SUPERBASIC

Contents

5]

Fitting SUPERBASIC

o

Introduction to the facilities

LOCOS 4
HICOS 4
String Handling 4
LEFT# 4
RIGHT# 4
MID# S
INSTR S
String concatenation 5
Multidimensional Arrays 6
READ. .DATA. .RESTORE 10
WHILE 10
ENDWHILE 11
FWHILE 11
XIF 11
XFIF 13
ON. .GOTO 13
INEEY 13
BEEF 14
STOF 14
RERUN 14
ZERD 15
RESET 15
ERR 13
ERL 15
REFORT 15
Error Handling 16
ON. . ERROR 16
FREE 16
FRINT TAR AND FFRINT TAE 17
b (Binary) 18
f (Base four) 18
User Defined Shapes 19
DEFSHF 2
INVSHF 20
MOVSHF 21
Points to note when using SUPERBASIC 23
Memory usage 24

Error messages 25

Fage

SUFERBASIC FITTING INSTRUCTIONS

Flease read and understand these instructions before proceeding

SUFERBASIC is supplied in a 4k EFROM which must be inserted in
socket 24 of your Acorn Atom. To fit the chip, turn the Atom
upside down and remove the two large crosspoint screws which
attach the base to the keyboard. Lift off the base and identify
socket: this is the 24-pin socket wich lies between two 4@-pin
sockets, one holding the 65S@Z microprocessor , and the other the
INS 8255 I1/0 chip. If a colour board is fitted this will have to
be removed before proceeding, as it partly obscures socket 24.
Insert the SUFEREASIC EFROM in scocket 24 so that the end of the
chip with the small semi-circular indent points towards the
heat-sink at the edge of the printed circuit board. Make sure
that none of the pins of the EFROM have become bent, and that
they are all in the socket. When you are sure that SUFEREASIC is
correctly installed, check once more to be certain, if necessary
refit the colouw board, then replace the base and screws.

2 (c) Micro FPower 1987 SUFERBASIC manual

SUPERBASIC

After installing the ROM (and selecting it if vyou have a selector
board fitted) it should be enabled by typing LINE #AF0@. This
selects the 120@ baud cassette system, and prints a message on the
screen to show that SUFERBASIC is ready for use. Alternatively,
SUFEREBASIC can be enabled by the command LINK #AF04 - this is
identical, except that the 300 baud cassette system is selected,
which 1is compatible with programs recorded in the ordinary ATOM
format. In addition to the numerous facilities documented in more
detail below, SUFERBASIC has the following advantages:—

(a) During cassette operations, each byte sent or received appears

at the top right hand corner of the screen.

(b} The bug in ATOM BASIC, whereby an error message 1is given after
use of a control character at the keyboard (e.g. CTRL-L to clear
the screen), has been cured.

(c) In ordinary ATOM BASIC, there are a number of occasions when the
line number given in an error message 1is wrong. Examples are
when one tries to GOTO a non—-existent line label; and when an
error occurs in the statement immediately following a return
from a subroutine. Attention has been paid to eliminate these
problems in SUFERBASIC.

(d) When errors do occur, SUFEREBASIC prints out not Just an error
number, but also the entire offending line. The position which
the interpreter had got to when the error occurred will be
highlighted in inverse video. In the case of a syntax error,
the problem will normally be quite close to the highlighted
position. Logical programming errors, of course, could be some
distance away, but the printout should at least assist
diagnosis.

(e) Fractically all existing ATOM BASIC programs will run under
SUFEREBASIC without modification (or with only very minor
modification in a few instances). Thus, you can add SUFERBASIC

statements to vyour wisting programs, perhaps to give better
string handling, better graphics, or better sound. [In
contrast to the BRC-Basic board, which though no doubt very
powerful, will only run programs specifically written in

BRC-Rasic.]

(f) The command RUN can now be abbreviated R. - but see note 4
"Foints to note when using SUFEREASIC".

SUPERBASIC - manual (c) Micro Fower 1983 Fage =

SUPERBASIC FACILITIES

Where appropriate the smallest permissible abbreviation is given
in curly brackets after each statement or function name

LOCOoS {LOC. 7>

Switches to the 300 baud cassette system.

HICOS {H. >

Switches to the 1200 baud cessette system. Note that the
cassette commands used in either system are exactly as they are
without SUFEREASIC, e.g. LOAD, SAVE, #*RUN, *SAVE etc.

STRING HANDLING

(a)

{(b)

(c)

The

'complex expressions such as %A + I

In the following definitions of the various string functions,
the word string may be replaced by any of the following:

a string in guotation marks, e.q. "HELLO"

a string variable such as #A or #X, provided that A and X have

- previously been set to a suitable area of memory, e.g. by a DIM

statement. The dollar sign may be followed by other things than
simple variables, as in ordinary ATOM BASIC - e.g. ¥B200. BEut
I require brackets, e.g. FA+3I)

X, where X is an integer from @-255. This will produce a string
containing one character, whose ASCII value 1is X. This is
equivalent to CHR#(X) in other versions of EASIC. In ordinary

ATOM BASIC, thies facility was available only in FRINT statements
- now it can be used elsewhere.

A string array element such as MAFX(I) or MAFR(1,2,7)
- see "multi-dimensional arrays" below.

Ary of the functions LEFT#, RIGHT#, MID% defined below.
Any string or expression enclosed within sguare brackets [1.
This helps to make complicated expressions clearer, and is also

used as discussed below for adding strings together.

string functions available are:

LEFTS® {LEF. 2

The form of this function 1is LEFT# (string, X), where X is any
integer or integer expression whose value does not exceed the
length of the string. The function returns another string made
up of the leftmost X characters of the original string.

E.g. #A = LEFT$ ("HELLO", 3) will place the string "HEL" in #A.

Fage 4 (c) Micro Fower 1983 SUFERBASIC manual

RIGHT$ {RI.:

This is similar to LEFT#, except that the right hand end of the
original string is taken. E.g. #A = RIGHT# ("HELLO", 2) puts the
string "LO" in #A.

MID$ {M.:

The form of this function is MID#¥ (string,X,Y}) where X and Y are
integers or integer expressions. The function produces another
string, Y characters long, starting at the Xth character of the
original string. E.g. #A = MID¥ ("HELLO", 2,3) puts the string
"ELL" into #A. Taken together, the values of X and Y must not
excesed the total length of the string.

