SECTION 5
THE AIM 65 ASSEMBLER

The progess of translating individual computer program
instructions written in mnemonic or symbolic form (the
Source program) into actual processor instructions in
machine code form (the object program) is called an assembly.
The computer program that performs this translation is an
Assembler. The mnemonics and symbols used in writing the
source program, commonly called the source code, is called
the assembly language. One assembly language instruction
translates into one processor instruction. The object
program is commonly referred to as the object code.

The optional AIM 65 Assembler is a ROM resident, two-pass
assembler. It is supplied as one 4K R2332 ROM that plugs
into socket Z24 on the AIM 65 Master Module. The assembler
allows both instruction and data addresses to be specified
symbolically rather than requiring absolute addresses.
During Pass 1 the Assembler determines the values of the
symbols. The symbols and their corresponding values are
placed in a symbol table for use during Pass 2. The
assembler generates the actual object code during Pass

2, using the symbol values from the symbol table to generate
addresses and displacements and to create data values.
Extensive error checking is performed during Pass 2 to
determine if the instructions have been correctly coded.
Any detected errors are displayed/printed. The assembly
listing is also generated during Pass 2.

¥

Seo

B i

To use the Assembler, source code is first prepared using
the Editor then stored on audio cassette tape, or passed
directly from the Text Buffer in RAM to the assembler. If a
teletype is used, the source code may be stored on punched
paper tape and read back as the input to the Assembler.

Operation of the Assembler is completely automatic within
each pass once you specify such information as where the
input source code is coming, where the output object code is
to be directed, if a full assembly listing or just an
errors-only listing is to be generated.

Assembler directives included in the source code provide
additional and overriding instructions for listing generation.
When audio cassette tape is used as input, a file linkage
capability allows multiple files to be used.

5.1 ASSEMBLER ROM INSTALLATION

Before removing the ROM from its shipping package, be sure
to observe the handling precautions in Section 1.4.

Turn off power to the AIM 65. Remove the ROM from the
shipping package. Inspect the pPins to be sure they are
straight and free from any shipping or protective foam
material. Insert the ROM into socket %224, being careful to
observe the proper device orientation. (See Figure 1-1).
Support the Master Module from underneath the socket after
the pins are aligned and started into the socket. Press

firmly and evenly on the ROM until it is inserted completely
into the socket.

Revised 3/79 5«2

5.2 THE SYMBOL TABLE

Working space in RAM must be allocated for symbol table
storage during Pass 1. Eight bytes of RAM must be allocated |
for each uniquely defined symbol in the source code; six

bytes for the symbol itself and two bytes for the symbol
value. Since each symbol requires eight bytes of memory, the
end of the symbol table will be a multiple of eight bytes

from the starting address. If the allocated symbol table

area is not large enough, the assembler will terminate Pass

1 after displaying the error message:

SYM TBL OVERFLOW

The starting and ending address limits of the symbol
table are entered during assembly Pass 1.

The actual starting address will correspond to the entered
starting address limit. The actual ending address will be
lower than the ending address limit.

The starting and upper limit addresses of the symbol
table and the number of symbols in the table can be determined
by examining these memory locations:

ADDRESS PARAMETER EXAMPLE
$003A Symbol Table Starting Address Low $00
$003B Symbol Table Starting Address High $03
$003E Symbol Table Upper Limit Address Low SFF
SO003F Symbol Table Upper Limit Address High $03
$000B Number of Symbols (HEX) High $00
$000C Number of Symbols (HEX) Low $12

5-3 Revised 3/79

The address of the last symbol can be computed by multiplying
the number of symbols in the symbol table by eight and
adding the result to the starting address.

For example,

$0300 + ($0012 X 8) = $0300 + $0090 = $0390
(Address of the last symbol)

NOTE

If the source code, object code, and
symbol table are all to reside in RAM
during the assembly, take care to
prevent overwriting the source code with
either the symbol table or the object
code, or the symbol table with the object
code. Extreme care must be taken to avoid
overwriting the source code; it will have
to be read into the Text Buffer again.

