Computer Programmer
Programmation

NTS

www.videopac.org
The Worlds best Videopac Resource

-

CONTI

VIDEECPAC &

Introduction

Chapter 1
The Fundamentals of Microprocessors

Chapter 2
The Binary Number System & Computer Languages

Chapter 3
The Videopac Computer

Chapter 4
The Videopac Computer: Instruction Sets

Chapter 5
The Videopac Computer; Operating Modes

Chapter 6
Sample Programs/Conclusion

Appendix

Each tima a game is finished.
press RESET (), COMMAND
15:shown on the screon. Now
(a) Select another game.
Or (b] Select another Videopac
Remove existing Videapac
by placing one hatid fiext 1o
it-and pulling handla
upwards
Replace Videopac 1n ils box.
Refor now to Instructions lor
Use ol the next Videopac

Or ic} Plug aerial back inte TV, and
uniplug the Videopac
Computer from the mains

Check procedure

It you suspect & fault in the
eguipment lollow this procedura
Iwith a Videopac instalied)

Press RESET (A). The TV will emit
a shiort sound. and COMMAND
should appear on your TV sdraen,
It not. ensure thal the equipment is
set up properly as detailed in the
|nstructions for Use (both of the
aquipment, and ol the Videopac
uset). H the faull remains, 1ake
both the equipiment and Videopac
to yaur dealer

leN'

-
-

INTRTINN

z
g
<

Since the dawn of history, man
has been developing methods of
counting. calcuiating, and storing
nformation Primitive man used
his fingers baones_ pebbles and
shells 1o counl and record his
possessions, the phases of the
meon, the passing of time. and
1he changirig of the season As
His needs grew and his abllities
evolved, he developad mare
sophisticated calculating methods
and slorage devices Wrilten
languages were developed,
numbier systems were created
and more conveniant and mobile
slorage systams evolved - trom
drawing on the walls of caves 1o
hieroglyphics on tablets of clay
and stone, and finally, 16 the stage
of complex modern languages on
the printing press

The abacus |s-perhaps the oldest
known computing devica, first

used in China in the Sixth

Century B.C. In later years. (1 aiso
was used by the Latins ang
Greeks. and even today, the
abacus is used in restaurants

homes and schools
AR

T
By the Seventesnth Century. the
use of numbaers had increased n

impartance due 1o greal advances

n gslronomy, navigation and the
ather sciences |t was necessary
that calculations bie more

accurate and that past information

be stored arid later re-evaluated
m light of new data In the 1830's
Charles Babbadge designed whal
today we would call-a digital
computer This analytical engine
would have been able 1o perform
any arithmetic or logical
operation. [t was designed 1o be
programmable. a compuler rather

than @ mere calculator Babbage's
Idea was to use punched cards
tor ertaring data and nstructing
the machine with mathemarical
commands! Though Babbage
died before the machine could be
bullt his slaborate drawings
represent the foresight he had
into programmable machines

Though numerous business which
could calculate and print were
déesigned and bunlt in the
Nineleenth Century. it was not
until the 1840's thal électranic
components were first used (o
build computers The tirst
generation of etectromic
computers was built with vacuum
lubes: Magnetic drums were used
for main storage, while external
storage was on punched cards or
magnetic 1ape. All programming
was done in taborious maching
[numeric) language

The secand generation of
computers built in the sarly
1960's used transistors instead of
vacuum tubes. and, as a result
were cheaper, faster. and more
reliable. While magnetic 1ubes and

R NN

slorage the magnetic drurm was
replaced by a magnetic core tor
internal slorage High-level or
source languages such as Cobol
and Fortrari were developed
along with assembler language to
make programming easier

In the earty 1960’s. when the
transistor was replacad in the
somputer by the monolithic
integrated circuil and solid state
memory was used along with the
magnetic core, a third genaration
of camputer technology beaan
This generation Is further
distinguished from the previous

N

*VIDECPAC 9

one by the development of
aperating systems, complex
mulli-programming many more
high-level languages. and by the
reduction of size. cost, and
electrical usage

With advances in'computer
technology and electronic
gomponents progressing rapidly,
the tourth ganeration of
computers began emerging in the
late 1960 s and early 1970's n'the
late 1960's. the development of
large scale integration (LS
allowed a number of circdits with
separate functions 1o be
Integrated on indmidual chips
which wera soldered on circuit
boards With the advent of the
circuit boards, another great
breakthrough in computer
technology was experienced
Now. whole computers could be
assembled easily and
Inexpensively However, the LS|
had one drawback since each
circuit served only a particular
purpose the LSI tacked flexibifity-
Then in the early 1970's. the
ang-chip microprocessor, was
designed - a chip on which
control instructions could be
stored This microprocessar
contained 2 250 transistors in an
area barely & sixth of an inch long
and an eighth of an inch wide. and
could how be “taughl’ 1o do any
number of operations The
introduction of this ane-chip CPU
(Gentral Processor Unitl has
made possible the production of
small inexpensive calculators and
minicomputers.

Cornputer tachnolagy is
‘developing rapidly Four
generations ol computer
evolulion have been experenced

in less than 40 years and by the
1980's further advancements with
bubble memenes and Josephson
|unetions will be laking place By
the year 2000 the capabilities of
the compuler will have increased
dramatically and it will be
employad in ways that we are only
beainning to imagine

The Videopac Computer

Your Videopac Computer 1s a
fourth generation
micruprocessor IS versatility and
sophistication make i1 one of the
finest of its kind an the marke!
The Videopac Compuler not only
offers you hours of entertainment
with games such as Baseball,
American Football
Baskziball/Bowling
Race/Spin-oul Space
Rendezvous. Golf. Blackjack
Cosmic Conflict and Air-Sea
War/Battle. but aiso educational
and instructional games such as
Cryptogram. Pairs/Logic
Mathematician/Echo. and
Computer Programming

This Computer Programming
Videopac offers you an
oppoitunity to introduce
computer technelegy 10 your
children and also learn about it
yourselt Computers are fast
becoming a part of aur every day
world, and the Videopac
Computer can help prepare you
and.your children for the future

Since this introductory Computer
Programming Videopac is just
that, a begirining, this bookiet will
Intradtice you to the basic
Information and factual
background which you will nead
1o be able to write and implement
your own programs. We begin

with) the general organization of a
computer. a detaled explanation

of its fundamental operation with
definitions of a register and
accumulator, binary hexadecimal
and assembler language We will
then give a description of your
Videapac Computer and the steps
te follow to create your own
program

When studying Computers, be
certain you never go past a ward
you do ot fully understand. If the
matenal becomes conlusing,
there will be a word |ust earlier
that you have nol understood
Don’t go any further - go back
find the misunderstood word and
get it definad: A computer
dictionary will be invaluable

You will soon be entenng data
into your Videopac Computer
keyboard and enjoying the thrill of
Seaing your own program appear
on the screen

212 1

HAPTI

C

The Fundamentals of
Micropracessors

A micraprocessar consists of a
small riumber of components
which execute spacific aperations
in a sequential manner There are
seven basic comprnents in all
MICTOPTOCassors

1 Input/Output Devices (1/O)

2 Arithmetic/Logic Unit TALU)

3 Agcumulator i

A4 Memory

5 Location Devices

6 Control Logic

7 Bus Lines

The INPUT/QUTPUT devices are
‘known as the |/O ports. The Input
device 1s usually 2 keyboard
similar 1h your Videopat
Computer keyboard shown in
Figure 1 while the Outpul devica
is usually 8 vigea screen of some
type (s n the case of your
Videopac Gomputer. the
lelevision-screen). of tape It is
through the Input/Outpul devices
that you ray enter dala and view
the resulls

Within the ARITHMETIC LOGIC
UNIT {ALU} gl simple reasoning
‘and arthmetic operations are
pertormed The ALU accepls data
from wo sources (1he
Accumulator and Memory| and
this data is called an operand. The
Al accepts one or both of these
oparands performs arithmetic
calculations o lngical operations
based on the operandls) then
suiputs one result The ALY is
alsp kKnown as the number
cruncher. since it is here thal he
varlous inputs of data are
‘synthesized anda solution is
reached (See Figure 2)

The ACCUMULATOR. aworking
ragisier (a register is a cirouit
where data is stored). 152 small
memory device that provides
tamporary. data and/or nstruction
storage tor the ALU and may
store the result.of the ALU's
opération or may be used as an
operand source for e ALU See
Figures 3 and 4)

Besides temporary starage, the
microprocessor needs bulk
storage such as is provided by
the MEMORY companent We
know that our microprocessor is
able 10 carry oul certain tasksina
saquential manner This sequence
of instructions 15 called a program
and is stored |n the Memory
component of the
micropracessor The program
requires constanis with which to
process dala and these also must
be stored in Memory Thus
Memory becomes a library of
informatian consisting of program
instructions, consiants, and other
data [See Figure 5)

Ttie Memory unit of the
MICOPracessor is composed of
two electronic components -
ROM and RAM The ROM
component ar Read Only Memary
i like & ook - it is printed at the
{actory and cahnol be changed It
15 raferred 1o as a faclory
programmable ROM . its contents
cannot be changed: 1t is in the
ROM thal program instruchions
and consgants (repetitive numbers
raquired for mathematical
compdtation by the ALU) are
stored (See Figure 6)

. VIDIECPAC 9 |

UL QUT

v
KD o L]
s Rof i} L] L
ixgc g sdnful §e]
g1 o= . L e

Figure 1 Figure 2

ALU

Figure 3 Figure 4

. = Figure 6
Figure 5 :

ZRA

HAPTI

.
-

The second electronic component
of the Memory unit is RAM or
Randem Access Memory This
companent is like a blackboard
Data {programs. instruction sels
constants) can be eritered and
erased when desired and new
data entered. The RAM may be
prograrmmed and reprogrammed
many times. It is 1his component
which allows you 1o write yaur
own programs, The data you
anter. unlike the program
instructions and constants which
are stored in ROM, may be
changed. and therafore is stored
in RAM (See Figure 7)

The terms ROM and AAM
describe the electronic
componenis of the Memary unit
The Memory unit can also be
viewed in terms of its functions
of which there are two - Program
Memary and Data Memory. The
PROGHAM MEMORY contains the
addresses of the insiruclion sets
and can send this information 1o
the Instruction Register for
decoding or 1o find an address
Ithe location of datal in Data
Memary It is activigted by the

Program Counter. The DATA
MEMOHY contains the addresses
of dala stored in Memaory and
sends this information 1o the
Accurnulstor or, depending on the
pragram. 10 ether registers. It is
activatad by the Data Counter

The PROGRAM #ntg DATA
COUNTERS are working registers
which locate data inguired for by
1he ALU Dapending upon the
nature of the data, the Frogram
and Data Counters may find the
necessary data in either the ROM
or RAM components of 1he
Merhory unit. The microprocessor
executesa program by firiding a
seties of instructians in its
Memiry Once the Instructions
are located, they are arranged
and the program is executed in
the proper sequence whiah is
essential 1o the accurate
aperation al the microprocessor
The Pragram Counler locates and
identifies each instruction set and
advances one step al a time
keeping the instructions in the
proper saquence fi.e. Program
Step # 080182 03 94 elc)
When an instruction requires (hat
some data be processed, the
Data Counter locales and
identifies thal data in Memory and
points 1o the address wheré the
data is located (See Figure 8)

Because data can be travelling in
various dirgctions within the
microprocessor, it is necessary 1o
have a CONTROL LOGIC
companent

The Control Logic directs the
functiening of all the ather
componenis and controls the
data flow between them The
heari of the Control Logic

component is the INSTRUCTION
REGISTER. Here. the binary biis
(more on these iater) that
compaose the instruction sets are
decoded and the necessary
signals to implemant the
instruction are generated (See
Figure 9)

The Control Logic is connectad 1o
all other parts of the
microprocessor by way of data
control buses or BUS LINES, of
which there are three The DATA
BUS transmits data between the
ALU and Memory, the ADDRESS
BUS transmits addresses of data
being accessed by the ALU 1o
Mernory, and the CONTROL BUS
which is a group of channets used
for special control purposes (ie.
clearing the registers for resetting
ol microprocessor, stopping the
micrapracessor after the
instructions have been
termiriated, eic)

Several of the components
discussed above compose the
Central Progessing Unit, which'is
the heart of the microprecessor
These components are the ALU
Accumulator, Program and Data
Counters, Control Logic unit. and
Instruction Register

Figure 10 shows the complete
micropracessor sysmm as wa
have discussed it You cantrace
the route which data may take by
following the arrows

We have mentioned registers
bils. and computer language
during our explanation of the
basic components of the
microprocessor In the next
chapter. we will discuss these
impaortant aspecis af computer
technology in depth

VIDECPAC Y

é ? CONTROL LOGIC

RAM ROM

WCATES EUATA (N MERACHY

Figure 7 Figure §

INFUT IKE YBOARLY

P ——
3 £F & K5 KN 08 0N 0 5 08

BUIS LINE l]
- I

AEGIS I8 LiNES

K]

S]
N N N S S N S G —

Figure 10

o1

o

HAPTE

-

C

The Binary Number System and
Computer Languages

We mentioned binary bits in
Chapter 1 Now we will expiain
what they are In detail and why
they are so important in refation
to microptocessors: In addition 1o
this, we will explain what is meant
by computer language and
discuss the different types -
binary of machine language,

mal, and ler

Microprocessors perform
funetions accurately and at high
speed by manipulating symbaols
according 1o a set of instructions,
which are stored in the Program
Memory. The aperation of the
microprocessor consisis of
axecuting the instructions and
data in sequence Thus, these
instructions must be in a form
that the microptocessor can
understand. so both instructions
and data are written in binary
number codes, or machine
fanguage In order to Understand
the operation of the
microprocessor and 1o be able 10
write your own' pragrams, you
need to be able to write in
machine language and to
undersiand what is being
represented in the
MICrOpProcessor

Binary or Machine Language
Let's first begin with some
definitions A number system s a
sat of symbols (digits) that may
be operated upon by arithmetic
rules. Each symbol or digit has its
owh name (i.e, in the decimal
system, we have 0, 1.2,3, 4,56,
7. 8.9}, A nuimbar system also has
a set of rules that define how to
arrange the digits to form
numbers.

Positional natation allows
numbers to be written that
express all quantities, no matter
how large or small. The value of a
digit depends on its position in
tha number- For example. the
digits of the number 5555 are
identical, yet sach has a different
value. To write 5555 is a short way
of writing five thousand + five
hundred + fifty + five or. if you
wished 1o express it in the
powers of 10, you could write

5% 10° +5 x 109 +5 x 107 +
§ % 109 Ten s the base or radix
of the decimal number system In
the binary system, the radix 15 2;
and in the hexadecimal system,
the radix is 16

Because the voltage levels in your
migropracessor can only
recognize 2 levels - on or off -
the binary number system is used
16 encode data within the
micrapracassor The binary
number system is writtean with 1's
and O's and, as we mentioned
above, has a radix of 2 For
axample, the binary number

11011 can be written 11011,
Expressed in an equation, it looks
like this

MO, =1 X 28 +1x 23+ 0
X P RPN 4 %0

We now pertorm those
mathematical cperations expressed
in the above equation.

M=D2x2H2x2 =16
ND=2x2x%X2 = B
2=2%x2 = 4
2E2 = 2
20 =4 =1

(You may ask, ‘Why does 20 =
17’ Theré is a rule in the binary
number system which states:
Any number not zero raised 10

www.videopac.org

the worlds best videopac website

.

VIDIZCPAC 9

the zero power is 1' Since 20 =
2' - 2" whan written in powers
and if two numbers of the same
base are divided, the value of the
power of the number in the
deriominator (the number below
the fraction linel may be
subtracted from the value of the
power of the numeratar (the
number above the fraction line)
Thus 2'=2V = 21 =20 = 1)

Now we musl place the values of
the numbers taken to the power
of 2 and place them in aur
equation 11011 = 1 % 16 + 1
XB+0O0xXxA4+1x2+1%X1
=27

Below is a tablé listing eleven
binary numbers and their decimal
equivalenis. Note the positional
notation of the binary numbars:
242222 21 20 and their base 10
equivalents: 16, 8. 4,2 1 Asa
shortout 1o what we have just
done above, you could write

16 8 4 2 1

The microprocesseor is instructed
what to do by programming it
with a series of insiructions
(instruction sels to which we have
previously referred, will be
explained in detall later) It may be
programmed by writing a
sequence of instructions in
machine language or binary code
(enes and zeros). Computer
1erminology refers to digits in the
binary system as bits, a
contraction of binary and digits
Thus, in the binary number 11011
there are five bits A bitis the
basic unit of iInformation used in a
microprocessor Bits are handled
by the microprocessor in groups
of eight and this group is called a
byte. it is the smallest piece of
data with which the
microprocessar can work Space
{or data s allocated in the
registers within the
microprocessor in 8 bil byles In
othar words, each register has 8
spaces in which data can be

As we siated above, a
microprocessor is instructed what
10 do by programming a
sequence of instructions in the
binary code which the machine
can directly interprer. In the next
tew examples we shall describe
do not be confused by the fact
that you do not understand how
the binary code is equal 1o whal is
givan in the explanation column
All that will become clear 10 you
whegn we study the instruction
sels in a later chapter For now.
we are only concerned with binary
code, how it is.written and the
other, simpler languages of hex
{hexadecimal) and assemblar. As
for the Program Steps. these too
will be further explained in a later
chapter. but for now all you need
remiember is that each 8 bits of
data' require one program slep
For example, il we were 1o write a
grogram in binary, the first few
steps would look like this

11011 stored The bits in a byte are P At A,
and add the values where there is jdentilied by numbering them S!e; Code "
a1 according o their position, Number
inother words 16 + 8 + 2 + 1 (power &1 2) from 016 7, from

=27 least significant bit (LSB) to most 20 01100000 Load a value

significant bit (MSB). thus, ————— — inloyfegister

Binary Decimal 01 00111000 B.the value
AR R D L s 's 38
6 8 4 2 1 i 02 0110 0001 Load a value
00000 0 Lo | L1 } ——————— into register
00001 1 03 0000 1100 1, the value
g g g : ? g 7 6 5 4)8 2 1 0 is 0C
00100 4 Lh j=B

00101 5

00110 6 By breaking the group-of 8 bits of

0011 7 1 byta into two halves, we have

g ; g g ? g what is called in computer

6101 0 10 lerminoiegy 2 nibbles each

containing 4 bits

HAPTER 2

-
-

Hexadecimal Language

As you can see, this type of
programming Is laborious and,
with all those ones and zeros.
subject 1o error if 2 |large number
ol steps are written So the
hexadecimal language was
developed 1115 a more sfticient
way to representany group of 4
bits of machine language code in
a shorthand format Hexadecimal
i not 2 cade. meraly a means of
replacing 4 consecutive bits by a
single characler As we
mentioned betore, the radix of
hexadecimal is 16 In hex notation,
the first 10 values are
reprasented by the digits 0- 9
and the |ast six valugs by the
letters A - F Each number or
[etter represents a 4-bit binary
number The table below shows
the corresponding values of the
decimal. hex, and binary number
systems

Binary Decimal Hexadecimal
0000 (0] 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 B 6
o1 7 T
1000 8 8
1001 9 9
1010 10 A
1011 1 B
1100 12 C
1o 13 D
1110 14 E
ARRE! 15 F
10

Our program, written in/hex. now
looks like this

Program Hex Explanation

Step Caode

Number

Lt 60 Loadavalue
into register @,

21 38 the value is 38

a2 &1 Load s value

_— into register 1,

23 pc the valueis AC

(The tac! that the instruction
Load avalue' is equal to the
number 6 will be explained later)