INSTR {I.7

This Function does not return a string, but an integer. The
form i

INSTR istring 1, string 20

The integer returned represents the position of string 2 within
the (larger) string 1 e.g: FA="HELLO" X=INSTR{*A,"ELL") would
put the value 2 into variable X. If string 2 is not found in
string 1, then INSTR gives the value zero. If string 2 is null,

then the value 1 is returned.
Concatenation (addition) of strings

Within sguare brackets, any number of strings may be added
together end-to-end.

The form is:
Cetring 1 + string 2....1
For example:

£ = "BAN" £A = [#A 4+ RIGHTH (A, 2) + 657 puts "EANAMNA intao
¥A.

The maximum length of string which can be built up 1s 255, #As
mentioned previously, any of the items (a) to (f! above can be
weed as an argument in the above string functions. Thus,
canplicated string expressions, with string functions nested
inside each other canm be built up.

It should also be noted that any of items (a) to (£ except item
{c) (¥X, where X is @ to 285) can be wused in any of the

following places:

Round brackets cannot be used around these string arguments, but
square brackets can.
(i) In a string assignment, LET #A

string or $A = string

o

SUFERBASIC manual ic) Micro Fower 1987 Fage S

(ii) On the right hand side of an equals sign in a relational
expression, e.dg.

IF #A = string THEN....
(iii) In a FRINT statement.

(iv) In an FFRINT statement (if the floating point ROM is

fitted).
(v) As the argument to LEN
(vi) As the argument to CH

{vii) fAs the argument to VAL (provided the fleoating point ROM
ie fitted).

The string #X, where ¥ is between @ and Z55, can be used in
FRINT, FFPRINT and LENM, but elsewhere it i& necessary to enclose
it within sguare brackets. Otherwicse, 1t will be interpreted as
meaning a string beginning at the appropriate address In page
rero, and the result will be garbage.

MULTI-DIMENSIONAL ARRAYS

6rdinary Atom PBasic supports one-dimensional arrays, of the
form AA(X). Here, AA is the name of the array, and X is the
subscript referring to a particular elemesnt. Each element can
hold an integer. If vou have the floating point ROM, a further
type of one-dimensional array can hold & number of floating
point elements, and each element takes the form YAA{X!. There is
no explicit Form of string array.

SUFERBASIC supports multi-dimensional arrays, where each array
name takes two oF more subscripts in order to identify the
required element. For example, a two-dimensional integer array
takes the Form MAI(X,Y). Here MA is a prefix which introduces
all SUFEREBASIC integer multi-dimensional arrays. 1 is a letter

wsed to identify the array - arrays can be identified by any
letter Ffrom & to Z or by the symbol & ¥ and Y are the
subscripts for a particular element of the array, and as wiih
one-dimensional arrays, these subscripts can in use teke the

form o+ integer variables, integer expressions, or siaple
numbers in order to address the required element of the array.

A two-dimensional integer array, or "Matrix", can be thought of
as & table having lote of boxes, each of which can hold a
number. Suppose the table has six columns, numbered from @ to 9,
and Five rows, numnbered from © to 4. You could call such an
array MAR, for example. The individual elements of the array can
be accessed in the form MAR(X,Y) where X can take any desired
value between @ and S, and where Y can take any desired value
between @ and 4. One way of getting data into such an array
would be as follows:

1@ DIM MAR(S,4)
206 FOR Y =0 TO 4

Fage & (c) Micro Fower 1987 SUFEREASIC manual

I@ FRINT"INFUT TO ROW NO.",Y’
49 FOR X =0 TO S

5@ FRINT"COLUMN NO.",X

6@ INFUT A

70 MAR(X,Y) = A

B@ NEXT X

9@ NEXT Y

This would ask you for 3@ numbers and would store each of them
in the array.

The above program illustrates two points. First, the array has
to be DIMensioned, like any other. If you want you can mix the

dimensioning of several SUFERBASIC arrays, together with
ordinary one-dimensional arrays and strings, 1in a single DIM
etatement — all the items to be dimensiorned should be separated

by commas as normal. Second, to put a number in a desired
element of the array, vyvou use an assignment statement of the
venal form:

MAR (X ,Y) = expression
LET may nolt be used.

0f course, elements of SUFERBASIC arrays may be used in any kind
of expression. For example, you can do arithmetic, e.g.

A = 10% (MAB(D,B) + 4)/MAR(3,Z2)

Or you could print out all of row no. 3 of the matrix, say,
with:

1606 FOR N = 0@ TO S
110 FRINT MACG{N,3I)
12@ NEXT N

SUFEREASIC’'s multi—dimensional arravs are not limited to two
dimensions. You can DIMension an array to have as many
dimensions as you wish, For example,

10 DIM MAJ(Z,2.2), MAK(Z,4,2,6)

will dimension a three-~dimensional array MAJ and a
four—-dimensional array MAE. Two points should be noted. First,
whenever vou refer to an array, it must bhave the same number of
subscripts, i.e. the same number of dimensions, &s in the
corresponding DIM statement. Second, multi-dimensional arrays
eat memory space at an alarming rate.

The statem=nt
1@ DIM MAX (10,10,1@)

looks innocent enough, but it has 11==1331 elements
(remember that you have to start counting from =zero) and
therefore allocates over Sk of storage space.....if you have
that much to spare!

SUFEREBASIC manual (c) Micro Fower 19832 Fage 7

SUFERBASIC doesn’'t Jjust provide multi-dimensional arrays which
hold integers. You can dimension and use a string array in just
the same fashion. The form of a two—-dimensional string array,
for example, might be

MA$T (A, B)

Note that this is similar to an integer array except that the
array name has the prefix MA¥ instead of MA. .

As with integer arrays, you can have string arrays of as many
dimensions as you wish, provided you always have the same number
of subscripts wherever the array is used as you have in the
corresponding DIM statement. A one-dimensional string array of
the form MAFA(X) , for example, 1is perfectly possible.
(One—-dimensional integer SUFERBASIC arrays are also possible,
but not really needed because ordinary Atom Basic already
provides this facility.)

You should note two things about string arrays. Firstly,
SUFEREBASIC only allows a maximum of 27 multi-dimensional arrays,
corresponding to the 27 identifying letters A to Z and @,
whatever the type of array. So vyou cannot have both an integer
array MAF (X,Y) and a string array MAFF{(X), for example.

/

Secondly, when vyou DIMension a string array, SUFERBASIC will
normally assume that vou want each array element to be able to
hold a string up to 1@ characters long, and will reserve space
accordingly. (Actually, it reserves 11 bytes per element, to
allow for the carriage return at the end of each string.) Of
course, vou can put smaller strings in each element if you want
- the extra epace will just be wasted - but if you put a larger
string into a particular element, it will overwrite another one.