It is good practice to periodically save
the source code on permanent storage
media (e.g., audio cassette) to prevent
inadvertent loss due to overwriting,
editor initialization, or AIM 65 power
loss.

5.3 ASSEMBLY CONSIDERATIONS
5.3.1 Memory to Memory Assembly
The actual object code addresses can be examined by printing

the assembly listing during Pass 2 without directing the
object code to memory. The object code can be directed

Revised 3/79 5-4

either to audio cassette tape or to the dummy device (i.e.,
no output). If the output is directed to audio cassette, it
can be then loaded into memory using the Monitor L command
without regard to the previously used symbol table locations.
If the object code addresses conflict with the source

code, the source code should be saved on audio cassette

tape before loading the object code.

If no object code output was generated, and examination of
the object code addresses on the assembly listing shows no
source code or symbol table address conflicts, Pass 2 can be
re-run to direct the object code to memory and not to
generate an assembly listing (since one was generated during
the first Pass 2).

5.3.2 Tape To Tape Assembly

A program with many symbols may require a major portion or
all of RAM for the symbol table. 1In this case, the source
code should be saved on audio cassette before the assembly.
Pass 1 and Pass 2 should both be run with the input from
audio cassette. The output object code should be directed
also to a different audio cassette (see Section 9 for
detailed audio cassette operation). The size of the program
is now limited only by the RAM memory available to handle
the number of symbols in the source code.

5.3.3 User Program Constant Storage

The Assembler uses Page 0 locations 0004 through 0ODE and
Page 1 locations 0170 through 0183, For this reason, you
should not assemble any instructions or constants into these
locations when assembling to memory (OBJ? N). User program
variables can be assigned to these locations, however, and
instructions/constants can be loaded in these locations,

after the assembly is complete.

5~5 Revised 3/79

!
I
|
I
!
!
!

3 ;§ 5.4

USING THE ASSEMBLER

Use the AIM 65 Assembler as follows:

1.

To enter the assembler, type N after display
of the Monitor prompt. AIM 65 will respond
with:

<N>
ASSEMBLER
FROM=A\

Enter the symbol table starting address in hexa-
decimal. Terminate the address by typing RETURN.
Typing RETURN without entering a value will cause the
starting address to default to its previously entered
value. The newly entered or default value will be
displayed. For example, if 0300 is entered, AIM 65
will respond with:

FROM=0300 TO=A
CAUTION

Since all of Page 0 is used for assembler
variables and Page 1 is reserved for user

and AIM 65 Monitor stack usage and for AIM 65
variables, the symbol table starting address
must be equal to or greater than 0200.

Revised 3/79 5-6

Enter the symbol table ending address in hexadecimal.
Terminate the address entry with RETURN. Typing RETURN
without entering a value will cause the ending address
to default to its previously entered value. The

newly entered or default value will be displayed.

For example, if 0400 is entered, AIM 65 will respond
with:

FROM=0300 TO=0400.

IN=A

Enter the code of the input device that contains
the source code. Valid options are:

= Text Buffer in memory (RAM)
= audio cassette tape
= TTY punched paper tape

[B o B I 9
1

= user defined peripheral

CAUTION

If Pass 1 is to be performed from memory

(IN = M), be sure that the symbol table
addresses do not conflict with the addresses
of the source code in the Text Buffer. Part
or all of the source code will be overwritten
with the symbol table in this case.

Note that the source code will be displayed as it is
being read from the input device.

5~7 Revised 3/79

If M is entered, AIM 65 will display M. Go to Step
5.

If T is entered, AIM 65 will ask for the file
name:

IN=T F=A
NOTES

1. In order to use an audio cassette for input,
the audio cassette recorder must have a
remote control capability, with connections
as described in Section 9.1. The Assembler
processes source code by operating on a
‘block of 80 bytes at a time. During this
time, the cassette recorder is halted using
the recorder remote control input after
a block of source code is read. The recorder
will stop with the cassette tape positioned
between blocks of input data. When the
assembler has processed the block of 80
bytes, the recorder will be restarted to
read another block of data.

2. The source code must have been recorded
with the GAP variable in $A408 equal to $80,
or larger.

Enter the file name under which the
source code was stored. If the file name is
less than five digits, end the input with a

Revised 3/79 5-8

NOTES (Cont.)