Though you are entering your
program in hex, the machine stil
reads only binary numbers, thus
hex is the programmer’s
shorthand not the
microprocessor’s, However, one
fimitation which you may have
noticed in binary and hex
language, is that it is not
self-documenting. In other words
it doas not give any indication of
1He operation being performed
We have had 10 supply an
explanation column in order to
know what is happening
Assembly Language

Hence. assembly |language Is
used 10 overcome the
disadvantagas of hex and binary
fanguage by allowing the use of
alphanumeric symbaols to
represent machine operation
codes, branch addresses, and
other operands, (You will
remamber that an operand |s the
data which is enterad into the
micropirocessor and which is
attected manipulated, and
operated ufpion). In assembly
language our original program

|looks as lollows (we will continue.
at this point_ 10 supply an
explanation column. Since you are
not yet familiar with the assembly
language)

Program Assembly Explanation

Step Code

Number

o LDV@38 LoaD a Value
inregister @
and the value

ST . . =S

02 LDV 10C LosD a Value
inregister 1
and the value
i5 8C

Notice 1hat the slep number goes
from @9 10 02 Where are 01 and
937 Remember, gach step
contains only B bits or 1 byte
Assembly language uses 2 bytes
That is, LDV@. represents one
byte (68 in hex'and 0110 0000 in
binary) and 38 represents the
segond byte (38 in hex and

pOVY 1000 in binary). Though
only steps &0 and D2 are shown
when writing your program, the
machine (since it reads only in
binary) advances one step each
time a byte is completed
However it Is important 10
remember. if you write your
program in assembly language, 1o
allow enough steps for each
instruction. How 10 do this will be
explained |ater

Binary Arithmetic

Now that we have discussed
binary and are tamiliar with the
simpler methods of programming
(hex and assembler languages).
we will discuss tha various
arithmetic operations which can
be performed In a
miicroprocessor and how 10 write
them in hinary, since this is the

\

VIDIECPAC 9

language which the machine
undersiands. In the next chapter
we will discuss entaring this type
of data into the microprocessor
and study what goes on within the
microprocessor. But for now, we
will discuss binary arithmetic

Converting Decimal Numbers to
Binary and Vice Versa

To begin, we must know how to
convert a decimal number o a
binary number You will
remember that the radix of binary
Is 2, thus we repeatedly divide the
decimal number by 2, each
answer we gel, we again divide it
by 2 The remainder at any step of
the division can only be 0 or 1
These remainders become the
bits af the binary equivalent. For
example, let's change the decimal
number 25 (o binary

25 - 2 = 12 remainder 1 = 20
12 = 2 = &noremainder0 = 27
6 — 2 = 3 noremainder 0 = 2?
3 - 2 = 1remainder 1 =29

1 = 2= Oremainder 1 = 24

Note that we began with the least
significant digit, therefore, to
write our binary equivalent of 25
we rmust begin with the most
significant digit | ie the left-most
digit, remember our diagram of
the MSB and LS8B) Our binary
equivalent becomes 11001 If you
take the decimal equivalents 16 8
4 2 1 and under them place your
binary number for25 -1 1001 -
and add the decimal equivalents
where you have binary ones, your
resultis 16 +.8 + 1 = 25 The

decimal equivalent of 11001 is
thus 26

The obvious method for
converting binary numbers to
decimal wauld be 1o do as we
have done above, or, if you don't
remember the decimal
eguivalents, tb setect the one-bits
in‘the binary nurnber and convert
each to a decimal and then add
the results together For example

26p8pe 1 20

=11001
=S1X2+ 1 x2 +0x22+
0Ox 2+ 1x20

Binary Addition
Now that we know how 1o change
degimal numbers ta binary and
vice versa, let's look at the
addition of binary numbers, Binary
arithmetic s easier to perfarm
than decimal, but you have 1o
learn somea new rules since there
are only two digits with which 1o
wark in biriary - - ones and zeros
When adding binary numbers
remember the following
combinations
0 0 1 1
A0 +1 +0Q 1
0 1 1 5]
with a
of 1
A carry-1Dbil Is produced from the
addition of 1 + 1 Binary carries
ara treated in the same way as
decimal carries; thaey are carried
over to the left. For example

Decimal Binary
15 mmm

+ 7 + 0111
22 10110

Note that'a conditionof 1 + 1 =
0 gives a carry of 1. The next
conditionds 1 + 1 + 1.which can
only equal 1 withia carry of 1

Binary Subtraction

Since the microprocessor uses
the twos complement method of
sublraction, we shall discuss and
explain it to you, However before
wa begin. let's review the decimal
system’'s complement method. so
that the twos complement of the
binary system might be easier to
understand

The nines (9s) complement of a
decimal number is that value
which is obtained by finding the
ditference between each of its
digits and 9 Decimal subtraction
using complements is performed
by following two rules

1. Add the complement of the
subtrahend 1o the minuend

2. Add the carry 1o the |east
significant digit. This carry is
known as the end-around carry
For example

Normal Decimal Subtraction
231 minuend

— 056 subtrahend
175 difterence

1

FIAPTER 2

.
-

Nines Complement Decimal
Subtraction

231 minueand

058 subtrahend

Subtract the subirahend from the
95 complement
999
— 058
943
Apply Rule 1
Add the complement of the
subtrahend 1o the minuend.
231
4 943
174

Apply Rule 2

Add the carry to the lzast
significant digit

Sum Is 1174

and -around carry

174
+ 1 /(end around carry)

175
THe subtrahend must always be
the smaller of the two numbers If
it is not, invert the problem and
change the sign of the result.

As you can see. in the decimal
rumber system. it is awkward ta
use the complement method,
Howaver, mIicroprocessars make
complementing simplg, since it
uses 8 bil registers (remermnber,
sach register has 8 spaces tor
storing data) to contain many
operands, and each register is
filted with zeros until a bit of data
is entered. Thus. all numbers are
expressed In 8 bits regardless of
the value (e, the binary number
1010 would reside in the register
as 0000 1010)

By using this B bit number format,
it is easy 10 obtain the twos (2s)
complement Just remember the
following rules

1. All ones in the sublratiend are
changed to zeros and all zeros
are changed 1o ones

2 A one is then added to the
least significan! bit of the new
subtrahend

3 Add the twos complement of
the subtrahend to the minuend
and ignare the carry bit, if there is
one

Twos Complement Binary
Subtraction

0000 1010 minuend
— 0000'0101 subtrahend

Apply Rule 1

All ones in the subtrahend are
chianged to zeros and ail zeros o
ones

0000 0101 becomes 1111 1010

Apply Aule 2!
Add a one to the least significant
bit of the new subtrahend

1111 1010

e
1111 1011

Apply Rule 3
Add the twos complament of the
subtrahend to the minuend and
ignore the carry bit, if there is
one.

0000 1010
+ 11111011

becomes

2000 1910
+ 1111 1011

0000 0101
{If you need help in adding binary
numbers. refer to the chart in the
section BINARY ADDITION.
Aemember, when you add 1 + 1
in binary. it equals 0 with a carry

ol 1. Also, the last operation was
toadd 1 + 1; we write the 0. but
the carry is lost. We dori't need it,
so we ignore it, since there is no
extra space In the register in
which to putit)

Binary Multiplication
Multiplication in binary is & simple
process. There are only two rulas
to remember:
1. The product of 1 X 1 =1
2. All other products = 0.
o} 1 0 1
x0 x0 x1 X1
0 ¢} 0 1
For example
Decimal Binary
7 111 multiplicand
x5 %101 multiplier
35 111 partial product
000 partial product
111__ parnal product
100011 product

{Don't torget, when adding your
partial products, that 1 + 1 = 0
with a carry of 1. Refer 10 the
chart in the section BINARY
ADDITION

As in decimal multiplication,
binary multiplication involves a
series of shifts and addition of the
partial praducts. The partial
products are equal to the
multiplicand ot 100, Every 1 - bit
in the multiplier givas a partial
product equal 1o the multiplicand
shifted left the corresponding
number af places. Every 0'in the
multiplier products a partial
product of 0. Each partial product
is shifted lef1 one position from
the preceding partial product, the
same as in decimal arithmetic. In
some microprocessors, this
shifting to the left has been
programmed on the ROM and the

mICroprocessor shifts
automatically However, in the
Videopac Computer, multiplication
is done by a series of additions

For example. 7 < 310 the
Videopac Computer really means
THT+7

7 000011 = 7
x3 + 00000111 = 7
21 00001110 = 14
+ 00000111 = 7
00010101 = 21

To multiply 7 % 3. the Videapac
Computer adds 7 three times
This may seem gumbersome to
you, bul the compuler operates
so quickly - it ‘crunches’
numbers in its ALU so fast that it
takes no time &t all to reach a
solution. However. when writing a
multiplication problem, you will
need to program these addition
steps Into the microprocessar,
How to do that will be coverad
under the instruction sels ina
later chapter

Binary Division

Binary division is similar to
dacimal long division. Yet it is
simpler for there are only two
rules to remember

0-1=0 1=-1=1
Divisionby 0 (1 = OorQ0 — Q) Is
meaningless.

Before we give you an example,
remember the following Like
decimal divison, binary division
must first be appréached by
deciding if the divisor is larger or
smaller than the first bit In the
dividend furthes! 1o the left. If it is
larger, then you must consider
the next bit aiso, and so on until
you find a bit in the dividend
which 15 larger than the divisor

VIDIECPAC 9

After you have found the bits in
the dividend into which the divisor
will go, you proceed just asin
decimal division. multiplying and
subtracting (using the twos
complement) with right shifts
Let’s loak at the following
example in detail

Decimal Binary
3
3l —oonTim07 -
=9 divisor dividend
a

First, we must take the divisor,
0011 {3), and the first bit of the
dividend, 1. Since this first bit of
the dividend Is regarded as 0001
its value is 1 and 3 cannot be
divided into 1. So we take the first
two bits of the dividend. 10
Again, regarded as the first two
bits of data (0010], their value i1s
only 2 and 3 canno! be divided
into 2 S50 we take (he firsl three
bits of data, 100. Their value is
0100 (4), and we can divide 0011
(3) into 100 (4). one time Thus. a
1is placed gbove the second 0 in
the dividend

1 = guotient
divisor — 001111001 — dividend
We then multiply as in decimal
devision (refer to your
multiplication chart on page 12)

1 —quotient
divisor — 0011 1 1001 —dividend
—011_ — partial
dividend
Now we must subtract the partal
dividend from the dividend using
the twos complement So lef's
apply Rule 1 for the 1was
complement All ones in the

subtrahend (partial diwdend) are
changed to zeros and all the
zeros to'ones

1
@011 | 1001
— 011 becomes 100

Apply Rule 2 for the twos
complemant - Add a ons 1o the
least significant bit of the new
subtrahend (partial dividend):

1
ao11 [F001
— 011
becomes 100
+ 1 1
101 0011 | 1001
becomes + 101

Apply Rule 3. Add the twos
complement of the subtrahend
[partial dividend) to the minuend
{dividend) and ignare the carry
bit if there is one (Refer to your
addition table in the section
‘Binary Addition".)

1
0011 | 1001
+ 101
carry Is dropped - - (1) 001

HAPTER2 .

-
-

Just as in decimal division, you
now bring the next bit of data

down from the dividend to the
partial dividend

1 1
0011 1 1001 becomes 0011 | 1001
+ 101 + 101
001 001

You can see that we now have a
divisor of 3 (0011) and a partial
dividend of 3 (0011)- Thus, 3 — 3
= 1, 0r 0011 = 0011 = 1. We
riow have in our example

11
0011 [1607
+ 101
0011
0011
0000
And our answer is 0011 or 3

As in multiplication, the shifting
operation (to the right in division)
is often programmed in the ROM
of the microprocessor However,
in the Videopac Gomputer,
division is completed by a series
of subtractions. For example

2
alg
=8

o
To the Videopac Computer, this
problem really means ‘How many
limes can 4 be subtractad from
87

08 = 00001000 - minkena
04 = D000 0100 - subtrahend

Remember in sublraction, you
find the twos complemant of the
subtranend!

0000 0100 becomes 1111 1011
and add one to the least
significant bit:

11111011

- ¥

11711 1100

Then you add the twos
complement of the subtrahend to
the minuend:

08 = 0000 1000
—04 = 1111 1100

carry
is dropped - (1) 0000 0100

Your answer is stlll 4, so we must
again use the twos complemeant
of —04, for example:

0000 1000
+ 1111 1100
(1) G000 0100
+ 1111 1100
(1) 000D 00GO

We parformed the subtraction
operation twice with no
remainder, thus 8 = 4 = 2

Again, as in multiplication, when
we wrile a division problem we
must program these subtraction
steps into the microprocessor
How to do this will be covered
under the instruction sets in a
later chaptar.

It may be helpful to remember
that shift operations are used to
multiply or divide binary numbers
by powers of 2 (not multiples of
2). A left shift of one position
multiplies by 2; a left shift of two
bit positions multiples by 4, a left
shift of three bit positions
multiplies by B; and so on
Simifarly, in binary division, a right

shift of one position divides by 2
(l'e., multiplies by 1/2, or §).a
right shift of two bit positions
divides by 4 (i.e.. multiplies by 1/4,
or 25); a right shift of three bit
positions divides by 8 (ie,,
multiplies by 1/8, or 125), and so
on. For your reference. a table
containing the powers of two is
located in the Appendix

By now you may be frustrated and
a bit discouraged by all these
detalls, and you are probably
wondering if you will ever get to
punch the keys and write your
own program. There is, however,
a lot 1o learn and the more
background information you
acquire, the easier and more
quickly you will understand the
Instruction sets and how they are
used

In the next chapter, we will review
the basic compongnts of the
mictroprocessar and how they
relate to the Videopac Computer,
talk about the keycodes, and
review the registers - - their
operation, the data they contain,
and the number of registers in
the Videopac Computer

www.videopac.org
the worlds best videopac website

This page is intentionaly blank

.

VIDIECIPAC 9

R3

CHAPTI

The Videopac Computer

In Chapter 1. we covarad the
seéven basic companents of a
microprocessor Before we begin
the study of the instruction sets,
ler’s review these components in
relation to the Videopac
Computer

The Input/Qutput devices for the
Videopac Computer are the-
keyboard (as shown in Figure 11)
and your lelevision screen
respectively. The keyboard has 48
keys which have been previously
encoded, each with an 8-bit code
The keys, with their hexcode {the
code you use fo enter the valua)

18

and their decimal equivalents, are
shown in Figure 12. Each key has
a ditferent represantatian (library
value) 1o the microprocessor and
this represeniation [either
decimal or key value) is
determined by the instruction
‘sets programmed (ie. depending
on the instruction set
programmed before and after, a
10" enitered may be an ‘H' or the
decimal number ‘28'; more on
1his later)

You will remembar that the
Arithmelic Loegic Unit (ALU), aiso

known as the ‘number cruncher’
performs all arithmetic and
reasoning operations 1t is in the
ALU that operands from ditferent
registers are manipulated to
obtain a result The Accumulator
is the small memory device which
-stores data and/or instructions for
the ALU It can receive data from
the keyboard or from a register
within the microprocessor

We kriow that bulk storage is
needed within the
micropracessor for staring
Instruction sels, constants, and

Keycodes, Hex Codes, and Decimal Equivalents

Kay Hexcode Decimal
] o0 00
i o1 01
2 02 02
3 03 03
4 04 04
5 05 05
6 06 06
7 o7 o7
8 08 08
9 o] 09
A 20 3z
B 25 a7
{5} 23 35
D 1A 26
E 12 18
F 1B 27
G 1c 28
H 1D 29
I 16 22
J 1E 30
K 1F 31
L 0E 14
M 26 38
N 20 45

o 1w 23
P oF 16
Q 18 24
R 13 19
S 19 25
T 14 20
u 15 21
v 24 36
W 1m 17
X 22 34
Y 2C 44
Z 21 32
Blank 0C 12
OA 10

L3 cB al
Clear 2E 46
? 0D 13
27 39

+ 10 16

E 28 40
x 29 41

== 2A 42
= 28 43

Enter 2F 47

Figure 12

VIRIEZCPAC 9

Figure 17

I+
[=]

2[3]4]|5617

=l

LS8

REGISTERS

MSE P

- LU

ARITHMETIC LOGIC UNIT

h |
B=BIT INSTRUCTION INSTRLUE
BUS REGISTER OF
b |
ADRESSES
ANDDATA
b)
l > FROGRAM COUNTER
h
DATA COUNTER
h
=1
MSB
INPUT KEYBRARD T

Figure 13

CUMULATOR

CONTROL
LINE

HAPTER 2

-
-

other data You will remember
1hal the Program Memory
contains the addresses {location
in register] of the instruction sets
and sends this information to the
Instruction Register for decoding
or to find an address in Data
Memory. Program Memory is
activated by the Program Counter
which locates and identifies each
mstruction set which has been
enterad, It begins at Program
Step # when the Reset button is
pushed and advances one step at
a time, as the program s used. so
that the instructions can be
executed in the proper sequence

The Data Memory comains the
addresses of data stored in
Memory and sends this
information 1o the Accurnulator,
or, depending upon the program,
o another register. The Data
Counter locates and identifies
datain Memory and points to the
address where that data is
located, either in Program or Data
Memaory

To keep order within the
microprocessor, the Control
Logic unit is connected to all
other units via the Bus Lines
{remember, Address Bus, Data
Bus, Control Bus). The Contral
Logic directs the tunctioning of
the other units and controls the
flow of data belwesn them The
centre of the Control Logic is the
Instruction Register. for it is here
that the binary bits which
COmpose an instruction set, sant
from Memary, are decoded and
the necessary signals 1o
implement the instruction are
ganerated

Figure 13 shows the basic
18

companents of the Videopac
Computer, along with its

ragisters You will nota that the
Videopac Computer has 16
registers avallable for data input -
210 9and A to F Remember that
‘=ach register can contain 8 bits of
data or 1 byte The data stored in
Ihe register can be an address
(location) or it can be numeric
(symbadlic) data. Also. remember
that the 8 bits of data are divided
in hatf within the register. The first
4 bits are the Most Significant
Bits and the last four are the
Least Significant Bits

1Byte
AL

REGISTER

Il!]lll
7 6 5 418 2 1 @

i Gat—

Also, note from Figure 13, that the
Videopac Computer contains §9
program steps, which means that
we can write a pragram with up to
99 steps. That is a lot of steps 1o
program. as you will see when we
write and Implament several
programs

We have also discussed binary
hex, and assembler languages.
Like all microprocessors, the
Videdpac Computer operates by
tollowing a sequence of
instruction sefs Although the
Videopac Computer reads these
instruction sets in hinary, you may
enter them in eithér Hex or
assembler language These
instruction sets, which tell the
microprocassor what to do, and

how to enter them will be fully
explained in the next chapter

Before we begin studying the
Instruction sets, let's foliow the
execulion of a program as it
passes through the components
af the computer which we have
|ust reviewed Firsl, remember
thal before a program can be
execyted. it must be entered and
stored in Memory. Let's assume |
that this has been done with the
program that will add two
numbers, let's choose seven and
ten

Fig 14 shows a diagram which
represents the important
regisiars of fhe Videopac
Computer and you will note that
the program to add seven and ten
is stored in Memory

First, note that each register has
room for B bits of data, or 1 byte.
Also note that the Program
Counter is set at 0000 0000,
since the program is just starting
execution. Remember that it is
the Program Counter which
increments by one each time an
instruction is performed, so that
the instructions are executed in
the proper sequence.