SUFERBASIC does not check for such overwriting - nor, for that
matter, does it check that the values used for the subscripts
when accessing array elements are within bounds. As with
ordinary Atom Basic arrays, such checking is up to you.

I+ you wish to change the number of bytes which will be reserved
for each element of a string array by the DIM statement, vyou
should alter the contents of memory location 7#%F beforehand.
SUFERBASIC sets up this location to hold the value 11,
corresponding to 1@ characters per string array element. But if
vou need a string array MAXGE with elements 12 characters long,
you can execute

THRF = 13; DIM MAG(10)
This sets up space for eleven strings called MAFG(B) to
MA¥G(1@), and each may hold up to 12 characters. Similarly, if

you know that your string array will only ever have S-character
elements., you could save space by executing

PHOF = 6

before DIMensioning it. It follows from the above that putting

Fage 8 (c) Micro Fower 19873 SUPERBASIC manual

values of @ or 1 into 7#9F is pointless; and that the maximum
possible length for each element of a string array is 254,given
by 7#9F = 285. If you have the floating point ROM, SUFEREBRASIC
also supports multi-dimensional arrays of floating-point
elements. The form is MA%LF(X,Y,Z) (or however many dimensions
vou wish). In other words, the prefix MA is replaced by MA%L.
Otherwise, such arrays are dimensioned and used in a similar
manner to integer multi-dimensional arrays. Note that the
identifying letter - F in the above example — must not have been
used to identify an integer or string array, because SUFPERBASIC
only supports a total of 27 multidimensional arrays, whatever
their type.

You can dimension floating point SUFERBASIC arraye either in DIM
or FDIM statements, whichever 1is most convenient. For that
matter, integer and string arrays can also be dimensioned by
FDIM instead of DIM.

A final word on SUFERBASIC s multi-dimensional arrays. After
running & program which sets up arrays, you will still be able
to refer to them in immediate mode, e.qg. to print out their

values for debugging purposes but they will be lost as soon as
you edit vouwr program and they could be corrupted if you do any
string handling in immediate mode - string handling during

programs 1€ no problem of course.

SUFERRBASIC manual (c) Micro Fower 19832 Fage 9

READ. . DATA. . RESTORE

These statements provide a convenient way of incorporating data
(humerical or character strings) in a program. A data pointer is
initialised to the start of the current text space by the
RESTORE command. Each READ statement searches though the program
for the next DATA.

READ <{REA. is possible, but doesn’'t save any space?’.

This command will take one or more of the following arguments
(separated by commas if there are two or more):

- An integer variable e.g. X
- An integer array element, e.g. AA(T)

- An integer multi-dimensional array element e.g. MABR(1,Z2)

A string variable, e.g. #X

A multi-dimensional string array element, e.qg. MAFE(L,)
- A floating point variable, e.g. %X
- A floating array element, e.g. 7ZXX{(I)

- A multi-dimensional floating point. array element e.
MAZE(1,2)

lin]

- A floating peoint indirection operator, e.g. Z!#B200

0f course, the floating point ROM is needed to support floating
point arguments.

DATA {DA.:

The Data statement cannot be on the same line as other
statements, and a comma can be used straight after the keyword
DATA to indicate that the spaces in front of the first string
are signiticant. If an error occurs in a DATA statement, such
as trying to reed floating point or string data into an integer
variable, then the error message (and any subseguent REFORT?
will print out the DATA statement, not the READ statement. The
lirne number of the READ statement can then be obtained by typing
FRINT ERL.

Naturally, if a READ statement has a floating point argument,
the DATA statement can have floating point data.

RESTORE {RES.2

This command resets the READ pointer to the first DATA
statement.

Fage 10 (c) Micro Fower 1983 SUFEREASIC manual

WHILE {W.>

The statements following WHILE are executed repeatedly for as
long as the condition specified is true. This loop differs from
a DO...UNTIL in two respects:

(a) The condition is tested at the start of the loop,
not at the end. Thus if the condition 1is false on
entry, the entire loop will be skipped.

{b) The loop is repeated while the condition is trues
the DO..UNTIL loop is executed while the condition
is false.

WHILE can b= followed by any testable integer expression (with
the cvonjunctions AND and OR if desired). The loops can be nested
to a maximum depth of 12.

ENDWHILE {ERNDW.Z

Used as a marker at the end of both WHILE and FWHILE loops.
Flease note WHILE..ENDWHILE is a structured loop, and the
structure should be adhered to. Don't try jumping 1in and out of
the loop.

FWHILE <{FW.?>

This works in the same way as WHILE, but will evaluate a
floating point condition (the floating point ROM is needed).
The relationship to WHILE is similar to the relationship between
UNTIL and FUNTIL. WHILE and FWHILE loops can be nested inside
each other, to a total maximum depth of 12 loops. Both sorts of
loop require an ENDWHILE.

Example: FWHILE ZX<1.234

Note that AND and OR cannot be used in FWHILE statements. When
SUFEREASIC finds that the condition in a WHILE or FWHILE
statement is false, it has to go scanning through the program to
find the corresponding ENDWHILE. For this, it has to keep a
count of any inner WHILE or FWHILE loops it finds, to be sure of
aetting the matching ENDWHILE. This 1is the reason why users
must stick to the structure of the loops, and not jump in or out
with GOTOs. It should be noted that the scanning routine will
ignore occuwrrences of the kevwords WHILE, FWHILE or ENDWHILE
within quotation marks, so that vyou can still put what vou like
within quotes, but it will be fooled by the appearance of these
keywords in REM statements if, (and only 1if) they follow
immediately after a semi-colon and if an unmatched quotation
mark occurs by accident, the scanning routine will ignore
everything up to the end of the line - if in the process it
ignores a keyword, you’'ll get loop nesting errors.

XIF(Extended 1IF) - THEN -ELSE - ENDIF
X3 {omit} {EL.3J tEND. 3}

SUFERBRASIC manual (c) Micro Fower 19873 Fage 11

This is another feature "borrowed" from structured programming
languages. It is used to select one out of two possible courses
of action, depending on the result of a conmdition immediately
following the word XIF. The condition can include AND and OR if
desired. I¥f the condition is true, then all the statements up
to the word ELSE will be executed. Statements after ELSE will
be skipped. Execution then resumes after the ENDIF statement.
On the other hand, if the condition is false, all the statements
up to ELSE are skipped, and those between ELSE and ENDIF are
executed. The power of the structure stems from the fact that
the keywords XIF, ELSE and ENDIF may be many lines apart - in
fact as many as you like, as long as you keep them in the right
order, XIF - ELSE - ENDIF. Note that you will have problems i+
you ignore the fact that this ie a structured feature and use
GOTO to jump into and out of XIF - ENDIF structures (or "across"
the ELSE statements). The golden rule is that vou should enter
at the top, through XIF, and exit at the bottom, through ENDIF,
at all times.