RETURN or SPACE. AIM 65 will then ask for the
audio cassette recorder number. For example:

IN=T F=SRCE1l T=A

Enter the the audio cassette recorder number

(1 or 2) from which the source code is to be loaded.
End the input with a RETURN or a SPACE. 1If 1

was entered, AIM 65 will respond with:

IN=T F=SRCEl T=1

AIM 65 will search for the specified file
name. Upon locating a readable tape file,

the file name on tape will be compared to

the entered file name. If the file names

are not identical, AIM 65 will display the
search message and block count of the recorded
file as the file passes. If file name

PROGl is read, AIM 65 will respond with:

SRCH F=PROGl BLK=XX Where XX=the
block count.

When the entered file name is located on

the tape, The Assembler will continue to Step
5.

. 5-9 Revised 3/79

AR 3

i B A R

Aot

gt f

aciitaen ia i
cramema g

C. If L is entered, reading of the source code
on punched paper tape from the TTY should be
initiated as described in Section 9.2.7.

D. 1If U is entered, Pass 1 will be initiated using the
user defined input as described in Section 7.

5. AIM 65 will ask if the total assembly list or just an
errors only list is to be displayed/ printed:
LIST?A
If only errors are to be listed, type N. An errors-only
listing will be generated during Pass 2.
If the full assembly listing is to be produced, type Y.
The complete assembly listing includes the total source
program, reformatted for proper output spacing, the
address with each label, the generated object code and
any detected errors.
6. AIM 65 will ask where the full assembly or the errors-
only listing is to be directed.
LIST-0UT=A
Type one of the following valid options:
RETURN or SPACE = Display/Printer
P = Printer
T = Audio Cassette (AIM 65 Source Code Format)
U = User defined
L = TTY (See Section 9.2)
Revised 3/79 5-10

AIM 65 will then ask where the object code is to be
directed:

OBJ?A

If the object code is to go directly into memory,
type N. Go to Step 6.
CAUTION

1f the output is to go into memory, be sure the
object code addresses do not conflict with
source code in the Text Buffer if the input

is from memory or with the symbol table ad-

dresses.

If the object code is to be directed to an output

device and not to memory, type Y. AIM 65 will respond

by asking for the output device code.
OBJ~-0OUT=A
Type one of the following valid option codes:

RETURN or SPACE = Display/Printer

P = Printer only

T = Audio Cassette (AIM 65 Format)
L = TTY (See Section 9.2)

X = Dummy Device (no output)

U = User Defined

5-11 Revised 3/79

NOTE Any error detected during Pass will be identified

by a number corresponding to the error code (see
: The selected OBJ-QUT= option must not conflict Table 5-1) in this format:

with the previously selected LIST-OUT option

-

; or else both listing and object code output will **ERROR XX where XX = 01 to 21.
% ’1 be directed to the same output device in an
‘ i intermixed manner. At the completion of the assembly listing the number
'4 ' of detected errors will be reported.
¥ | 9. AIM 65 will initiate Pass 1 and display:
y ERRORS= XXXX where XXXX = the error count.
[] | PASS 1
i

- NOTE
& During Pass 1, the Assembler creates the symbol table.
If the allocated symbol table area is too small to Any .OPT LIS, NOL, ERR or NOE directives
store all the symbols, AIM 65 will display SYM TBL
OVRFLOW and return to the Assembler entry point.

in the user program will override the user
response to the LIST? prompt.

10. If Pass 1 is completed successfully, AIM 65 will 5.5 ASSEMBLER EXPRESSIONS
automatically initiate Pass 2 if the input (IN=) is
from memory (M) or user-defined (U). If the input

is from audio tape (T) or punched tape (L), the Assembler
will halt and display

Assembler expressions are very useful tools to facilitate
programming and to generate both readable and easily change-
able code.

PASS 2 There are two components of assembler expressions:
elements and operators.