The first step the Videopac
Computer takes is to fetch the
first instruction from Memory. You
will note that the Program
Counter contains the exact
address in Memery of the first
instruction. This address passes
from the Program Counter o the
Address Register (Refer to
Figure 15)

Once the addn_!ss Is fransfered
from the Program Counter 1o the
Address Register. the Program

VIDIZSPAC 9

v R

1]
EEEEEERD)

ORIy

- -
o —— -

-
I e e e e o -
P
:.f ckwny | i
T
= b
w =
Figure 16 Figure 17
-----—-‘ RS R - .

| et iant
An

ACCLARLATDN

1

i .

)
1

1

CCARL AR

ERIEERIET oo

ROl
vy

"
1
]
1
1
i
1

BRI Pt 311 0)T) G RIS i
T e s e 2 L I e e s -
-
e [er—
) =
i COMTENTE
- - =
e "
b = <
=5 — 5 1
— e
Figure 18 Figure 19

R2

HAPTI

-~
-

Caunter isincremented by one,
S0 that it is ready for the rext
Iinstruction (the address in the
Address Register remains

0000 0000). (See Figura 16)

The contents of the Addrass
Register are sent 1o the identical
address in Memory via the
Address Bus, (See Figure 17)

The contents of Memory at
address 0000 OP0O, which are
LDA or Load Accumulator; are
now sent 1a the Data Register via
the Data Bus. The cornitents are
transtered in binary. i.e

1000 0118, which you will
remember is the only language
the Videopac Compules can read
(See Figurs 1B)

Now. the contents of the Data
Register must be decuded, so
that the Videopac Computer can
perform the Instriction
requesied. which is Load the
Accumulator. Therefore, the
contents of the Data Register are
seni 1o the Instruction Register,
decoded, and the proper signals
are sent to the Control Unit.
which produces the necessary
pulses to carry out the
instruption, (See Figure 19)

Now that the first instruction has
been fetched and decoded, the
next step for the Videopac
Computer is 10 load the
accumulator with the next byte of
infarmation contained in Mamary.
We return to the Program
Counter_ its contents are

0000 0001 This address is
transtered 1o the Address
Register (See Figure 20)

In Figure 21 you will nate that the
Program Counter has

20

incremeanted by ore and 1he
address in the Address Register
is being bussed to the identical
address in Memory via the
Address Bus

In Memory the address

(0000 0001) I5 located and its
coments (77 or in binary

0000 0111} are sent 1o the Data
Register via the Data Bus: Since
the instruction called 1o ‘Load the
Accumulator’, the contants of the
Data Register (7 or 0000 0111)
‘are immediately loaded into the
Accumulator. (See Figure 22)
Next, the Videopac Computer
must again felch another
instruction, which happens to be
‘Add’. The Videopac Computer
travels through the same steps
we Have outlined so far: (Refer 10
Figure 23)

1 The contems of the Program
Counter (000D 0010) are
transfered 10 the Address
Register

2 The Program Counter
increments by one (0000 0011),
(See Figure 24)

3 The address travels to Memory
via the Address Bus.

4 The binary contents

(1000 1011 or 'Add') al Memory
address 0000 0010 are
transfered to the Data Ragister.
5, The conients ol the Data
Reglister are decoded by the
Instruction Register which talls
the Contral Unit what operation is
1o be imglemented,

The execution of the Add
instruclion now takes place
(Refer 1o Figure 24)

1. The conmtents of the Program
Counter (0000 0011) are
transiered to the Address
Register

2 The Program Counter
increments by one (0000 0100).
(See Figure 25|

3 The address travels 10 Memary
along the Address Bus

4. The binary cantents

10000 1010 or 10') at Memory
address 0000 0011 are
traristered to the Data Register
via the Data:Bus

5, The binary contents of the Data
Register are immediately seni 1o
the ALU (Arithmetic Logic Unit),
and the binary contents of the
Accumulator (which were 7° or
0000 0111} are wrapstered 1o the
other input of the ALY

& The ALU adds the two
aperands and the sum. "17° or
0001 0001, is loaded inlo the
Accumulator

Since our program is now at an
end, we must instruct the
Videopac Computer 1o stop
execution. Therefore, we fetch
the “Halt’ instruction from
Memory The same procecdure is
performed as before (Refer 10
Figure 25) The sum is in the
Accumutatar, the "Halt” instruction
is being read by the Gontrol Unit
and all execution will be halted.
Instead of ‘Halt | we could have
programmed an sutput Instruction
which would have allowed the
sum. 17. 10 be displayed an the
screan All steps would have been
the same with the Contral Unit
instructing the Videopac
Computer 1o display the contents
of the Accumulator on the screen
You will see how this can be done
in the next chapter

Wwell, now is the time far which
you have been waiting. We are
ready to study the instruction sets
and begin to punch the keys of
our Videopac Computer

VIRDIESPAC Y

www.videopac.org
the worlds best videopac website

- -

3
DTy o

"
=
(B 1
1 1
I 1
i 1
1 O 1
1 1
¥ Oy o 1
[L L

P

—r
[0}

Figure 22

- 7?—-“----——-—-—--—-1

=

Figure 24 Figure 25

HER

HAPTI

G

The Videopac Computer
Instruction Sets

22

The architeciure of the Videapac
Computer was described in the
previous chapter You should now
be familiar with the computer and
its basic operation In order 10 be
abie 10 write your Own program
you must now study the
Instruction sets. You will
remember thal these instruction
sets are the codes which tell the
Videopac Computer what to do

|1 e, load a value into a register,
nutput a value from a register,
input 1o the accumulator, etc] In
other words. the instruction sets
move data from one register 1o
another and parform operations
on this data, Semething which
you should always keep in mind
and which will become obivious as
you begin to write your own
programs is the fact that the
Computer can do nothing bult
what you tell it 1o do. Although it
has been preprogrammed with
certain dala (constants. stored
symbols, etc) which are storedin
ROM, the Videopac Compulter
cannol execute a program until
you have eritered that program
siep by step, using the instruction
sets, Every step must be written
by you and entered into the
Videopac Computer before it can
funiction Thus, the instruction
sets - whal they are, when 1o use
them, and how to enter them -
will be explained in this chapter

Basically, the instruclion set does
twa things: First. it tells you the
operation that is 1o be pearformed.
and secondly. it tells you/the
destination and the value 1o be
placed in that destination For
example, the instruction LOV.D.18
means ‘Load a value (operation)
into register @* (destination) and
he value is 18 We have used
LDV.0.18 previously and we know
il s assembler language This
language is also called mnemonic
(pronounced ‘new monic’) and is
valuable 10 the programmer since
he can tell at a glance the type of
operation being performed and
the register and value being used
* Zero |s always written @ to
distinguish it from the letter 10’

As we discuss each instruction
set, we will give the mnemaonic
symbol for each set. Also
included will be the operational
code. which is the hexadecimal
code for the instruction set. This
is tha code you will use most
often, since it is easier and less
lgngthy than-assembler
(mnemanic) to write. Each
deseription of an instruction set
will also Include an oparation
symbal which explicitly describes
the operation being completed by
the instruction set For example:

Instruction Input to

Set Register
Mnemonic INP.R
Code

Operational 7R
Code

Operation IP—R
Symbol

VIDIEZCPAC 9

You will remember from Chapter
2 when we discussed bits and
bytes. thal each program step can
only held one byte or 8 bits of
data. Each instruction sel varies,
some are 1-byte and some are
2-byte Instructions. For examgle.
the instruction ‘Input to Register’
is a ong-byte instruction. lts Op
Code is 7R (R stands tor register
of your cholce) However ‘Load &
Value 1s 8 two-byfe Instruction
Its Op Code is 6ANN (R stands
tor the register of your cholce
and NN stands for the value you
wish to place in the register), We
will note the number of bytes in
each instruction set

At the end of this chapter we
have listed all the instruction sets.
their Mnemonic and Op Codes,
the Operation Symbol number of
bytes and a remark column After
slydying the instruction sats in'
detail. this sheet will be a good
reference for you when' writing a
program

Alsa. before we begin, you should
know that the Videopac Computer
has been programmed with a
group of symbols stored in ROM
(Read Only Memaory) These
symbols are shown in Fig. 32
along with their hex values Also
preprogrammed in the Videopac
Computer is the special use of
Register B

Register B has been programmed
1o position symbols or characters
on the television screen It has
been given eleven pasitions, from
B0 (turthest left on the screen) to
BA [turthes! position 1o the right)
The eleven positions are shown in
Fig 26

The hex numbers, 80, 81, 82, etc
do not appear on the screen
They only show the relative
position soma symbol af your
choosing would have on the
scraen. Note that when register B
ou1puts to the screen, it
automatically increments by ona
In other words. if we output &
symbol in position:82. the symbol
will appear in the 82 position and
the register B will then advance 1o
@3, [t the register outputs at A it
altomatically resets to 80 on the
naxt step

Before we describe each
instruction set, let's discuss the
following three instruction sets in
detail

1 Load a Value into a Register

2 Output fram a Register

3 Input 1o Accumulator

After we have studlied these, we
will step through a program using
them and stored symbols. Please
note that Operational Code is
abbreviatad Op Code

The first instruction Is ‘Load a
Value into a Register’.

The codes are:
Mnamonic LDV.R.NN
Op Code BANN
Operation R = NN

Remembar that the vigeopac
Computer has two languages in
which i1 can be programmed -
assembler and hex However
when you program in assembler
the Videopac Computer
automatically changes the data to
hex. (ie. if you were 1o enter in
assembler language LDV B 05,
when you reviewed il on the

screen it would be in hex, BBOS,
which Is a two-byte instruction)
The Mnemonic Cade would be
used 10 program in assembler
language, and the Op Code would
be used to program in hex. Let's
Izok at aach in detall

The mnemonic LDV R.NN means

LDV = Load a value - This tells
the microprocessor which
action 1o perform

A = Register = The Videopac
Computer has 16 registers
- 09 and A-F You may
use ary of them_ however,
ramember that register B
s used for positioning 8
symbol on the screen

NN = Some value, like D, 03
13.75. etc

For example
LDV HNN (Assembler or
Mnemanic Code)

LDV @18 - Means load a valua
imo ragister 0 and the vajue 15 18
I.DV.B 85 - Means load a value
into register B anid the value is 05

23

P —

HEE

CHAPTI

Let's lodk now at the Op Code

BRNN

& = Loadavalue - Talls
microprocessor whil
action 10 perform

R = A register you choose 8-9
or A-F

NN = Some value

For example.

BRNN (Hex Code)

6818
Load avalue
Into Register @
The value is 18

6805
Load a value
: Into Register B
The value is 85
This instruction set is used when

you wish 1o program into a
specific register a specitic value

You will recall that we mentioned
instruction s&ts may be 1or 2
byles in length The instruction
LDV 2 18 Is a 2-byte instruction
Since LDV 18, once entered info
the machine. becomes 6818, let's
Iook at that instruction i relation
to bits and byles

24

Remamber a byte is made ol §
bits 4 are the the most significant
bits (or migh order bits) and 4 are
the least significant bits (or low
order bits). Six [6) would be the
high order bit and & would be the
low order bit, 1agéther they would
be one byte The sama is true of
18,'thus making 6818 (LDV.0.18) a
two-byle instruction We must
then allow two program steps for
this instruchon

1Byte

e T
Frogra [T [1I0[o[o[o[O]
\eR F654)32 10
High'Order | Low Order

Bit Bit

fsB) (LS8l

1Byte

[1 8
Program EE“““EEE
Step@1 I 6 5 443 2 1 9)

High Order Low Order

Bit Bit
(MSE} LSB)

Since the Videopac Computer has
only 99 progam steps, when
writing'a progaram, we must keep
a record of how many sieps have
been used Thus, we must know
many steps (bytes) are used for
each instruction set.

The next instruction 1o be studied
is 'Output from a Register’ In the
first instruction set. we loaded a
value into a'ragister, now wa
must output that value 10 the
screen. Remember the Videopac
Computer does only what it is
told. so we mustinsiruct it each
step of the way.

The codes for the instruction
*Output from a Register’ are as
tollows:

Mnemonic OutR

OpCode CR

Operation R — Out

Referring back to our exarmple
LDVQ18 and LDVIB 05 {in Op
code, 6018 and 6805,
respectively), we row wish to
output from register @ our value
18 in position 85 (remember
register B is our position register)
an the 1elevision screen After
avary input instruction {unless
you are using it as a pause), you
mus! write an output instruction
if you wish 1o display the contenfs
on 1he screen,

Using our example. LDV @ 18, our
output instruction becomes

Out @'in'mnemonic or CBn
aperational code: for LDV B DS
our output instruction becomes
QOut'B or CB. In other words: the
symbol designated by hex 18 (the
letter 'Q', refer 1o Figure 12)
would be displayed on the
television screen In pasition 85

For your infarmation. the
ragisters in the Videspac
Computer would look as in Fig
27

T ——

VIDECPAC 9

Since this first progam will bea
short. simple one. we wani 1o
place a pause operation as the
last step. so thal the
microprocessar does not need to
run through all 99 steps 1o
execuls the program. In arder 1o
create this pause, we can use
either instruction s&1 “Input 1o
Accumutator” or Input to
Register Either instruction set
will allow the microprocessor to
pause at the last step ol our
program When this occurs, a
question mark appears in the
upper left corner of the screen
and program exacution is halted
until a key is depressed When a
key is depressed. its library value
is stored in the accumulator and
the gquestion mark disappears.

Let's choose the instruction Input
to Accumulator 8s our pause
operation The Mnemaonic is INA
and the Op Cade is 84

Now let's write a short program
using the three instruction sets
we have just studied"

1 Load a Value into a Reagister

2 Output from a Register

3. Input to Accumulator

and a symbol from the symbol
sheet of Fig. 32 Let's select
symbol 3A g and we will step
through the program. The first
step Is 1o insert your Videopac in
the machine, and press ‘RESET".
This brings the word 'COMMAND'
to the screen and you are ready
to begin. Since we are going to
be programming, we press ‘P’ for
Pragram and ‘M’ for Hex input.
since we are going 10 enter our
program in hex language. We then
press ‘I for Input and the
program step number &) appears

= e

Figure 26 .

L |
0l0[0[e] ~HEX 18=LETTER Q

Q
&
=]

o]
1
2
3
[
5
3
T
8
9
A
&)
C

|

Figure 27

25

HEE

CHAPTI

You are now ready 1o enter the {r] Pro-
program Feterring to the Step gram
program below, you are now al Step

Do you understand what has
happenesd? Remember the
instruction, 'Load a Value into a

Instruction Step number 4, please
procead from lherg

E . Explanati Pro-
Step gram
Step

ARLET
1 Press (&) Command
2 Press (_P_)Program
3 Press (M | Hex Input

4 Press (_1_] Input]
Program
Step 00
appears on
screen

5 Press [_6)Load a Value
inton ..

6 Press (O | Register 0
7 Press (o) Enter

8 Press (3 JValue loaded @1
into Reygister
Bis...

9Press (A |3A
10 Press (=] Enter

11 Press 6 !Load a value B2
into...

12 Press Register B

26

13 Press Enter

14 Press (O) Value loaded 93
into Register
Bis..

15 Press [(© |98 (furthest
aft position
on screen)

16 Press Enter

17 Press Output 04
Hegister.

18 Press (C)9

19 Press Enter

20 Press O jlnputto.. 85
21 Press (4 | Accumulator

22 Press [™%) Enter

23 Press én: Command

24 Press [_E | Execute

If gvery instruction step was
entered correctly, your television
screan should look like Figure 28

Let's now move the figure of the
man to a different position an the
television screen. Let's pick the
furthest right position, @A
Remember, that it is Register B
contents we must change. For
the moment, step through the
program again and change step
1510 (A] Your screen should
now look like Figure 28.

Register’ (LDV.R:NN, or in Op
Code, 6RNN}? Well, Iook at your
program. You will note that'at
nstruction step number 11, we
pressed 6 and, then at instruction
step number 12, we pressed B.
then pressed Enter At that paint,
we had instructed the
microproceessor to load a value
inte register B(BB). In insttuction
steps 14 and 15, initially. we had
loaded the value 90 into the
microprocessor. |1 1hen knew that
whatever was displayed on the
sereen (e, the man figure which
we |naded into register @ in
instruction steps 5 to'8) would be
displayed at the position 29, which
i the furthest left position. We
then changed the value of
register B from 00 to DA, and the
position of the man changed 1o
the furthest right position

Now, since you understand what
has been done above and how 1o
change the corlents of a register
tram one value 10 anther. we will
show you a simpler way to do it
without having to re-enter the
whole program, At this point, we
have our program entered and
our man displayed at position 0A
on the screen. Follow the steps
betow and then we will discuss
what you have done

VIDIECPAC 9

Instruction Explanation
Step

T
1 Press [(A") Command
2 Press [P _) Program
3 Press (M) Hex Input
4 Press (& _|Roll

5 Press [U_) Program counter
will go from step
23 to @1 and
display on the
screen 3A

& Press [_U) Program counter
at 02 with the
velue 68 on the
screen

7 Press [U) Program counter
at 03 with value
@A on screen.
This is the
program step we
wish to change
from BA to 85

B Press Program
9 Press (M| Hex Input

10 Press .|) Input - That is.
inputl new data

11 Press [0 Zero (8)
12 Press (5) Five (5)
13 Press (™) Enter

NERET
14 Press (a) Command
15 Press [€) Executs

Your screen should now look like
Figure 30

Figure 28

Ly

Figure 29

X

Figure 30

27

124

HAPTI

(

The microprocessor is equipped
with'a Roll operation, so that once
a program is entered, if the
programmer decides 10 change a
pragram siep, he may do so
withott having to re-enter the
complete program. We entered
the Raoll mede from the Hex input
mode, then pressed U’ in arder
to rall up (we could have pressed
D 1o roll'in reverse) We rolled to
ihe step we wished 1o change
(@3}, then pressed CLEAR' and all
data at that program step was
erased We then had 10 return to
the Hex Input mode. so we
pressed ‘M than |’ for input and
than anterad 85, our new data.
Nate that the program step did
not change from 83 until we had
antered B5 11 then rolled to
program step 04

28

Let's discuss three more
instruction sets and write a
program usirig them. Our
program will be to place symbols
ah the television screen in all
eleven positions, using the
following instruction sets:

1. Input to Accumulatar

2. Cutput from Accumulator

2 Branch Unconditionally

Wa have used 'Input to
‘Accumulator’ previously as a
pause operalion. We now wish 1o
use it/to input data from the
keyboard. The codes for ‘Input to
Accumulator’ are:

Mnemaonic INA

Op Code 24

Operation 1P —A

When this instruction has been
programmed, a question mark
appears in the upper left portion
of tha'scraen. Program execution
is halted until-a key has been
depressed on the keyboard.
When a key is depressed. its
library value s stored'in the
accumulator-and the question
mark disappears. In order to
dispiay the contents of the
accumulator on the television
screan, we must program the
instruction 'Output from
Accumulator’

The codes for the instruction
‘Output from Accumulator’ are

Mnemonic OTA
Op Code a8
Operation. A -~ OUT

Once programmed, this
instruction tells the
microprocessar 1o oulput to the
screen the contents of the
accumulator. This output of data
will e displayed in whatever
position ragister B is currently
set. Remeamber that register B will
autamatically advance to the next
position right when data is
displayed on the screen, and that
it Register B isin position BA
(furthest right gasition), it will
display the data and roll back 10
position B9 (furthest left position)

Since we wish 1o place a symbol
in each of the eleven positions an
the television scresn, we need 1o
instruct the micraprocessor 1o
repeat the Instructions ‘Input to
Aceumuiator and ‘Output fram
Accumulator’, ever and over
again. Thus, we use the
instruction set known as “Branch
Urniconditicnally'. This mstruction
causes the microprocessor 1o
return o a designated prograrm
step and continue from there, The
codas for 1his instruction are

Mnemonic GTO.NN
Op Code 12NN
Operation GTO — PC = NN

For example, if we wishad to
branch to a certain program siep,
we would write GTO.@0 or 1200,
which means branch to step 88

VIDIECPAC 9

Using these thres instruction
sels, let's snter the program
below and see them in action

Explanation Pro-

gram
Step

Instruction
Step

=
1Prass (A) Command
2'Press (P_) Program

3 Press (M) Hex Input
4Press [| | Input 23]

Op code lor
Input to
Accumulator
Read

keyboard

Enter

Op code for 81

Outpust from
Accumulator

5Press (0]
6Press (4

7 Press ()

8 Press @
9 Press () Output key
to screen

10 Press [] Enter

Instructi Expl 1 Pro-
Step gram
Step
18'Press [E) Exacutes
program - A
question mark
appears on
screen; the

camputer Is
awaiting input
Program is
now ready

19 Press O) The zero
symbol
appears in any
ane of the
spaces shown
in Figure 14
This is because
we did not
ipitialize
register B to
20
Keep pressing
D until you are
in the furthest
left position

11 Press @}
12 Press (77)

13 Press

Op code
for GTO

Enter
Indicates

a2

83

20Press [_1

21 Press[2)

on the screen

The 1 symbol
appears to
the right cf
the zero

The 2 symbol

rogram ste;
14 Press (0 fo bgmmh i

15 Press @ Program step
is 90
16 Press (=] Enter

17 Press @ Sets pragram
counter to 99

appears 1o the
right af the 1

22 Press [3) Etc

| i Expi Pro-

Step gram
Step

23 Press [a)

24 Press (5)

25 Prass [&
26 Press [7
27 Press (8)

* 28Press (9)

29Press [A)

Your scresn should now look like
Figure 31

Yau should have noticed two
things as you executed your
proagram 1) There are only eleven
positions on the screen; 2) Any
symbal entered after the 0A
ffurthest right position) staris in
the furthest left position and
rewrites over the old data. Gao
ahead and play with the keyboard
Tof a lime. You can type your own
messages!