The keyword THEN is an optional extra, which simply acts to make
the proaram clearer to read. As with ordinary IF statements, it
is only essential if the statement following right after the XIF
condition begins with T or ? or ! (In such situations, you could
simply put in & semi-colon instead, if you want to save space.)

éLSE can also be omitted. In thie case, all statements between
XIF and ENDIF will be executed 1if the condition 1is true;
otherwise they will all be skipped. i

XIF — THEN - ELSE - ENDIF structures can be nested inside each
other, as demonstrated by the next program. The maximum depth
of nesting is 15. Note that inner loops must be completely
within outer loops, and must not straddle the ELSE of an outer
loop.

5 REM A USELESS FROGRAM TO DEMONSTRATE XIF

1@ REM NOTE HOW INDENTING SHOWS UF THE STRUCTURE
28 DO INFUT X

3B XIF X<@ FRINT "NEGATIVE"’

4@ ELSE

15] XIF ¥>500 THEN

(Y6 FRINT "THIS I&"
7@ XIF X<1000 FRINT"A EBIT":ELSE PRINT"MUCH":ENDIF
aa FRINT"TOO BIG""
eyl ELSE XIF X%X&=0

laa FRINT "EVEN""
110 ELSE FRINT"ODD" -
12@ ENDIF

130 END1F

140 ENDIF

150 UNTIL @

This proaram also demonstrates various ways of setting out XIF -
THEN - ELSE - ENDIF statements. Notice that even 1in the
single-line structure of 1line 78, the ENDIF statement is
essential. When XIF is skippinag through a program searching for
keywords, it uses the same routine as WHILE. So the comments on

Fage 12 (c) Micro Fower 1983 SUFERBASIC manual

p.1@ are relevant.
XFIF {XF.3J (Extended FIF)

This keyword is used in place of XIF, together with THEN — ELSE
— ENDIF statements. It will evaluate a floating point condition
instead of an integer one. AND and OR are not permitted.
Otherwise, operation is the same as XIF. The maximum depth of
nesting of XIF and XFIF structure is 135.

ON X GOTO {ONX 6.2} ON X GOSUE {ONX GOS. 7%

This statement allows you to select one of a number of possible
destination for the GOTO or GOSUE statement, depending on the
value of X. X may be replaced by any variable or factor (such as
an array element) or by an expression in brackete.

The word GOTO or GOSUER should be followed by a list of possible
line numbers, separated by commas. If X has the value 1, control
will transfer to the 1line number specified in the +irst list
item; if it has the value 2, control goes to the line specified
in the second list item, and so forth. An error message is given
if X is less than 1 or more than the number of items in the
list. In the case of ON X GOSUE, the proaram is sent back to
the next statement after the ON statement, when it gets to the
RETURN in the subroutine.

Actually, the items in the list need not be explicit line
numbers, but each can be anything which could follow GOTO or
GOSUE 1in ordinary Atom Rasic. (Each item must still be
separated from the rest by commas.) In particular, it is
possible to use one or more line labels instead of line numbers.

Indeed, as in ordinary Atom Rasic, if a line has been labelled,
you must use the label. All line labels in the list are checked
for wvalidity, not just the one selected by the value of X, and
error 157 is signalled if any label does not exist.

List items which are not labels are checked to see if they
evaluate to a number, but the existence of a line having that
number is only checked if that list item has been selected - if
the line doesn’t exist, you get error 127.

INKEY {INE.Z

This command scans the keyboard to see 1if a key is cuwrrently
being pressed. It does not wait if no key is pressed. making it
useful For real-time control of animated graphics. Note that it
is a statement, not a function which can be used in expressions.
The keyword should be followed either by a variable from A to Z,
or a string variable (of the usual form ¥ expression). In the
case of a variable, the ASCII code of the key pressed is placed
in that variable, or =zero 1is placed in it if no key is being
pressed at the time. In the case of a string variable, the
character of the key pressed is placed in the string variable,
or a null string is set up if no key is being pressed.

LOCkK, COFY, REFT and the cursor control keys are ignored. SHIFT

SUFERBASIC manual (c) Micro Fower 1987 Fage 173

and CTRL have their usual effects if pressed with another key.
You can wait for a specific key to be pressed with a loop such
as:

DO INKEY A3 UNTIL A=CH"Y"
or:
DO INKEY $FREE; UNTIL $FREE = "Y"
BEEP <{EE.?}

EEEF is followed by two arguments controlling the pitch and
duration respectively. Both arguments may be numbers, variables
or expressions between @ and 255 (if they are outside this range
only the least significant byte will be used). The lower the
value of x the higher the note will be; if % is less than B no
note will be heard—-this can be used to give a programmable
delay. The duration can lie between about 2@ milliseconds {(y=1)
and six seconds (y=255). Space invader sound effects can be
produced with the BEEF command e.q.:

100 FOR J=1 TO 5

11@ FOR k=40 TO 80 STEF 4
, 120 BEEF K,1
’ 130 NEXT3;NEXT3END

Music can be produced by first reading the pitches of the notes
of the scale into an array (using READ and DATA statements, see
below), and then specifying the desired array element as the
pitch in a series of BEEF statements. Alternatively, the
durations and the pitches of the notes of a tune can be placed
in a series of DATA statements, and you can then READ them as
you play the tune. The note values are given in the table below:

NOTE VALUE VALUE VALUE NOTE VALUE VALUE VALUE
A 246 121 60 D# 73 86 42
Eb 23 114 S7 E 163 81 9
B 217 108 54 F 154 76 7
C 205 102 Sa F# 145 72 35
C# 194 96 47 G 137 68 R3]
D 182 21 45 G# 129 &4 21

STOP {ST.)} (no abbreviation possible if floating point ROM fitted.)

If a program is misbehaving, you can insert STOF commands at
several points throughout the program. When the STOF is reached
the computer prints STOF AT, followed by the line number, and
then waits for a key to be pressed before continuing. If ESCAFE
is pressed control returns to the BASIC monitor. Once the
proaram has been debugged, the STOF statements can be removed.