Rewind the tape and type SPACE to start Pass 2.
5.5.1 Elements
11. Pass 2 will be performed. The selected errors-only or
N full assembly listing will be directed to the LIST-OUT
device. The assembled object code wlll be directed to
the OBJ?/0OBJ-LIST device. Upon completion of Pass 2,

Elements may be classified into three distinct types:
constants, symbols, and the location counter.

control will be returned to the Monitor.

| Revised 3/79 5-12

5-13 Revised 3/79 |

e et

Table 5-1. Assembler Error Messages

SYM TBL OVERFLOW

During Pass 1, more unique symbols were detected
than allowed in the symbol table. The symbol table
length allocation can be enlarged by changing either

the symbol table starting and/or ending address by
re-entering Pass 1.

01

** UNDEFINED SYMBOL

The assembler has found a symbol in an operand ex-
pression which is nowhere defined (as a label or as the
destination field of an equate directive) in the source
code. This error will also occur if a reserved name

(A, X, ¥, S, or P) is referenced as a symbol in an
expression.

02

** LABEL PREVIOUSLY DEFINED

The first field on the line, interpreted as a symbol,
has been found already defined with a value in the
symbol table. A forward reference to a page zero
defined symbol has caused a misalignment in address
values from Pass 1 to Pass 2.

03

** ILLEGAL OR MISSING OPCODE
The assembler has found a line containing a label,

followed by an expression, which it tried to interpret
as an instruction.

04

** ADDRESS NOT VALID
An address referenced in an instruction or in one of

the assembler directives (.BYTE, .WORD, or .DBYTE) is
invalid.

Revised 3/79 5-14

Table 5-1. Assembler Error Messages (Cont.)

05

** ACCUMULATOR MODE NOT ALLOWED

Following a legal instruction mnemonic and one or more
spaces, is the letter A followed by one or more spaces
(denoting the accumulator addressing mode). The
assembler tried to use the accumulator as the operand.
However, the instruction in the statement is one which

does not allow reference to the accumulator.

06

** FORWARD REFERENCE TO PAGE ZERO
An operand expression containing a forward reference
has been found.

07

** RAN OFF END OF LINE

This error message occurs when the assembler is
looking for a needed field and runs off the end
of the line image before the field is found.

08

** [LABEL DOESN'T BEGIN WITH ALPHABETIC CHARACTER

The first non-blank field, being neither a comment

nor a valid instruction, is assumed to be a label.
However, the first character of the field begins with a
numeric character (0-9), violating the rules of symbol

construction.

09

** LABEL GREATER THAN SIX CHARACTERS

The first field on the line is a string contain-
ing more than six characters. Lacking a semicolon
prefix, denoting a comment, it is assumed to be a

symbol whose length limit has been exceeded.

5-15 Revised

3/79 |

M——-- |

Table 5-1. Assembler Error Messages (Cont.)

10 ** LABEL OR OPCODE CONTAINS NON-ALPHANUMERIC
The label or opcode field on a line (illegally) con-
tains a character which is not alphanumeric.

11 ** FORWARD REFERENCE IN EQUATE OR ORG
The expression on the right side of an equal sign
contains a symbol that has not been previously defined.

12 ** INVALID INDEX - MUST BE X OR Y
A legal operand expression follows an opcode. Following
this expression, is a comma (denoting indexed address-
ing) and an invalid string where either X or Y was
expected. This error will be given whether an indexed
addressing mode is legal for the corresponding instruc-
tion mnemonic or not.

13 ** INVALID EXPRESSION
While evaluating an expression, the assembler found a
character that it could not interpret.

14 ** UNDEFINED ASSEMBLER DIRECTIVE
If a period is the first character in a non-blank
field, the assembler interprets the following three
characters as an assembler directive. Either an
invalid directive has been found or the first three
characters of one of the options in the .OPT directive
are uninterpretable.

15 ** INVALID PAGE ZERO COMMAND
An invalid page zero indexed operand has been detected, for
example STA #20,X. An invalid non-page zero indexed
operand, for example STA #20, or an invalid page zero
operand without indexing will result in error 18.

Revised 3/79 5-16

Table 5-1. Assembler Error Messages (Cont.)

17 ** RELATIVE BRANCH OUT OF RANGE
A branch instruction can branch only 127 bytes forward
or 128 bytes backward. This error message indicates
an out-of-range branch.