-

www.videopac.org
the worlds best videopac website

L)

D1Z345S6789:%
ZLP+WERTUI

@c {110] QE

ORSDFGHJKAZ
XKCUBM.-X<=YN
ZHOISEEAL] >4 dh
LR

a0 Figure 32

VIRIECPAC Y

The Complete Instruction Sets

Add Accumulator to Register
Mnemonic ABDR

Op Cade ER
tA = R+A)

Operation

Use

To add the contents of a specified
register (R) to the contents of the
accumulator and 1o store the
result in the accumulator If the
resull is jarger than two digils,
only the lowest two digits will be
kept

Example

Accumn, = B9, Req 7 = 85—
ADD7 — Accum. = 14, Reg 7 =
05

Accum = 90, Reg. 7 = 15—
ADD.7 — Accum = 05 Reg. 7 =
15

Branch on Decimal Borrow

Mnemonic BDB NN

Op Code 10NN

Operation (Ay = 9) —PC =
NN

Use:

To instruct the microprocessor 1o
branch to the specified program
step (NN) if the high order digit of
the accumulator is a '@’

Example

Accum, = 85— BDB 99 —
Branch to step 99

Accum = B5 — BDB 89 — No
branch is taken

Branch on Decimal Carry

Mnemonic BDC.NN

Cp Code 11NN

Operation [Ay# 0) = PC =
NN

Use

To instruct the microprocessor to

branch to the specified program
step (NN) if the high order digit of
the accumulator is not a ‘@
Example

Accum. = 15— BDCS9 —
Brahch to step 99

Accum. = 85 — BDC 99 — No
branch taken

Branch if Register equals

Accumulator

Mnemonic BEQR.NN

Op Code. 3RNN

Cperation (R = A)—PC =
NN

Use:

To instruct microprocessor to
branch 1o a specified program
step (NN) if the contents of the
accumulator are equal 10 the
contents of the specitied register
(R) (See sample programs "One
Digit Multiplication’ and ‘Six Letter
Guess' for examples.)

Example

Accum. = 05, Reg B = 85 —
BEQ.B.99 — Branch 1o step 99
Accum = B9 Reg B = 85—
BEQ.B 99 — No branch taken

Branch if Register is greater than
Accumulator

Mnemonic BGT AR.NN

Op Code 4RNN

Operation (R = A)—-PC =
NN

Use:

To instruct the microprocessor to
branch 1o a specified program
step (NN) if the specified register
(R) is greater than the
accumulalor.

Example

Accumn. = 04 Reg A = 05—
BGT A 99 — Branch 1o step 99

Accum, = @5, Reg A = 04 —
BGT A 88 —= No branch taken
Accum. = @4, Heg A = D4 —
BGT AS9 — No branch taken

Branch if Register is less than
Accumulator

Mnemonic BLS RNN

Op Code 5RANN

QOperation {R<A) — PC = NN
Use

To instruct the microprocessor 1o
branch 1o a specified program,
step (NN) if the specified register
{R) is less than accumuiator

(See sample program 'One Digit
Dwvision’ for example)

Example

Accum. = 05 Reg 8 = B84 —
BLS 899 — Branch to step 99
Accum =04, Reg B = 05 —
BLS 889 — No branch taken
Accum = 05 Reg 8 = 85 —
BLS BS99 — No branch taken

Branch if Register not equal to
Accumulator

Mnemonic BNE R NN

Op Code 2RANN

Operation (R#A]| —= PC = NN
Use

To instruct microprocessar (o
branch 10 a specified program
step (NN) if accumulator is not
aqual 1o a specified register [R)
[For example, see sample
program ‘Message')

Example

Accum = #9. Heg D = 85—
BNE D.99 — Branch to step 99
Accum. =05 Reg D = @5 —

BNE.D 99 — No branch taken

31

= -

-

0
=
m
L
2
e =
L]
~
Branch If A lator equatl Sub one from A ! Example
zero Mnemenic DEC Step # 40 = GTS 90 — Branch
Mnemonic BRZ NN 10 step 90

62 H

Op Cod 13NN Opthde Step # 90 = RET — Branch 10

P & Cperation (A = A-1) step 42
Operation (A=8) — PC = NN Use * Note: You must have a ‘Return
Use To decrement the contents of the from Subroutine’ when you have a

To instruct microprocessor o
move to another program step if
conditions are satisfied. Most
often used in arithmetic
problems. (See sample program
‘One Digit Division for example)
* Post Program.

It the accumulator is zero. 8
branch to the specified program
step (NN) is taken. If the
accumulator is nol zero, no
tiranch 1akes place and the
program moves 1o the next step,
Example:

Accum. = 00 — BRZ 99 —
Branch 1o step 99

Accum = 65 — BRZ 98 — No
branch takes place

* Note: Post prograrn means
after the instruction set has been
programmed’ and axplains what is
happening on the screen and/or
In thé Videopac Computer

Set Accumulator to zero
Mnemonic CLR

Op Code [l
Operation (A = @)
Use:

To clear accumulatar and set its
contents 1o

Example. CLR (81 in Op Code) Is
programmed and the accumulalor
=0

32

accurnulator by one

Example:

Accum, = 10— program DEC —
Accum = 09

Branch unconditionally

Mnemonic GTONN

Op Code 12NN

Operation GTO — PC = NN
Use:

To instruct the microprocessor 10
branch 1o a specified program
slep (NN) (See sample program
‘Message’ for example.)
Example

GTO 98 — Branch 1o step 89
GTO. 34 — Branch to'step 34

* Go 10 subroutine

Mnemonic GTS NN

Op Code 14NN

Qperation GTS— PC = NN
Use:

To (nstruct microprocessor 10
branch to-a specified program
step (NN} which cantains an
operation which you may wish to

use several limes in one program,

This instruction set allows you 10
use the same operation several
times wittiout having to rewrite it
The next sequential step number
is saved for retdrping from the
subrouting. [See sample program
Area Prablems Using Subrodtine
and Relurn” for example)

'Go to Subroutine’

Halt Program execution
Mnemonic HLT

Op Code FF
Operation HLT = FF °
Use:

To halt execution of program in
arder to enter a different
operational mode 1o check
registers. Used for
troubleshooting. The hait
instruction is entered after your
program is entered. In other
words, you would enter your
complete program, then, using
the Roll mode, you would enter 8
halt instruction (FF) in place of an
instruction already programmed.
Atter entering the Display mode
and checking the registers for
ertors, you would return 1o the
program step containing FF, clear
it, and re-enter the program step
you had removed

Input to Accumulator
Mnemanic INA

Op Code B4

Operation Ip—A

Use

To input data from the keyboard
{symbol or numeral) into the
accumulator

Post Program

A question mark appears In the
upper left portion of the screan
and program execution is halted
until a key is depressed When

VIRIZCPAC 9

depressed, the library value of the
key is slored in the accumulator
and the question mark
disappears. Only one keyboard
depression is required. Ip — A
means ‘input from the keyboard
to the accumulator’

Example:

INA (84 in Op Code) has been
programmad, A question mark
appears on the soreen, You
depress key ‘7', an @7 Is stored in
the accumulator

INA — depress 7 — Accumulator

Add one 1o Accumulator
Mnemanic INC

Op Code a3
Operation (A=A + 1)
Use:

Ta increment the contents of the
accumulator by one.

Example
Accum. = P9 — program INC —
Accum 10

input to Register

Mnemanic INPR
Op Code 7R
Operation Ip—R
Use

To store a value from the
keyboard (symbal or numeral) in
a specified registar

Post program:

A question mark appears in the
upper left portion of the screen
and program execution is halted
until a key has been depressed
on the keybord. When depressed;
the library value of the key is
stored in the register you have
chosen and the question mark
disappears. Only one keyboard
depression is required. Ip — R

means ‘input from the keyboard
10 the register’

Exampie

INP.3'(73 in'Op Code) has been
programmed A question mark
appears on the screen. You
depress key X', register 3 stores
the hex code (22) for the key "X’
INP'B — depress key 4' —
Register B stores 84 and register
B (the positioning register) is
positioned at@84 -

Load Accumul from Regi
Mnemonic LDAR

Op Code SR

Operation R — A

Use:

To load the accumulator with the
contents of a specified register.

Example:

Accum. = 09, Aeq B = 05—
LDAB — Accum. = 05 Reg B =
05

Accum. = 34 Reg 3 = 12 —
LDA3 — Accum = 12, Reg 3 =
12

Load a value into a Register

Mnemonic LDV R NN
Op Code BRNN
Operation R = NN
Use

To load a value [NN) intoa
specified register (R)

Example:

LDOV.B.24 (6804 in Op Code) -
Register B has been sel at 04
position and any initial output will
be displayed at that position 8 =
24,

LDV.7.3A {673A in Op Code) - The
symbol represented by 3A has
been loaded into register 7.
Register 7 = 3A.

Load Accumulator from Program

step

Mnemanic MOV

Op Code 99

Operation R.—=PC—=A
Use

Te load accumulatar with the
contents (two digit valus)
cantained in the program step
specified by register C. Re — PC
—= A means ‘load the contents of
register Cinto the program +
counter, then load the data
contained at that program step
into the accumulator’

Exampler:

Step # 06 = FF, Aeg C = 06 —
MOV — Accum: = FF, Reg C =
06

Note: When using the MOV
nstruction in a program, ragister
C must remain empty. In other
words, you should not program
any value in register C.

No operation

Mnamonic ‘NOP

Op Code e
Operation NO = @@
Use

To implement a delay in execution
of the program Gan he used
when writing a program 1o utilize
several program steps, so that
when checking the program, if an
extra instruction step is needed,
several will be vacant

Post Program:

A delay is caused within the
program sxecution

Rt

HAPTI

.
-

C

Output from Accumulator
Mnemanic OTA

Op Code o8

Operation A —OUT

Use

To display data stored in the
accumulator on the television
screen

Post program

The contents of the accumulator
are displayed on the screen in
whalever position register B is
set. A — OUT means ‘outpul data
from accumulater 16 screen’
Example

OTA (BB in Op Code) is
programmed. Reterring to our
previous example (input 1o
accumulalor), the accumulator
contains 87, thus 87 is displayed
on the screen.

OTA (8B in Op Code) - &7 s
displayed in position set by
register B

Output from Register

Mnemonic OUTAH
Op Code CR
Operation R — OUT
Use

To display the contents of a
specilied register on the
television screen

Post Program:;

The library value stored in a
specified register is displayed on
the television screen in whatever
position register B is set R —
OUT means ‘the contents of a
specified register are being
displayed on the screan’

Example

OUT.3 (C3 in Op Code) has been
programmed Referring to our
example above, register 3
contains the hex code for the
letter "X’ (22), thus an ‘X' is
displayed on the screen.

OUT.8 (CB) — Referring to aur
example above, a symbol ('X') is
displayed in position 84 on the
screen.

Note: If you have & series of
output instructions, cne right
after another, you must place a
‘No Operation’ instruction after
every third output instuction, For

example

our.1

ouT2

ouT3

NOP

ocuT4

Combine two digits

Mnemonic PAKR

Op Code B8R

Qperation R, --- Ay
Ry + 1---4A

Use:

To combine two digits from two
specified registers in the
accumulator. This instruction is
used when working with numbers
Since the microprocessor reads
the numbers in hex. we must
instruct il to combine two digits in
order 1o produce and display a
base 10 number

Post Program:

Th low order bit of a specified
register (H) is loaded into the
high order bit of the accumulator
and the low order bit of the next
register (R + 1) is loaded into the
low order bil of the agcumulator

Example
Reg €& = 89, Reg. 7 = 25—
PAK 6 — Accum = 95

HL HL
*Reg B;]Accum
Req. 7{2[5}——

Reg 9 = B7 Reg, A = 35 —
PAK 9 — Accum. = 75

HL HL
“Reg 9 [7[5laccum:.

Reg A[ﬁ_]i]

* Note: The high order bit of the
first register must always be a
zero ()

* Return from subroutine
Mnemonic RET

Op Code o7

Operatton, RET — PC = NN
Use:

To instruct the microprocessor to
retirn to the specified program
stap (NN). This would be the step
immediately following the
instruction set ‘Go to Subrouline’.
{See sample pragram "Addition
Flash Cards (Guess Answer)' for
example)

Example

Step # 40 = GTS 90 — Branch
to step 90

Step # 90 = RET — Branch to
step 42

* Note: You must have a 'Go to
Subroutine’ in-order 1o have a
‘Return from Subroutine’

VIDIECPAC 9

Load Accumulator with random

Subtract Accumulator from

number Register

Mnemonic RND Mnemoric SUBR

Op Code a8 Op Code DR
Operation AND — A Operation (A = R-A}
Use Use:

To load accumulator with a
random number

Post Program

The accumulator selects a
random number from 8@ 1o 99.
Example

Accum. = 10— program RND —
Accum, = any number frorm 20 to
99

One second buzz
Mnemonic SIG

Op Code 85
Operation BUZ =1
Use

To implemerit a one second buzz
Example

Program SIG (85 in Op Code) — a
buzz is heard for one second

Store Accumulator in Register

Mnemonic. STOR
Op Code AR
Operation A —R
Use

To store contents of the
accumulator in a specified
register

Example

Accum. = 66 — ST0O.3 — Reg. 3
= 66

Accum. = 16— STO 0 — Reg 0
=15 .

To subtract tha contants of the
accumulator from a specified
register and store the resulls in
the accumulator

Fost Program
The contents of the accumulator
are subtracted from the contents
of a;specified register (R) and the
result s stored in the
accumulator. If the accumulator's
value is greater than the cortents
of the specifiad register, 1he
register is assumed to be ns
contents plus 100

Example

If the register is larger than the
accumulatar:

Accum = B5Reg 7 = B9 —
SUB.7 —= Accum = @4, Reg 7 =
2]

Aceum, = 15, Reg7 = 90 —
SUB7 — Accum. = 75 Req. 7 =
90

Example

it the register is smaller than the
accumulator;

Accum, = 01, Reg7 = 08—
SUB 7 — Accum. = 99, Reg 7 =
o

Note: 0-1 = -1, however,
according 1o the above
statement, we have 100 -1 = 99

Separate two digits

Mremome UNP R
Op Code BAR
Operation Ay — R,

A =R +1
Use

To seperale two digits in the
accumulator and stare them in
two specified registers

Post Program:

The high order bit of the
accumulator is loaded into the low
order bit pesition of the specified
register (R) The low order bit of
the accumulator is loaded into the
low order bit position af the next
ragister (A + 1)

Example
Accum = 23 — UNP 4 — Reg 4
= 02, Reg: 5 = 03
HL
HL o [oR] Reg 4
‘Accum [2]3] 2[3] Reg 5

Accum, = 91 — UNP D — Reg. D
=P9.Reg E =M

HL
HL B Reg. D
Accum E}ﬂ Reg E
L
35

24

HAPTI

C

Instruction Sets

36

Description Mnemonic Op Operation No.of Remarks

Code Bytes
Input
Input to INF.R R Ip—R 1 1 key depression
Register anly
Input to INA 04 Ip— A 1 1key depression
Accumulator only
Output
Output from OUTR CR R—0UT 1 Heg Bsets
Reqister pasition
Output from OTA o8 A — OUT 1 of output 1o
Accumulator scraen
One second SIG 05 BUZ=1 1
Buzz

Change Accumulator contents mathematics

Set ta CLR g (A=0) 1 Accum = Hex B0

Subtract 1 DEC 22 (A = A-1) 1 Decrementby 1

Add 1 INC a3 (A = A+1) 1 Increment by 1

Load with RND 28 RND — A 1

Random No

Load trom MOV @8 Re—PC— 1 Reg C points to

Storage A step # where
data Is stored.
That data will then
be moved 1o
accumulator

Combine 2 PAKR 8R AL — Ay 1 R = Reg low

digits Ry +1—=4A order bit Ay =
Accum, high
order bit

Separate 2 UNP R BR Ay — Ry 1 Note:lfR_ =

digits A —R +1 Reg 4 then R, +
1=Reg 5

Load from LDAR 9R R—A 1

Register

Subtract from SUBR DR [A=R=-A) 1

Reg.

Add Register ADDR ER (A = R+A) 1

Change Regl C

Store STOR AR A—HR 1

Accumulator

LoadaValue LDVRINN BRNN R = NN 2 Load R with value

NN

www.videopac.org
the worlds best videopac website

VIDETPAC 9

D ip M ic Op Operation No.of Remarks
Cade Bytes
Control execution arder
No Operation NOP o0 NO = 08 1
Halt HLT FF HLT = FF 1
Go to GTSNN 14NN GTS — PC 2
Subroutine = NN
Return from RET w7 RET—+fC = 1
Subrout. NN
Branching decision
Branch on BDBINN 10NN (A = 8)— 2 NN = 9@ through
Decimal PC = NN a9 .
Barrow
Branch on BOCNN 11NN (Az 2} — 2 R =09 A-F
Decimal Carry FC = NN
Branch GTONN 12NN GTO — PC 2 PC = Program
Unconditionally = NN Counter
Branch if BRZNN 13NN (A = @) — 2 The program
Accumulator PC = NN counter points to
is 0 the step number
Branch if Reg. BNERNN 2ANN (R#A)— 2
Accumulator PC = NN
Branch il Reg BEQARNN 3BNN (R = &) — 2
= Accumulator PC. = NN
Branch it Reg. BGTHANN 4RNN (R=>A)—PC 2
= Accumulator = NN
Branch if Reg. BLSANN 5RNN (R<A)—=PFC 2

< Agcumulator

37

HAPTER S

C

Videopac Computer Opearating
Modes

We have learned how (o program
the Vidsopac Computer and we
have used several different
dperating modes. You will recall
using the COMMAND MODE. the
EXECUTION MODE. and the
ROLL MODE

There are eight operating modes
in the Videopac Computer, They
are:

COMMAND

EXECUTION

DISPLAY

PAOGHAM

ASSEMBLER

HEX INPUT

INPUT

ROLL

These operaling modes allow you
10 pertarm specific functions
Let's |ook at each in datail and
refar to the block diagram in
Figure 33 as we explain each
mode.