RERUN <{RER.Z
The command RUN <{R.} can only be used in immediate mode, in a

line of its own, in order to start a program off. In other
situations, e.g. within a program to restart it, it is necessary

Fage 14 (c) Micro Fower 1983 SUFERBASIC manual

to use the statement RERUN to ensure that the system is set up
properly. It can also be used in immediate mode in a
multi-statement line, such as: X=0;RERUN

ZERO {Z.3

This statement zeroes all the integer variables A to Z. In
addition, the three most significant bytes of variable @ are
zeroced, but the least significant byte is left untouched, so
that the effect of this variable on the FRINT format is
unchanged. ZEROZ {Z.7} will =zero all the +floating point
variable %@ and ZA to “Z

RESET (no abbreviation possible)

ERR

ERL

Thie statement makes SUFPEREASIC ‘"forget" all references to
current subroutines and current FOR-NEXT, DO-UNTIL, DO-FUNTIL,
WHILE, FWHILE, XIF and XFIF loops that it might be in the middle
of. So vyou can then safely jump out of such subroutines and
loops and back into the main program. But vyou must not Jump
into any other loop or subroutine, because that one will have
been forgotten too. The chief use of this statement is when
handling errors with ON ERROR (see below), if the possibility
exists that an error might occur in the middle of a loop or
subroutine. Note that RESET will also make SUFERBASIC "forget®
about any ON ERROR statement which is active, so that subseguent
errors will be reported as normal.

This is a function which can be used in expressions,
conditions, etc. It returns the number of the last error to
have occurred. I¥f no error has occurred since vyou enabled

"SUFERBASIC, it retwns an unpredictable number. See ON ERROR

below for an example of its use.

This is another function, 1like ERR. It returns the number of
the line in which the last error occurred. If the error
pecurred in immediate mode rather than in a proagram, the valus
rerp is retuwrned; as with ERR, an unpredictable number 1is
returned if there has not vet been any error. Again, see 0N
ERFROR below for an example.

REFORT {REF.Z

Thie statement prints out the last error message, complete with
the printout of the erroneocus line and the usual beep. I+ used
in a program, it stops it running first,and returns to immediate
mode. It is illegal to use REFORT if the last error occurred in
immediate mode, or if there has not yet been any error - in such
a case, therefore, REFORT will appear to ‘'report" itself. Note
that if the last error was a SUFERBASIC error, the usual message
to that effect will be missed out. The 1line printed out by
REFORT will not be correct if you have edited your program since
the error occured.

SUFEREASIC manual {c) Micro Fower 1983 Fage 195

Error handling

ON ERROR {ONE. >

When this statement is encountered during the running of a
program, SUFERBASIC saves details of its position. It then
skips the rest of the line, including any multiple statements on
the line. At the time, there is no noticeable effect of all this
having happened. However, if an error occurs later on during the
run of the program, the normal error messages will ©be
suppressed.

Instead, SUFEREBASIC will jump directly to the position it has
saved, immediately after the words ON ERROR, and execute the
statements which previously were shkipped over. Normally, this
will be a GOTO statement, which will peint to a routine you have
written to deal with the error condition in some suitable way.
All references to loops and subroutines which were active when
the error occurred will be retained intact. This means that
your error handling routine camn Jjump back to where the error
occurred, using GOTO ERL. Eut you must ensure that the problem
has been properly dealt with, and will not simply happen again -
;i+ it does, then control will immediately come back to vyour
error handling routine and then go round and round in an endless
loop. If your error handler is likely to pick up errors which
occurred in loops or subroutines, and then send control back to
the main program, outside all loops and subroutines, then you
should Ffiret cancel the leoops/subroutines with RESET. Don’t
forget that this will also cancel the ON ERROR so that future
errors will not be picked up. If that ‘s not what you want, vyour
error handler can contain a further ON ERROR statement right
after the RESET. The following example shows how to use ON ERROR
in conjunction with ERF, ERL and REFORT.

1@ REM ERROR HANDLING EXAMFLE
20 ON ERROR GOTO 1000Q
@ INFUT"TYFE A NUMBER",A
4@ REM CONTINUE WITH YOUR FROGRAM
a0
100 INFUT"TYFE ANOTHER NUMEBER",EBE
11@ REM CONTINUE WITH YOUR FROGRAM
12@
S0@ END
HODHEXHNHRFHEHFHEHERXEERFRERERH LR RNH
992 REM TRAF ERRORS IN INFUT
1000 IF ERL<>Z@ AND ERL<>100 THEN REFORT
121@ IF ERR=10% PRINT"SORRY,THAT'S TOO BRIG"'; GOTO ERL
102@ IF ERR=29 PRINT"FLEASE USE ONLY DIGITS @-%9" ':GOTO ERL
10780 REFORT

If desired, vyour program can contain several ON ERROR
statements, to handle errors in different part of the program in
different ways. When SUFEREBASIC comes to a new ON ERROR
statement, it saves its position and cancels the previous one.
You can cancel ON ERROR entirely by executing ON ERROR REFORT

Fage 16 {(c) Micro Fower 1983 SUFERBEASIC manual

(or using RESET).
FREE {FR.3Z

This is a "pseudo-variable" which gives you access to the "Free
space pointer" which is used by DIM and FDIM when reserving
space for strings, arrays and multi-dimensional arrays. See
Atomic Theory and Fractice, page 145, for an explanation of how
DIM increments the <free space pointer, now called FREE.
"Fseudo-variable" means that you can use FREE both in
sxpressions and in statements such as FRINT &FREE:; and also you
can change its value by having an assignment statement of the
form FREE = <expression*. (LET is not permitted). For example,
a statement like FREE = FREE + 286 is quite valid. A more
useful statement might be FREE =#8200. This would mean that any
arrays and strings dimensioned afterwards would be stored in the
graphics text space -~ useful i1if space is short above vyour
program in the lower text space and DIM statements are giving
error Z0. In SUPEREBASIC, the commands RUN and RERUN have the
effect of setting FREE to the value TOF + 54. This reserves 54
bytes which are used as workspace by the multi—-dimensional
arrays - over and above the storage space which is reserved by
increasing the value of FREE when you actually DIMension such an
array. The requirement for this 5S4 bytes above TOF is not
affected by changing the value of FREE, though if vou do not
have the full S4 bytes your program will run normally until vyou
try to DIMension a multi-dimensional array (when you will get
SUFERBASIC error 255). Such errors are more likely with
multi-dimensional arrays having a "high" identifying letter like
Xe Y or Z than with a "low" identifying letter 1like @& or A.
SUFERBASIC string handling +Functions also make use of space
above FREE. Since they only use it for temporary scratch-pad
workespace, they do not change the value of FREE. You too can
use the space above FREE temporarily, with esxpressions like
?FREE, 'FREE and #$FREE, &s long as you bear in mind that string
handling will destroy whatever you have stored. In fact, vyou
should use FREE for such storage in preference to TOF, which
would interfere with the multi-dimensional arrays. For another
use of the pseudo-variable FREE, see point 6 of "Foints to note
when using SUFERBASIC".