18 ** TLLEGAL OPERAND TYPE FOR THIS INSTRUCTION
After finding an instruction mnemonic that does
not allow implied addressing, the assembler passes to
the operand field and determines what type of operand
it is (indexed, absolute, etc.). This error message is
printed if the type of operand found is invalid for the
instruction.

19 ** OQUT OF BOUNDS ON INDIRECT ADDRESSING
An indirect address is recognized as such by the
parentheses that surround it in the operand field of an
instruction mnemonic. Since indirect addressing
requires two bytes of page zero memory, the address
referencing this area must be less than or equal to
254.

20 ** A, X, Y, S, AND P ARE RESERVED LABELS
One of the five reserved names (A, X, S, X, and P)
has been used as a symbol.

21 *%* PROGRAM COUNTER NEGATIVE - RESET TO 0

An attempt to reference a negative memory location
will cause this error message, and the Program Counter
to be reset to 0.

5-17 Revised 3/79 |

P 3
——

; 5.5.2 Constants
y: For example: !
Ly t
¢ Numeric constants may be written in several bases. The base 1
. . . . o
¥ | 1is specified by the type of prefix character preceding the
' digits, as defined in the following table.
.)
.
;8 PREFIX CHARACTER BASE
> i
W
W, (none) 10 (Decimal)
E f $ 16 (Hexadecimal)
@ 8 (Octal) Note that two quotes are needed to represent a gquote in
. . . - .
2 (Binary) memory. Thus, in the last field of the .BYT directive, the

first represents a single quote, and the last closes off the
string.
Some examples are:

5.5.3 Symbols

Symbols are names used to represent numerical values.

They may be from one to six alphanumeric characters long,
and the first character must be alphabetic. The 56 valid

) opcodes (listed in Table 5-2) and the reserved symbols A, X,
Y, S, and P have special meaning to the Assembler, and may

not be used as symbols.

For example:

| ASCII LITERAL CONSTANTS

ASCII literal constants, enclosed in quotes, are used to

insert the ASCII representation of character strings into
memory.

| Revised 3/79 5-18 5-19 Revised 3/79 |

5.5.4 Location Counter

The location counter, referenced by the character "xn

1s a sequential counter used by the Assembler to keep
track of its current position in memory
used in expressions within a program

14

It may be freely

For example:

5.5.6 Operators

Two arithmetric operators are allowed in

language: the R6500 assembly

QEEBQIQB OPERATION
+ Addition
B Subtraction

Evaluation of expressions proceeds strictly from left

to right, with no parenthetical grouping allowed; all

operators have equal Precedence.

In addition, there are two special operators:

CHARACTER OPERATION

High-Byte Selection
Low~Byte Selection

Revised 3/79

ki i

Operators < and > truncate a two-byte value to its high

or low byte, respectively.

For example:

Expressions which evaluate to negative values are illegal.
The twos complement representation of a negative number must
be expressed as an unsigned (preferably hexadecimal) constant

(e.g., write "-1" as "SFF").

Note especially that expressions are evaluated at assembly

time, not at execution time.
5.6 ASSEMBLER SOURCE STATEMENTS

Assembler source statements are comprised of up to four
fields:

[label] [opcode [operand]] [; comment]
Brackets surrounding a field indicate that it is optional.
Thus, although none of the fields is mandatory, an opcode

field must precede an operand field. 1Input to the Assembler

is free form; any field may start in any column.

In particular, note that due to the reserved opcodes,
the user is able to precede labels with spaces. If no

5-21 Revised 3/79

ia

1

Sz € ‘(:>37F\\£§? §:>T*;;Jrﬁ

W,

L B IR N, s

label is present, an opcode may be placed in the first
column.

Fields in a statement need only be separated by a single
space. If the fields are separated in this manner, the
Assembler will columnize the fields and produce a readable
listing. The user's program may then be stored on audio
cassette in a highly compressed form.

Also note that the comment field should be preceded by
a semicolon. If the semicolon is omitted, the comment

field will not be placed in its proper column in the
listing.