Cammand Mode
To enter the COMMAND MODE
you may press ‘Reset’ or ‘Clear if
you are in any of the following
modes;
ASSEMBLER
CUSPLAY
HEX INPUT
It you are in the EXECUTION
MODE, to enter the COMMAND
MODE, press ‘Reset’
Once in the COMMAND MODE:
you may enter the following
modes:
EXECUTION
DISPLAY
PROGRAM

by pressing
E - To enter the EXECUTION
MODE Program execution will
begin with step 80, You are ready
to play your game. write your
message, solve your problam,
etc. if you have already entered
your program

or by prassing
C - To enter the CONTINUE
MODE. This mode is used 1o
locata a problem within a register,

For example. let's assume we
have a 40 step program that is not
working correctly. A branch
decision was made at some lower
step number and we would like to
see if the carrect branch was
taken 1o the step number we had
indicated. say step 14. At step 14
we would replace the op code at
that step number with a halt
statement {op code FF) To
examine the contents of the
program counter (which would
cantain the program step 14, thus
infarming us of the corract
pranch), we wauld press ‘D' to
enter the DISPLAY MODE We
waould then press £ to display
the contents of the program
counter. if the correct result is
displayed, we would press ‘Clear’
which returns us 1o the
COMMAND MODE We riow press
‘P to enter the PROGRAM
MODE. then press ‘M' 1o enter
1he HEX INPUT MODE, and then
press 'R’ to enter the ROLL
MODE. We now must roll up: ("U’)
from step 9 10 step 14 where the
FF statement is located and
replace it with the orlginal op
code We may now place an FF
statement at some other slep to
check another part of the
program. Please note that only
one FF statement at a time can
be presant in the program.

or by pressing
D - To enter the DISPLAY MODE
(to be explained in detail later)

or by pressing
P - To enter the PROGRAM
MODE (10 be explained in detail
later)

Ta leave the COMMAND MODE,
you may turn the Videopac

R R R R R R R

VIDIECPAC 9

Computer off* or enter another
operating mode (ie . C. D, E. or
P)

* Note: All programming is erased
when the power is turned off aor
the Videopac is removed from the
machine

Display Mode

To enter the DISPLAY MODE. you
must press ‘D from the
COMMAND MODE In this mode,
You may display on the screen
any register you wish 10 review
This mode Is often used 1o
traubleshoot problems, since yau
can check the contents of each
register

To check the registers, you
press:

B-To display the comerits of
register @

1-To display the contents of
register 1

2-To display the contents of
register 2

3-To display the contents of
register 3

4-To display the contents of
register 4

5-To display the contents of
register 5

6-To display the contents of
register §

7-To display the contents of
register 7

8-To display the contents of
register 8

8-To display the contents of
register 9

A-To display the contents of
register A

B-To display the contents of
register 8

C-To display the contents of
register C

D-To display the contents of
register D

E-To display the contents of
register £

F-To display the contents of
register F

P-To display the contents of the
Program Counter

S-To display the contents af the
Subroutine Counter

X-To display the contents of the
Accumulator

To leave the DISPLAY MODE,
press ‘Cléar’ or ‘Reset’ to enter
the COMMAND MODE

Program Mode

To enter the PROGRAM MODE.
press ‘P’ from the COMMAND
MODE, or press ‘Clear’ if you are
in the ROLL MODE

The PROGRAM MODE sets the
Videopac Comiputer 1o accept a
program. From this mode, you
may press ‘A’ to enter Assembler
fanguage (mnemonic), or you may
press ‘M’ to enter hex language
{Op Code)

To leave the PROGRAM MODE,
press ‘Reset’ and you will enter
the COMMAND MODE. or you
may leave the PROGRAM MODE
by pressing ‘A’ 10 enter the
ASSEMBLER MODE or by.
pressing ‘M’ to enter the HEX
INPUT MODE

Assembler Mode

To enter the ASSEMBLER MODE,
press ‘A’ if you are in the
PROGRAM MODE . or press
‘Clear’ if you are already in the
INPUT MODE for assembiler
language.

Once you have pressed ‘A", you
are in the ASSEMBLER MODE
and you may now press ‘l' to
enter the INPUT MQDE tor

assembler language, or you may
press ‘A’ 1o enter the ROLL
MODE

To leave the ASSEMBLER MODE,
press ‘Clear’ or ‘Reset’ 1o enter
the COMMAND MODE. or press
any valid ASSEMBLER MODE
command fie 'I"or 'R} (Be sure
1o reter ta Figure 33)

Hex Input Mode

Ta enter the HEX INPUT MODE
press ‘M if you are in the
PROGRAM MODE or press 'Clear’
if you are In the INPUT MODE for
machine language

Once in the HEX INPUT MODE,
you 'may press ‘| to enter the
INPUT MODE for maching
language (Op Code), or press ‘R’
1o enter the ROLL MODE

To leave HEX INFUT MODE press
‘Clear’ or 'Heset to enter
COMMAND MODE or press any
valid HEX INPUT MODE command
fie.I"or 'R

Input Mode

To enter the INPUT MODE, press
I'. it you are In either
ASSEMBLER or HEX INPUT
MODE

‘Once you are in the INPUT MODE.
You may enter any assembler
language instruction {Mnemonic)
if you have entered from the
ASSEMBLER MODE, or you may
enter any machine language
instruction (Op Cade) i you have
entered from the HEX INPUT
MODE. This is the made in which
you will enter your program

To leave the INPUT MODE, you
may press ‘Heset’ (o enter the
COMMAND MODE, or press
‘Clear’ 1o enter the ASSEMBLER
ar HEX INPUT MODE

33

i
ar

i
L—

=3
F
o

Roll Mode Instruction Explanation Program lllustration

To enter the HOLL MODE. press Step Step

R If you are in'either

ASSEMBLER or HEX INPUT 1 Press BE2ET command

MODE @ appears on the

Onee you are in the ROLL MODE screen

you may press ‘U’ 1o display the) X

program steps from 80 1o 89, or 2 Press@ Pragram

= . appears on the -

you may press ‘D’ to display the LR Operational Modes
program steps from 99 to 80, This {Command. Program
mode is often used 1o check a 3 Press [E ‘Hex Inpur Hex Input)
program step 1o be sure it appears on the 0
contains. the correct data. 5Creen

To leave the ROLL MODE, press
‘Clear' to enter ASSEMBLER or
HEX INPUT MODE

Step 00 appears P9
on the left side of

sss (1)

the screen

Now that we have studied the

variaus operation modes. let's 5 Press @ B41s the Op Code
tor ‘Input to

enter a program using the various
modes. Review flow diagram 1
betore entering the program
below

40

13.Press
14 Press @

register 3 are less
15
Lo @ then the contents

& Press @ Accumulator’
7 Press Enter. Step 1 01

appears an
screen

Input to
Accumulator

'

73 is the Op Code
tor “Input to

8 Prass

2 Press

Register’ with 3
meaning register
3

10 Press Enter Step 92 92

appears on
screen

Input 10
Register 3

11 Press (I] 53 is Op Code for
‘Branch if
12 Press

Register is
less than
Accumulator’;
3 = Register

Enter. Step 83 aa
appears on
screan

1 contents of

ot accumulator,

step #9

g6 1o step 89

VIRIECPAC 9

Instruction Explanation Program llustration
Step Step
16 Press Enter. Step @4 94

appears on

screen.

17 Press [E
18 Press [E

19 Press -

FF is Op Code tor
‘Halt' If register 3
conients are
greater than
Accumulator,
program counter
will exit al step

Enter. Step 05 25
appears on
screen

FF Statement -
Exit at Step 04
It R> Accumutator

Command
Mode

20 Press

21 Press @ ,

22 Prass @

92 is Op Code for
‘No Operaticn’
Used 10 allow
compluter 10 move
through program
steps without
perfarming any
operations.,

Enter. Step &6 o6
appears

23 Press @}
%]

24 Press @
25 Press

Enter. Step @7 07

appears

26 Prass @ }
20

27 Fress@

28 Press Enter. Step D8 28

appears

|'
i
I
I
|
l

f
|
l
I
|
l
'

41

——

0w
"
frr
=
-
=
Instruction Explanation Program llystration
Step Stap
29 Press@ ;
00
30 Press@ |
31 Press Enter Step 83 99 |
appears |
32 Press FF is Op Code for 1
"Hall" Hreg3 FF Statement
33 Ptass@ contents are less Exit at step
than agcum.. (]
prograrn counler
will exit'at step
Command Mode
34 Press(enrgn | Enter. Step 18 19 |
E=) Emecs |
35 Praﬂs B4'is Op Code for l
‘Input to
36 press(_4_) Laccumutator IS
s e O - Accumulator
Tess nter Step
appears |
38 Press@ BB is Op Code for l
‘Output from |
39 Press(B |\ Accumuator’ In ‘
other wards
whatever was in Cutput from
Accumulator will Accumulator
be displayed on I
sGreen
40 Press Enter Step 12 12 ‘
appears.
a Press 84 is Op Code for
‘Input to
a2 Press@ Accumulator”
This will be used
Input 1o
simply to allow
Accumulator
the output from (used as pause)
slep 11 lo'be s
displayed an
screen (used as a
42 pause operation)

VIDIECPAC 9

Instruction Explanation Program lllustration u i
Step Step
43 Press Enter Step 13 13

appears.

44 Press RESET Rogey Program is

stored and you
are back in the
Command mode

CPERATIONAL (COMMAND:
PROGRAM INPUT| MODES

)
QESET

J

COMT e
MOCE

-

PROGAA MOCE
4 ASBEMBLUER
LANGLAGE,

M AMACHINE
LANGUASE

ASSEMBILER MODE

HEX INPUT MOOE

1 iFuT
WAL

CLERR 1IJHPUT
Eade » X

£

FF-STATEMENT
EXIT AT
STEP 04

FF STRTEMENT
EXIT AT,
ROLL WODE
D DO

STEPj09

QEAR AESET

(USED AS A PAUSE)

INPLIT TQ ACEUM I

Figure 33

Fiow diagram 1

43

i

HAPTER %

&

Review flow diagram 2, then
inplement the following.

Execution Mode

Instruction
Step

Explanation

Program
Step

liustration

1Press(E)

Exgcution mode
Is enlered and a
question mark
appe=ars on the
screan

Operational Mode
{Execution)

Ty

Hex ‘& is now in
the accumulator
and the question
mark is still on
the saraen,

Input 1 Accum.

e (5]

Hex '85" is now In
register 3 and the
Computer returns
1o the Comrnand
mode.
['Command’
appesrs on the
screen,)

Remember, our program had an
instruction which stated 'Branch if
ragrster is less than accumulator
Since register 3 now equals 85
and the accumulator equals 86,
those conditions are satisfied.
Our program further states that |f
those conditions are satistied,
then the Computer should exit at
program step 09, Program step 09
has an FF instruction thalt) which
returns us 1o the Command

mode. (Note. nothing has
appeared on/1he screen because
the program has halted ata
pragram step prior ta the
instruction "Output from the

Input to Reg 3
95

Accumulator’, Refer to flow
diagram 2). However. we know
that the following registers should
still eontain:

Aceumulator = 06
Register 3 = 05
Program Counter = @8

Now. the question Is, ‘Can we
check these regislers to be sure
they contain the carrect data?’ Of
course we can, by using/the
Display mode

VIDEESPAC 9

. OPERATIONAL OPERATIONAL
(EXECUTIONI MODE (DISPLAY)
MODE

INPUT TO
REGISTER 3 || PRESS ACCUMLILATOR
@5 X B8
______ i »| PRESS REGISTER 3 -11
o, o z Sk
3 = 05
==

FF STATEMENT

EXIT AT PRESS PROGRAM COUNTER
STEP 04 e > ®9
=
v
INPUT TOAGTUR
PRESS
CLEAR

v

QUTRUT TO ACCUM

IUSED AS A PAUSEI

MODE

Ii s

INPUT TOACOUI | (COMMAND)

Flow diagram 2 Flow diagram 3

45

HAPTER S

C

Review tlow diagram 3, then
implerment the following.

Display Mode

Instruction
Step

Explanation

Program
Step

ustration

trress (D)

2 Press\@)

3 Press

4 Press @

5 Press

46

‘Display’ appears
on screan

X' - This displays
the contents of
the Accumulator.
Yol should see:

86 X REG

‘3’ - This displays
the contents of
ragister 3. You
should see

85 3 REG

‘P - This displays
the contents of
the program
counter, You
should see

23 P REG

We are now back
in the Command
mode

Operational Made
(Display)

Accumulator
26

Register
05

Program Couriter
23

Operational Mode
{Command)

We know now that all registers
contain the appropriate data

We now wish 10 return 1o our
program and replace the hall
instruction (FFj at pragram step.
99 with a no operation instruction
(80). This must be done by
entering the Roll mode.

Roll mode
1 Press We have entered
the Program
. mode
2 Press “Hex Input’
appaars
3 Press@ We are in 1he Holl
mode,
4 Prass The ‘U’ (up) key

must be pressed
9 times. Your
screen will then
‘show: B9 FF

5 PressCIear, This clears
FF from step 039

6 F’ress@ ‘Hex Input’

appears

7 Prass@% appears.
8 Press@ 00 is the Op

Codelfor ‘No

9Press@ Operation’
10 PressEnlar Step 10
RESET

appears

11 Press Reset
‘Command’
appears. We are
back in the

Command mode

VIDECPAC 9

We shall now enter the Execution
mode and implement the same
program We will enter 06 into the
aocumuliator and 95 into register
3 However, after we have entered
these values, note that the
computer will continue 10 display
a question mark rather than
returning to the Command made
We will know that the computer
has branched correctly at
program step 89 Since that step
now contains a no operation
Instruction (@@), it has allowad the
Computer 1o step through the
program. (Refer 1o flow diagram
4). You may now press any key on
the keyboard and it will appear an
the screen

Execution Mode
Instruction Explanation Pragranmy llustration
Step Step

We have entered
the Executian
mode and may
now implement
our program

Hex ‘@6’ is in the

1 Prass @
Operational Mode
{Executiom)

Accumuiator 86

2 Press @

Accumulatar
3 Press @ Hex ‘85 is in =
register 8; Register 3 85

4 Press [E

A ‘W’ appears on
the screen. You
could press any
key of your
choles

Input to Accum

Notice, in our original program in
this chapter. that progiam step 12
is another ‘Input 10 Accumulator’
instrugtion, We programmed that
step simply 1o allow the outpur
from step 11 (the W) 10 be
displayed on the screen
Remember that pragram
execution is halted atter the
Instruction 'Input to Accumutator
uniil a key is pressed and
‘additional information is entered
into the accumutator This
instruction is a good one to use
far troubleshooting, since
execution Is completely haltad

47

HAPTER

(2

Branching When Register 3 is
Larger than the Accumulator
Let's now return 10 the Command
mode. which will erase the values
currently In the accumulator and
registar 3 Then wa will enter the
Execution mode and enter new
values so thal register 3 will be
larger than the accumulator and
branching will take place at
program step 84, (Refer to flow
diagram 5)

48

Irigtruction Explanation Program Nustration
Step Step
1 Press MESET Resel. This

returns us to the
Command Mode

Execution mode
A question mark
appears on the
screen

2 Press [B

Hex ‘05" is now in
the Accumulatar

and the question

mark remains on

the screen

3 Press @

Hex 86 15 now in
register 3 and we
return 1o the
Command mode

4 Press

Now, since the Accumulator
equails 85 and register 3 equals
06, 1he program will be halted at
program step B84, The register
should contain the following
Accumulator = 95

Register 3 = 96

Program Counter = 94

It is left as an exercise for you 1o
display these registers on the
screen to be sure they contain
the cotrect data, If you are not
sure, go back to the Dispiay
maode instructions for flow
diagram 4

Operational Mode
(Command)

1

Operational Mode

|Execution)

-

Accumulator 85 [

Register 3 86

A

Cperational Mode
(Command)

VIDECPAC

|

|

|

|

|

|

|

I r

| 1

|

i

|

] FF STATEMENT

I EXIT AT
STEP 04

|

|

RANCH
T ACCUM
P5=06

STER §8=00

STEP

INPLIT TR AGCUM
W

OUTPUT TO ACCUM
w

INPUIT TO ACCLNM I

USED AS A PALISE)

Flow diagram 4

TATEMENT
XIT AT

BRANCH
REG.3=

AMAND,
' MODE

ACCUM
26

9

INPUT TO ACCUM
(USED AS A PAUSE)

Flow diagram 5

49

o

A

]

=

=

;’—.

~

Assembler Mode Programming You are now in the Assembler Press

Thus far, we have done all our mode at program step @3 and Press 1]
programming in the Hex Input ready to enter the program in Press

mode, though we have discussed Mnemonics Since we have not Press 2
the Assembler mode. You will used this language befora. we will Press F
remember that when step through the first program Press Enter

programming in the Hex Input
mode. you have used the Op

step with you, using the
Mnemonic column of the

We are now at program step @2
Continue in the same way and you

Code symbols anid that when program should see on your scréen a

programming in the ‘Assembier Press L picture similiar to the one in

mode, you must use the Prass o Figure 34

Mnemonic symbols. As a last R v

‘exercise. let's enter a program _ -

called 'Creapy Crawlar (as Creepy Crawler

written at the end of this chapter) S

first n Hex (Op Code) snd thertin Step Opcode Mnemonics Operation Remarks

A_ssernbrer (Mnemonic] o 80 2F LDV @2F A = NN Load reg® = 2F

First, the Hex Input Remermber 2F = block figure

how 1o get the Hex Input mode?

Press RESET @2 61 @C LDV1@cC R = NN Load reg 1 = 0C,

Press P 4C = blank

Press M 94 6B @9 LDVBOO R = NN Sels output position

Prass | i 1o 98

You are now al program step 0. .3 co ouT e R — OUT QOutpuls block 10

Referning to the Creepy Crawler screen

Progipin. eaterithe hox vallies a7 Ci ouT 1 A — OUT Outputs blank to

shown under Op Cade. Don't soraen

forget 10 press the ‘Enter’ button =

atter each byte of data (If you B85 sIG BUZ =1 Buzz for one

have lorgotten what a byte second

consists of, refer to chapter 4) If 0a (5] RND AND — A Accum: selacts

you have entered the program random number

correctly. your screen should look

similar to Figure 34 10 BB UNP B Ay —R Unpack reg B used

A —RB, +1 for output pesition.