During immediate mode, you cannot change the value of FREE,
because it will immediately be set back to TOF + 54. This is
done so that FREE gradually increases when you type in a program
-~ otherwise vyou could corrupt your newly-typed program if vou
broke off to do some string handling.

PRINT TAB and FPRINT TAE

The kevword TAE can be used anywhere in a FRINT or FFRINT
statement. It can take either one or two arguments, in the form
TAR(X) or TAEB(X,Y). Here, X and Y may each be any integer
number, variable or expression. In the form TARB(X), X may be
anything between zero and 255, and the next item to be printed
will start at column X on the screen and/or on the printer.
Note that the leftmost column is numbered zero. On the screen,
if X is greater than 31, there will be a '"wrap-around" effect

SUFPERERASIC manual {(c) Micro Fower 1983 Fane 17

onto the next line. TAB(X) works by issuing spaces until the
value of the Rasic function COUNT is equal to or greater than X,
and it will work on any printer which is connected up and turned
on, since the spaces will also be sent to the printer. Note,
however, that if COUNT already equals or exceeds X, then TAR(X)
will have no effect whatsover, and the next FRINT item will
start from where the previous one finished. Note also that
COUNT religiously counts up any control codes which you print
(e.g. PRINT €2 to turn on the printer) so unless you then start
a new line with PRINT’, the next print item could start one
position earlier than you expected, for each control code
printed.

TAEB(X,Y) works rather differently. This sends the cursor on the
screen directly to column X in row Y, and has no effect on vour
printer. X may be any number between 0 and 71, while Y may be
any number between 0 and 15. Y = 0 gives the top row of the
screen, and ¥ = 15 gives the bottom row. If X and/or Y are
greater than 21 and 15 respectively, then only the lowest
significant 5 or 4 bits respectively of the value will be used.
For example, FRINT TAE(ZZ.17) has the. same effect as FRINT TAE
(1,1).

Whichever form of TAE you use, numbers will still be printed in
a field the sirze of which depends on variable @. As a result,
there could be some leading spaces before the printing of the
number starts. This can be very useful when formatting tables,
for example, but if it is not what you want, set @ = @ or @ = 1
before printing.

b (produced by typing SHIFT-B; appears as inverted EF on the screen).

The letter b is used to introduce a number written in binary
(base 2), containing only the digits @ and 1. It can be
compared to the symbol #, used to introduce a number written in
hexadecimal (base 16). It must be followed by at least one :zero
or one, and can be followed by up to I2 binary digits (zero or
one). billll, for example, is the same as #F, or 15 decimal. The
binary number after b will be read right up to the first
character which is not @ or 1. If an illegal character appears,
the computer will usually try to interpret it as an arithmetic
operator which is intended to act on the binary number - if it
faile in this, you’'ll normally get an ordinary Atom Easic error
message such as error 174, or error %4 (illegal character after
valid statement). The chief use of b is when defining black and
white graphice shapes - see below.

f (produced by typing SHIFT-F: appears as inverted F on the screen.)

f is used to introduce a number written in base 4, containing
any of the digits 0,1,2 or 3. It can be followed by up to
sixteen such digits. It is very similar to b in operation. The
chief use of + is when defining colour graphics shapes - see
below.

fFfage 18 {(c) Micro Fower 1983 SUFERBASIC manual

User defined graphics shapes

SUFEREASIC allows you to define up to 27 different shapes,
identified by the letters A to Z and @ (quite separate from
multi-dimensional arrays having such identifying letters). Such
shapes may be defined for any of the black and white graphics
modes 1 to 4, or colour modes la to 4a, but not for mode @.

In black and white modes, user defined shapes are 8 pixels wide
by 8 pixels high, and once defined can be used in any of modes 1
to 4 (though the proportions will be a bit different from mode
to mode!. In the colowr modes la to 4a, shapes are 4 pixels wide
hy 8 pixels high, though in modes la and 4a at least, the piuels
are twice the width than in the corresponding modes 1 and 4, so
it does not follow that the overall shape will be any narrower.
But in any case, if vyou require a larger shape, you can simply
define it in terms of two or more component shapes, and insert
the component shapes side-byv-side on the screen and move them
around altogether.

User defined shapes require workspace below #290@, but above the
floating point variables and arrays. So they will only work
properly if you have at least 1k of memory in the lower text
space. In addition to this workspace reguirement, details of the
shapes vyou have defined are stored above your program, in
exactly the same way that arrays and strings are stored by DIM
(i.e. by increasing the value of FREE).

When you are defining a shape, think of it as split into 8 rows.
each four pixels wide (colour) or & pixels wide {(black and
white!. So defining the shape needs 8 numbers, one per row,
starting at the top.

Each number can be in the range @ to Z55. You could write
these numbers in decimal, or in hexadecimal, or even a=
variables or expressions. BEut it is most convenient, for shapes
intended for use in black and white modes, to use binary numbers

{(sze above!l.

Fach bimary number should have 8 digits, with ones correspondi ng
tn white pixels in the resulting row of the shape, and zerness
corresponding to dark pixels (background).

To define shapes for use in colouwr modes, the numbers are most
cornveniently written in base four (see above). Eackh number
should then have four digits, and the possible digits @,1,¢ and
T correspond to the numbers used to set colours in the COLOLR
statement in the floating point ROM. @ is the background
colour. Having defined your shapes as desired (and as mentioned
above, there can be as many as 27 of them) you must then use an
appropriate CLEAR statement to get the graphics mode required,
followed by a COLOUR statement if you want a colour mode. A
number from @ to 3 is still needed after the COLOUR statement,
but the precise value chosen does not affect the user defined
shapes, but only FLOT, DRAW and MOVE. If you have a colour board

SUFERBASIC manual (c) Micro Fower 1983 Fage 19

but no floating point ROM, you can still use the user-defined
shapes (though not FLOT, DRAW and MOVE) as follows. First
execute an appropriate CLEAR statement (CLEAR 1 to CLEAR 4).
Then execute

7H#BOOQ=7"H#ERO0O@ & DF.
Finally, for mode 2a (but not 1la, Za or 4a) execute
FOR N #8600 TO #B7FF STEF 4; IN=0; NEXT N.