5.6.1 Labels

A label is a one- to six-character string of alphanumeric
characters. It must begin with an alphabetic character,

and must appear as the first field on a line, although it
may begin in any column. Using a label is a way to assign
the current value of the location counter to the symbol
before the rest of the line is processed by the Assembler.
Labels are used with instructions as branch targets and with
memory data cells for reference in operands.

A line containing only a label is valid, so several labels

may be assigned to the same memory location by putting each
on a separate line:

5.6.2 Opcodes and Operands

Two distinct classes of assembler instructions are available

to the programmer: machine instructions and assembler

directives.
5.6.3 Machine Instructions

The 56 valid machine instruction mnemonics (Table 5-2)
represent the operations implemented on the R6500 family of

i s
microprocessors. When assembled, each mnemonic generate

one byte of machine code, the actual bit pattern depending
upon both the operation specified in the opcode field and
the addressing mode determined from the operand field. The

operand field may generate one Or two bytes of address.

5-23 Revised 3/79

Table 5-2.

R6500 Microprocessor Instruction

Set--Alphabetic Sequence

ADC
AND
ASL

BCC
BCS
BEQ
BIT
8MI
BNE
8PL
* BRK
8ve
8vs

* cLe
: * cLo
e oL
‘oL
cmp
cPx
cPY

e

DEC
* DEX
° DEY

EOR

INC
® INX
*INY

JMP
JSR

Add Memory to Accumulator with Carry
AND Memory with Accumulator
Shift Left One Bit (Memory or Accumuiator)

Branch on Carry Clear

Branch on Carry Set

Branch on Result Zero

Test Bits in Memory with Accumulator
Branch on Result Minus

Branch on Resuit Not Zero

Branch on Resuit Ptus

Force Break

Branch on Overflow Clear

Branch on QOverflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit

Clear QOverftow Flag

Compare Memory and Accumulator
Compare Memory and Index X

Compare Memory and Index Y

Decrement Memory by One
Decrement Index X by One
Decrement Index Y by Gne

Exclusive-OR Memaory with Accumulator

Increment Memory by One
Increment Index X by One
Increment Index Y by One

Jump to New Location
Jump to New Location Saving
Return Address

LDA
LDX
LDY
LSR

NOP

ORA

PHA
PHP
PLA
PLP

ROL

ROR

RTI
RTS

SBC

SEC
SED
SEl

STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Load Accumulator with Memory

Load Index X with Memory

Load Index Y with Memory

Shift Right One Bit (Memory or Accumulator}

No Operation

OR Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack

Pull Processor Status from Stack

Rotate One Bit Left {Memory or
Accumulator

Rotate One Bit Right (Memory or
Accumulator)

Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator
with Borrow

Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory
Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer index X to Accumulator
Transfer tndex X to Stack Pointer

Transfer Index Y to Accumulator

*Instructions legal only in the implied addressing mode.

| Revised 3/79

5-24

5.7 OPERAND ADDRESSING MODES

5.7.1 Absolute Addressing

The absolute addressing mode is the most common in concept;

the data following the machine code is treated as the

address of a memory location containing the actual data to
be processed during the instruction step. This address is

stored in reverse order--as low-byte, then high-byte--to

increase processing efficiency during execution

For example:

1

Wi

5-25 Revised 3/79 |

© o R

4
H
1

|

,»v
A

- -

_;cih;i

T

e e W

T s

5.7.2 Page Zero Addressing

In practice, the zero page addressing mode (identical in
concept to absolute addressing) is the most frequently
used. This allows the expression of the instruction to be
two bytes instead of three; the low byte of the data address
is taken from memory, and the high byte is assumed to be
zero. All instructions legal in absolute mode are also
legal in zero page mode, with the exception of the JMP and
JSR instructions (see Table 5-2); the Assembler automatic-~
ally generates the shortest possible code. It is good
programming practice to reserve page zerc (memory locations
0-255) for declaration of variables.

NOTE

Any variables on page zero must be defined
before they are referenced.

For example:

Revised 3/79 5-26

Qa1

5.7.3 Immediate Addressing

The immediate mode of addressing is coded by the character
"4" followed by a byte expression; the code inserted into
memory is treated as the data to be operated upon according

to the machine code.