1 12 98 GTDDE GTO — PC = NN Go to step 86 and

repeat

Figure 34

5

HAPTER G ~

-
-

Before explaining the sample

programs which follow, an
explanation of the four programs
already entered and stored in the
ROM of your Computer
Programmiing Cartridge is
neaded You may have noticed
after inserting your cartridge and
pressing the Power buttan, that
by pressing '1' on the keyboard a
sel of blocks appear on'the
screen, flashing in random order
andlaccompanied by 3 buzz
sound. This is ‘Creepy Crawler . i
is just'a sample of the programs
you can enter in your Videopac
Computer The program for
'Creepy Crawler’ appears at the
and of the last chapter and you
may wish to enter this program in
your Videopac Computer,
substituling anather symbol
(chosen from the symbals in
Figure 32} for the block symbol

If you press "2' after Inserting
your cartridge and pressing the
Power button, an addition
problem appears on the screen
without a solution. This is ‘Flash
Card'. Youare to emter the
solution. For example, ‘4 + 2 =
appears on 1he screen, you press
‘08 (remember, you must press 2
digits), Since this Is not the
correct answar, a ‘NO' appears
You then press '06° and the '06'
appears on the screen Another
problem does not appear on the
screen untll you press a key

It you press '3 the "High-Low
Guess' game is implemented. At
this paint, a question mark
appears on the screen and the
computer chooses a number from
0 1o 99, but does not display it
on the screen. You then press
any number between 80 and 99

Whatever number you enter will
be displayed on the screen with
an ‘L or an 'H'. which tells you
that your guess is either lower or
higher than the number the
computer has chosen You may,
keep guessing until you choose
the correct answer. which is
identified by an "X’ baside the
number you have chosen

When the ‘4" is pressed, the 'ls
Number Between Limits?' gamia
is implemented Three numbers
appear across the screen For
example. 83 87 2. The 83
represents a law number, the 87
represents a high number; and
the B9 represents your score
Again, the compuler chooses a
number, but does not display it.
You must guess if the number is
between 3 and 7. If you think it is
you'press 'YES' If you do not
think the number is between 3
and 7, then you press ‘NQ'. If you
are correct, the number appears
anthe screen betwean the 3 and
7 and your store increments by 1
If you are wrang, the computer
will sound a 'beep’, your score
remaining the same. After each
¥Yes or No guess, press any key
and a new prablem will appear

These programs are
preprogrammed for your
enjoyman! to use until you are
able 10 write your own programs.

Following are sample programs
which you may enter into the
computer for practice We have
attempted (o use each instruction
selin some way in order to give
you a working example of how
each can be used However, it is
only from practice and trial and
error that you will come to know

- TIISSSEEENE | TS S RS S S SRR TN

VIDEECPAC 9

how and when to use the
instruction sets

In some inslanices, a page of
.eéxplanation is presented betare
the program. This was done'in
order 1o give 8 more detailed
explanation of the use of
particular instruction sets and/or
the reasons why a particular
instruction sel was necessary in-a
certain situation,

Also, included in the Appendix,
are blank program pages for use
when writing your own programs.
Computer programming is not an
sasy subject 1o learn, however, it
is extremely interesting and a
subject which is constantly
changing as new advances in
computer technology are made.
This manual is only a beginning
introdugction to the basics of
computer programming and we
hope it has been interesting to
you. Through your use of the
Videopac Computer and its
Computer Pragramming
Videopac, you may develop an
imerest and desire 10 research
and study the more advanced
computer languages and systems.

Good luck!
Sample programs

Add Two 1-Digit Numbers and
Display the Sum

The first three programs deal with
the same problem, adding two
1-digit numbers and displaying
the sum. however the complexity
of the program increases each
time {A. B, C. respectively): as
you will note the program steps
‘8lso increase.

In Problem A, after the program
has been entered and the

exacution implementad, a
question mark appears on the
scraen. The computer is asking
for some data. When the first
number is entered, it Is not
displayed. When the second
number is entered, the answer
appears on the screen
immediately. The problem is not
erased until two more digits are
entered.

In Problem B, the question mark
again appesars. The first number is
enlered and nothing appears on
the screen When the second
number is entered, the complete
problem appears on the screen,
for example 2 + 4 = 08 You will
note, if you'look at the program
that in this case the ' +'and "="
signs had been programmed into
the computer so that they would
appear on the screen. Again, the
problermn does not erase trom the
screen until you enter two new
digits.

Problem C begins with a question
mark on the screen. The first
number enlered appears on the
soreen along with a ' +' sign. The
second number entered appears
an the screen along with an '="
and the answer. Note that when
the first digit of the second
problem is entered, the first
problem disappears from the
scregen. This occurs because of
the following

1 Program step 16 is a pause
operation which allows the
problemn 16 remain on the screen
until another number is entered
2 Program step 17 and 18, load
reqgister C with 8B which stands
for the decimal number 11, which
is:also the number of positions
available on the screen

3 Program step 19 and 20,
register 7 is loaded with blank
spaces

4 Program step 21 loads 1he
accumulator with the decimal
number 11 from register C

5 Program step 22 and 23, load
register 4 with 08

6. Program step 24, the
accumulator Is decremented by 1
7. Program step 25, a blank space
fram register 7 is displayed on the
screen

B Program step 26 snd 27.
Instructs the computer 1o return
1o program step 24 if the
accumulator is not equal to
register 4. In other words. the
computer will keep returning to
siep 24, decrementing by 1, and
displaying blanks on the screen.
until the accurnulator 15 equal to
register 4. which is zero (08}

10. Program step 28 and 29, once
the acéumulator is equal ta
register 4, the computer moves
an to step 28 and 29 which set
register B at @0, the furthest left
paosition on the screen.

11 Program step 30, instructs the
carnputer o return to program
step B3 and repeat the program.
thus you are able to anter
problem after problem

FIAPTEER 6

-

Add Two 1-Digit Numbers and
Dispiay Sum (Problem A)

Add Two 1-Digit Numbers and
Display Sum (Problem B)

e e &

Step Opcode Mnemonics Operation Remarks

o0 70 INP B Ip—R Input Reg @ with 1.
number

a1 &4 INA Ip—= A Input Accum, with
2nd number

ED ADD @ (A =8+ 4 Add Reg 0 10
Accumulator
B1 UNE 1 Ay — R, Unpack Reg 1 and
Al — Ry + 1 Reg. 2 (separate
© digiis)

84 68 0 LovBoe R = NN Set output position
o

26 c1 QuTA A — out Output Reg. 1. 1st
digit sum

07 c2 ouT2 R — QuT Output Reg 2, 2nd
digit sum

%8 12 @ Gloe GTO — Go 1o step 00 &

PC = NN repeat

L) 7a INP@ Ip—A Input Req, @ with 1st
number

an B4 INA Ip— A Input Accum with
2nd number

a2 68 op LDV.B A8 R = NN Set output position

84 o oute R — OUT Output 1st number
from reg @

05 63 18 LDV.3. 19 R = NN Load Reg. 3 = 10..
10 = (+) sign

a7 c3 ours R— QuT Output Reg, 3. +
onsereen

o8 (2] aTA A — OUT Output 2nd number

VIDIECPAC 9
Step. Opcode Mnemanics Operation Remarks
a5 63 28 LDV328B R = NN Load Reg. 3 with
(=1 sign
11 €3 ouT.3 R — OUT Outplt Reg 3, =
on screen
12 E® ADDD (A=R + A) Add Reg @ 1o
Agcumulator
13 B1 UNP1 Ay =Ry Unpack Reg, 1 and
- AL—R_+1 Reg 2
14 c1 ouT 1 R — OUT Qutput Reg 1. 1st -
digit sum
5 ic2 ouT2 R —0DUT Qutput Reg, 2 2nd
digit sum
16 12 @0 GTO@D GTO — PC = NN Go 10 step 00 and
repeal
Add Two 1-Digit Numbers and 8 6B 0 LDVBO A = NN Set output position /
Display Sum (Problem C) to 0@
w2 70 INP @ Ip —R Input 1st number 1o
Reg 0
23 co ouTa R—out Output Reg. B |
84 63 18 LDV.310D R = NN Load Reg. 3 = 10.
10 = () sign
ouT.3 R — OUT Output + sign from
Reg. 3
o7 a4 INA Ip—=A Input to i
Accumulator
o8 OTA A— QUT Output from |
Accumulator |
B9 63 28 LDV328 R =NN Load Reg 3 with J
(=) sign ‘
1 c3 ouT3 R— OUT Output = sign from
Reg. 3
12 E0 ADD @ A =R+ A) Add Reg, 8 10
Accum,
|}
13 B UNP 1 Ay— A, Unpack Accum. to \‘
Ay — R +1 Reg. 1 and Reg 2
I

55

RO

HAPTI

-
-

One Digit Multiplication

56

Step Opcode Mnemonics Operation Remarks

4 ouTA A — OUT Qutput Reg 1

15 c2 ourz R—0OUT Qutput Reg. 2

16 7m0 INP B Ip—R This is.used as a
pause operation

17 BC @B LDVCOB R = NN Load Reg C with
hex B8 (#11)

18 &7 @8C LDvV7ec R = NN Load Reg. 7 with
biank spaces,

21 ac LDAC R—=A Load Accum. from
Reg. €

22 64 00 LDV4AP® R =NN Load Reg, 4 with 0

24 @ DEC A = A-1) Subtract 1 from
Accum

25 c7 ourz? R — QUT Quiput Reg 7
(blank spaces)

26 24 24 BNE 424 (R # A) == PC = Branchif Reg 4 #

NN Accum
28. 6B W LDV B oD R = NN Set ocutput position
‘ 1o 80

N 12 03 GTOe3

GTO — PC = NN Go'to step 83 and

repeat

Refer ta Chapter 2 1o refresh your
memory as to the method which
the Videapac Computer uses 1o
multiply. Then enter the program,
Remember_ it multiplies by a
serigs of additions which we must
program irto the computer. Let's
Iook at the steps in detail

First, after the program is
enterad. a question mark appears
©on the scraen and the computer
is waiting for input. The first digit
entered is the multipitoand and
appears on the screen with an "X’
sign. The second digit is entered
{the multiplier)‘and the complete
problem appears with answer, for
example 7 x 3 = 21 You'will

note that program step 88 (which
positions register B at the
furthest left position) through
program step 11 are the
instructions which allow the
problem to be displayed on the
sareen. It is at program step 12
that the mathematical operations.
which must be performed in
order to:solve the problem, begin.
Lel’s look at these Instructions in
detail:

1 Program step 12, |oads the
accumulalor from register @ with
the 7 which is the multiplicand

2 Program step 13, adds the
accumulator (87) to register @
{note reqister O still contains an

VIDECPAC 9

B7). Remember that the Videopac
Computer multiplies by a serles
of additions. This is the first
addition

3. Program step 14, the sum of
the accumulator and register @ is
stored inregister 2

4 Program step 15 the
accumulator is loaded from
register 1 which holds the
tmultiplier. 3, and this is the
number-af times we must add 7 in
order 1o arrive at an answar

5 Program step 16, decrement
the accumulator by 1. The
accumulalor contains the 3 (the
number of times we must add 7),
We have added 7 twice (87 + @7).
50 we must now decrement the
multiplier (3) by 1 5o that we ¢an
keep track of the number of
limes we have added

6 Program step 17, store the
difference in register 1 The
difference is now 2 and we return

One-Digit Multiplication

that value to register 1 (Nate
The multiplicand [07) has beer
added 1wice at this point:
howaver, since we can only
decrement the accumulator by 1,
we have 10 prodram the computer
o stop adding 87 after the third
hime. so we wish 1o stop adding
when the multiplier equals 81
rather than'0@ |

7 Prograrh step 18 and 19, load
register 3 with @1. This is done so
that when the accumulator
contains the contents of ragister
1 (the multiplier) and they are
compared to the contents of
register 3 (B1. which is when we
want the adding operation 1o
stap). the computer will either
stop adding (if the accumulator is
equal to register 3) or it will leop
back to the specified program
step (if they are not equal) and
continue 16 add 87 again

B Program step 20 anid 21,

instructs the computer 1o branch
to step 25 if the centents of the
accumulatar and register 3 are
equal, At which time the answer
will be unpacked and displayed on
the screen

8. Program step 22, load
accumulator from register 2,
which contains the sum of the
addition of 87 + B7 which is 14
10. Pragram step 23 and 24
instruct the computer 10 return to
siep 13 and rapeat additon

11, Program siep 25 when the
accumulator and register 3 are
equal [both cantain 81), the
computer steps to program siep
25, and the accumulator is loaded
trom register 2 which contains ihe
sum of the addition operations
(21)

12 Program steps 26 through 29
unpack the answer and display it
on the screen.

Step Opcade Mnemonics Operation Remarks

(4] 68 @0 LDV B D2 R = NN Sel output position

a2 78 INP® Ip—R Multiplicand to Reg
]

a3 co ouTa A - 0uT Output Multiplicand

24 66 29 LDV 8.29 B = NN Reg 6 = 29,29 =
(X)

28 c6 ouTe R — Out Output Reg. 6. Reg
6 = (X)

ar Al INP 1 ip—-A Multiplier ta Reg. 1

88 c ouTn A— 0uT Output Multiplier

03 67 2B LDV72B A = NN Reg 7 = 2B. 2B =
=]

" c7 QuT? R — OUT Output Reg 7

57

HAPTER 6

-
-

One Digit Division
Refer to Chapter 2 to refresh your
memory regarding binary division

58

Step Opcode Mnemonics Operation Remarks

12 a0 LDA B AR—A Load Accum. from
Reg @

13 EQ ADDD (A=R+ A) Add Reg 010
Acoum

14 A2 STO2 A—R Store sum in Reg 2

15 91 LDA1 A=A Load Accum. from
Reg: 1

15 g2 DEC (A =A-1) - Decrement Accum
by 1

17 Al STOM A—R Store difference in
Reg 1

1’8 & o LBV 3 M R = NN Load Reg 3 with 81

20 3 25 BEQ325 (R =Al-=-PC = (R =A)Go1ostep

NN 25

22 92 LDA2 R— A Load Accum. from
Reg. 2

23 12 13 GTO13 GTO — PC = NN Gotostep 13

25 a2 LDAZ R—A Load Accum from
Reg. 2

26 B84 UNP 4 Ay — Ry Reg 2 Unpack two

AL—=R +1 digits

27 Cc4 ouT4 A— OUT QOutput Reg 4

28 cs QOuT.5 A—Our Output Reg. &

29 12 0@ GTO.80 GTO — PC = NN Go to step 88 and

repeat

Remember, the Videopac
Computer divides by a series of
subtractions, and the quotient is
the number of times the divisor
can be subtracted from the
dividend. Now, enter the program
on the following pages. A
question mark appears on the

‘screen after execution is

implementad. When the first
number (dividend) is entered, it

appears on lhe screen with a ="
sign. The second number (divisor)
is entered and appears along with
an '="'sign and the answer. Let's
look at the program in detail:

1. Program step 9@ and 01,
initialization of register 3 to
contain 8. This register will
contain the sum of the
subtraction operations the
computer performs in order to

S
o
i
=
[
=
=
o —
One-Digit Divisian Step Opcode Mnemonics Operation Remarks
5 83 B LDV 3.00 R = NN Reg 3 = 2@
({initialization]
02 68 00 LDV.B &9 R = /NN Aeg B = 0P
(positiomng)
@4 70 INP @ Ip—R Dividend to Reg ©
95 o ouTe R —0ut Output Reg. @
B 89 28 LDV82A R = NN Reg 9 = 2A 2A =
(=]
98 ce ouTs B— OUT Output Reg @
| 7 INP1 Ip—R Diwvisor to Reg 1
10 © QuT 1 R—0ur Quiput Reg. 1
11 6A 28 LDV AZB R = NN Reg A = 2B, 2B =
(=)
13 CA QUTA R— OUT Output Reg A
14 91 LDA 1 A—A Load Accumn from
. Reg 1
15 Do SuUB @ (A = R-A) Sub. Aceum from
Reg 0
16 A8 STO0 A—H Store difference in
Reg B
17 83 LDA3 R—A Load Accum from
Rag 3
18 @3 NG A=A4+1 Add 1 1o the Accum
19 A3 sT03 A—R Store sum in Aeg 3
20 99 LDAD R—=A Load Accum from
Reg @
21 13 40 BRZ 48 {A =8)—PC = Branchto step 40 if
NN A=0
23 9 LDA1 R— A Load Accum. from
Reg 1
24 50 28 BLS9 28 (R < A) — PC = Branch to siep 28 if
NN R <A
26 12 15 GTO15 GTO —PC = NN Go to step 15
28 93 LDA3 A—A Load'Acoum from
Rag. 3
60

N e

VIDIECPAC 9

Area Problems Using 'Go To
Subroutine’ and ‘Return’
This problem was included to give
you an example of how and when
10 use the Instructions ‘Go to
Subroutine” and 'Return’, Fora
detalled explanation of these
instructioris, rafer 10 Chapter 4,
Now enter the program as it is
written on the following pages
You'now enter a number which
will be the base and then a
number which will be the height
Then press ‘1" In order to find the
area of a reclangle, or press ‘2" in
order 1o find the area of a
triangle, The answer immediately
appears on the screen We will
discuss each of these problems
{rectangle and triangle)

ep ly. First note that

program step 8@ (which positions
register B at the furthest left
position on the screen) through
program step 88 will be the same
tor both problems. with step 88
being your selection of “1' or 2’
Trie vaiues 81 and 82 have been
loaded into registers 1 and 2
respeclively at program steps @2
and @4. Let's look at the rectangle

1. Program step @8, the
accumulater is loaded with our
input, either "1° or 2" At this time,
we will select “1'" and it is loaded

Step Opcode Mnemonics Operation Remarks
23 B4 UNP 4 Ay—R, Unpack two digits
A =R+ 1

30 c4 outT 4 R — OUT Qulput 1st digit,
Reg 4

3 c5 OUTS A - 0UT Outpit 2nd digit,
Reg 5

32 66 18 LBvie1D R = NN Reg 6 = 1018 =
[+) .

34 87 13 LDV7.13 A= NN Reg 7 = 13,13 =
(R)

36 C6 outs R = 0UT Output + sign

37 cr QUT.7 A —0uT Quiput R

35 12 W GTooe GTO —PC = NN Go to step &)

40 93 LDA 3 R—A Load Accum from
Reg 3

41 B4 LUNP 4 Ay — Ry Unpack wao digits

AL— B # 1

2 c4 ouT 4 R - OUT Output Reg 4. 1st
digit

43 c5 OuT5 R— OUT Output Reg, 5, 2nd
digi

44 86 OC LDVEBC R = NN Reg. 8 = BC.OC =
blank

46 67 OC LDV7OC R = NN Reg 7 =00 8C = proplem first
blank

48 ch ouT 6 R == OUT Dutput biank

49 c7 outr? R— QUT CQuiput blank

50 12 80 GTO 02 GTO— PC = NN Branch to step 89

into the accumulaiar

2 Program step 09, instructs the
computer to branch to program
step 13°1f the accumulator (which'
cantalns @1} equals the contents
of register 1 (which is @1)

3. Program step 13 and 14,
instruct the computer 1o go 1o
step 66, which contains the
multiply routine. In ordar 1o find

61

HAPTER O -~
.

.
-

¢

the area of a reclangle. we
multiply the base times the
height.

4 Program step 66, load
accumulator from register 3 which
conlains the base (far

example, B).

5 Program step 67. add register 3
(which contains the value 8) ta
the accumulator (which contains
the value 8)

6. Program siep 68, store
accumulator (which contains sum
of B + 8] in register 5

7. Program step 69. load
accumulator from register 4,
which contains the height (for
example, 3)

8 Program stap 70, decrement
accumulator by 1. (Remember, in
multiplying, we must decrement
the multiplier by 1 each time we
perform an addition oparation,
until the multiplier equais @1)

9 Praogram step 71, store
accumulator (whichis 2) in
register 4.

10 Program step 72 and 73,
instructs the computer to branch
1o program step 77 it the
accumulator Is equal to register 1
(register 1 = B1)

11 Program step 74, load
accumulator from register 5,
register 5§ = 16

12. Program step 75, go 1o step
67 Addition operations are
repeated until accumutater is
aqual to register 1 (at program
step 72 and 73), at which time the
computer branches to step 77

13. Program step 77, load
accumulator from register 5
ragister 5 = 24 (the answer)

14 Program step 78, instructs the
computer 1o return 1o prograrm

62

.

siep immediately following
subroutine instruction. That takes
us 1o,

15. Pragram step 15, instructs the
computer to unpack register 5.
16 Program step 16 and 17
output the answer to the screen
17 Program step 18, instructs the
computer to go ta blanking
routine at program step 58

18 Program step 58 through 63,
instructs the computer to cutpul
blanks in order to erase old
problem and answer

18, Pragram step 64, instructs the
computer to return 1o program
step @ in preparation for 3 new
problem

Now let’s [ook at a‘triangle
problem, for example, base = 6,
height = 2 Bemember, for a
triangle you muitiply the base
times the height. then divide the
‘answer by 2. At program step 08,
we choose ‘2, and 2 is loaded
into the accumulator, Program
step #9 and 10 do not apply, so
the computer steps to program
step:11.