DEFSHF {DE.:

This is the statement used to define a shape (in any mode). In
its basic form, it is followed by the identifying letter (@ to
Z) +For the shape, followed by & list of the eight numbers
discussed above. The numbere <chould be separated from each
other and from the identifying letter by commas.

However , if you are uwsing bimnary or base 4 numbers as
recommended, vou will have difficulty fitting all eight numbers
on one line. o you can break off in the middle of the

definition (anywhere after the identifying letter, but do not
finish with a comma), and SUFERBASIC will store details of what
you have defined so far. You can then have one or more
continuation DEFSHF statements to complete the definition.

The continuation statement 1is distinguished +Ffrom the basic
statement by the fact that it has an apostrophe(’) after the
keyword DEFSHF, and does not contain the identifying letter -
that is remembered from the previous statement. The
continuation DEFSHF' statement just contains one or more further
numbers from the list, separated by commas. If the total number
of numbers listed in the basic DEFSHF and any continuations
exceeds B, an error message is given. If you start to define a
new shape before finishing the old one, the remainder of the old
shape will be filled with garbage.

The following example defines a stick man shape for use in any
black and white mode. Notice from the sketch of the man, on the

right, how the ones in the definition are arranged.

18 DEFSHF ™, b00111100

2@ DEFSHF’ b00011001
I@ DEFSHF -’ bii1111111
4@ DEFSHF’ b10011000
S@ DEFSHF b00011000
6@ DEFSHF ' b00111100
7@ DEFSHF’ 01100110
8@ DEFSHF’ b11000011

INVSHP {INV.:

This statement performs an inversion operation at a point on
the screen, using 'a pre-defined shape. "Inversion" means that
the shape is inserted if previously there was nothing there, and
deleted if it had been previously inserted at that position.

Fage 206 (c) Micro Fower 1983 SUFERBASIC manual

Fartial overwriting of an existing shape will look a little odd,
but this will only last until one or other shape is deleted with
an appropriate INVSHF.

The form is INVSHF A(X,Y) Here, A is the identifying letter for
the desired shape, and X and Y represent any integer
expressions. These are evaluated, and the shape 1is inserted or
deleted with its top left—hand corner at pixel position (X,Y).
That is, the values of X and Y correspond with the same
coordinate system used by FLOT, DRAW and MOVE, in which position
(0,0) is at the bottom left-hand corner, and ({in mode 4)
position (288, 191) is at the top right-hand corner of the
screen.

Note that if necessary, the shape can be "inserted" or "deleted"
partially or wholly off the scresn.

It is possible to insert or delete two or more shapes at once
with IMVSHF. Suppose vou had defined the left-hand sids of a
flying saucer as shape L, and the right-hand side as shapz R.
You could use:

INVEHF Li%,Y) F{X+D,Y}

In order to get the two components of the shape side-by-side,
the value of D should be & 1in black and white modes, or 4 in
colour modes.

MOVSHF {M.?2

This statement is used to perform two INVSHF operations in quick
succession, using the same predefined shape. Used properly, the
effect is to move a shape from one position to another, by
deleting it from the first position and inserting it at the
second. The form is MOVSHF A{X,Y,V,W) This can be used to move
shape @& from position (X,Y) to position (V,W), or vice versa
(depending what was already on the screen). As with INVEHF, the
value of the coordinates refer to the top left—-hand corner of
the shape. Also as with INVSHF, a statement such as MOVGHE
ACX,Y,V, W), B(X+D,Y,V+D,W) can be used to move two (or mor e
shapes as one body:

The following example program definss an invader with a body one
colow, eves a second and legs a third. It then moves it
repeatedlyv across the soreen., gradually moving down and getting

fazter,

SUFEREASIC manual (c) Micro Fower 1987 Fage 21

W

1

1@ REM EXAMFLE OF USER DEFINED SHAFES
20 REM DEFINE LEFT SIDE OF INVADER

@ DEFSHF 1,f0011,f0111,f1121,f1121
40 DEFSHF' f@111,f0033,f0330,f3300

5@ REM DEFINE RIGHT SIDE

6@ DEFSHF J,$1100,f1110,f1211,§1211
7@ DEFSHF ' §1110,f3300,{033I0, 0037
200 CLEAR 4; COLOUR @; REM COLOUR NO. UNIMFORTANT
220 S=0; REM S SETS SFEED
230 FOR Y=18@ TO 20 STEF -10@

24Q0 S=S+1; REM GET FASTER
249 REM INSERT IT

250 INVSHF 1(1@,Y), J(14,Y)
2909 REM MOVE IT

ZP0 FOR X=10 TO 11@ STEF S

T1@ MOVSHF I(X,Y,X+S8,Y) ., J(X+4,Y,X+5+4,Y)
=IO NEXT X

749 REM DELETE IT

ISQ INVSBHFE T(X,Y), J{X+4, Y)

400 NEXT Y

569 END

Eoth INVSHF and MOVSHF perform a WAIT before accessing the
screen. This much reduces or aveids flicker on the screen, but
bbviously slows things down rather. I1f speed is important, and
flicker less so, you can suppress the WAIT in both INVSHF and
MOVSHF. This iz done by inserting an apostrophe (') after the
identifying letter and before the bracket,

e.9. INVSHF A" (X,Y)
I¥f there is more thanm one shape being manipulated, then each

nesds an ° in this manner (unless you want one shape to WAIT and
another not tol.

(c) Micro Fower 1983 SUFEREASIC manual

@]
]

Points to note when using SUFERBASIC

1. If vyou have to press BREAE, it will be necessary to
re-enable SUFERBASIC with LINE #AF00 or LINKE #AF04. Don’'t
forget to type OLD to retrieve vyour program. If you use
any of SUFERBASIC ‘s string handling facilities before you
type OLD, your program could be corrupted.

2. Although existing ATOM BASIC programs normally give no
problems to SUFERBASIC, this is not necessarily the case
with other commercial software -~ particularly if such
software uses the same memory locations as SUFERBASIC, or
if it alters the operating system vectors (loccated above
20@y . Before running such software, vou are advised to
disable SUFERBASIC by pressing EBREAE.

kK I+ you fit SUFEREBASIC in = ROM selector board, disable it
by pressing BREAK before switching to another ROM.

i, The command RUM should only be used in a linz of its own
in immediate mode -~ that 1=, the way in which it is
normally used in order to run a program. It should not be
wsed within programs, nor in immediate mode commands such
as x=03; FRUN. :

In these {(relatively unusuall situvations, the command
RERUN should be used instead. (The command X=0; RUN in
immediate mode can be broken up into two separate lines
instead of uwsing RERUN.) Similarly, non-standard ways of
starting off programs, such as typing GOTO 12 in immediate
mode, should be aveoided - they may appesr to work, but will
rot initialise the svetem properly, agiving seemingly
inesxplicable probklems later on.