For example:

5.7.4 Implied Addressing

Twenty-five of the fifty-six instructions, legal only in
the implied addressing mode, require no operand--their
execution may be completed with no other information than
that contained in the opcode. These instructions are

preceded by an * in Table 5-2.

For example:

I OVM Oy
13D O TE G
4 AW ET e 2D

5-27 Revised 3/79

5.7.5 Accumulator Addressing

Instructions implementing the four shift operations have, in
addition to addressing modes referencing memory, a special
mode which allows manipulation of the accumulator. Usage

of this mode, similar to implied addressing, causes genera-
tion of a single byte of machine code.

For example:

5.7.6 Relative Addressing

Eight conditional branch instructions are available to the
programmer; normally these immediately follow load, compare,
arithmetic, and shift instructions. Branch instructions
uniquely use the relative addressing mode. The branch
address is a one-byte positive or negative offset, expressed

' in twos complement notation, from the run-time program

: counter. At the time the branch address calculation is

f made, the program counter points to the first memory loca-

‘ tion beyond the branch instruction code. Hence, the one-byte

i offset limits access to branch addresses within 129 bytes

forward and 126 bytes backward from the beginning of the

{ branch code. (A one-byte twos complement number is limited

\ to the range -128 to 127 inclusive.) An error will be
flagged at assembly time if the branch target lies out-of-
bounds for relative addressing.

| Revised 3/79 5-28

For Example:

5.7.7 Indexed Addressing

Indexed addressing (with Index Registers X or Y) facilitates
certain types of table processing. The address given as

the operand is treated as the base address, to which

the contents of either the X or the Y Register is added to
arrive at the effective address of the memory location
containing the data to be operated upon. All instructions
implementing absolute indexed addressing with the X Register
also allow the same addressing in the page zero mode;
several instructions (LDX, LDY, STX, and STY) allow zero

page indexed addressing with the Y Register.

For example: t

5-29 Revised 3/79 |

'—:

R T o WGy e T

&3

5.7.8 Indirect Addressing

The concept of indirect addressing constitutes a level of
complexity beyond that of absolute addressing. The operand
address references not one memory location containing data,
but a sequence of two memory locations containing the
address~-stored in low-byte, high-byte order--of the loca
tion containing the actual data to be processed. True
indirect addressing is of fered only with the JMP instruction;
otherwise, indexed indirect addressing with the X Register
and indirect indexed addressing with the Y Register are
implemented. For indexed indirect addressing, the indexed
address is computed before the indirect is taken; the order

of evaluation is reversed for indirect indexed addressing.
NOTE

Normal indirect addressing takes place when

the Index Register contains zero. The JMP
indirect uses an absolute-length (two-byte)
operand; others require the operand address

to lie in page zero between 0 and 254 inclusive.

For example:

DiTE CHP (OLDFTR:.

Revised 3/79 5-30

5.8 ASSEMBLER DIRECTIVES

There are nine assembler directives. They are used to set
?ymbol and location counter values (=), reserve and initial-
i1ze memory locations (.BYTE, .WORD, .DBYTE), and control
b?th'assembler input/output (.OPT, .FILE, .END) and assembler
listing format (.PAGE, .SKIP). All may be considered as

as . . .
sembly time instructions, rather than as execution~time
instructions.

5.8.1 Equate Directive

The equate ("=") directive assigns the value of an expres-—
sion containing no forward references (symbols defined in a

following section of code) to either a symbol or the loca-
tion counter:

A label used with an equate directive which increments the
lo?ation counter will reserve work area memory locations;
thfs.ié especially useful when consecutively allocating ,
unlnlt}alized memory at the beginning of a program:

5-31 Revised 3/79

3
5
i

a single .BYTE command to load consecutive memory locations;
either ASCII strings or expressions evaluating to an eight-
bit value are legal. ASCII strings in .BYTE direc.
not generate more than 20 characters:

ives must

Symbols assigned one-byte values may be programmed as
assembler constants--assembly-time values, used consistently
throughout a program, which may be changed at a later time
when the program is reassembled. Source code is designed so
that alteration simply requires reassignment of the corres-
ponding assembler constants. This is considered good
programming practice and is a much better alternative to

changing each constant as it occurs throughout a program:

e

Note the use of two quotes within an ASCIT string to
insert a single quote into memory.