1. Program step 11, instructs the
computer 1o branch 10 prograrm
step 20 for the triangle routine.

2. Program step 20/ instructs the

computer 1o branch to step 66 for
the rmultiply routine

3. Program step 66 through 75
perform the addition operations
and continue to loop until the
accumulator equals register 1

(81). Then the computer branches
1o step 77

4. Program stap 77. load
accumutator with register 5. which
holds the answer for B x Hor 6
¥ 2 = 12 We must now divide
this answer by 2 1o find the area
of a triangle

5. Pragram step 78, instructs the
computer 1o return to the
program step immadiately
following the subroutine from
which it branched originally

6. Program step 22, 2 pause is
implemented

7. Program step 23. store
accumulator (which contains 12)
in register 3. This now becomes
the dividend

8. Program step 24 and 25, load
register 4 with @2, this becomes
the divisor

9. Program step 26 and 27, load
register 7 with 8. This is the
initialization operation, since this
register will hold the sum of the
subtraction operations

10. Program step 28, load
accumulator from register 4
(which contains the divisor. 2}

11. Program step 29, subtract
accumulator from register 3
(which contains dividend, 12)

12. Program step 30, store the
ditference in register 3; register 3
=10

13. Program step 31, load
accumulator from register 7,
register 7 = 0@

14. Program step 32, add one to
the accumulator. Remember, this
s done 1o keep track of the
number of times we subtract the
divisor from the dividend.

15. Program step 33, store sum in
register 7. register 7 = B1.

16. Program step 34, load
accumulator fram register 3;
register 3 = 10, dividend

17. Program step 35 and 36,
branch to step 54 if accumulator
equals BB,

1B. Program step 37, load
accumulator from register 4,
register 4 = 2, divisor

VIDIEZCPAC 9

19. Program step 38 and 39,
branch to step 42 if register 3 is
less than the accumulator.

20 Program step 40, if the
computer has not branched at
this point to another step number.
this instruction loops the
computer back 1o program step
28, so that additional subtraction
operations cah 'be performed,

Al program step 35, the
computer, after completing the

Area Prablems Using ‘Go to
Subroutine' and ‘Return’

subtraction operations so that the
accumulator and regjster 3 {the
dividend) equal 88, branches 1o
step 54°. At program step 54, the
accumulator is loaded from
register 7 (which contains the
number of times we subtracted,
the answer). Program step 55
then unpacks this answer and
program steps 56 and 57 output
the answer 1o the screen Blanks
are output, since in this example
there is no remainder. and at step

64 the computer Is instructed 1o
return ta program step 88 in
Preparation for a new problem

“*Note: If there had been a
remainder, the computer would
have branchad at program step
38 to step 42 and when the
answer unpacked and displayed
on the screen, a ‘' + R’ would also
have been displayed

Step Opcode Mnemonics Operation Remarks
] B8 82 LDV B @2 R = NN Reg B = @0
(Pasitioning)
B2 61 41 LDV 181 R = NN Area of rectangle -
Selact "1
04 82 82 Lov.2g2 R = NN Area of triangle -
Select 2
D6 73 INP.3 lp—R Input ‘B’ value
(base)
a7 T4 INF.4 lp—R Input 'H* value
(height)
08 B4 INA Ip—=A Selact 10r 2
o] 31 13 BEQ'1.13 R=A—PC= Goto raclangle
NN routing
1 3z 20 BEQ220 (R=Al—PC= Gaoto triangle
NN routing
13 14 66 GTS 66 GTS —PC = NN Golo multiply |
subroutine
15 85 UNP5 Ay— Ry Reg. § = Ay
A — R, Reg 6 = A,
+1
18 cs ouTs R — out Qutput 1st digit
17 C8 ouTe R—0UT Output 2nd digit
18 12' 58 GTO.58 GTO —PC = NN Go 1o blanking
routine

R &

-
-
-

L
=
T
7
Step Opcode Mnemonics Operation Remarks
20 14 68 GTS 66 GTS — PC = NN Go 1o multiply
subroutine
22 20 NOP NO = ¢ No operation
(pause)
23 A3 STC.3 A-—=R Stare Actum in
Reg 3
24 B84 02 LDV 4Bz R = NN Load Reg 4 with 82
26 67 80 LDV7Ee A = NN Laad Reg, 7 with 80
28 94 LDA 4 R—A Load Accum. from
Reg 4
28 D3 suB.3 (A = R—-A) Subtract Accum
from Reg 3
30 A3 ST03 A—=R Store difference in
Reg 3
31 a7 LDAT R—4A Load Accum. [fom
v Reg 7
32 m INC A=A+ 1) Add one ta
Accumulator
a3 A7 5T0.7 AR Store sum in Aeg 7
83 LDAS R—A Load Accum from
Reg 3
13 54 BRZ 54 (A = @)= PC = Branch to step 54 if
NN A=0
3 94 LDA4 A—A Load Accum from
Reg 4
38 53 42 BLS 342 (R<A)—PC Branch to step 42 if
= NN ARehA
40 12 29 BTO29 GTC — PC = NN Gotostep 29
42 97 LDAT R—-A Load Aceumn from
Reg 7
43 B8 LNP 8 Ay — R, Reg 8 = Ay
A —R +1 Beg 9 = A,
44 cs ours A — QUT Output 1st digit
45 9 ouT 3 A = OUT Qutput 2nd digit
46 6E 10 LDVE 18 R = NN Load Reg E with
1010 = {+]
64

VIDIECPAC 9

Step Opcode Mnemonics Operation Remarks

48 BF 13 LDV.F13 R = NN Load Rag. F with 13,
13 = (R)

50 CE OUTE R — QUT Oulput +

51 CF QUTF R — OuT Output R

52 12 58 GTO.58 GTO —PC = NN Golostep 58

54 97 LDA7 R—A Load Accum from
Reg 7

55 B8 UNP 8 A — Ry Beg'8 = Ay

A —RL+1 Req & = & 5

56 c8 OuT 8 R — OUT Output 1st digit

57 cg ouTa A — ouT Qutput 2nd digit

58 8E BC LDV.EBC R = NN Load Reg E with
BC. BC = blank

60 8F B8Cc LDVFOC R = NN Load Reg. F with
0C, 8C = blank

62 CE OUTE AR—OUT Output Blank

63 CF OUTF R— OUT Output blank

64 12 08 GTOGd GO —=PC = NN Go 1ostep D@

66 83 LDA3 R—A Load Accum. from
Req 3

67 E3 ADD3 A =R+ 4) Add Reg. 3 to
Accumulator

68 AS STOS A—R Store Accum. in
Reg 5

89 94 LDA 4 R—A Load Accum fram
Reg 4

70 M DEC A=A-1) Decrement Accum
by 1

71 Ad STO4 A—R Store Accurn. in
Reg 4

72 31 77 BEQ17/ (A=A —PC= IlReg 1 = Accum,

NN branch to 77

74 95 LDA S R—A Load Accum from

Reg &
65

HAPTERG ~
]

-
-

One-Digit Addition Flash Card

66

Step Opcode Mnemonics ©

tion Remarks

p

75 12 67 GTO.67

GTO — PC = NN Go to step 67

77 95 LDAS R—A Load Accum from
Rea 5

8 @ RET Ret — PC = NN Return to
Subroutine

This program difters from the
Flash Card pragram already
programmed in the Videopac in
several ways. First, in this
program; the old problem is
erased automatically and a new
problem is displayed on the
sereen. Secondly, and perhaps
most important, the reward for
guessing the carrect answer is
greater with this program. Just
wait and see!

There are several new uses of
instructions Included in this
program which we should discuss
in detail,

1. Program step @3 .and 01, load a
blank into register A This will
become the eraser which will
cause the old preblem to
disappear from the screen

2 Program step 82 through 09,
you should be familiar with these
instructions

3, Program step 10, the
accumulator is loaded with a
random number

4, Program step 11, the random
numiper is unpacked.

5 Program step 12 end 13, sels
the output position of register B
ated

6. Program step 14 through 18.
you should be familiar with these

instructions. Note that a ‘No
Operation’ instruction was
needed at pragram step 17, since
we had programmed three output
instructions in a row.

7 Program step 19, the
accumulator is loaded from
register B with one digit of the
unpacked number

8 Program step 20, the
accumulator is added to register
1 which contains the second digit
of the unpacked number

9 Program step 21, the sum is
stored in register 2

10. Program step 22 through 26,
you should be familiar with these
operations

11 Program step 27, outpuls
blank to screen. This blank
appears befween the answer on
the screen and the word ‘NO' if
the answer happens to be wrong.
12 Program step 28 and 29,
instructs the computer to branch
to step 45 if the correct answer is
given

13. Program step 45 through 61,
instructs the computer 1o buzz a
melody (reward). At program step
46, the computer is Instructed to
go to subroutine at program step
70

14 Program step 62 and 63, reset

VIDECPAC 9

registen B to 2.

15. Program step 64, instructs the
computer lo output a blank

16 Program step 65, load
accurnulator from register B
which now equals 91, since a
blank has been output
{Remember, register B
sutomatically increments by 1
each time thare is an output
instruction)

17. Program step 66-and 67, if
‘3ccumulator = @, the computer
branches 1o pragram step 10 and
répeats tha program by selecting
3 new randorm number.

18. Program step 68 and 69, i the
accumulator |s not equal 1o 89
lremember, it contains the
contenis of register B), the
compulter returns to program
step 64 and blanks are output and
register B incremenis until iy
teaches DA (the furthest right
position). At this point, register B
rolls back to 8 The accumulator
riow equals B9 and the computer
will branch 1o program step 10,

At program step 46, the Gamputer

One-Digit Addition Flash Card
(Guess Answers)

was instructed to go to
subroutine at program step 70
The subroutine is as follows:

1. Program step 70 and 71,
register 7 is loaded with 89 (this |s
used as a reference point)

2. Program step 72 and 73,
register E is loaded with 75 (this
number was randomly chosen 1o
cause a slight pause between the
buzz sounds).

3. Program step 74, load
accumulator from register E.

4. Program step 75, no aperation
{used as a slight pause)

5 Program step 76, decrement
accumulgtor by 1 (remember it
contains 75)

6 Program step 77 and 78, if
accumulator is not equal to
register 7 (89). the computer is
instructed 1o branch to step 75
and repeat decrementing, until
the accumutator equals 08 1t is
this repetition which causes the
pauses between the biizz sounds,
7 Program step 79, instructs the
complter to return to the next
‘goito’ instruction (GTS) until it
sieps to program step 62 and

erases the problem. Al step 66,
the computer returns 1o step 10
and the program is repeated with
a new problem

It the wrang answer is given, the
program progresses as tollows

1. All steps are the same until
program step 28 is reached

2 It at program step 28 the wrong
answer Is given, the computer
sleps 10 program step 30 and 31
and ‘NO' is displayed on the
screen next the wrong answer

3 Program step 32 and 33,
register B is loaded with 04
(positioned at 04)

4. Program step 34, input first
number of second guess,

5 Program step 35 through 40,
oulputs blanks, erasing the old
answer and the word 'NO

6 Program step 41 and 42 sets
register B at autpun position @5
7 Program step 43, instructs the
computer to branch to step 24

8 Program step 24, Input secand
number of second guess

As an exercise for you, review the
remaining program steps

Step Opcode Mnemonics Operation Remarks

00 BA 8C LDV:ARC R = NN Load a blank into
Reg A

g2 68 1@ LDVBI® A =NN Load a + sign into
Heg 8

a4 69 2B LDv.g28 R = NN Load an = slgn inta
Req. 9

(5 6C 20 LDveca2p R = NN Load ‘N into Beg ©

a8 6D 17 LDV D7 R = NN Load *O' into Reg. D

19 08 AND RND — A Load Accum with
random number

11 BO UNP @ Ay — Ry Separate digits

A — R+ 1

67

126

HAPTI

[

Step Opcode Mnemonics Operation Remarks

12 B W LbvBe@ R = NN Sel output position

14 ce ouT @ R — OUT Output first digit

15 8 outa R — DUT Output + sign

16 (=] ouTt R — OUT Dutput second digit

17 o0 NOP Neo = 88 No operation

18 cs ouTa A== 0UT Qulput- = sign

19 98 LEAR R—A Load first digit

200 E1 ADD 1 (A=R +A4) Add to second digit

21 A2 5102 AR Store sum in Reg 2

2 73 NP3 NP — A Input first digit
guess

26 ca outT3 R — OUT Durput first digit
guess

24 74 INP 4 INP - R input second digit
guess

25 ca ouT 4 R— OUT Quipursecond digit
gueass

26 B3 PAK 3 AL — Ay Combine digits

Ry +1—= A
3 CA ouT A R — OUT Output blank
28 32 45 BEQ 245 (R = A)—PC = Ifcorrect guess -
NN Buzz

3 cc auT s R— OUT Qutput ‘N’

31 co ouT o A — OuT Output '0°

az 68 04 LDV B84 R = NN Set output position
to 04

4 73 INP.3 INP — R Input first nurmber
of second guess

35 (] ouT3 A — aut Qutput first number

38 Ca ouUT A R = OUT Outpul blank

a7 CA QuTA R — OUT CQutput blank

38] NOP No = 82 No operation

Step Of L] Operation Remarks

39 CA ouUTA R— QUT Qutpul blarik

0 CcA ouT A A —our Oultput blank

41 68 B85 LDV B.@5 R = NN Set aulput position

to @5
43 12 24 grO24 GTO—PC = NN Goto step 24
® B na——————— NI .

45 85 SIG Buz =1 Buzz
& 14 70 Ge GTS—PC = NN N sound

48 85 SIG Buz = 1 Buzz

49 95 SIG Buz = 1 Buzz

50 05 SIG Buz = 1 Buzz
mrm
53 95 SiG Buz = 1 Buzz
WW—MW——

58 4 70 GTS.78 GTS — PC = NN No sound

58 25 SIG Buz = 1 Buzz

59 14 70 GTS.78 GTS—PC = NN No sound

81 85 SIG Buz = 1 Buzz

62 68 90 LDVBB® A= NN Sel position 10 00

a4 CA OUT A R— QUT Output blank

65 8B LOA B R— & Load Accum: fram

Reg B

ﬁm‘___Zﬁ—m—:’_—‘———Wmm
‘NN = 0 tostep 10

48 12 64 GTO 64 GTO—~PC = NN Goio step 64

70 57 &0 LDV 7.8 R = NN Load Rey 7 with 08

72 6E 75 LDV E 75 R = NN Load Reg E with 75

74 9E LDAE A—a Load Accum, from

Reg. E
— e e UL - e

VIDECIAC 9

RG
k.

HAPTEE

C

Please note that the fellowing
program sheets are different from
the program sheets used
previously. Up 1a this point, the
Sample programs have been
written step by step and
explained for you, The following
Programs are writtan on slightly
different program sheets which
contain several very useful tools

First, note the addition of the
label column. This is an important
and helpful tool, when writing
your own programs, You will
recall in some of the previous
sample programs we encountered
‘Go 1o’ and ‘Branch to'
instructions. These instructions
generally referred 1o a program
step later in the program If, when
first writing a program, you must
use one of these instructions, you
will have 1o complete the program
Lefore inserting the correct
program step number This is
where the Label column helps. It
allows you toindicate a branching
or looping instruction when you
write it, so thal you can later
insert the correct program step
The sample brogram ‘Message' is
2 good example of how the
Labelling column is used

79

Step Opcade Mnemonics Operation Remarks
75 fu%] NGP No = @0 No eperation
7% P2 DEC (A =a-1) Subtract 1 from
Accum
7 27 75 BNE 7.75 (R # A)~~PC = Branch if Accun =
NN to zera
78 o7 RET RET—PC = NN Return from

subroutine

The Comment calumn is used in
e same way as the Remarks
column in the sarlier
Programming sheets

The second difference in the two
types of programming sheets is
the addition of the Byte column
This column keeps recard of the
number of bytes in.each
instruction; so that when initially
writing a program, you will know
that the program slep must
Increment by 1.0r 2 depending
upon the number of bytes in each
Instruction. Rernember, that each
program step ¢an only contain 8
bits of data or 1 byte, but that an
instruction may be 1 byte or 2
bytes long,

The: third and last ditference in
the two types of programming
sheets is the addition of the
column marked Register Use.
This column will also prove very
usefyl when initiaily writing your
program. The contents of each
register should be indicated in
this colurin as you load it with a
value. This prevents using the
same register twice and also is
helpful when reviewing an
arithmetic program, since at a
glance you can tell which register
contains the divisor, dividend,
multiplier or multiplicand.

Let's now take a look at the last
tHree sample programs

Three Ways to Enter and Output a
Letter

These three sample prograrns are
presented to show you the three
different instructions which can
be used to input and output a
letter on the screen

For the first example, we have
chosen 1o input and display the
letter ‘H' or 1D in hex code With
this type of program, whatever is
loaded into the register and is
output to the screen will remain
oh the screen. You cannot
change it With this program, you
could enter a complate message
and have it remain on the screen

The second example uses the
instructions. ‘Input 10 a Register’
and 'Output from 3 Register’. but
does not designate any particular
value Thus, once the program s
enlered, any value can be entered
and it will be displayed on the
screen,

The third example is similar to the
second in that any value may be
entered, but it is input 1o 1he
Accumulator rather than 1o a
Hegister

[VIDIESPAC 9
I You will note, in alt three Instruction was indicated, 1hus Program the appropriate
examples the last instruction was only one keyboard deprassion instruction sats in order to create
Ingut to a Register’ whigh was could be made As an éxercise for aloop S0 that all 11 positions on
used as a pause since no output ¥ou. using example two or three, the scraen may be used

' Three Ways to Enter and Output a Letter (For this example. use ‘HY)
Label Mnemanic Comment Byte Step Hex Reg, use
l-

Code # Code
1 Start LDV B @0 Positioning 2 % 68 @ Q- -

LDV@1p Load Reg 9 = 1p. 2 @z & 1D -

1D =H
ouTe Output Reg, 8 = W 1 04 ce 2-
End INP 1 Ip—R (used as 1 25 71 3-

pause) —
X

94
2 Start LDV B @@ Fositioning 2 @0 6B) A-
NP8 Ip—R 1 22 70 B-
oute R —DuT 1 a3 ce c-
End INF 1 Ip =R (pausa) 1 [71 -

E-
\\\‘\F-_
3 Start LDV B2 Positioning 2 o eB gp

INA Ip—A 1 2 B4

OTA A—QuUT 1 03 B
End INP1 Ip — R (pause) i 04 71
\\‘

71

£ VIDECSPAC 9

I You will note, in.afl three Instruction was indicated, thus Program the appropriate
examples the last instruction was only one keyboard deprassion instruction sats in order to create

Ingut to a Register’ which was could be made As an éxercise for aloop so that all 11 positions on
used as a pause since no output ¥ou. using example two or three, the scraen may be used

' Three Ways to Enter and Output a Letter (For this example. use 'HY
Label Mnemanic Comment Byte Step Hex Reg. use
¢ i

Code # Code
1 Start LDV B89 Positioning 2 08 68 #p g -

LDva1p Load Reg 9 = 1p. 2 22 6 10 -

18 =H
ouTe Output Reg, @ = H 1 04 ce 2-
End INP1 Ip—R(usedas | 8 71 3-

pause)
4

9-

2 Start LDV B.2g Fositioning 2 (5] 68 20 aA-
NP Ip—R 1 82 78 B-

oute R— out 1 03 ce C-

End INP1 Ip —= R (pause) 1 o4 71 -

E-
——_‘_‘———____F‘__
3

Start LDV B 20 Pasitioning 2 % 68 op
INA Ip— A 1 22 B4
OTA A —Qurt 1 23 @B
W
\‘“—_

71

. www.videopac.org

i=
a
o
o

&

Six Letter Guess
After being entered, this program
allows you 1o enter a six letter
word into the computer. Six dots
appaar on the screen and your
opponent enters a letter If it is
used inthe waord, it appears an
the screan in the correct position,
If the letter does not appear in
the word, nothing happens

Let's look at some of the prograrm
steps in detail

1. Program step 80, used as s flag
or reference position 81 is loaded
Into register 7 1 was chosen
rather than B9, because it can
only mean {he decimal number 1
and nothing else

2 Program step 84, 05, and 86,
input 1st letter into register 9,
load a dot into reqister 1 output
register 1 1o screen. This is an
initialization process and steps 87
through 27 are the same. This is
done so that the six does appear
on the screen when the word is
first input. Note the Register Use
column

Six Letter Guess

72

the worlds best videopac website

3. Program step 28 through 37,
positions the computer to 68
each time a guess is taken and
outputs to the screen either the
correct letter guessed or a dot.
4. Program step 38 and 39,
instruct the computer to return to
28 if accumulator = register 7 in
preparation for a new word if the
previous word has besn guessed
correctly. (Note: this is a Flag or
reference point.)