S The various SUFPERBASIC floating point facilities will only
work if veu have the Gcorn floating point ROM fitted. I+
it i=s not fitted, an appropriate error message will be
given to show that the SUPERBASIL floating point statemnent
o function has not been recognised.

i When writing SUFEREBASIC programs which use the 7 and !
operators (or adspting existing programs! make RS
vou are not using an area of memory which SUFERBAHID uses
swe below. For similar reasons, 1t is wiss not to use the
variable TOF to store numbers or strings, 2.g. by executing
FTOF = "GTRING". If vou are not wusing SUFERBASIC'S string
handling functions, you could use ¥FREE instead, but it is
much safer to DiMension a suitable memory area in the
proper manner.

Similarly, the use of DIM F{-1) to allocate space for
assembly of machine code is dangerous. (because it doesn’t
increment FREE). Use one of the following instead:

SUFEREASIC manual {(c) Micro Fower 1987 Fage 23

Either:

Or:

Fage Z4

10
2@
0
40
o0

1@
=0
@
4@
SE

DIM @(18@); REM Reserve enough space

FOR N=1 TO 2:; REM Two passes
F=0Q

[Your code here;]

NEXT N

FOR N=1 TO 2; REM Two passes

F = FREE; REM Start address

[Your code here;]

NEXT N

FRFE = F; REM End address plus one

SUFERBASIC memory usage

auress these areas.

Area Furpose

H2IC-#23TF WHILE/FWHILE stack

$TERD-#28F2

TOF to TOF+54 Multi-dimensional array

above FREE Temporary scratch pad for string

FREE for more details).

memory in the following areas.

Uzers should not

S7-#OF General storage and workspace

User defined shape workspace

wor kspace

{Bew FREE for morese details).

(o) Micro Fowesr 1583

SUFEREB&EBIC

(see

handling.

manual

ERROR Messages

All the usual Atom error codes can occur with SUFERBASIC fitted.
But in addition, the following codes may arise. They can be

distinguished from the Acorn error codes by the fact that they
are preceded by the message "SUFERBASIC" (except when produced
by REFORT)

Error Code Likely Causes
2,7 or 4 Search for ENDIF failed after XIF, XFIF or ELSE
&,7 or B Search for ENDWHILE failed after WHILE or FWHILE
16 No DATA left for s READ statement to read
1% Insufficient space ebove FREE for use by DEFSHP
IE o to 41 Insufficient room above FREE for string handling
128 Ead syntax in TRHEEY
129 Bacd svntax in BEDF
128 ¥IF statement takes number o nested XIF/XFIF

loopes over 15. Bad nesting of XIF loops.

17351 YFIF statement error-szimilar to 1306.

| 22 Ead nesting of ELSE. Jumping into an XIF/XFIF loop
with GOTO ELSE without XIF or DFIF.

123 Bad nesting of ENDIF. Jumping into an XIF/XFIF
loop with 3070, ENDIF without XIF or XFIF.

124 Too many WHILE loops. EBad nesting of WHILE/ENDWHILE

135 FAHILE error - as 134

124 ENDWHILE with no corrssponding WHILE or FUHILE

REAGD ercor - either bad svntax in READ o somnes
problem in the corresponding DATA statement.

1A Attempt to use STOF in immediate mode.
141 MOYEHFE errcor - either bad syntax or corresponding

shape not vet defined.

142 Error in MAY% assignment, e.g. bad
syntax, array not vet dimension=d, or dimensional
with a different number of subscripts.

147 Error in MA¥ assignment - similar to 14%&.
144 Error in MA assignment - similar to 14%.

SUFERBASIC manual {c) Micro Fower 1987Fages &5

146

147
148

149

165
16&

167

168

165

A e
o b

Fage 26

INVSHF error - similar to 141

Ead syntax in ON ERROR or ON X GOTO/GOSUE. Value
of X too large or small.

Ead syntax or too many arguments in DEFSHF or DEFSHF’
Illegal use or REFORT

Attempt to use RERUN with no program in memory
- try typing OLD if necessary.

Error in MAY. evaluation, e.g. bad syntax,
array not vyet dimensioned or dimensioned with &
different number of subscripts.

Error in M& evaluation — similar to 1585

No binary number after bs; or binary number too
large (Mawimum 22 digits}

Mo base 4 number after 3 or baze four number too
large (max. 16 digits)

Ead syntax in INSTR

MID# syntax error, or number arcuments longer than
string.

Unmatched quotes in string expression.
LEFT# syntax error or number argument longer than string

RIGHT$# svntax error, or number argument longer
than string.

Error in MAF evaluation - similar to 155

Unexpected character within square brackets during
string handling. Attempt teo add together strings
which between them have over 255 characters.

Bad svntax in TAE

Attempt to use RUN with no program in memory -— try
typing OLD if necessarv.

Error during DIM or FDIM of multi-dimensional
array, e€.9. bad syntax, or insufficient memory
above TOF for the 54 bytes of workspace. Note that
insufficient memory above FREE will cause the
ordinary Atom error 3@ (or its FDIM equivalent)
rather than SUFEREBASIC error Z5C0.

ic) Micro Fower 19BISUPERBASIC manual

	Program Power Super Basic p1
	Program Power Super Basic p2
	Program Power Super Basic p3
	Program Power Super Basic p4
	Program Power Super Basic p5
	Program Power Super Basic p6
	Program Power Super Basic p7
	Program Power Super Basic p8
	Program Power Super Basic p9
	Program Power Super Basic p10
	Program Power Super Basic p11
	Program Power Super Basic p12
	Program Power Super Basic p13
	Program Power Super Basic p14
	Program Power Super Basic p15
	Program Power Super Basic p16
	Program Power Super Basic p17
	Program Power Super Basic p18
	Program Power Super Basic p19
	Program Power Super Basic p20
	Program Power Super Basic p21
	Program Power Super Basic p22
	Program Power Super Basic p23
	Program Power Super Basic p24
	Program Power Super Basic p25
	Program Power Super Basic p26

