX Only 32
8010 TDUMP I8 bytes shown
8018 LI KE =+ »**

*APPEND e

This command loads a basic program at the end of a current program; and
resets the top to reflect the size of the new, enlarged program. '

Tre *Append works the same as load, other than the program that is cur-
rently in the atom i not removed.

NOTE: When used, line numbers of program to append to current pro-
gram, shouid have higher line numbers, for the program to run
corractly.

*VERIFY

The *Verify command allows the user to verify programs that have been
recorded correctly on tape.

The *Verify command is used the same as load, except for named files where
each file nante is printed (same as *Cat format).

The two match crrors -are 35 and 99 for unnamed files and named files
respectively, this means the data stored on tape is not the same as stored in
memory.

j.e. an error has been recorded.

NOTE: Each file name printed is verified, so make sure that the file block
number starts with zero, and they are displayed as increasing file
block numbers.. \

*POINT X, Y P

This is a grzphic command, that tests a point to see if that point is sct or

clear,
If the point is set A ‘1° is returned, or if point is clear a ‘0’ is returncd.

.57 zre the coordinates to test and ‘P’ is any variable which the number
1 or Ois stered into.

NOTE: Can only be used in graphic modes 1, 2, 3 2nd 4.

The *Zero command sets the values of all the integer basic variubles to zero.

*WAITN

The *Wait command provides the user with an easy way to program wait
loops.

N is a decimal value 0 to 6553S.
The time valuc of one ‘N’ is 1/60 second.
So *Wait 600 will delay for 10 seconds. . .
"*BLEEP e

This command switches on a bleep at the end of all subsequent cassette
input and output commands so you know when it is finished.

NOTE: The bleep will keep bleeping until any key is pressed on the key-
. board to stop it.

7
*BPOFF

This command tumns off the above bleep.

*TONE D,N
This command generates a tone ' o \
‘D’ is the duration (1 to 65535) of the tone vioee D
‘N’ is the tone pitch (1 to 256).

*TAPE S
This command scts the tape operating speed

Where ‘S’ is a number — 1,2 or 3
1=300 BAUD), 2=600 BAUD or 3=1200 BAUD.

NOTE: 1200 BAUD is set when the utility is first linked.

*STOP

| The *Stop statement causes the program to halt execution, until a key is
| pressed, the line number containing the *Stop which caused the halt is
printcd out, i.c. ‘STOP NNNNN',

*POP

This removes references to a ecurrent subroutine from the stack, so that you

cen jump directly from the subroutine to any point in the main program,
any number of times.

*DELETE XY

This comrmand allows the deletion cof a range of line numbers.

Yhere ‘X’ is the first number to delete,
and ‘Y is the last iuinber to delete.

*PACK .

This command packs the progranmi by removing spuaces

No significant spaces are removed.
i.e. no spaces will be removed in quoetes, or zfter *Data Statements. . .

*KEY BN

The keyboard is scunned once and the charucter of the key pressed is stored

in tiie designuted string.

If no key was pressed the nuil string is returned (BN*“")

NOTE: More than one key can be held down at a time, and each will be
returned into string one at a time, as each *Koy is exccuted.

*KEY N v
As cbuv- ut only numbers 0 to 9 are scarned, and a value of 0 to 9 corre-

o ding 'o the key presses is returned in the variable specitied aiter the

- comnmand.

If no sumiber key is pressad ‘N’ = 10.

*SCREEN X

This command wllows the user to sel ihe cursor to any screcn memory
locativin.
For cvanile: *Sereen 256 would set the cursar to the middle of the screen.

*FIND “STRING TO FIND”

Thos ceninanc ante out ell tines which contain a given string

The string the woer requires to iiind is put in quoles after the tmd comeand.,

Rl

Vor v nee, sl FOR® sutomunts can be printed out with #*FIND “FOR™.

“e

o) vl.

NOTE: Aaything in between the quotes will be printed out, so for ex-
\ ST,

WD " will print cut all the lines with a quote in them,

v

-

'

ERROR CODES USED IN UTILITY EPROM COMMANDS

The following list of errors are generated, by the utility eprom. ..

1

35
60

71

73

99
103

106

163

169

180

184

*Read run out of data to read
No data left for *Read to read data from

*Verify unnamed cassette file match error

*Key with missing variable
The *Key command did not have a string or letter variable to put
scanned key into

*Restore line number not found
The line number specified in *Restore was not found

*STRG quotes missing
One or both of the quotes missing after *STRG

*Verify named cassette file match error

*Point with missing varizble

The *Poiat command has no varizble 10 store the nuonber returned
NOTE: Variable canonly be A —Zor &

*Renumber has run out of memory to store table

The *Renumber siores a table (stariiag ut =8200) 6i GO 0%, GOSULY's
and *Restore’s address pointers. This table is full and siemory hisrun
out

*Shape number crror

The *Shape number used is not on the current shape tablc in use

*Find quotes missing
One or both of the quotes missing after *Find

*Tape numberis not 1,2 0r3
The *Tape specds can only be 1=300, 2=600 or 3=1200 Euud

*Renumber line number overrun (>32767)
If this occurs renumber with lower start and step