5.8.3 .WORD Directive

The .WORD directive is very useful in constructing jump
tables and initializing pointers.

o e it e b o S e

An operand expression is
evaluated as a two-byte address and is stored in low-byte,

high-byte sequence, the order in which the microprocessor
-/ fetches addresses from memory. As with .BYTE, multiple
operand fields, separated by commas, are allowed:

5.8.2 .BYTE Directive

SN RPN o
Ly

The .BYTE directive initializes byte memory locations.

¢ Multiple arguments, separated by commas, may be specified in

| Revised 3/79 5-32 5-33 Revised 3/79 |

W

"o

i .

iuiit

5.8.4 .DBYTE Directive

M mm

If it is desired to generate a sixteen-bit expression

value in normal high-byte, low-byte order, the .DBYTE 4
assembler directive must be used. 1Its syntax rules are the %
same as those for .WORD: would cause the following to appear at the top of each

page:

5.8.6 .SKIP Directive

LAl

3 A blank line may be inserted in the program listing with the
.SKIP directive.

) 5.8.5 .PAGE Directive

The .PAGE directive causes a title line to be printed
under a dashed line. A title may be specified as an ASCII
string in the operand field, and it may be cleared with a
string of one or more blanks. Absence of an operand will
also cause the title to be cleared. This command is not
printed as entered in the source code--only the results
appear. For example, entry of:

PRI

| Revised 3/79 5~34 5-35 Revised 3/79 |

|

. . |l
5.8.7 .OPT Directive 1 3. ERRORS (NOERRORS) controls the listing of only erron-

eous program source lines together with the respective
. messages generated. Fatal assembler table overflows
are also messaged in this file.

The three options of the .OPT directive control genera-

tion of output files and expansion of ASCII strings in

.BYTE directives. These options are selected by specifying:

5.8.8 .FILE Directive

.OPT LIST, GENERATE, ERRORS

For large programs, it is usually more convenient to divide

the source program into logical segments which may be

separately loaded into the Editor Text Buffer and edited.

After editing, each file is listed from the Text Buffer to a

separate file on audio cassette tape. However, when the

and are eliminated by coding:

.OPT NOLIST, NOGENERATE, NOERRORS

Since only the first three characters of each option entire program is to be assembled, it is necessary to tie

are scanned, the following may be written: these files together. This function is performed with the

.FILE assembler directive. Each file (except the last)
contains, as its last record, a .FILE directive which
points to the next file in the chain.

.OPT LIS, GEN, ERR
.OPT NOL, NOG, NOE

Of these options, only GEN/NOG remains unspecified after
entering Pass 2; GEN/NOG has a default value of NOG.

.FILE NAME

For example, if the first file is named PRGM, then:
The three options have the following functions:

! .FILE QARC is the last statement in file
1. LIST (NOLIST) controls generation of the program | PRGM
. : : . . }
listing, which contains assembled source input, 1 .FILE DEF IS THE LAST STATEMENT IN FILE
generated object code, errors and warnings. | QARC
.FILE PATCH is the last statement in file
2. GENERATE (NOGENERATE) controls the printing of object DEF

code for ASCII strings in the .BYTE directive. Only
code for the first two characters is listed if NOG is
specified; otherwise, the whole literal will be expand-
ed.

| Revised 3/79 5-36

5-37 Revised 3/79 | :

5.8.9 .END DIRECTIVE

The last statement of the last file in the source program
must be the .END directive. For example:

.END

| is the last statement in a one-file program and the last
| statement of the last file in a multiple-file program.

5.9 COMMENTS

Comments may be freely inserted into source code following !
the last field in a line. If preceded by an opcode (and
possibly operand) field, the comment may optionally begin :
with a semicolon (;). Otherwise, the semicolon is nec-
essary. A comment may be the only field on a line.

For Example:

| Revised 3/79 5-38