5. Program step 40, inputs a
guess 1o accumulator; it is
compared to register in program
steps 41 through 52.

6. Program step 53 and 54,
instructs the computer to go 1o
program step 71.if a letter in the
ward'is missing.

7. Program step 71 and 72, loads
register 8 with a dot

8. Program step 73, loads the
accumulator from register 8.

8. Program step 74 through 85,
instructs the computer 1o branch
to program step 28 If tha register
is aqual to the accumulator (in

other words, if the register still
remains a dot)

10. Program step 86 and 87, loads
register 7 witha 2B (=). This is a
Flag.*

11. Program step B8, loads 1ne
accumulator from register 7.

12. Program step 89 and 80,
sound the buzz which indicates
the word has been displayed
correctly.

13, Program step 91 and 92,
Instruct the computer te go to
step 28 for positioning

14, Program step 28 through 37,
displays word on screen.

15. Program step 38 and 39,
instruct the computer to return to
P8 it accumulator = register 7
16. Program step &9, loads
register 7 with 81 and garne
continues.

*Note: The 2B or = sign was
used as a flag in this instance;
however, any sign could have
baen used instead.

Lzbel Mnemonic Comment Byte Step Hex Reg. Use
Code & L Code

Resel LDV781 R = NN (flag) 2 o0 & D1 0

Start LDVEBO2 Positioning 2 a2 BB D@ 1-1istm

Pos
INF g input. 1st letier 1 94 79 2-2ndm
LDV127 Read 1st dot 2 05 61 27 3-3rdm
ouT 1st-dot on screen 1 07 c1 4-dthm
INF A Input 2nd letter 1 28 TA 5-5the
LDV 227 Read2nd dot 2z ag 62 27 6-6the
our.2 2nd dot on screen 1 11 G2 7-@1

(Mad)

INP.C Input 3rd letter 1 12 7C 8- 7thm

Byte Step Hex

VIDECPAC 9

Label Mnemonic Comment Reg. Use

Code L3 +* Code
LDV.327 Read 3rd dot 2 13 63 27
ouT 3 3rd dot on screen 1 15 G3
INP.O Input 4th letter 1 16 70

9- 1st
letter
A- 2ng
letter
B-
Positio-

ning
LDV 427 Read 4th dot 2 17 64 27 G- 3rd

letter
ouT 4 4th dot on sereen, 1 18 c4 D- ath

letter

INP E Ihput Sth letter 1 20 7E E- 5th
letter
LDV527 Read Sth dot 2 21 B85 27 F-6th
lener

ouTs Sth dotion soreen 1 23 cs

INPF Input Bih lener 1 24 7F

LDV 627 Read Bth dot 1 25 B6 27

ouTs 6ih dot on screen 1 27 C6
PositionLDV.B.O3 Position on screen 2 28 68 &

QUT 1 Put dots on screen, 1 30 c1

our.2 Put dots on scresn 1 31 c2

ouTa Put dots on screen 1 32 c3

NOP N operation 1 33 @0

ouT4 Put.dots on screen 1 34 Cc4

ouTs Pul dots on screen 1 35 C5

QuTE Put dots on screen 1 38 Cce

NOP No operation 1 37 @0
Flag BEQ700 Reset 2 38 37 00

INA Ip —= A input gliess 1 40 B4

BEQ955 Letter in 2 41 39 55

BEQASE Word Missing 2 43 3a 58

BEQ.C 61 2 45 3c 61

73

D ———

3
i
=
c
Label Mnemonic Comment Byte Step Hex Reg. Use
Code & * Code
BEQ.D &4 2 47 3D 64
BEQE®7 2 49 3E &7
BEQF72 2 51 3F 70
GTO71 2 53 12 7
STON Got 151 letler 1 55 Al
GTO43 Check next position 2 56 12 43
STO2 Got 2nd letrer 1 58 A2 0=
GTO45 Check next position 2 59 12 45 1- 1stm
STO03 Got 3rd letter 1 61 A3 2-2nd =
GTO47 Check next position 2 62 12 47 3-3rds
STO4 Got 4ih letter 1 64 Ad A-dthw
GTO48 Check next position 2 85 12 49 5-5tha
STOS Got 5th letter 1 67 As 6-6thm
GBTOS51 Check next position 2 68 12 51 7-®;
{ffag)
STO6 Got 6th letter 1 70 AB B-Tthae
Missing LDV 827 |Load Req Bwith 2 71 68 27 9-1m1
dot letter
LDASB R— A A = dot 1 73 98 A- 2nd
letter
BEQ128 Positipn (step28) 2 74 31 28 B-
Position
BEQ228 Position (step 26) 2 76 32 28 C-3¢d
letter
BEQ328 Position (step 28) 2 78 33 28 D-dth
letter
BEQW28 Position (step 28) 2 8@ 34 28 E-6th
latter
BEQS28 Position(step28) 2 82 35 28 F 6ih
leller
BEQ.628 Position (step 28) 2 84 3 28
LDV72B Setflagto = 2 86 67 28
74

—
-

SIG

SIG 1 £l a5
GTO.28 Pasitioning 2 91 12 28

Message

After being entered, this program
allows you to press any number
between 1 and 6 to call
programmed message to the
screen, In the program as it
written, we have programmed six
messages. After studying the
rogram, you may wish 1o
subistitute your cwn messages

This program provides a good
example of the use of the Label
column. You will.note the first
step, B9 and 81, is load a valye
Into register @ and the value is 98
You will note that program step
99 Is the ‘No Operation
nstruction after the last message,
and that program steps 91
through 96 are a relocation table
The hex code at each of these
program staps is tha firsy
program step number of each of
the messages It is this first
Instruction, ‘load a value inta
register B and the value |s 99"
which allows you 1o select any
number between 1 and 6 o call a
message o the screen, Let's look
@ a tew of the other instructions
in the program;

1. Program step 82 and 83, load
register 1 with BC (blank). This
blank will be used in massages
which have more than one word
2 Pragram step 84, input to the

1 89 @25

accumulator; you may select 1, 2
3.4, 5, 6, and whichever you
choose will be input to 1he
accumulator

3, Program step @5, add register @
1o accumulator. in other words, if
we had chosen number 2, the
contents of register @ (which are
90) are added fo the accumulator
{which is 2); thus 82 is now in the
accumulator.

4. Program step 86, store
accumulator in register C:
register C now equals 92.

3. Program step 87, reqister C
moves the program counter 10
Program step 92, and the
contents at program step 92
(which are 36) are loaded into the
accumulator. This (s the ‘Move"
Instruction or ‘Load accumulator
from a Pprogram step’. You wiil
remember thal register C is
always used with this instruction
(Refer to Chapter 4 'Load
accumulator from program step”
tor further intormation).

6. Pragram step 88, store
accumulator (36) in register c;Cc
now equals 36,

7. Program step 89 and 18, load
register B [positioning) with the
value 88 (the furthest left
position).

8. Program step 11 and 12, load
register 2 with the number 11 (the
number of positions on the

VIDEECPAC 9

Label Mnemonic Comment Byte Step Hex Reg. Use screen), which is hex code 2B,
Code * * Code

LODA7 R—a 1 88 a7

9. Program step 13 and 14, load
register 3 with 80 1o be used as a
referance

10. Program step 15, load the
accumulator from register 1.
register 1 aquals 3 blank This
begins the loop which erases an
old message from the screen in
preparation for a new message
You will note program steps 15
through 21. load the accumulator
with a blank, output the bilani,
Ioad the accumulater from
register 2 (28 or 11), decrement
the accumulator by 1. store the
result in register 2, and the
computer branches to step 15t
the accumulator is not equal to
register 3 (B88). Remember, when
erasing. each of the 11 positions
must ke filled with 3 blank

11. Program step 22 and 23, loads
register B with @8 (furthest left
pasition). This is used to pesition
register B in Preparation for g
new message.

12. Program step 24, takes the
contents of register C (38),
MOVes to that program step (36)
and loads the contents at that
program step (14) into the
dccumulator

13. Program step 25 and 26, if the
accumulator equals 88 at this
point, the computer would branch
1o program step 84, and prepare
itself for a new message. If the
accumulator contains g valie (as
In this example, it contains 14)
then the computer sleps to
program step 27,

14. Program step 27, output the
contents of the accumulator to
the screen; a ‘T’ appears, (Rlefer
f0 your chart of hex codes Figure
12),

.

75

HAPTER O

G

15, Program step 28 and 29,
instruct the computer to go 1o
step 24 and loop through the
previous instructions to display

25, the accumulator will be equal
to ragister 3 (23), and the
computer will branch to program
stap B4 in preparation tor a new

message”. When the r ge is
completed (note at the end of
each message there is a no
operation instruction, 8d). and the

computer steps 10 program stap

Message

78

e

This completes the sample
programs wa have prepared for
you In the appendix. you will find
blank pregram sheels 1o use
when wriling yaur own program

* Note: When repeating the loop
al program step 24. the contents
of register remain the same
(36) howaver. the program
counter increments by one gach
time so thal the appropriate
program step is reached

Label Mnemanic Comment Byte Step Hex Reg. Use
Code - + Code

Start LDV@90 Location table 2 e 60 90 0- 99

LDV 18C 2 w2z 61 8C 1- 8C
{blank)

Ra: INA Press 12345 0r6 1 04 04 2- BB

start {11
ADD@ (A=R+A 1 25 EQ 3- 90
5T0C A— Reg C 1 % AC d-
MOV Ac — PC — A 1 o7 L] 5-
STO.C A Reg C 1 n8 AC &

BlanksLDV.BO0 R = NN 2 03 o8B @ 7

[positioning)

LDV28B H = NN 2 1" 82 11 B~
LDV3P@ R = NN i3 63 Pe a-

Loop 1LDAA R—A 1 15 91 A-
OTA A — QUT 1 16 0B B-
LDAZ2 R—A 1 17 92 C-
DEG A=A=-1) 1 18 @ D-
sT02 A—R 1 19 A2 E-
BNE3.15 Loop 1 2 20 23 15 F-

Out- LDVB® A - NN (positioning) 2 22 68 @0

put

Loop 2MOV Rc— PC —A 1 24 a9

r

——'—!ﬁ

VIDIZCPAC 9
)
[Label Mnemonic Comment Byte Step Hex Reg. Use
Code * * Code
BEQ304 Restart 2 25 33 o4
OTA A — OUT 1 27 o8 o
GTO24 Loop 2 2 28 12 24
Mess. Output 'H’ 1 a0 10
1
Output &' 1 3 12
Qutput L’ 1 32 VE
Output 'L 1 a3 eE -
Qutput ‘0’ 1 ! 17
End Mess. 1 1 35 4]
Mess. Output T 1 38 14
e
Cutput “A 1 37 20
Output ‘K 1 38 1F
Qutpui ‘E’ 1 38 12
Blank 1 40 oc
Oulput "A’ 1 41 20
Blank 1 42 we
Output 'L 1 43 ee
Output 'O’ 1 a4 17
Qutput 'O’ 1 45 17
Output 'K 1 46 1F
End Mess. 2 1 47 00
;'less Quiput 'R 1 48 13
Qutput ‘E' 1 49 12 0- 68
Output 'M 1 50 26 1-8C
(blarik)
Cutput A’ 1 51 20 2- 0B
{11} “When entaning single letters and
Output ‘R’ 1 52 13 3- 00 numbers; the hex cade only is used,
T 5 = i - since there is no mnenanic code

for them

£

HAPTER 6

C

78

Label Mnemenic Comment Byte Step Hex Reg. Use
Code + # Code
Outpur A 1 54 20 8-
Output "B’ 1 35 25 6-
Output 'L’ 1 56 PE 7=
Oufput 'E* 1 57 12 8-
End Mess. 3 1 58 sl g-
Mess Output ‘N’ 1 20 A-
4 .
Output ‘E' 1 60 12 8-
Dutput "W 1 61 11 c-
o Blank 1 8 dac D-
Qutput 'F 1 63 1B E-
Output ‘O¢ 1 64 17 F-
Output ‘R’ 1 85 13
Blank 1 66 oc
Qutput 7' 1 67 a7
Quiput '8 1 &8 ag
End Mess. 4 1 69]
Mess Qutput Q' 1 70 18
5
Output ‘U 1 s 15
Quitput 'E 1 72 12
Qutput 'S’ 1 73 19
Output ‘T 1 74 14
Qutput ' 1 75 16
Output "0’ 1 76 17
Qutput ‘N’ 1 7 2D
Output 'S’ 1 78 19
Output 2 1 79 a0
End Mess § 1 80]
Mess Output 'C’ 1 81 23
6

=
fa]
7z
e
s
=
<
Table of Powers of Two nj2-n
0|10
1|05
2| 025
3| 0128
4| 0082 5
5| 0031 25
6| 0.015 625
7| 0007 812 5
8| 0003 906 25
9| 0001 953 125 :
10| 0.000 976 562 5

-
=

R
oE W

-k k| ke
O @® N>

SR BRYE

-4

LguR

0000 488 281 25

0.000 244 140 625
0.000 122 070 3125
0:000 0681 035 156 25
0000 030 517 578 125

0000 015 258 789 062 5
0.000 007 628 394 531 25
0.000 003 B14 697 265 625
0.000 001 907 348 632 812 &

0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0000 000 238 418 579 101 562 5
0000 000 119 209 289 550 781 25

0000 000 059 604 B44 775 390 625
0000 00D 029 802 322 387 695 312 5

0.000 000 014 901 161 193 B47 656 25
0.000 000 007 450 580 596 923 B28 125

0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 00O 931 322 574 615 478 515 625

0.000 000 00D 465 661 287 307 739 257 812 5

VIDIECPAC 9

Keycodes. Hex Codes, and Decimal
Equivalents

Instruction Sets

Key Hexcode Decimal Key Hexcode Decimal

2 i 00 o] 17 23

1 o 01 P OF 18

2 02 02 Q 18 24

3 03 03 R 13 18

4 04 04 s 19 25

5 05 05 T 14 20

6 06 06 U 15 21

7 a7 o7 v 24 36

8 08 08 w 11 17

] 09 (1] X 22 34

A 2Q 32 v 2c a4

B 25 37 z 21 32

c 23 35 Blank OC 12

b iy 26 : oA 10

£ 12 18 s oB 1

F 18 27 Clear 2E 46

G 1C 28 7 oD 13

H g e 27 a8

! 18 22 + 10 1

J IE a0 - 28 40

K 1F 3 ® 29 41

L Q0E 14 + 28 42

™M 26 38 — 28 43

N 2D 45 Eptsr OF 47

D iption M Op Operation No.of Remarks
Code Bytes

Input

Input 1o INPR 7R p—=~R 1 1 key depression

Register only

Input te INA o4 Ip—A 1 1 key depression

Accumulator only

Output

Qutput frotn . OUTR CR R— QUT 1 Hfeg B sets

Register position

Ouipyt from OTA 28 A — QOUT 1 of output 1o

Accurnulator screan

One second SIG 05 BUZ =1 1

Buzz

Change A iator contents Math 1

Set o CLA o A =92) 1 Agcum = Hex 0@

Subiract 1 DEC 92 (A =A—1) 1 Decrement by 1

B1

ENDIX

AP

a2

Description Mnemenic

Add 1 INC
Load with RND
Handom No

Load from MOV
Storage

Combine 2 PAK R
digits

Saparate 2 UNP R
digits

Load'trom LDAR
Register
Subtractfrom SUBR
Reg

Add Register ADDR

Change Register Cantents
Store STOR
Acoumulator

Load a Value LDV A NN

Control Execution order
No Operation NOP

Hait HLT
Go to GTS NN
Subroutine

Return from RET
Subrout

Branching Decision
Branch on BDB NN
Decimal Borrow

Branch on BDCNN
Decimal Carry

Branch GTONN
Unconditionally

Op
Code

83
08

09

8A

BR

9R

DR

AR

SANN

FF
14NN

a7

10NN
TINN

12NN

Operation No.of Remarks
Bytes

(A=A+1) 1 Increment by]
AND — A 1

R —PC— 1 Reg © points to

A slep # wherg
data is stored
That data will the;
be moved to
accumulator

R == Ay 1 Ry = Reg low
order bit

Ri # 1==4, Ay = Accum
high order bit

Ay — Ry 1 Note If R, =

Reg 4
AL— R, + 1 then Ay, + 1 =
Reg 5
R—=a 1
A =R-4 1
(A =R+A] 1
A—R 1

R = NN 2 Load R with valye

NN
NO =09 1
HLT = FF 1
GIS —=PC 2
= NN
RET — PC =1
NN

(Ay = 8) = 2 NN=m0 through
PC = NN g9

Ay = B)— 2 A=09 aAF

PC = NN

GTO—-PC 2 PC = Program
= NN Counter

D

VIDIECPAC 9

Remarks

Description Mnemonic Op Operanon No. of
Code Bytes
Branch it BRZ NN 13NN A =8l— 2 The program
Accumulator is PC NN caunter p
(5] the step num
Branch if Reg BNE R NN 2RNN (R = A)—- 2
Agcumulator PC = NN
Branch if Heg. BEQ.R.NN 3RANN IR Ay— 2
= Accumulator PC = NN
Branch if Reg, BGT.ANN 48NN (R > A)— 2
Accumulatar PC = NN ’
Bral if Reg BLS RINN 5RNN R=A— 2 »
f\."'.L'm\n‘Rl'f,‘.‘ = NN

01Z23456789:4
. FLP+HERTUI

DRSDFGHJKAZ
HCUBHM.-x:=¥M

AHOSEEATI & dh
¢ SRR R

83

ENDIN

APPI

B84

THE PROGRAM

*DisSP

AY

EXEGUTION
MODE

CONTINUE
MOOE

TE INGE 3

PROGRAM MODE
A ASSEMBLER
LANGUAGE
CLEAR M MAGHINE
LANGUAGE

ASSEMBLER MODE HEX INPUT MOGE

| INPUT
RADLL

I INPUT
A ROLL

INPUT | MODE
assemaer |
> LANGUAGE | I
INPUT | INPUT
|
3 I
ENTER

